
Normalization

Normalization??

• Database Normalization is a technique of organizing
the data in the database. Normalization is a systematic
approach of decomposing tables to eliminate data
redundancy and undesirable characteristics like
Insertion, Update and Deletion Anamolies. It is a
multi-step process that puts data into tabular form by
removing duplicated data from the relation tables.
Normalization is used for mainly two purpose,
– Eliminating redundant(useless) data.
– Ensuring data dependencies make sense i.e data is logically

stored.

Normalization??
If a database design is not perfect, it may contain anomalies, which are like a

bad dream for any database administrator. Managing a database with
anomalies is next to impossible.

• Update anomalies − If data items are scattered and are not linked to each
other properly, then it could lead to strange situations. For example, when
we try to update one data item having its copies scattered over several
places, a few instances get updated properly while a few others are left
with old values. Such instances leave the database in an inconsistent state.

• Deletion anomalies − We tried to delete a record, but parts of it was left
undeleted because of unawareness, the data is also saved somewhere
else.

• Insert anomalies − We tried to insert data in a record that does not exist
at all.

• Normalization is a method to remove all these anomalies and bring the
database to a consistent state.

Types of Normalization

• 1st Normal Form
• 2nd Normal Form
• 3rd Normal Form
• Boyce Code Normal Form
• 4th Normal Form

First Normal Form

• First Normal Form is defined in the definition
of relations (tables) itself. This rule defines
that all the attributes in a relation must have
atomic domains. The values in an atomic
domain are indivisible units.

First Normal Form

• We re-arrange the relation (table) as below, to
convert it to First Normal Form.

• Each attribute must contain only a single value
from its pre-defined domain.

Second Normal Form

Before we learn about the second normal form, we
need to understand the following −

• Prime attribute − An attribute, which is a part of
the prime-key, is known as a prime attribute.

• Non-prime attribute − An attribute, which is not a
part of the prime-key, is said to be a non-prime
attribute.

• If we follow second normal form, then every
non-prime attribute should be fully functionally
dependent on prime key attribute.

Second Normal Form

We see here in Student_Project relation that the prime key
attributes are Stu_ID and Proj_ID. According to the rule,
non-key attributes, i.e. Stu_Name and Proj_Name must
be dependent upon both and not on any of the prime key
attribute individually. But we find that Stu_Name can be
identified by Stu_ID and Proj_Name can be identified by
Proj_ID independently. This is called partial dependency,
which is not allowed in Second Normal Form.

Second Normal Form

We broke the relation in two as depicted in the above picture. So there exists
no partial dependency.

Third Normal Form

• For a relation to be in Third Normal Form, it
must be in Second Normal form and the
following must satisfy −

• No non-prime attribute is transitively
dependent on prime key attribute.

• For any non-trivial functional dependency,
 X → A, then either −

– X is a superkey or,
– A is prime attribute.

Third Normal Form

We find that in the above Student_detail relation, Stu_ID is the key
and only prime key attribute. We find that City can be identified by
Stu_ID as well as Zip itself. Neither Zip is a superkey nor is City a
prime attribute. Additionally, Stu_ID → Zip → City, so there
exists transitive dependency.

Third Normal Form

To bring this relation into third normal form, we break the relation
into two relations as follows −

 Thanks To All

