_/ N’
DATA COMMUNICATION

>

CSE 225/233

WEEK-11, LESSON-1 & 2

ERROR DETECTION 9 \/
Nt

? o/

Polynomial

A better way to understand cyclic codes and how they can be
analyzed 1s to represent them as polynomials. A pattern of Os and 1s
can be represented as a polynomial with coefficients of 0 and 1. The
power of each term shows the position of the bit; the coefficient

shows the value of the bit.

aﬁ a5 a4 a3 (12 al ao

1 0 0 0 0 1 1 1 0 O O 0 1 1
\ / /
\ ’ /
Ix6 + x5 + O0x4 + 0x3 + O0x2 + Ixl + 1x0 o o+ x o+ 1
a. Binary pattern and polynomial b. Short form

10.2

CRC Division using polynomial

Dataword| x3 + 1

Divisor X Dividend:
3 + x + 1 X6 + x3 - augmented
W6 4 w1 53 dataword
x4

x + x2 + x

x2 + x | Remainder

/

Codeword| x6 + x3 | x2 + x

Dataword Remainder

10.3

Standard Polynomial

Name Polynomial Used in

CRC-8 B2+ x+1 ATM
100000111 header

CRC-10 O+ 2+ P+ x4 1 ATM
11000110101 AAL

CRC-16 o+ x2+x+1 HDLC
10001000000100001

CRC-32 |24+ 08+ x2 + x 0 2 x4 10 3 4 X7+ X +x* + X%+ x + 1|LANs
100000100110000010001110110110111

10.4

Checksum

Checksum is an error-detecting technique that can be applied to a
message of any length. In the Internet, the checksum technique is
mostly used at the network and transport layer rather than the data
link layer.

At the source, the message 1s first divided into m-bit units. The
generator then creates an extra m-bit unit called the checksum, which
1s sent with the message. At the destination, the checker creates a new
checksum from the combination of the message and sent checksum. If
the new checksum is all Os, the message is accepted; otherwise, the
message 1s discarded.

Conceptual figure of checksum in presented in the next slide.

10.5

Checksum (Concept)

Receiver

Sender
Message
m bits | m bits e o o m bits
l
—>| Generator F
[]
m bits | m bits o o o m bits | m bits

Message plus checksum

10.6

Message

m bits

m bits

[]

. m bits

All0’s | [yeg]

Discard ~— m bits
[no]
A T
Checker
[|
m bits | m bits e o o m bits | m bits

Message plus checksum

Example

Suppose our data is a list of five 4-bit numbers that we want
to send to a destination. In addition to sending these
numbers, we send the sum of the numbers. For example, if
the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12, O,
6, 36), where 36 is the sum of the original numbers. The
receiver adds the five numbers and compares the result with
the sum. If the two are the same, the receiver assumes no
error, accepts the five numbers, and discards the sum.
Otherwise, there is an error somewhere and the data are not
accepted.

10.7

Example (Contd.)

We can make the job of the receiver easier if we send the
negative (complement) of the sum, called the checksum. In
this case, we send (7, 11, 12, 0, 6, —36). The receiver can
add all the numbers received (including the checksum). If
the result is O, it assumes no error; otherwise, there Is an
error.

10.8

Complementary Checksum (Procedure)

Sender Receiver

1. The message 1s divided into 16-bit words. | 1. The message and the checksum are received.

2. The value of the checksum word is 2. The message is divided into 16-bit words.
initially set to zero.

3. All words including the checksum are 3. All words are added using one’s comple-
added using one’s complement addition. ment addition.

4. The sum is complemented and becomes 4. The sum is complemented and becomes the
the checksum. new checksum.

5. The checksum is sent with the data. 5. If the value of the checksum is 0, the message

is accepted; otherwise, it is rejected.

10.9

Complementary Checksum (Algorithm)

Start ?

> More words?lﬁ
[yes] @
Sum = Sum + Next Word

[no]
> Left(sum)
Y 1S nonzero?

. [yes]

Sum = Left(Sum) + Right(Sum))
Notes: [no]
(" A Y
a. Word and Checksum are each
16 bits, but Sum is 32 bits.

[Checksum = Complement (Sum))
b. Left(Sum) can be found by shifting

Sum 16 bits to the right.

Y
c. Right(Sum) can be found by [Checksum = truncate (Checksum})
ANDing Sum with (OOO0OFFFF) 16 -

d. After Checksum is found, truncate

L it to 16 bis.) Stop @

10.10

Example - Complementary Checksum

10.11

Sender site

7
11
12
0
6
0

Recejver site

Sum —>» 36
Wrapped sum —>» 6
Checksum —>» 9

7,11,12,0,6,9

1T 00100 36
1 0
0110 6
1000 9

Details of wrapping
and complementing

Packet

7
11
12
0
6
9

Sum —» 45
Wrapped sum —> 15
Checksum —>» 0

101101 45
10

O11T0 15
1000 0

Details of wrapping
and complementing

10.12

