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Classification: 3 Step Process
 1. Model construction (Learning):

 Each record (instance, example) is assumed to belong to a predefined 
class, as determined by one of the attributes
This attribute is called the target attribute

The values of the target attribute are the class labels

 The set of all instances used for learning the model is called training set

 2. Model Evaluation (Accuracy):
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2. Model Evaluation (Accuracy):
 Estimate accuracy rate of the model based on a test set

 The known labels of test instances are compared with the predicts class from model

 Test set is independent of training set otherwise over-fitting will occur

 3. Model Use (Classification):
 The model is used to classify unseen instances (i.e., to predict the class labels for 

new unclassified instances)

 Predict the value of an actual attribute



Classification Methods

Decision Tree Induction

Bayesian Classification

K-Nearest Neighbor

Neural Networks

Support Vector Machines
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Support Vector Machines

Association-Based Classification

Genetic Algorithms

Many More ….

Also Ensemble Methods



Bayesian Learning
 Bayes’s theorem plays a critical role in probabilistic learning and 

classification
 Uses prior probability of each class given no information about an item

 Classification produces a posterior probability distribution over the possible classes 
given a description of an item

 The models are incremental in the sense that each training example can incrementally 
increase or decrease the probability that a hypothesis is correct. Prior knowledge can 
be combined with observed databe combined with observed data

 Given a data instance X with an unknown class label, H is the 
hypothesis that X belongs to a specific class C
 The conditional probability of  hypothesis H given observation X, Pr(H|X), follows the 

Bayes’s theorem:

 Practical difficulty: requires initial knowledge of many probabilities
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Basic Concepts In Probability I
 P(A | B) is the probability of A given B

 Assumes that B is all and only information known.

 Note that: )().|()( BPBAPBAP 
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 Bayes’s Rule:
Direct corollary of
above definition

 Often written in terms of
hypothesis and evidence:
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Basic Concepts In Probability II

A and B are independent iff:

)()|( APBAP 

)()|( BPABP 
These two constraints are logically equivalent

Therefore, if A and B are independent:
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Bayesian Classification
 Let set of classes be {c1, c2,…cn}

 Let E be description of an instance (e.g., vector representation)

 Determine class of E by computing for each class ci
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 P(E) can be determined since classes are complete and disjoint:
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Bayesian Categorization (cont.)
 Need to know:  
 Priors: P(ci)    and    Conditionals: P(E | ci)

 P(ci) are easily estimated from data. 
 If ni of the examples in D are in ci,then  P(ci) =  ni / |D|

 Assume instance is a conjunction 
of binary features/attributes: meeeE  21
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Naïve Bayesian Classification
 Problem: Too many possible combinations (exponential in m) to 

estimate all P(E | ci)

 If we assume features/attributes of an instance are independent 
given the class (ci) (conditionally independent)

 Therefore, we then only need to know   P(ej | ci) for each feature 
and category
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Estimating Probabilities
 Normally, probabilities are estimated based on observed 

frequencies in the training data.

 If D contains ni examples in class ci, and nij of these ni examples 
contains feature/attribute ej, then:
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 If the feature is continuous-valued, P(ej|ci) is usually computed based 
on Gaussian distribution with a mean μ and standard deviation σ

and P(ej|ci) is 
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Smoothing
 Estimating probabilities from small training sets is error-prone:
 If due only to chance, a rare feature, ek, is always false in the training data, 

ci :P(ek | ci) = 0.

 If ek then occurs in a test example, E, the result is that ci: P(E | ci) = 0 and 
ci: P(ci | E) = 0

 To account for estimation from small samples, probability 
estimates are adjusted or smoothed

 Laplace smoothing using an m-estimate assumes that each 
feature is given a prior probability, p, that is assumed to have 
been previously observed in a “virtual” sample of size m.

 For binary features, p is simply assumed to be 0.5.
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Naïve Bayesian Classifier - Example
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 Here, we have two classes C1=“yes” (Positive) and C2=“no” (Negative)

 Pr(“yes”) = instances with “yes” / all instances = 9/14

 If a new instance X had outlook=“sunny”, then Pr(outlook=“sunny” | “yes”) = 2/9

(since there are 9 instances with “yes” (or P) of which 2 have outlook=“sunny”)

 Similarly, for humidity=“high”, Pr(humidity=“high” | “no”) = 4/5

 And so on.



Naïve Bayes (Example Continued)

 Now, given the training set, we can compute all the probabilities 
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 Suppose we have new instance X = <sunny, mild, high, true>. How should it 
be classified?

 Similarly: 

X = < sunny , mild , high , true >

Pr(X | “no”) = 3/5 . 2/5 . 4/5 . 3/5 

Pr(X | “yes”) = (2/9 . 4/9 . 3/9 . 3/9)



Naïve Bayes (Example Continued)

 To find out to which class X belongs we need to maximize: Pr(X | Ci).Pr(Ci), 
for each class Ci (here “yes” and “no”)

X = <sunny, mild, high, true>

Pr(X | “no”).Pr(“no”) = (3/5 . 2/5 . 4/5 . 3/5) . 5/14 = 0.04

Pr(X | “yes”).Pr(“yes”) = (2/9 . 4/9 . 3/9 . 3/9) . 9/14 = 0.007
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 To convert these to probabilities, we can normalize by dividing each by the 
sum of the two:

 Pr(“no” | X) = 0.04 / (0.04 + 0.007) = 0.85

 Pr(“yes” | X) = 0.007 / (0.04 + 0.007) = 0.15

 Therefore the new instance X will be classified as “no”.



Text Naïve Bayes – Spam Example

t1 t2 t3 t4 t5 Spam

D1 1 1 0 1 0 no
D2 0 1 1 0 0 no
D3 1 0 1 0 1 yes
D4 1 1 1 1 0 yes
D5 0 1 0 1 0 yes
D6 0 0 0 1 1 no
D7 0 1 0 0 0 yes
D8 1 1 0 1 0 yes
D9 0 0 1 1 1 no

Term P(t|no) P(t|yes)

t1 1/4 4/6
t2 2/4 4/6
t3 2/4 3/6
t4 3/4 3/6
t5 2/4 2/6

P(no) = 0.4
P(yes) = 0.6

Training
Data
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D10 1 0 1 0 1 yes
P(yes) = 0.6

New email x containing t1, t4, t5       x = <1, 0, 0, 1, 1>

Should it be classified as spam = “yes” or spam = “no”?
Need to find P(yes | x) and P(no | x) …
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Text Naïve Bayes - Example
Term P(t|no) P(t|yes)

t1 1/4 4/6
t2 2/4 4/6
t3 2/4 3/6
t4 3/4 3/6
t5 2/4 2/6

P(no) = 0.4
P(yes) = 0.6

New email x containing t1, t4, t5

x = <1, 0, 0, 1, 1>

P(yes | x) = [4/6 * (1-4/6) * (1-3/6) * 3/6 * 2/6] * P(yes) / P(x)
= [0.67 * 0.33 * 0.5 * 0.5 * 0.33] * 0.6 / P(x) = 0.11 / P(x)

16

= [0.67 * 0.33 * 0.5 * 0.5 * 0.33] * 0.6 / P(x) = 0.11 / P(x)

P(no | x) = [1/4 * (1-2/4) * (1-2/4) * 3/4 * 2/4] * P(no) / P(x)
= [0.25 * 0.5 * 0.5 * 0.75 * 0.5] * 0.4 / P(x) = 0.019 / P(x)

To get actual probabilities need to normalize: note that P(yes | x) + P(no | x) must be 1

0.11 / P(x) + 0.019 / P(x) = 1    P(x) = 0.11 + 0.019 = 0.129

So: P(yes | x) = 0.11 / 0.129 = 0.853

P(no | x) = 0.019 / 0.129 = 0.147
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