DSNG SYSTEM

DIGITAL SATTELLITE NEWS GATHERING SYSTEM

WHAT IS DSNG?

• Satellite news gathering (SNG) is the use of mobile communications equipment for the purpose of worldwide news-casting. Mobile units are usually vans equipped with advanced, two-way audio and video transmitters and receivers, using dish antennas that can be aimed at geostationary satellites.

Cont....

 A modern DSNG van is a sophisticated affair, capable of deployment practically anywhere in the civilized world. Signals are beamed between a geostationary satellite and the van, and between the satellite and a control room run by a broadcast station or network.

TYPES OF DSNG IN AIR NETWORK

 MOBILE DSNG SYSTEM
 Equipments are mounted within a vehicle.

 FLYAWAY DSNG SYSTEM
 Equipments are mounted within carry away suitcases.

TYPICAL MOBILE DSNG SYSTEM LOOKS LIKE

Lay out of Mobile DSNG System

TYPICAL FLYAWAY DSNG SYSTEM LOOKS LIKE

Lay out of Fly Away DSNG System

COMPONENTS OF DSNG SYSTEM

• MOBILE DSNG OUTDOOR UNIT : EASILY DEPLOYABLE 1.2M ANTENNA UNIT MOUNTED ON TOP OF THE VEHICLE ALONG WITH ACCESSORIES LIKE LNBC

DESIGN CONSIDERATION

- Weight consideration.
- Link Budget calculation.

- 1. Antenna Gain : $G = 10 \log \eta \left(\frac{\pi D}{\lambda}\right)^2$
 - G = Gain of Antenna
 - D = Diameter of Antenna
 - D = Wave length
 - = = Efficiency (usually 0.5 to 0.65)

The gain if the antenna under consideration = 37 dBi.

2. Transmit Station EIRP: 10 Log (Pt x Gt)

Pt = Out put Power of SSPA/HPA in Watts. (Say : 10Watts = 10 dBw)
Gt = Gain of Antenna (37 dBi)

$EIRP = 10 \, dBw + 37 \, dB = 47 \, dBw$

- 3. Flux density at Satellite Antenna Input :
 - = EIRP -162.2 (47 162.2 = 115.2 dBw/M²)
- 3. Path Loss : $Lp = 10 Log \left(\frac{\lambda}{4\pi d}\right)^2$ Lp = Path Loss

d = Distance between uplink site &
Satellite

(approx 36,000,000 meters)

(= Wave length

In our case it is about 200 dB at 6 GHz

- C/No (uplink) = EIRP + G/T_(sat) + Lp k
 - = 47 + (-2) + (-200) (- 228.6)

= 73.6 dB-Hz

• EIRP(downlink) = Sat. flux density(operating)

+ (Sat. EIRP _{Saturated} – O/P Back-off)

+ (S.F.D. - I/P Back-off)

= -115.2 + (38 - 4) - (- 85 - 6.5)

= 10.3 dBw

Cont....

1. Down Link Path Loss : $Lp = 10 Log \left(\frac{\lambda}{4\pi d}\right)^2$

(In our case it is about 196 dB at 4 GHz)

- Receive G/T (6 m antenna) = 25.5 dB/°K
- C/No (downlink) = EIRP + G/T(CES) + Lp k

= 10.3 + 25.5 - 196 + 228.6

= 68.4 dB-Hz

7. Eb/No. = C/No – 10 Log (Data Rate) [256kbps] = 68.4 – 54.1 = 14.3 dB.

SUBSYTEMS OF DSNG

DSNG ANTENNA: Gigasat make

Features:

- Carbon Fiber make antenna . Weight is less than 90Kg
- High efficiency offset feed design providing maximum gain – 37dBi
- Antenna can be stowed.
- STC-100 antenna controller enables antenna to acquire and track satellites.
- Manual and motorized operation of all the three antenna motors.

Antenna Controller:

- STC 100 is a comprehensive controller available in 1RU providing all facilities including
 - Stow/Deploy
 - Jog Control
 - Auto positioning
 - GPS Receiver
 - Flux Gate Compass
 - Store/Recall Memory.
- Communication between STC-100 and Antenna is through an RS485 cross-site connection to the Local Antenna Control unit situated in the antenna cowl.

Antenna Controller Interface diagram:

E

120W SSPA. CODAN Make

Features:

- 120Watts SSPA
- 5.85Mhz to 6.425Mhz frequency range
- Third order intermodulation Products is better than
 -25 dbc for 3dB Back-off.
- 1+1 hot standby configuration.
 65dB gain
 Innovative RF Power Combining technology, the latest

GaAs FET devices & Surface – mounted technology are used in this SSPA

C-Band Upconverter : Gigasat Make

Features:

- IF to C-Band Upconverter
- Output power : +9dBm (max.)
- Gain adjustments : >40dB in 0.5dBsteps
- Two stage Upconversion i) from 70MHZ to L-Band

ii) from L-Band to C-Band

IF Modulator: Radyne Comstream Make DMD20L

- Modem provides the operation of different parameters such as variable data rates, FEC code rate, modulation type, IF frequencies, interface type can be readily set & changed at the front panel.
- This allow the remote control from computer using RS232.
- This modem contains a selectable RS232 or RS485 asynchronous Com Port for Earth Station – to – Earth Station communications. The baud rate & protocol can be selected from the front panel.

IF Modulator: Radyne Comstream Make DMD20L

Features:

- IF Frequency Range 52MHZ to 88MHZ
- Transmit Power: -5dBm to -25dBm
- Supports Data Rates: 64kbps to 256 kbps

Supports monitoring and Controlling

SUBSYTEMS OF DSNG Encoder: Radyne Comstream DAC700

COMSTREAM Power Audo Sync Dual Mono Joint Stereo Overload

Features:

- Digital Audio Codec
- ISO MPEG I Layer-II Compression
- Supports Data Rates: 64kbps to 256 kbps
- Accepts Analog and Digital AES/EBU input
- Supports monitoring and Controlling

Digital Satellite Receiver

Radyne Comstream ABR202A

REDUNDANCY CONTROLLER UNIT, RFS - 60

- RFS 60, Make GIGASAT is used to control 3 switches: One switch for encoders / modulators, one switch for the up converters and one wave guide switch for the amplifier.
- The front of the controller has LEDs that display the status of each pair of equipment.
- In normal use the switches are set in automatic position.
- For any failure the unit will automatically switch away from the faulty peace of equipment.
- If both chains of equipment are normal either chain can be selected.

5KVA Petrol generator

Hydraulic Jack System

THANK YOU

