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Classification: 3 Step Process
 1. Model construction (Learning):

 Each record (instance, example) is assumed to belong to a predefined 
class, as determined by one of the attributes
This attribute is called the target attribute

The values of the target attribute are the class labels

 The set of all instances used for learning the model is called training set

 2. Model Evaluation (Accuracy):
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2. Model Evaluation (Accuracy):
 Estimate accuracy rate of the model based on a test set

 The known labels of test instances are compared with the predicts class from model

 Test set is independent of training set otherwise over-fitting will occur

 3. Model Use (Classification):
 The model is used to classify unseen instances (i.e., to predict the class labels for 

new unclassified instances)

 Predict the value of an actual attribute



Classification Methods

Decision Tree Induction

Bayesian Classification

K-Nearest Neighbor

Neural Networks

Support Vector Machines
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Support Vector Machines

Association-Based Classification

Genetic Algorithms

Many More ….

Also Ensemble Methods



Decision Trees
 A decision tree is a flow-chart-like tree structure
 Internal node denotes a test on an attribute (feature)

 Branch represents an outcome of the test

 All records in a branch have the same value for the tested attribute

 Leaf node represents class label or class label distribution

outlook
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humidity windyP

P N PN

sunny overcast rain

high normal true false



Instance Language for Classification

 Example: “is it a good day to play golf?”
 a set of attributes and their possible values:

outlook sunny, overcast, rain

temperature cool, mild, hot

humidity high, normal

windy true, false

A particular instance in the
training set might be:

<overcast, hot, normal, false>: play
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In this case, the target class
is a binary attribute, so each
instance represents a positive
or a negative example.



Using Decision Trees for Classification
 Examples can be classified as follows
 1. look at the example's value for the feature specified

 2. move along the edge labeled with this value

 3. if you reach a leaf, return the label of the leaf

 4. otherwise, repeat from step 1

 Example (a decision tree to decide whether to go on a picnic):

outlook
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outlook

humidity windyP

P N PN

sunny overcast rain

high normal true false

So a new instance:

<rainy, hot, normal, true>: ?

will be classified as “noplay”



Decision Trees and Decision Rules
outlook

humidity windyP

P N PN

sunny overcast rain

> 75%<= 75% > 20 <= 20

If attributes are continuous, 
internal nodes may test 
against a threshold.
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P N PN

Rule1:
If (outlook=“sunny”) AND (humidity<=0.75)
Then (play=“yes”)

Rule2:
If (outlook=“rainy”) AND (wind>20)
Then (play=“no”)

Rule3:
If (outlook=“overcast”)
Then (play=“yes”)

. . .

Each path in the tree represents a decision rule:



Top-Down Decision Tree Generation

The basic approach usually consists of two phases:
 Tree construction

At the start, all the training instances are at the root

Partition instances recursively based on selected attributes

 Tree pruning (to improve accuracy)
 remove tree branches that may reflect noise in the training data and lead to 

errors when classifying test data

Basic Steps in Decision Tree Construction

8

Basic Steps in Decision Tree Construction
 Tree starts a single node representing all data

 If instances are all same class then node becomes a leaf labeled with 
class label

 Otherwise, select feature that best distinguishes among instances
Partition the data based the values of the selected feature (with each branch 

representing one partitions)

 Recursion stops when:
 instances in node belong to the same class (or if too few instances remain)

There are no remaining attributes on which to split



Trees Construction Algorithm (ID3)
 Decision Tree Learning Method (ID3)
 Input: a set of training instances S, a set of features F

 1. If every element of S has a class value “yes”, return “yes”; if every element of 
S has class value “no”, return “no”

 2. Otherwise, choose the best feature f from F (if there are no features 
remaining, then return failure); 

 3. Extend tree from  f by adding a new branch for each attribute value of f
3.1. Set F’ = F – {f},
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3.1. Set F’ = F – {f},

 4. Distribute training instances to leaf nodes (so each leaf node n represents the 
subset of examples Sn of S with the corresponding attribute value

 5. Repeat steps 1-5 for each leaf node n with Sn as the new set of training 
instances and F’ as the new set of attributes

 Main Question:
 how do we choose the best feature at each step?

Note: ID3 algorithm only deals with categorical attributes, but can be extended
(as in C4.5) to handle continuous attributes



Choosing the “Best” Feature

 Use Information Gain to find the “best” (most discriminating) feature

 Assume there are two classes, P and N (e.g, P = “yes” and N = “no”)
 Let the set of instances S (training data) contains p elements of class P and n

elements of class N

 The amount of information, needed to decide if an arbitrary example in S
belongs to P or N is defined in terms of  entropy, I(p,n):

( , ) Pr( ) log Pr( ) Pr( ) log Pr( )I p n P P N N  
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 Note that Pr(P) = p / (p+n) and Pr(N) = n / (p+n)

 In other words, entropy of a set on instances S is a function of the 
probability distribution of classes among the instances in S.

2 2( , ) Pr( ) log Pr( ) Pr( ) log Pr( )I p n P P N N  



Entropy

 Entropy for a two class variable
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Entropy in Multi-Class Problems

More generally, if we have m classes, c1, c2, …, cm , with s1, s2, …, sm

as the numbers of instances from S in each class, then  the entropy is:

 where pi is the probability that an arbitrary instance belongs to the 
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 where pi is the probability that an arbitrary instance belongs to the 
class ci.



Information Gain
 Now, assume that using attribute A a set S of instances will be 

partitioned into sets S1, S2 , …, Sv each corresponding to distinct 
values of attribute A.

 If Si contains pi cases of P and ni cases of N, the entropy, or the expected 
information needed to classify objects in all subtrees Si is

( ) Pr( ) ( , )i i iE A S I p n


 Pr( ) i i i
i

S p n
S


 where, 

The probability that 
an arbitrary 
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 The encoding information that would be gained by branching on A:

 At any point we want to branch using an attribute that provides the highest 
information gain.

1

( ) Pr( ) ( , )i i i
i

E A S I p n




)(),()( AEnpIAGain 

Pr( ) i i
iS

S p n
 


where, an arbitrary 

instance in S 
belongs to the 
partition Si



Attribute Selection - Example
 The “Golf” example: what attribute should we choose as the root? 

Day outlook temp humidity wind play
D1 sunny hot high weak No

D2 sunny hot high strong No

D3 overcast hot high weak Yes

D4 rain mild high weak Yes

D5 rain cool normal weak Yes

D6 rain cool normal strong No

D7 overcast cool normal strong Yes

D8 sunny mild high weak No

D9 sunny cool normal weak Yes

Outlook?

overcast
sunny

rainy

S: [9+,5-]

[4+,0-] [2+,3-] [3+,2-]
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D9 sunny cool normal weak Yes

D10 rain mild normal weak Yes

D11 sunny mild normal strong Yes

D12 overcast mild high strong Yes

D13 overcast hot normal weak Yes

D14 rain mild high strong No

I(9,5)  = -(9/14).log(9/14) - (5/14).log(5/14)
= 0.94

I(4,0)  = -(4/4).log(4/4) - (0/4).log(0/4)
= 0

I(2,3)  = -(2/5).log(2/5) - (3/5).log(3/5)
= 0.97

I(3,2)  = -(3/5).log(3/5) - (2/5).log(2/5)
= 0.97

Gain(outlook) = .94 - (4/14)*0
- (5/14)*.97
- (5/14)*.97

= .24



Attribute Selection - Example (Cont.)

humidity?

high normal

S: [9+,5-] (I = 0.940)

[3+,4-] (I = 0.985) [6+,1-] (I = 0.592)

Gain(humidity) = .940 - (7/14)*.985 - (7/14)*.592
= .151

Day outlook temp humidity wind play
D1 sunny hot high weak No

D2 sunny hot high strong No

D3 overcast hot high weak Yes

D4 rain mild high weak Yes

D5 rain cool normal weak Yes

D6 rain cool normal strong No

D7 overcast cool normal strong Yes

D8 sunny mild high weak No

D9 sunny cool normal weak Yes

D10 rain mild normal weak Yes
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wind?

weak strong

S: [9+,5-] (I = 0.940)

[6+,2-] (I = 0.811) [3+,3-] (I = 1.00)

Gain(wind) = .940 - (8/14)*.811 - (8/14)*1.0
= .048

So, classifying examples by humidity provides
more information gain than by wind. Similarly,
we must find the information gain for “temp”.
In this case, however, you can verify that
outlook has largest information gain, so it’ll be
selected as root

rain mild normal weak
D11 sunny mild normal strong Yes

D12 overcast mild high strong Yes

D13 overcast hot normal weak Yes

D14 rain mild high strong No



Attribute Selection - Example (Cont.)
 Partially learned decision tree

Outlook

overcastsunny rainy

S: [9+,5-]

?  ?  yes  

{D1, D2, …, D14}

16

 which attribute should be tested here?

[4+,0-][2+,3-] [3+,2-]
{D1, D2, D8, D9, D11} {D3, D7, D12, D13} {D4, D5, D6, D10, D14}

Ssunny = {D1, D2, D8, D9, D11}

Gain(Ssunny, humidity) = .970 - (3/5)*0.0 - (2/5)*0.0 = .970

Gain(Ssunny, temp) = .970 - (2/5)*0.0 - (2/5)*1.0 - (1/5)*0.0 = .570

Gain(Ssunny, wind) = .970 - (2/5)*1.0 - (3/5)*.918 = .019



Other Attribute Selection Measures

Gain ratio: 
 Information Gain measure tends to be biased in favor attributes with a large number 

of values

 Gain Ratio normalizes the Information Gain with respect to the total entropy of all 
splits based on values of an attribute

 Used by C4.5 (the successor of ID3)

 But, tends to prefer unbalanced splits (one partition much smaller than others)
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But, tends to prefer unbalanced splits (one partition much smaller than others)

Gini index: 
 A measure of impurity (based on relative frequencies of classes in a set of instances)

The attribute that provides the smallest Gini index (or the largest reduction in impurity 
due to the split) is chosen to split the node

 Possible Problems:

Biased towards multivalued attributes; similar to Info. Gain.

Has difficulty when # of classes is large



Overfitting and Tree Pruning

Overfitting:  An induced tree may overfit the training data 
Too many branches, some may reflect anomalies due to noise or outliers

Some splits or leaf nodes may be the result of decision based on very few 
instances, resulting in poor accuracy for unseen instances

Two approaches to avoid overfitting 
Prepruning: Halt tree construction early ̵ do not split a node if this would 
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Prepruning: Halt tree construction early ̵ do not split a node if this would 
result in the error rate going above a pre-specified threshold
Difficult to choose an appropriate threshold

Postpruning: Remove branches from a “fully grown” tree
Get a sequence of progressively pruned trees

Use a test data different from the training data to measure error rates

Select the “best pruned tree”



Enhancements to Basic Decision Tree 
Learning Approach

Allow for continuous-valued attributes
Dynamically define new discrete-valued attributes that partition the 

continuous attribute value into a discrete set of intervals

Handle missing attribute values
Assign the most common value of the attribute
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Assign the most common value of the attribute

Assign probability to each of the possible values

Attribute construction
Create new attributes based on existing ones that are sparsely represented

This reduces fragmentation, repetition, and replication


