# ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

### **CONTENTS**

- Multicarrier Modulation
- OFDM
- OFDM vs. FDM
- OFDM Advantages
- Block diagram
- Cyclic prefix
- OFDM Disadvantages
- Conclusion

## **MULTICARRIER MODULATION**

- Multipath propagation, time domain spreading of a signal, ISI occurs
- Frequency selective fading, distortion, signal detection becomes difficult
- MCM converts a frequency selective fading into flat fading channel
- Flat fading makes signal detectioneasier
- MCM easily removes ISI
- MCM transmits data over several carrier frequencies simultaneously
- Each sub-stream modulates different carrier frequency
- Parallel conversion lowers the data rate & bandwidth in each stream

#### **OPERATION OF MCM**

- PSK or QAM modulationscheme is used
- Signals from each data stream are summed together to form the transmitted signal
- No change in original data rate & system bandwidth, but ISI is eliminated
- MCM needs larger bandwidth, spectrally inefficient
- Multiple carriers and multiple oscillators increases the BW
- OFDM is a special case of MCM, which addresses all the above issues

#### **OFDM CONCEPT**

- System bandwidth is divided into a set of parallel overlapping, yet orthogonal sub-bands independent to each other
- Data is first split into independent streams, which modulate different sub-carriers
- Then are multiplexed to create OFDMsignal
- OFDM is a special case of FDM
- Significantly improves spectral efficiency
- Avoid the need for steep band pass filters
- Avoids the need of a bank of oscillators, since can be implanted digitally

# FDM VS OF DM



## **OFDM SIGNAL**



#### **OFDM ADVANTAGES**

- Permits densely packed & overlapping sub-carriers
- Offers spectrally efficient transmissionscheme
- Can be digitally implemented using, fast & efficient signal processing
- Permits flexible use of spectrum
- Supports different modulation schemes based on channel conditions
- Almost completely avoids the need for an equalizer

### **OPERATION OF OFDM**

Typically PSK or QAM modulations schemes are used

IFFT performs the transformation efficiently and ensures orthogonality of the sub carriers

Output of IFFT is 
$$x[n] = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} X[i] e^{j2\pi ni/N} , 0 \le n \le N-1$$

- Number of computations are significantly reduced by IFFT
- IFFT needs that the number of sub-carriers be an integer to the power of 2
- Unused sub-carriers are set to zero
- Complexity of OFDM system is largely determined by IFFT points
- More IFFT points demands more power, but enhances resolution

#### BLOCK DIAGRAM OF AN OFDM BASED SYSTEM



#### **CYCLIC PREFIX**

- Guard time between adjacent symbols is inserted to eliminate ISI
- No ISI will occurs, if guard time is larger than delay spread
- Guard time is a pure system overhead, contains no information
- CP is inserted in order to preserve orthogonality
- CP provides multipath immunity & synchronization tolerance
- CP increases required transmission bandwidth, hence lowersspectral efficiency
- Transmit power associated with CP is a waste

# INSERTION OF CYCLIC PREFIX



### **OFDM DISADVANTAGES**

#### **HIGH PAPR**

- A number of independently modulated sub-carriers result in HIGH PAPR
- Non-linear power amplifier, efficient, but cannot be used
- Causing performance degradation due to high distortion & out of band radiations
- High PAPR also increases complexity of ADC & DAC

#### FREQUENCY OFFSET

- Sub-carriers are very close and overlapping
- Even a small frequency offset will result in ISI
- Causes of frequency offset:
  - Frequency mismatch in local oscillators of transmitter & receiver
  - Doppler shift
  - Phase noise caused in the channel

#### TIMING OFFSET

- OFDM is slightly more tolerant to time offset, compared to frequency offset
- Causes lack of precision in symbol boundaries, resulting in ISI
- ISI occur only when time offset differs from CP duration
- Causes phase change & may also result in frequency offset

OFDM demands strict synchronization in frequency & time to preserve orthogonality

#### **CONCLUSION**

Hence synchronization is necessary in OFDM because it minimizes performance degradation

#### Synchronization Methods

Several approaches to estimate jointly or individually, used iteratively or in onestep

- Data aided method (pilot based)
- 2. Non-data aided method (blind)
- 3. Hybrid method

# THANK TYOU