CSE417:WEB
ENGINEERING

Daffodil International University

et Y nae

LEARNING
OUTCOME

v Analyze System Requirements For,
v Existing Systems

v Design Requirement Specification For,

v New Systems
v Choose Right Testing Methodology

CONTENTS

v Requirement Engineering

v Testing Methodology

SOFTWARE ENGINEERING VS WEB

ENGINEERING

= You already know about
software engineering

from CSE333!

= So, what’s new about web
engineering?

= Good news:

= This lecture reviews a lot
from SWE!

=« On a different note, you
will see the power of
these theories in
upcoming days! We use
them all!

Software
Engineering

Multimedia

N

Hypertext

Human-Computer Information

Interaction Web Engineering |+ Engineering
Engineering
Project
Management System Analysis
Modeling and and Design
Simulation

https://www.researchgate.net/figure/Web-Engineering-A-multidisciplinary-field_fig1_220795871

IS THERE ANY DIFFERENCE OR
RELATION?

- “In theory, there is no difference between theory and practice. But, in
practice, there 1s.”

=Software engineering is an engineering discipline that is concerned with all
aspects of software production.

= Web Engineering is the application of systematic, disciplined and quantifiable
approaches to development, operation, and maintenance of Web-based
applications.

WHAT DIFFERENCES HAS THE WEB MADE TO
SOFTWARE ENGINEERING?

= Availability of software services
-Developing highly distributed service-based systems

-Led to important advances in-
- Programming languages
- Software reuse

REQUIREMENT ENGINEERING

= Descriptions of the system services and constraints generated during the
requirements engineering process

= Requirements should describe what the system should do, but not how it should do
it.
- Two kinds of requirements based on the intended purpose and target audience:

= User Requirements
= System Requirements

= Three classes of requirements:
= Functional requirements

= Non-functional requirements
- Domain requirements

= More...

USER REQUIREMENTS & SYSTEM
REQUIREMENTS

- User requirements
- High-level abstract requirements
- Written as statements, in a natural language plus diagrams,
= services the system is expected to provide to system users
= constraints under which it must operate.

= System requirements
= Detailed description of system

= functions, services, and operational constraints.

= The system requirements document (sometimes called a functional specification)
should define exactly what is to be implemented.

@

FUNCTIONAL REQUIREMENTS

= Describe functionality or system services

- Depends on the type of software, expected users and the type of system where the
software is used

- High-level statements of what the system should do
= Describe the system services in detail

- Problems arise when-
- Requirements are not precise and interpreted in different ways by developers and users.

= In principle, requirements should be both
= Complete: include descriptions of all facilities required

= Consistent: should be no contradictions in descriptions

- In practice, it is impossible!

NON-FUNCTIONAL
REQUIREMENTS(1/2)

= System properties and constraints
= e.g. reliability, response time and storage requirements

- Constraints are I/0O device capability, system representations, etc.

- Process requirements may also be specified mandating a particular
IDE, programming language or development method.

- Non-functional requirements may affect the overall architecture

- A single non-functional requirement, such as a security requirement, may
generate a number of related functional requirements that define system
services that are required.

- It may also generate requirements that restrict existing requirements.

NON-FUNCTIONAL
REQUIREMENTS(2/2)

= Three classes of non-functional requirements:

= Product requirements

= Requirements which specify that the delivered product must behave in a particular way
= e.g. execution speed, reliability, etc.

- Organizational requirements

- Requirements which are a consequence of organizational policies and procedures
= e.g. process standards used, implementation requirements, etc.

- External requirements

- Requirements which arise from factors which are external to the system and its
development process

= e.g. interoperability requirements, legislative requirements, etc.

@

DOMAIN REQUIREMENTS

- The system's operational domain imposes requirements on the system.

- Domain requirements may be new functional requirements, constraints on existing
requirements or define specific computations.

- If domain requirements are not satisfied, the system may be unworkable.

= Two main problems :
= Understandability

- Requirements are expressed in the language of the application domain, which is not always
understood by software engineers developing the system.

= Implicitness

- Domain specialists understand the area so well that they do not think of making the domain
requirements explicit.

REQUIREMENTS ENGINEERING
PROCESS

= Processes vary widely depending on the application domain, the people involved
and the organization developing the requirements.

- In practice, requirements engineering is an iterative process in which the
following generic activities are interleaved:

= Requirements elicitation;

- Requirements analysis;

= Requirements validation;

- Requirements management.

ELICITATION AND ANALYSIS

= Range of system stakeholders
= Requirements discovery by interacting with stakeholders

= Requirements are grouped and organized into coherent clusters
= Prioritizing requirements and resolving requirements conflicts
= Requirements are documented and input into the next round of the spiral

= Open interviews with stakeholders are a part of the RE process.

= User stories and scenarios can be used and easy for stakeholders to understand
- l.e.,Use-case diagram

= Problems :
= Stakeholders don't know what they really want.

= Stakeholders express requirements in their own terms.

= Different stakeholders may have conflicting requirements.

= Organizational and political factors.

= Requirements change during the analysis process.(More on this...)

REQUIREMENTS SPECIFICATION AND
VALIDATION

= Requirements specification
= Writing down user and system requirements in a requirements document

- Written in natural language supplemented by appropriate diagrams and
tables

= Structured natural language is used to maintain a standard way.

= Requirements Validation

- Demonstrates that the requirements define the system that the customer really
wants

- Regular reviews should be held while the requirements definition is being
formulated

= Using an executable model of the system to check requirements
= Developing tests for requirements to check testability

REQUIREMENTS CHANGE

= Challenge-
- Requirements are ever changing

- New requirements emerge-
= As the system being developed
- After it has gone into use

- Reasons why requirements change after the system's deployment:
= Business and technical environment always changes
- Customers and Users are two different group people

- Large systems usually have a diverse user community
- different requirements and priorities that may be conflicting or contradictory.

TESTING(1/2)

= Testing is intended
- to show that a program does what it is intended to do
- to discover program defects before it is put into use.

= Testing can reveal the presence of errors, but NOT their absence
- Testing is part of a more general verification and validation process

- Exror
= the actual result deviates from the expected.
= Our expected results should (theoretically) come from our requirements definition.
- Most often, the goals/concerns/expectations of stakeholders serve as the testing basis.

TESTING (2/2)

= Test Case
= a set of inputs, execution conditions, and expected results for testing an object

- Complete test coverage 1s impossible, so testing focuses on
mitigating the largest risks.
- Where’s the greatest potential for loss?
- What are the sources of this risk?

=Start testing as early as possible — even with restricted resources
and time.

GOALS OF SOFTWARE
TESTING

- To demonstrate to the developer and the customer that the software meets its
requirements.

- Leads to validation testing:

= you expect the system to perform correctly using a given set of test cases that reflect the system's
expected use.

= A successful test shows that the system operates as intended.

= To discover situations in which the behavior of the software isincorrect,
undesirable or does not conform to its specification.

- Leads to defect testing: the test cases are designed to expose defects; the test cases can
be deliberately obscure and need not reflect how the system is normally used.

= A successful test is a test that makes the system perform incorrectly and so exposes a
defect in the system.

@

VERIFICATION AND
VALIDATION

= Verification: Are we building the product right?
= The software should conform to its specification.

= Validation: Are we building the right product?
= The software should do what the user really requires.

= Establish confidence that the system is good enough for its intended use, which
depends on:

= Software purpose: the level of confidence depends on how critical the software is to an
organization.

= User expectations: users may have low expectations of certain kinds of software.

= Marketing environment: getting a product to market early may be more important than
finding defects in the program.

THREE STAGES OF TESTING

= Development testing: the system is tested during development to discover bugs
and defects.

= Release testing: a separate testing team test a complete version of the system
before it is released to users.

= User testing: users or potential users of a system test the system in their own
environment.

DEVELOPMENT TESTING

= Development testing includes all testing activities that are carried out by the team
developing the system:

= Unit testing:

- individual program units or object classes are tested; should focus on testing the
functionality of objects or methods.

= Component testing:

= several individual units are integrated to create composite components; should focus on
testing component interfaces.

= System testing:

- some or all of the components in a system are integrated and the system is tested as a
whole; should focus on testing component interactions.

RELEASE TESTING

= Release testing
- testing a particular release

= Intended for use outside of the development team
= Convince the customer of the system that it is good enough for use.

= Requirements-based testing
- examining each requirement and developing a test or tests for it

- demonstrate that the system has properly implemented its requirements

= Scenario testing
- devise typical scenarios of use and use these to develop test cases for the system
= Scenarios should be realistic and real system users should be able to relate to them.

- If scenarios were developed as part of the requirements engineering process, it can
be reused as testing scenarios.

USER TESTING

= User or customer testing is a stage in the testing process in which users or customers
provide input and advice on system testing.

= User testing is essential, even when comprehensive system and release testing have been
carried out. Types of user testing include:

= Alpha testing:
= Users of the software work with the development team to test the software at the developer's site.

= Beta testing:
= A release of the software is made available to users to allow them to experiment and to raise
problems that they discover with the system developers.
= Acceptance testing:

= Customers test a system to decide whether or not it is ready to be accepted from the system
developers and deployed in the customer environment.

TEST METHODS AND
TECHNIQUES

= Link Testing : Finding broken links, orphan pages etc.
- Browser Testing : variety of browsers exists. Thus need to test.
= Load Testing: Does the system meet required response times and throughput?

= Stress Testing: How does the system behave under abnormal/extreme
conditions?

= Continuous Testing : Typically, running the operation a few times doesn’t
produce an error, hence the need for continuous testing.

= Security Testing:
= Is our SSL certificate working?
- What happens if [try to access a protected page/site in a non-secure way (i.e., http://)?

@

EXERCISE AND READINGS

« EXERCISE
= Develop SRS for you course project (soft copy submission)
= Write a short notes on
- Web Project Management
= Testing tools.

- READINGS

- Requirement Engineering

= Software Testing
= Project Management

= Testing tools

https://cs.ccsu.edu/~stan/classes/CS410/Notes16/04-Requirements.html
https://cs.ccsu.edu/~stan/classes/CS410/Notes16/08-SoftwareTesting.html
https://cs.ccsu.edu/~stan/classes/CS410/Notes16/22-ProjectManagement.html
https://medium.com/@briananderson2209/best-automation-testing-tools-for-2018-top-10-reviews-8a4a19f664d2
https://medium.com/@briananderson2209/best-automation-testing-tools-for-2018-top-10-reviews-8a4a19f664d2

REFERENCES

= Requirements Engineering
- Reference: Sommerville, Software Engineering, 10 ed., Chapter 4

= Testing
- Sommerville, Software Engineering, 10 ed., Chapter 8

- Project Management
- Sommerville, Software Engineering, 9 ed., Chapter 22

https://www.researchgate.net/figure/Web-Engineering-A-multidisciplinary-field_fig1_220795871
https://www.researchgate.net/figure/Web-Engineering-A-multidisciplinary-field_fig1_220795871
https://www.quora.com/What-is-web-engineering

