
CSE417: WEB ENGINEERING
Daffodil International University

Learning Outcomes

You will learn
▪SQL
▪ To access mySQL database
▪ To create a basic mySQL database
▪ To use some basic queries
▪ To use PHP and mySQL

Introduction to SQL
SQL is an ANSI (American National Standards Institute) standard computer language
for accessing and manipulating databases.
• SQL stands for Structured Query Language
• using SQL can you can

▪ access a database
▪ execute queries, and retrieve data
▪ insert, delete and update records

• SQL works with database programs like MS Access, DB2, Informix, MS SQL Server,
Oracle, Sybase, mySQL, etc.

Unfortunately, there are many different versions. But, they must support the same major
keywords in a similar manner such as SELECT, UPDATE, DELETE, INSERT, WHERE, etc.

Most of the SQL database programs also have their own proprietary extensions!

The University of Liverpool CS department has a version of mySQL installed on the
servers, and it is this system that we use in this course. Most all of the commands
discussed here should work with little (or no) change to them on other database systems.

SQL Database Tables
A database most often contains one or more tables. Each table is identified by a name (e.g.
"Customers" or "Orders"). Tables contain records (rows) with data.

LastName FirstName Address City

Hansen Ola Timoteivn 10 Sandnes

Svendson Tove Borgvn 23 Sandnes

Pettersen Kari Storgt 20 Stavanger

The table above contains three records (one for each person) and four columns (LastName,
FirstName, Address, and City).

For example, a table called "Persons":

SQL Queries
With SQL, you can query a database and have a result set returned.

LastName

Hansen

Svendson

Pettersen

A query like this:

SELECT LastName FROM Persons;

gives a result set like this:

The mySQL database system requires a semicolon at the end of
the SQL statement!

SQL Data Languages

The Data Definition Language (DDL) part of SQL permits database tables to be created
or deleted:

• CREATE TABLE - creates a new database table
• ALTER TABLE - alters (changes) a database table
• DROP TABLE - deletes a database table
• CREATE INDEX - creates an index (search key)
• DROP INDEX - deletes an index

The query and update commands together form the Data Manipulation Language
(DML) part of SQL:

• SELECT - extracts data from a database table
• UPDATE - updates data in a database table
• DELETE - deletes data from a database table
• INSERT INTO - inserts new data into a database table

*Here we will use some of them in mySQL

Logging into mySQL Server
You can log into our mySQL server from Linux by typing in the prompt

bash-2.05b$ mysql -h mysql martin –u martin

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 209201 to server version: 5.0.22

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

From here you can create, modify, and and drop tables, and modify the data in your tables.
But first, you must specify which database on the server you want to use.

mysql> use martin;

Database changed

Creating a Table
You can create a table you might use for the upcoming project. For example,

mysql> CREATE TABLE students(

 -> num INT NOT NULL AUTO_INCREMENT,

 -> f_name VARCHAR(48),

 -> l_name VARCHAR(48),

 -> student_id INT,

 -> email VARCHAR(48),

 -> PRIMARY KEY(num));

Query OK, 0 rows affected (0.02 sec)

*If the server gives you a big ERROR, just try again from the top!

Hit Enter after each line
(if you want). MySQL
doesn’t try to interpret the
command itself until it
sees a semicolon (;)
(The “->” characters you
see are not typed by you.)

Viewing The Table Structure
Use DESCRIBE to see the structure of a table

mysql> DESCRIBE students;

+------------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+----------------+
num	int(11)	NO	PRI	NULL	auto_increment
f_name	varchar(48)	YES		NULL	
l_name	varchar(48)	YES		NULL	
student_id	int(11)	YES		NULL	
email	varchar(48)	YES		NULL	
+------------+-------------+------+-----+---------+----------------+

Inserting Data
Using INSERT INTO you can insert a new row into your table. For example,

mysql> INSERT INTO students

 -> VALUES(NULL,’Russell’,’Martin’,396310,‘martin@csc.liv.ac.uk');

Query OK, 1 row affected (0.00 sec)

 Using SELECT FROM you select some data from a table.

mysql> SELECT * FROM students;

+-----+---------+--------+------------+----------------------+
| num | f_name | l_name | student_id | email |
+-----+---------+--------+------------+----------------------+
| 1 | Russell | Martin | 396310 | martin@csc.liv.ac.uk |
+-----+---------+--------+------------+----------------------+
1 row in set (0.00 sec)

Inserting Some More Data
You can repeat inserting until all data is entered into the table.

mysql> INSERT INTO students

 -> VALUES(NULL,‘James',‘Bond',007,'bond@csc.liv.ac.uk');

Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM students;
+-----+---------+--------+------------+----------------------+
| num | f_name | l_name | student_id | email |
+-----+---------+--------+------------+----------------------+
| 1 | Russell | Martin | 396310 | martin@csc.liv.ac.uk |
| 2 | James | Bond | 7 | bond@csc.liv.ac.uk |
+-----+---------+--------+------------+----------------------+
2 rows in set (0.00 sec)

Note: The value “NULL” in the “num” field is automatically replaced by
the SQL interpreter as the “auto_increment” option was selected when
the table was defined.

Getting Data Out of the Table

• The SELECT command is the main way of getting data out of a table, or set of tables.
 SELECT * FROM students;
 Here the asterisk means to select (i.e. return the information in) all columns.

 You can specify one or more columns of data that you want, such as
 SELECT f_name,l_name FROM students;

 +---------+--------+
 | f_name | l_name |
 +---------+--------+
 | Russell | Martin |
 | James | Bond |
 +---------+--------+
 2 rows in set (0.00 sec)

Getting Data Out of the Table (cont.)

• You can specify other information that you want in the query using the WHERE
clause.

 SELECT * FROM students WHERE l_name=‘Bond’;

 +-----+---------+--------+------------+----------------------+
 | num | f_name | l_name | student_id | email |
 +-----+---------+--------+------------+----------------------+
 | 2 | James | Bond | 7 | bond@csc.liv.ac.uk |
 +-----+---------+--------+------------+----------------------+
 1 row in set (0.00 sec)

 SELECT student_id, email FROM students WHERE l_name=‘Bond’;
 +------------+----------------------+
 | student_id | email |
 +------------+----------------------+
 | 7 | bond@csc.liv.ac.uk |
 +------------+----------------------+
 1 row in set (0.00 sec)

Altering the Table
The ALTER TABLE statement is used to add or drop columns in an existing table.

mysql> ALTER TABLE students ADD date DATE;

Query OK, 2 rows affected (0.00 sec)

Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM students;
+-----+---------+--------+------------+----------------------+------+
| num | f_name | l_name | student_id | email | date |
+-----+---------+--------+------------+----------------------+------+
| 1 | Russell | Martin | 396310 | martin@csc.liv.ac.uk | NULL |
| 2 | James | Bond | 7 | bond@csc.liv.ac.uk | NULL |
+-----+---------+--------+------------+----------------------+------+
2 rows in set (0.00 sec)

Updating the Table
The UPDATE statement is used to modify data in a table.

mysql> UPDATE students SET date='2007-11-15' WHERE num=1;

Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM students;
+-----+---------+--------+------------+----------------------+------------+
| num | f_name | l_name | student_id | email | date |
+-----+---------+--------+------------+----------------------+------------+
| 1 | Russell | Martin | 396310 | martin@csc.liv.ac.uk | 2007-11-15 |
| 2 | James | Bond | 7 | bond@csc.liv.ac.uk | NULL |
+-----+---------+--------+------------+----------------------+------------+
2 rows in set (0.00 sec)

Note that the default date format is “YYYY-MM-DD” and I don’t believe this
default setting can be changed.

Deleting Some Data
The DELETE statement is used to delete rows in a table.

mysql> DELETE FROM students WHERE l_name='Bond';

Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM students;
+-----+---------+--------+------------+----------------------+------------+
| num | f_name | l_name | student_id | email | date |
+-----+---------+--------+------------+----------------------+------------+
| 1 | Russell | Martin | 396310 | martin@csc.liv.ac.uk | 2006-11-15 |
+-----+---------+--------+------------+----------------------+------------+
1 row in set (0.00 sec)

The Final Table
We’ll first add another column, update the (only) record, then insert more data.

mysql> ALTER TABLE students ADD gr INT;

Query OK, 1 row affected (0.01 sec)

Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM students;
+-----+---------+--------+------------+----------------------+------------+------+
| num | f_name | l_name | student_id | email | date | gr |
+-----+---------+--------+------------+----------------------+------------+------+
| 1 | Russell | Martin | 396310 | martin@csc.liv.ac.uk | 2007-11-15 | NULL |
+-----+---------+--------+------------+----------------------+------------+------+
1 row in set (0.00 sec)

mysql> UPDATE students SET gr=3 WHERE num=1;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM students;
+-----+---------+--------+------------+----------------------+------------+------+
| num | f_name | l_name | student_id | email | date | gr |
+-----+---------+--------+------------+----------------------+------------+------+
| 1 | Russell | Martin | 396310 | martin@csc.liv.ac.uk | 2007-11-15 | 3 |
+-----+---------+--------+------------+----------------------+------------+------+
1 row in set (0.00 sec)

mysql> INSERT INTO students
VALUES(NULL,‘James',‘Bond',007,'bond@csc.liv.ac.uk‘,‘2007-11-15’, 1);

. . .

. . .

The Final Table (cont.)
. . .

. . .

mysql> INSERT INTO students VALUES(NULL,‘Hugh,‘Milner',75849789,‘hugh@poughkeepsie.ny‘,
CURRENT_DATE, 2);

Note: CURRENT_DATE is a built-in SQL command which (as expected)
gives the current (local) date.

mysql> SELECT * FROM students;

+-----+---------+----------+------------+----------------------------+------------+------+

| num | f_name | l_name | student_id | email | date | gr |

+-----+---------+----------+------------+----------------------------+------------+------+

| 1 | Russell | Martin | 396310 | martin@csc.liv.ac.uk | 2007-11-15 | 3 |

| 5 | Kate | Ash | 124309 | kate@ozymandius.co.uk | 2007-11-16 | 3 |

| 3 | James | Bond | 7 | bond@csc.liv.ac.uk | 2007-11-15 | 1|

| 4 | Bob | Jones | 12190 | bob@nowhere.com | 2007-11-16 | 3 |

| 6 | Pete | Lofton | 76 | lofton@iwannabesedated.com | 2007-11-17 | 2 |

| 7 | Polly | Crackers | 1717 | crackers@polly.org | 2007-11-17 | 1|

| 8 | Hugh | Milner | 75849789 | hugh@poughkeepsie.ny | 2007-11-17 | 2 |

+-----+---------+----------+------------+----------------------------+------------+------+

7 rows in set (0.00 sec)

mysql> exit

Bye

Other SQL Commands

• SHOW tables; gives a list of tables that have been defined in the database
• ALTER TABLE students DROP email; would drop the “email” column from all

records
• DROP TABLE students; deletes the entire “students” table, and its definition

(use the DROP command with extreme care!!)
• DELETE FROM students; removes all rows from the “students” table (so once

again, use the DELETE command with great caution), the table definition
remains to be used again

• A more useful command is something like
 DELETE FROM students WHERE (num > 5) AND (num <= 10);
 which selectively deletes students based on their “num” values (for example).

• HELP; gives the SQL help
• HELP DROP; gives help on the DROP command, etc.

Backing up/restoring a mySQL database

• You can back up an entire database with a command such as

 mysqldump –h mysql –u martin martin > backup.sql

 (Run from the Unix command line.)
• This gives a script containing SQL commands to reconstruct the table structure

(of all tables) and all of the data in the table(s).
• To restore the database (from scratch) you can use this type of Unix command:
 mysql –h mysql –u martin martin < backup.sql

• Other commands are possible to backup/restore only certain tables or items in
tables, etc. if that is what you desire. For example

 mysqldump –h mysql –u martin martin books clients> backup.sql

stores information about the “books” and “clients” tables in the “martin” database.

PHP: MySQL Database [CRUD Operations]

To do any operations, you need to
Connect to your database first!

<?php
$servername = "localhost";
$username = "username";
$password = "password";
$dbname = "myDB";
// Create connection
$conn = mysqli_connect($servername, $username, $password,
$dbname);
// Check connection
if (!$conn) {
 die("Connection failed: " . mysqli_connect_error());
}
?>

https://www.w3schools.com/php/php_mysql_intro.asp

Inserting Data

$sql = "INSERT INTO MyGuests (firstname, lastname, email)
VALUES ('John', 'Doe', 'john@example.com')";

if (mysqli_query($conn, $sql)) {
 echo "New record created successfully";
} else {
 echo "Error: " . $sql . "
" . mysqli_error($conn);
}

//Remember, you always connect to your database first
//Assumption: We have a Table named MyGuests

Reading Data

$sql = "SELECT id, firstname, lastname FROM MyGuests";
$result = $conn->query($sql);

if ($result->num_rows > 0) {
 // output data of each row
 while($row = $result->fetch_assoc()) {
 echo "id: " . $row["id"]. " - Name: " .
$row["firstname"]. " " . $row["lastname"]. "
";
}
} else {
 echo "0 results";
}

//Remember, you always connect to your database first
//Assumption: We have a Table named MyGuests

More..

• Did you close your connection?
mysqli_close($conn);
//put this at the end of operation

� Similarly you can update and delete data
�
� More here : PHP: MySQL Database

• There are slides hidden and supposed to help you doing more complex
opertions

• These will not be covered in Class Lecture.
• Most of them are already explained to you in DATABASE MANAGEMENT

SYSTEM course

https://www.w3schools.com/php/php_mysql_intro.asp

Attention!

• There is easier way to do using PHPMyadmin accesses via localhost (after
XAMPP installation)

• Remember, you will not always get flexibilty and,

• You love command line tools to write code!
• Cheers!

Exercise

• Show one example of each of CRUD operation
• Do two complex operations
• READINGS/Practice

▪ M Schafer: Ch. 31
▪ W3 schools
▪ http://www.php-mysql-tutorial.com/
▪ http://www.sitepoint.com/php-security-blunders/
▪ http://php.net/manual/en/mysqli.quickstart.prepared-statements.php

http://www.w3schools.com/sql/default.asp
http://www.php-mysql-tutorial.com/
http://www.sitepoint.com/php-security-blunders/
http://php.net/manual/en/mysqli.quickstart.prepared-statements.php

Acknowledgement

• This module is designed and created with the help from following
sources-
▪ https://cgi.csc.liv.ac.uk/~ullrich/COMP519/
▪ http://www.csc.liv.ac.uk/~martin/teaching/comp519/
▪

https://cgi.csc.liv.ac.uk/~ullrich/COMP519/
http://www.csc.liv.ac.uk/~martin/teaching/comp519/

Putting Content into Your Database with PHP
We can simply use PHP functions and mySQL queries together:

Host: mysql

Database: martin

Username: martin

Password: <blank>

• Connect to the database server and login (this is the PHP command to do so)
 mysql_connect("host","username","password");

• Choose the database
 mysql_select_db("database");

• Send SQL queries to the server to add, delete, and modify data
 mysql_query("query"); (use the exact same query string as you would
 normally use in SQL, without the trailing semi-colon)

• Close the connection to the database server (to ensure the information is stored properly)
 mysql_close();

Student Database: data_in.php
<html>
<head>
<title>Putting Data in the DB</title>
</head>
<body>
<?php
/*insert students into DB*/
if(isset($_POST[" submit"])) {

 $db = mysql_connect("mysql”, ”martin");
 mysql_select_db("martin");

 $date=date("Y-m-d"); /* Get the current date in the right SQL format
*/

 $sql="INSERT INTO students VALUES(NULL,'“ . $_POST[“f_name"] . "','“ .
$_POST["l_name"] . "',“ . $_POST[" student_id"] . ",'“ . $_POST[" email"] .
"','“ . $date . "',“ . $_POST[" gr"] . ")"; /* construct the query
*/

 mysql_query($sql); /* execute the query */
 mysql_close();

 echo"<h3>Thank you. The data has been entered.</h3> \n";

 echo'<p>Back to registration</p>‘ . “\n”;

 echo'<p>View the student lists</p>‘ .”\n”;

 }

Student Database: data_in.php
else {
?>
<h3>Enter your items into the database</h3>
<form action="data_in.php" method="POST">
First Name: <input type="text" name=“ f_name“ />

Last Name: <input type="text" name=“ l_name“ />

ID: <input type="text" name=“ student_id“ />

email: <input type="text" name=“ email“ />

Group: <select name=" gr">
 <option value ="1">1</option>
 <option value ="2">2</option>
 <option value ="3">3</option>
</select>

<input type="submit" name=" submit“ /> <input type="reset“ />
</form>

<?php
 }
?>

</body>
</html>

view the output page

Getting Content out of Your Database with PHP
Similarly, we can get some information from a database:

• Connect to the server and login, choose a database
 mysql_connect("host","username","password");
 mysql_select_db("database");

• Send an SQL query to the server to select data from the database into an array
 $result=mysql_query("query");

• Either, look into a row and a fieldname
 $num=mysql_numrows($result);

 $variable=mysql_result($result,$i,"fieldname");

• Or, fetch rows one by one
 $row=mysql_fetch_array($result);

• Close the connection to the database server
 mysql_close();

Student Database: data_out.php
<html>
<head>
<title>Getting Data out of the DB</title>
</head>
<body>
<h1> Student Database </h1>
<p> Order the full list of students by
date,
<href="data_out.php? order=student_id">id, or
by surname.
</p>

<p>
<form action="data_out.php" method="POST">
Or only see the list of students in group
<select name="gr">
 <option value ="1">1</option>
 <option value ="2">2</option>
 <option value ="3">3</option>
</select>

<input type="submit" name="submit“ />
</form>
</p>

Student Database: data_out.php
<?php
/*get students from the DB */
$db = mysql_connect("mysql",“martin");
mysql_select_db(“martin", $db);

switch($_GET["order"]){
case 'date': $sql = "SELECT * FROM students ORDER BY date"; break;
case ‘student_id': $sql = "SELECT * FROM students ORDER BY student_id";

break;
case ‘l_name': $sql = "SELECT * FROM students ORDER BY l_name"; break;

default: $sql = “SELECT * FROM students”; break;
}
if(isset($_POST["submit"])){
 $sql = “SELECT * FROM students WHERE gr=“ . $_POST["gr"] ;
}

$result=mysql_query($sql); /* execute the query */
while($row=mysql_fetch_array($result)){
 echo "<h4> Name: “ . $row["l_name"] . ', ‘ . $row["f_name"] . "</h4> \n";
 echo "<h5> ID: “ . $row[“student_id"] . "
 Email: “ . $row["email"] .

"
 Group: “ . $row["gr"] . "
 Posted: “ . $row["date"] . "</h5>
\n";

}
mysql_close();
?>
</body>
</html>

view the output page

Using several tables

• mySQL (like any other database system that uses SQL) is a relational
database, meaning that it’s designed to work with multiple tables, and it
allows you to make queries that involve several tables.

• Using multiple tables allows us to store lots of information without much
duplication.

• Allows for easier updating (both insertion and deletion).
• We can also perform different types of queries, combining the

information in different ways depending upon our needs.

Advanced queries

• Suppose that we have defined several tables as follows:
mysql> describe clients;
+-----------+-------------+------+-----+---------+----------------
+
| Field | Type | Null | Key | Default | Extra
|
+-----------+-------------+------+-----+---------+----------------
+
| client_id | int(11) | NO | PRI | NULL | auto_increment
|
| f_name | varchar(20) | YES | | NULL |
|
| l_name | varchar(30) | NO | | |
|
| address | varchar(40) | YES | | NULL |
|
| city | varchar(30) | YES | | NULL |
|
| postcode | varchar(12) | YES | | NULL |
|
+-----------+-------------+------+-----+---------+----------------
+
6 rows in set (0.01 sec)

mysql> describe purchases;
+-------------+---------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+---------+------+-----+---------+----------------+
purchase_id	int(11)	NO	PRI	NULL	auto_increment
client_id	int(11)	NO			
date	date	NO			
+-------------+---------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

mysql> describe itemlist;
+-------------+---------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+---------+------+-----+---------+----------------+
item_id	int(11)	NO	PRI	NULL	auto_increment
purchase_id	int(11)	NO			
book_id	int(11)	NO			
+-------------+---------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

mysql> describe books;
+---------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+----------------+
book_id	int(11)	NO	PRI	NULL	auto_increment
title	varchar(50)	NO			
pages	int(11)	YES		NULL	
+---------+-------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

mysql>

The idea here is that clients can make multiple purchases. Each
purchase will be assigned a unique id, but can consist of multiple
items. Each item is a book, which can be purchased by many
different people.

Defining the tables in this fashion allows us to avoid (excessive)
repetition of information, and lets us query the data in different
fashions.

The “id” fields are the keys that we use to tie the various tables together,
namely a customer (or client) with “client_id” will make several
purchases. We can identify their purchases by searching for matches
of the client_id in the purchases table.

Similarly, we can find the actual items that comprise a particular
purchase by searching for the purchase_id key in the itemlist table.

Populate the tables
• Suppose that we have this data in the tables:

mysql> select * from clients;
+-----------+---------+--------+--------------------------+----------------+----------+
| client_id | f_name | l_name | address | city | postcode |
+-----------+---------+--------+--------------------------+----------------+----------+
1	Russell	Martin	Dept of Computer Science	Liverpool	L69 3BX
2	Bob	Milnor	12 Peachtree Ln	Liverpool	L12 3DX
3	Sarah	Ford	542b Jersey Rd	West Kirby	L43 8JK
4	Larry	Vance	76 Jarhead Ln	Liverpool	L12 4RT
5	Paul	Abbott	90 Crabtree Pl	Leamingotn Spa	CV32 7YP
+-----------+---------+--------+--------------------------+----------------+----------+
5 rows in set (0.01 sec)

mysql> select * from books;
+---------+---------------------+-------+
| book_id | title | pages |
+---------+---------------------+-------+
1	Linux in a Nutshell	120
2	Learning SQL	289
3	Abstract Algebra	320
4	Rising Sun	830
5	Round the Moon	136
6	Blackbeard	292
+---------+---------------------+-------+
6 rows in set (0.00 sec)

mysql>

mysql> SELECT * FROM purchases;
+-------------+-----------+------------+
| purchase_id | client_id | date |
+-------------+-----------+------------+
1	1	2007-11-09
2	1	2007-11-10
4	2	2007-11-20
5	4	2007-11-20
6	3	2007-11-21
7	5	2007-11-25
8	3	2007-11-25
+-------------+-----------+------------+
7 rows in set (0.00 sec)

mysql> SELECT * FROM itemlist;
+---------+-------------+---------+
| item_id | purchase_id | book_id |
+---------+-------------+---------+
1	1	2
2	1	6
3	1	3
4	2	4
5	2	5
6	4	5
7	4	6
8	5	1
9	5	3
10	6	5
11	7	2
12	8	3
+---------+-------------+---------+
12 rows in set (0.00 sec)

mysql>

Advanced Queries

• We can link these tables together by queries of this type:

myql> SELECT * from clients, purchases WHERE clients.client_id=purchases.client_id ORDER BY purchase_id;
+----------+---------+--------+--------------------------+----------------+----------+-------------+-----------+------------+
|client_id | f_name | l_name | address | city | postcode | purchase_id | client_id | date |
-----------+---------+--------+--------------------------+----------------+----------+-------------+-----------+------------+
1	Russell	Martin	Dept of Computer Science	Liverpool	L69 3BX	1	1	2007-11-09
1	Russell	Martin	Dept of Computer Science	Liverpool	L69 3BX	2	1	2007-11-10
2	Bob	Milnor	12 Peachtree Ln	Liverpool	L12 3DX	4	2	2007-11-20
4	Larry	Vance	76 Jarhead Ln	Liverpool	L12 4RT	5	4	2007-11-20
3	Sarah	Ford	542b Jersey Rd	West Kirby	L43 8JK	6	3	2007-11-21
5	Paul	Abbott	90 Crabtree Pl	Leamingotn Spa	CV32 7YP	7	5	2007-11-25
3	Sarah	Ford	542b Jersey Rd	West Kirby	L43 8JK	8	3	2007-11-25
+-----------+---------+--------+--------------------------+----------------+----------+-------------+-----------+------------+
7 rows in set (0.01 sec)

mysql>

So you can see that this query basically gives us all of the purchase orders
that have been placed by the clients (but not the number of items, or the items
themselves).

• You can see that the “client_id” field is repeated. This is because we selected all columns
(using the * option) in both tables, and it appears in each table.

• To avoid this repeated information, we can make a query like:

mysql> SELECT clients.client_id, f_name, l_name, address, city, postcode, purchases.purchase_id,date from
clients, purchases WHERE clients.client_id=purchases.client_id ORDER BY purchase_id;

+-----------+---------+--------+--------------------------+----------------+----------+-------------+------------+
| client_id | f_name | l_name | address | city | postcode | purchase_id | date |
+-----------+---------+--------+--------------------------+----------------+----------+-------------+------------+
1	Russell	Martin	Dept of Computer Science	Liverpool	L69 3BX	1	2007-11-09
1	Russell	Martin	Dept of Computer Science	Liverpool	L69 3BX	2	2007-11-10
2	Bob	Milnor	12 Peachtree Ln	Liverpool	L12 3DX	4	2007-11-20
4	Larry	Vance	76 Jarhead Ln	Liverpool	L12 4RT	5	2007-11-20
3	Sarah	Ford	542b Jersey Rd	West Kirby	L43 8JK	6	2007-11-21
5	Paul	Abbott	90 Crabtree Pl	Leamingotn Spa	CV32 7YP	7	2007-11-25
3	Sarah	Ford	542b Jersey Rd	West Kirby	L43 8JK	8	2007-11-25
+-----------+---------+--------+--------------------------+----------------+----------+-------------+------------+
7 rows in set (0.00 sec)

mysql>

The “NATURAL JOIN” option can obtain the same result as above, as they share a single key.

mysql> SELECT * FROM clients NATURAL JOIN purchases;

• We need not select all columns:

mysql> SELECT f_name,l_name, purchases.purchase_id FROM
clients NATURAL JOIN purchases ORDER BY purchase_id;

+---------+---------+-------------+
| f_name | l_name | purchase_id |
+---------+---------+-------------+
Russell	Martin	1
Russell	Martin	2
Bob	Milnor	4
Larry	Vance	5
Sarah	Ford	6
Paul	Abbott	7
Sarah	Ford	8
+---------+----------+-------------+
7 rows in set (0.00 sec)

mysql>

More Complex Queries
• We can create most any type of query that you might think of with a (more complicated)

“WHERE” clause:

mysql> SELECT purchases.purchase_id, f_name, l_name, date
FROM purchases, clients WHERE
purchases.client_id=clients.client_id;

+-------------+---------+--------+------------+
| purchase_id | f_name | l_name | date |
+-------------+---------+--------+------------+
1	Russell	Martin	2007-11-09
2	Russell	Martin	2007-11-10
4	Bob	Milnor	2007-11-20
5	Larry	Vance	2007-11-20
6	Sarah	Ford	2007-11-21
7	Paul	Abbott	2007-11-25
8	Sarah	Ford	2007-11-25
+-------------+---------+--------+------------+
7 rows in set (0.00 sec)

mysql>

More Complex Queries (cont.)
• Find the purchases by the person named “Ford”.

mysql> SELECT purchases.purchase_id, f_name, l_name, date FROM
purchases, clients

 WHERE (purchases.client_id=clients.client_id) AND
(l_name='Ford');

+-------------+--------+--------+------------+
| purchase_id | f_name | l_name | date |
+-------------+--------+--------+------------+
| 6 | Sarah | Ford | 2007-11-21 |
| 8 | Sarah | Ford | 2007-11-25 |
+-------------+--------+--------+------------+
2 rows in set (0.01 sec)

mysql>

Querying multiple tables
• In addition, we can query many tables (i.e. more than two) at once:
• First we’ll find all the purchases by a person with l_name=‘Martin’.

mysql> select purchases.purchase_id, f_name, l_name, date FROM
purchases, clients WHERE (purchases.client_id=clients.client_id)
AND (l_name='Martin') ORDER BY purchases.purchase_id;

+-------------+---------+--------+------------+
| purchase_id | f_name | l_name | date |
+-------------+---------+--------+------------+
| 1 | Russell | Martin | 2007-11-09 |
| 2 | Russell | Martin | 2007-11-10 |
+-------------+---------+--------+------------+
2 rows in set (0.00 sec)

mysql>

Querying multiple tables (cont.)
• Now let’s find out the items (the “book_id”) in each purchase:

mysql> SELECT purchases.purchase_id, f_name, l_name, date,
itemlist.book_id FROM purchases, clients, itemlist

 WHERE (purchases.client_id=clients.client_id) AND
(l_name='Martin') AND
(purchases.purchase_id=itemlist.purchase_id)

 ORDER BY purchases.purchase_id;
+-------------+---------+--------+------------+---------+
| purchase_id | f_name | l_name | date | book_id |
+-------------+---------+--------+------------+---------+
1	Russell	Martin	2007-11-09	2
1	Russell	Martin	2007-11-09	6
1	Russell	Martin	2007-11-09	3
2	Russell	Martin	2007-11-10	5
2	Russell	Martin	2007-11-10	4
+-------------+---------+--------+------------+---------+

5 rows in set (0.00 sec)

mysql>

• Finally we can find the actual book titles by querying all four tables at
once:

mysql> SELECT purchases.purchase_id, f_name, l_name, date,
itemlist.book_id, title

 FROM purchases, clients, itemlist, books
 WHERE (purchases.client_id=clients.client_id) AND

(l_name='Martin') AND
(purchases.purchase_id=itemlist.purchase_id) AND
(itemlist.book_id=books.book_id)

 ORDER BY purchases.purchase_id;
+-------------+---------+--------+------------+---------+------------------+
| purchase_id | f_name | l_name | date | book_id | title |
+-------------+---------+--------+------------+---------+------------------+
1	Russell	Martin	2007-11-09	6	Blackbeard
1	Russell	Martin	2007-11-09	2	Learning SQL
1	Russell	Martin	2007-11-09	3	Abstract Algebra
2	Russell	Martin	2007-11-10	4	Rising Sun
2	Russell	Martin	2007-11-10	5	Round the Moon
+-------------+---------+--------+------------+---------+------------------+
5 rows in set (0.00 sec)

mysql>

Querying multiple tables (cont.)

Querying multiple tables (cont.)
• As before, we need not select all of the columns:

mysql> SELECT purchases.purchase_id, title
 FROM purchases, clients, itemlist, books
 WHERE (purchases.client_id=clients.client_id) AND

(l_name='Martin') AND
(purchases.purchase_id=itemlist.purchase_id) AND
(itemlist.book_id=books.book_id)

 ORDER BY purchases.purchase_id;
+-------------+------------------+
| purchase_id | title |
+-------------+------------------+
1	Blackbeard
1	Learning SQL
1	Abstract Algebra
2	Rising Sun
2	Round the Moon
+-------------+------------------+
5 rows in set (0.00 sec)

mysql>

Using aliases in queries
• Especially long queries might benefit from the SQL capability for

using aliases.
mysql> select p.purchase_id, title FROM purchases AS p, clients AS

c, itemlist AS i, books WHERE (p.client_id=c.client_id) AND
(l_name='Martin') AND (p.purchase_id=i.purchase_id) AND
(i.book_id=books.book_id) ORDER BY p.purchase_id;

+-------------+------------------+
| purchase_id | title |
+-------------+------------------+
1	Blackbeard
1	Learning SQL
1	Abstract Algebra
2	Rising Sun
2	Round the Moon
+-------------+------------------+
5 rows in set (0.00 sec)

An alias uses the SQL keyword ‘AS’ to associate a new identifier with a
table. It should appear after the table name and before the alias.
Once a table is aliased you must use that alias everywhere in the
SQL query.

Searching tables

The SQL “wildcard” character is the % symbol. That is, it can literally represent
anything. Using it we can build searches like the following:

mysql> SELECT * FROM clients WHERE l_name LIKE '%a%';
+-----------+---------+--------+--------------------------+----------------+----------+
| client_id | f_name | l_name | address | city | postcode |
+-----------+---------+--------+--------------------------+----------------+----------+
1	Russell	Martin	Dept of Computer Science	Liverpool	L69 3BX
4	Larry	Vance	76 Jarhead Ln	Liverpool	L12 4RT
5	Paul	Abbott	90 Crabtree Pl	Leamingotn Spa	CV32 7YP
+-----------+---------+--------+--------------------------+----------------+----------+
3 rows in set (0.00 sec)

This above search finds all data that has a letter “a” in the user_id column.

mysql> SELECT * FROM clients where l_name LIKE '%an%';
+-----------+--------+--------+---------------+-----------+----------+
| client_id | f_name | l_name | address | city | postcode |
+-----------+--------+--------+---------------+-----------+----------+
| 4 | Larry | Vance | 76 Jarhead Ln | Liverpool | L12 4RT |
+-----------+--------+--------+---------------+-----------+----------+
1 row in set (0.00 sec)

Searching tables (cont.)
mysql> SELECT clients.client_id, f_name, l_name FROM clients NATURAL JOIN

purchases where l_name LIKE '%a%';
+-----------+---------+--------+
| client_id | f_name | l_name |
+-----------+---------+--------+
1	Russell	Martin
1	Russell	Martin
4	Larry	Vance
5	Paul	Abbott
+-----------+---------+--------+
4 rows in set (0.00 sec)

mysql> SELECT clients.client_id, f_name, l_name FROM clients, purchases WHERE
(l_name LIKE '%a%') AND (clients.client_id=purchases.client_id)

 AND (clients.client_id > 1);
+-----------+--------+--------+
| client_id | f_name | l_name |
+-----------+--------+--------+
| 4 | Larry | Vance |
| 5 | Paul | Abbott |
+-----------+--------+--------+
2 rows in set (0.00 sec)

More on PHP and SQL

To increase security of your PHP/SQL setup (and to make it easier to change the
database you use), it’s recommended that you build an “include” file that will have
the information you use to connect to the database.

<?php
/* Save this as db_login.php (or whatever you like) and include it
in your php script. */

// Here’s the information to connect to the database.
$db_host = ‘mysql’;
$db_database=‘martin’;
$db_username=‘martin’;
$db_password=‘’;
?>

If someone tries to view this file through their browser, the PHP interpreter will process
it and return a blank page to the user (there’s no HTML in the file).

Connecting to the database
Now you can build your PHP script as follows (using the commands that we discussed

previously):

<?php
include_once (‘db_login.php’);
$connection = mysql_connect($db_host, $db_username, $db_password);
if (!$connection) /* check if the connection was actually successful */
 {
 exit(“Could not connect to the database:
” .
 htmlspecialchars(mysql_error()));
 }
else {
 // more statements here. . .
 }
?>

Note: The function ‘htmlspecialchars()’ converts special characters in a string into their
HTML escape sequences (like ‘&’ into ‘&’ and so forth).

 This can also be used to increase the security of your code by and help thwart attacks
on your database by passing it information that your client has submitted before trying
to insert it in your database.

MySQL queries inside of PHP
Your mySQL queries from a PHP script are the same as they are as when you’re using the

mySQL program from the command line with one difference… the queries do not have
a semi-colon at the end.

Aside from this difference, all of the regular SQL commands and keywords are available
when you perform your queries.

You can create new tables, alter, and delete them from inside of a PHP script, and you can
also insert and delete rows of tables as normal too. For any such operation, you’ll
likely want to check to see if it’s successful (especially if you’re trying to extract data
from the database).

<?php
// Assuming a valid database connection has been established.
// Build the query string by assigning variables...
$query = $select . $column . $from . $tables . $where;
$result = mysql_query($query);
if(!$result) {
 exit(“Could not query the database:
” .
 htmlspecialchars(mysql_error()));
 }
else {
 // process the data
 }
?>

Processing the results of a query

• There are two main PHP methods to fetch the results of an SQL query, these being
‘mysql_fetch_row()’ and ‘mysql_fetch_array()’.

<?php
// Assuming a database connection, and a valid query string.
$result = mysql_query($query);
while ($result_row = mysql_fetch_sql($result)) {
 echo $result_row[2] . ‘
’;
 }

?>

The ‘mysql_fetch_row()’ command fetches the query results as an enumerated array (the array
uses numerical indices), one row at a time, returning FALSE when there are no more rows
(ending the ‘while’ loop in this case).

Processing the results of a query (cont.)

• The other command can get a row of results as an associative array (using strings
as the array indices). It takes a result as its first parameter, and an optional second
parameter as a way to bind the results in the array.

• If MYSQL_ASSOC is specified, the results are indexed using the column names in
the query. If MYSQL_NUM is specified, then the number starting at zero accesses
the results. The default value MYSQL_BOTH returns an array with both types.

while ($row = mysql_fetch_array($result, MYSQL_ASSOC)) {
 echo $row[“title”] . ‘
’;
 }

• Using a statement like ‘mysql_fetch_array($result, MYSQL_NUM)’ is essentially
equivalent to the statement ‘mysql_fetch_row($result)’ as they both return arrays
stored with numerical indices.

• The ‘mysql_fetch_array()’ command can be used to save memory by specifying,
say, MYSQL_ASSOC, instead of the default value.

Other useful PHP/SQL related functions

• The function ‘mysql_data_seek($result, $value)’ can be used to move the internal
result pointer (which is advanced automatically when commands like
‘mysql_fetch_array()’ is called). This allows you, for example, to reprocess the
results of a query (without having to access the database again).
‘mysql_data_seek($result, 0);’ will reset the pointer to the initial row in the query
result (but is an error if the query result was empty).

• ‘mysql_num_rows ($result);’ returns the number of rows in the query result.

• ‘mysql_affected_rows();’ gives the number of affected rows by the last INSERT,
DELETE, UPDATE, or REPLACE query.

• ‘mysql_insert_id();’ returns the ID generated by the AUTO_INCREMENT of the most
recent query if there was one, or ‘0’ if there was no AUTO_INCREMENT value.

