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What Is Classification?

® The goal of data classification is to organize and
categorize data in distinct classes
» A model is first created based on the data distribution
» The model is then used to classify new data
» Given the model, a class can be predicted for new data

® Classification = prediction for discrete and nominal
values (e.g., class/category labels)
» Also called “Categorization”
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Prediction, Clustering, Classification

® What is Prediction/Estimation?

» The goal of prediction is to forecast or deduce the value of an attribute
based on values of other attributes

» A model is first created based on the data distribution
» The model is then used to predict future or unknown values
» Most common approach: regression analysis

¢ Supervised vs. Unsupervised Classification
» Supervised Classification = Classification
® We know the class labels and the number of classes

» Unsupervised Classification = Clustering

* We do not know the class labels and may not know the number of
classes




Classification Task

® Given:

» A description of an instance, x € X, where X is the instance language
or instance or feature space.

® Typically, x is a row in a table with the instance/feature space described in
terms of features or attributes.

» A fixed set of class or category labels: C={c,, c,,...c,}

® Classification task is to determine:

» The class/category of x: c(x) € C, where c(x) is a function whose
domain 1s X and whose range is C.




Learning for Classification

® A training example is an instance x€X, paired with its
correct class label c(x): <x, ¢(x)> for an unknown
classification function, c.

® Given a set of training examples, D
» Find a hypothesized classification function, A(x), such that: 4(x) =
c(x), for all training instances (i.e., for all <x, c¢(x)> in D). This is
called consistency.




Example of Classification Learning

® Instance language: <size, color, shape>
» size € {small, medium, large}
» color € {red, blue, green}
» shape e {square, circle, triangle}

® C = {positive, negative}

® D: Example | Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle | negative
4 large blue circle negative

® Hypotheses? circle - positive? red = positive?




General Learning Issues
(All Predictive Modeling Tasks)

Many hypotheses can be consistent with the training data

Bias: Any criteria other than consistency with the training data that is used to
select a hypothesis

Classification accuracy (% of instances classified correctly)
> Measured on independent test data
Efficiency Issues:
» Training time (efficiency of training algorithm)
» Testing time (efficiency of subsequent classification)
Generalization
> Hypotheses must generalize to correctly classify instances not in training data

» Simply memorizing training examples is a consistent hypothesis that does not
generalize

» Occam’s razor: Finding a simple hypothesis helps ensure generalization
® Simplest models tend to be the best models
® The KISS principle




Classification: 3 Step Process

® 1. Model construction (Learning):
» Each record (instance, example) is assumed to belong to a predefined
class, as determined by one of the attributes
® This attribute is call the target attribute
® The values of the target attribute are the class labels
> The set of all instances used for learning the model is called training set

» The model may be represented in many forms: decision trees,
probabilities, neural networks, ....

® 2. Model Evaluation (Accuracy):
» Estimate accuracy rate of the model based on a test set
» The known labels of test instances are compared with the predicts class from model
» Test set is independent of training set otherwise over-fitting will occur

® 3. Model Use (Classification):

» The model is used to classify unseen instances (i.e., to predict the class labels for
new unclassified instances)

» Predict the value of an actual attribute
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Name (Income | Age |Creditrating
Bruce |Low <30 bad
Dave [Medium |[30..40] good
William |High <30 good
Marie [Medium | >40 good
Anne |[Low [30..40] good
Chris  [Medium | <30 bad

IF Income = ‘High’

\
OR Age > 30

THEN CreditRating = *‘Good’
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Name (Income Age | Credit rating
Tom |[Medium | <30 bad |
Jane [High <30 bad

Wei High >40 good

Hua Medium |[30..40] good
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(Model)

How accurate is the model?
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Model Use: Classification
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Name |Income =Age |Creditrating| Credit Rating? -
Paul  |High 30..40] ? :
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Classification Methods

® Decision Tree Induction

® Bayesian Classification

® K-Nearest Neighbor

® Neural Networks

® Support Vector Machines

® Association-Based Classification
® Genetic Algorithms

® Many More ....

° Also Ensemble Methods

12



Evaluating Models

To train and evaluate models, data are often divided into three
sets: the training set, the test set, and the evaluation set

Training Set
> is used to build the initial model
> may need to “enrich the data” to get enough of the special cases

Test Set

» is used to adjust the initial model

> models can be tweaked to be less idiosyncrasies to the training data and can be
adapted for a more general model

» idea is to prevent “over-training” (i.e., finding patterns where none exist).

Evaluation Set

» is used to evaluate the model performance
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Test and Evaluation Sets

® Reading too much into the training set (overfitting)
» common problem with most data mining algorithms

» resulting model works well on the training set but performs poorly on unseen
data

> test set can be used to “tweak” the initial model, and to remove unnecessary
inputs or features

® Evaluation Set is used for final performance evaluation

® Insufficient data to divide into three disjoint sets?
» In such cases, validation techniques can play a major role
® Cross Validation
° Bootstrap Validation
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Cross Validation

® Cross validation is a heuristic that works as follows

» randomly divide the data into n folds, each with approximately the same
number of records

» create n models using the same algorithms and training parameters; each model
is trained with n-1 folds of the data and tested on the remaining fold

» can be used to find the best algorithm and its optimal training parameter

® Steps in Cross Validation
» 1. Divide the available data into a training set and an evaluation set
» 2. Split the training data into » folds
» 3. Select an algorithm and training parameters
» 4. Train and test n models using the 7 train-test splits

» 5. Repeat step 2 to 4 using different algorithms / parameters and compare
model accuracies

» 6. Select the best model
» 7. Use all the training data to train the model
» 8. Assess the final model using the evaluation set

15



Example — 5 Fold Cross Validation

Dataset Fold 1




Bootstrap Validation

® Based on the statistical procedure of sampling with replacement

> data set of » instances is sampled n times (with replacement) to give another data
set of n instances

> since some elements will be repeated, there will be elements in the original data
set that are not picked

» these remaining instances are used as the test set

® How many instances in the test set?
> Probability of not getting picked in one sampling =1 - 1/n
» Pr(not getting picked in n samples) = (1 -1/n)" = ¢! = 0.368
> so, for large data set, test set will contain about 36.8% of instances

> to compensate for smaller training sample (63.2%), test set error rate is combined
with the re-substitution error in training set:

€= (0632 *e test instance) + (0368 *e training instance)

® Bootstrap validation increases variance that can occur in each fold
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Measuring Effectiveness of
Classification Models

® When the output field is nominal (e.g., in two-class prediction),
we use a confusion matrix to evaluate the resulting model

® Example
Predicted Class
T F Total
T 18 2 20
Actual Class = 3 15 18
Total 21 17 38

» Overall correct classification rate = (18 + 15) / 38 = 87%
» Given T, correct classification rate = 18 / 20 = 90%
» Given F, correct classification rate = 15/ 18 = 83%




Confusion Matrix & Accuracy Metrics

Actual class\Predicted class C, -C;
C, True Positives (TP) False Negatives (FN)
- C False Positives (FP) True Negatives (TN)

® Classifier Accuracy, or recognition rate: percentage of test set
instances that are correctly classified
» Accuracy = (TP + TN)/All
» Error rate: 1 — accuracy, or Error rate = (FP + FN)/All

® Class Imbalance Problem: One class may be rare, e.g. fraud, or
HIV-positive
» Sensitivity: True Positive recognition rate = TP/P
» Specificity: True Negative recognition rate = TN/N




Other Classifier Evaluation Metrics

® Precision

» % of instances that the classifier predicted i = TP
as positive that are actually positive I'P+ FP
® Recall
» 9% of positive instances that the classifier  |yecall — 1
predicted correctly as positive TP+ FN

» ak.a “Completeness”

® Perfect score for both is 1.0, but there
is often a trade-off between Precision

and Recall
® F measure (F, or F-score) g — 2Xprecision X recall
» harmonic mean of precision and recall precision + recall
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What Is Prediction/Estimation?

(Numerical) prediction is similar to classification

» construct a model

» use model to predict continuous or ordered value for a given input
Prediction is different from classification

» Classification refers to predict categorical class label

» Prediction models continuous-valued functions
Major method for prediction: regression

> model the relationship between one or more independent or predictor
variables and a dependent or response variable

Regression analysis
» Linear and multiple regression
> Non-linear regression

» Other regression methods: generalized linear model, Poisson regression,
log-linear models, regression trees
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Linear Regression

® Linear regression: involves a response variable y and a single predictor
variablex 2> y=w,+w;X

> w, (y-intercept) and w, (slope) are regression coefficients

® Method of least squares: estimates the best-fitting straight line
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® Multiple linear regression: involves more than one predictor variable

» Training data is of the form (X, y,), (X5, ¥,),..-, (Xpj» Yoy
» Ex. For 2-D data, we may have: y = w, + w, X,+ W, X,
» Solvable by extension of least square method

» Many nonlinear functions can be transformed into the above
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Nonlinear Regression

® Some nonlinear models can be modeled by a polynomial
function

® A polynomial regression model can be transformed into linear
regression model. For example,
y=w,t+tw, Xx+w, x>+ w; x3
is convertible to linear with new variables: x, = x?, x,= x>
Y= Wy T Wy X+ W, Xy T Wi X3
® Other functions, such as power function, can also be
transformed to linear model

® Some models are intractable nonlinear (e.g., sum of
exponential terms)

» possible to obtain least squares estimates through extensive
computation on more complex functions
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Other Regression-Based Models

® Generalized linear models

» Foundation on which linear regression can be applied to modeling
categorical response variables

» Variance of'y is a function of the mean value of y, not a constant

> Logistic regression: models the probability of some event occurring as a
linear function of a set of predictor variables

» Poisson regression: models the data that exhibit a Poisson distribution

® Log-linear models (for categorical data)

» Approximate discrete multidimensional prob. distributions
> Also useful for data compression and smoothing

® Regression trees and model trees

» Trees to predict continuous values rather than class labels
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Regression Trees and Model Trees

Regression tree: proposed in CART system (Breiman et al. 1984)
» CART: Classification And Regression Trees
» Each leaf stores a continuous-valued prediction

» 1t is the average value of the predicted attribute for the training instances
that reach the leaf

Model tree: proposed by Quinlan (1992)

» Each leaf holds a regression model—a multivariate linear equation for the

predicted attribute
> A more general case than regression tree

Regression and model trees tend to be more accurate than linear
regression when instances are not represented well by simple linear

models
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Evaluating Numeric Prediction

® Prediction Accuracy
» Difference between predicted scores and the actual results (from evaluation set)

> Typically the accuracy of the model is measured in terms of variance (i.e., average
of the squared differences)

® Common Metrics (p; = predicted target value for test instance 7, a; =
actual target value for instance i)

> Mean Absolute Error: Average loss over the test set

‘(p1 —a)+..+(p,—a,)
n

MAE =

> Root Mean Squared Error: compute the standard deviation (i.e., square root of the
co-variance between predicted and actual ratings)

RMSE:\/(pl _a1)2++(pn _an)2
n
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