
1

Abdus Sattar
Assistant Professor

Department of Computer Science and Engineering

Daffodil International University

Email: abdus.cse@diu.edu.bd

9. Software Testing Strategies

mailto:abdus.cse@diu.edu.bd

Discussion Topics

 Program Testing

 Aim of Testing

 Verification vs Validation

 Design of Test Cases

 Functional Testing Vs. Structural Testing

 Black Box Testing

 White Box Testing

Program Testing

 Testing a program consists of providing the program with a set

of test inputs (or test cases) and observing if the program

behaves as expected. If the program fails to behave as

expected, then the conditions under which failure occurs are

noted for later debugging and correction.

 Some commonly used terms associated with testing are:

 Failure: This is a manifestation of an error (or defect or bug). But,

the mere presence of an error may not necessarily lead to a failure.

 Test case: This is the triplet [I,S,O], where I is the data input to the

system, S is the state of the system at which the data is input, and O

is the expected output of the system.

 Test suite: This is the set of all test cases with which a given

software product is to be tested.

Aim of Testing

 The aim of the testing process is to identify all defects existing
in a software product.

 However for most practical systems, even after satisfactorily
carrying out the testing phase, it is not possible to guarantee
that the software is error free. This is because of the fact that
the input data domain of most software products is very large.
It is not practical to test the software exhaustively with respect
to each value that the input data may assume.

 Even with this practical limitation of the testing process, the
importance of testing should not be underestimated.

 It must be remembered that testing does expose many defects
existing in a software product. Thus testing provides a
practical way of reducing defects in a system and increasing
the users’ confidence in a developed system.

Verification vs Validation

 Verification is the process of determining

whether the output of one phase of software

development conforms to that of its previous

phase.

 Verification is concerned with phase containment of

errors.

 Validation is the process of determining

whether a fully developed system conforms to

its requirements specification.

 Aim of validation is that the final product be error

free.

Design of Test Cases

 Exhaustive testing of almost any non-trivial system is
impractical due to the fact that the domain of input
data values to most practical software systems is
either extremely large or infinite.

 Therefore, we must design an optional test suite that
is of reasonable size and can uncover as many errors
existing in the system as possible.

 But larger test suite does not always detects more
error. For example lets consider the following code:
 if (x>y)

max = x;

else

max = x;

Design of Test Cases(Cont..)

 For the above code segment, consider the

following test suites

 Test suite 1: { (x=3,y=2); (x=2,y=3) }

 Test suite 2: { (x=3,y=2); (x=4,y=3); (x=5,y=1) }

 Test suite 1 can detect the error.

 Test suite 2 can not detect the error despite of

being large.

 Therefore, systematic approaches should be

followed to design an optimal test suite. In an

optimal test suite, each test case is designed to

detect different errors.

Functional Testing Vs.

Structural Testing

 In the black-box testing approach, test cases

are designed using only the functional

specification of the software, i.e. without any

knowledge of the internal structure of the

software. For this reason, black-box testing is

known as functional testing.

 On the other hand, in the white-box testing

approach, designing test cases requires

thorough knowledge about the internal

structure of software, and therefore the white-

box testing is called structural testing.

Unit testing

 Unit testing is undertaken after a module has been
coded and successfully reviewed. Unit testing (or
module testing) is the testing of different units (or
modules) of a system in isolation.

 In order to test a single module, a complete
environment is needed to provide all that is
necessary for execution of the module. That is,
besides the module under test itself, the following
steps are needed in order to be able to test the
module:
 The procedures belonging to other modules that the

module under test calls.

 Nonlocal data structures that the module accesses.

 A procedure to call the functions of the module under
test with appropriate parameters.

10

Unit Testing

interface

local data structures

boundary conditions

independent paths

error handling paths

module
to be

tested

test cases

Black Box Testing

 In the black-box testing

 test cases are designed from an examination of the

input/output values only

 no knowledge of design or code is required.

 The following are the two main approaches to

designing black box test cases.

 Equivalence class portioning

 Boundary value analysis

Black Box Testing

In Black Box Testing we just focus on inputs and

output of the software system without bothering

about internal knowledge of the software program.

Equivalence Class Partitioning

 In this approach, the domain of input values to a
program is partitioned into a set of equivalence
classes.

 The following are some general guidelines for
designing the equivalence classes:

 If the input data values to a system can be specified by
a range of values, then one valid and two invalid
equivalence classes should be defined.

 If the input data assumes values from a set of discrete
members of some domain, then one equivalence class
for valid input values and another equivalence class for
invalid input values should be defined.

Equivalence Class Partitioning

 Example 1: A software can compute the square
root of an input integer which can assume values in
the range of 0 to 5000. Design 3 Equivalence Class
Partitioning test cases.

 Answer: There are three equivalence classes:

 The set of negative integers.

 the set of integers in the range of 0 and 5000 and

 the integers larger than 5000.

 Therefore, the test cases must include representatives
for each of the three equivalence classes and possible
3 test sets can be:

 Test suite 1: {-5,500,6000}, Test suite 2: {-15,900,6020}
and Test suite 3: {-3,4999,5100}.

Equivalence Class Partitioning

 Example 2: Design the black-box test suite for the
following program. The program computes the
intersection point of two straight lines and displays
the result. It reads two integer pairs (m1, c1) and
(m2, c2) defining the two straight lines of the form
y=mx + c.

 Answer : The equivalence classes are the
following:
 Parallel lines (m1=m2, c1≠c2)

 Intersecting lines (m1≠m2)

 Coincident lines (m1=m2, c1=c2)

 Now, selecting one representative value from each
equivalence class, the test suit {(2, 2) (2, 5)}, {(5, 5) (7,
7)}, {(10, 10) (10, 10)} are obtained.

Boundary Value Analysis

 A type of programming error frequently occurs at
the boundaries of different equivalence classes of
inputs. The reason behind such errors might purely
be due to psychological factors. Programmers often
fail to see the special processing required by the
input values that lie at the boundary of the different
equivalence classes. For example, programmers
may improperly use < instead of <=, or conversely
<= for <. Boundary value analysis leads to selection
of test cases at the boundaries of the different
equivalence classes.

 Example: For a function that computes the square
root of integer values in the range of 0 and 5000,
the test cases must include the following values: {0,
-1,5000,5001}.

WHITE-BOX TESTING

 WHITE BOX TESTING (also known as Clear Box
Testing, Open Box Testing, Glass Box Testing,
Transparent Box Testing, Code-Based Testing or
Structural Testing) is a software testing method in
which the internal structure/design/implementation
of the item being tested is known to the tester.

 One white-box testing strategy is said to be
stronger than another strategy, if all types of errors
detected by the first testing strategy is also
detected by the second testing strategy, and the
second testing strategy additionally detects some
more types of errors. When two testing strategies
detect errors that are different at least with respect
to some types of errors, then they are called
complementary.

White Box Testing

White-box testing (also known as clear box

testing, glass box testing, transparent box testing,

and structural testing) is a method of

testing software that tests internal structures or workings

of an application, as opposed to its functionality

WHITE-BOX TESTING

 Example: Consider the Euclid’s GCD computation algorithm:

int compute_gcd(x, y) {

int x, y;

while (x! = y) {

if (x>y)

x= x – y;

else

y= y – x;

}

return x;

}

 By choosing the test set {(x=3, y=3), (x=4, y=3), (x=3, y=4)}, we can
exercise the program such that all statements are executed at least
once.

References

Software Maintenance Models

https://www.professionalqa.com/software-

maintenance-models

Chapter 9 software maintenance

https://www.slideshare.net/abhinavtheneo/chapter

-9-software-maintenance

https://www.professionalqa.com/software-maintenance-models
https://www.slideshare.net/abhinavtheneo/chapter-9-software-maintenance

