

Daffodil International University
Department of Computer Science & Engineering

Lab Manual
Version: 2017.04

Course Code: CSE 232

Course Title: Microprocessor and Assembly language Lab

Table of Contents

Sessions Session Name Pages

1 Introduction to Assembly Language Programming Environment 3-4

2 Introduction to basic syntax of Assembly language 5-6

3 Arithmetic Operations in Assembly Language 7-8

4 Branching operations in assembly language 9-12

5 Looping operations in assembly language 13-14

6 Solving complex problems using branching and looping
operations 15

7-8 Logic, Shift and Rotate operations 16-18

9 Solving problems using Stack 19-20

10 Solving problems using string manipulation operations 21-23

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 3

Session 1: Introduction to Assembly Language Programming Environment

Intended Learning Outcome:
a. Introduction to Assembly Language Tools and Familiarization with Emu8086 environment.
b. Learn to install EMU 8086 and execute sample assembly program

Expected Skills:
a. Capability of installing EMU 8086 and working with it.

b. Write, compile and execute assembly language programs using EMU 8086.

Tools Required:
a. EMU 8086

Session Detail:

Emu8086

Emu8086 combines an advanced source editor, assembler, disassemble and software emulator
(Virtual PC) with debugger. It compiles the source code and executes it on emulator step by step.
Visual interface is very easy to work with. You can watch registers, flags and memory while your
program executes. Arithmetic & Logical Unit (ALU) shows the internal work of the central processor
unit (CPU). Emulator runs programs on a Virtual PC, this completely blocks your program from
accessing real hardware, such as hard-drives and memory, since your assembly code runs on a
virtual machine, this makes debugging much easier. 8086 machine code is fully compatible with all
next generations of Intel's microprocessors, including Pentium II and Pentium 4. This makes 8086
code very portable, since it runs both on ancient and on the modern computer systems. Another
advantage of 8086 instruction set is that it is much smaller, and thus easier to learn.

EMU8086 Source Editor

The source editor of EMU86 is a special purpose editor which identifies the 8086 mnemonics,
hexadecimal numbers and labels by different colors as seen in Figure below.

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 4

The compile button on the taskbar starts assembling and linking of the source file. A report window
is opened after the assembling process is completed. Figure below shows the emulator of 8086
which gets opened by clicking on emulate button.

Sample Programs to practice on the lab (Programs to be performed may be decided by the
course teacher):

Program 1.1

Source: Example 4.1 in section 4.9 in reference book [1].

Post Lab Exercise:

Individual Assignments will be given based on the Skills developed in this session by the course
teacher.

References:

1. Assembly Language Programming and Organization of the IBM PC by Ytha Yu, Charles Marut.

Further Readings:

1. Assembly Language for x86 Processors by Kip Irvine.

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 5

Session 2: Introduction to basic syntax of Assembly language

Intended Learning Outcome:
a. Introduction to Assembly Language basic syntaxes
b. Use these syntaxes to solve small problems

Expected Skills:
a. Use of basic I/O, movement & arithmetic instructions.

Tools Required:
a. EMU 8086

Session Detail:

Basic syntax will be discussed with example and then they will be asked to implement the solution of
some small problems.

I/O DOS Function Calls: Table below summarizes the main I/O functions. These functions are mainly
used to read a character or a string from the keyboard, which could be an input data to a program,
and display characters or strings, which could be results, or an output, of a program:

Program 2.1:

Write a program in assembly to read a character from the keyboard and display on the screen using
interrupt 21H.

Source: Ref. book [1]

Program 2.2:

Write a program to displays a string terminated by a $ sign using INT 21H function 09H.

Source: Example 4.2 in section 4.9 in reference book [1].

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 6

Post Lab Exercise:

Individual Assignments will be given based on the Skills developed in this session by the course
teacher.

References:

1. Assembly Language Programming and Organization of the IBM PC by Ytha Yu, Charles Marut.

Further Readings:

1. Assembly Language for x86 Processors by Kip Irvine.

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 7

Session 3: Arithmetic Operations in Assembly Language

Intended Learning Outcome:
a. Learn to implement arithmetic operations on data
b. Learn to use these operations to solve problems

Expected Skills:
a. Ability to solve problems using arithmetic & other basic instructions

Tools Required:
a. EMU 8086

Session Detail:

Students will be introduced with basic arithmetic operations and they will be asked to solve
problems using these operations.

Program 3.1:

Write a program that reads two numbers from the keyboard and gives their sum as output.

Source:

.MODEL SMALL

.STACK 100H

.DATA
 CRLF DB 0DH,0AH,'$'
 PROMPT1 DB 'Enter the first positive integer: ','$'
 PROMPT2 DB 'Enter the second positive integer: ','$'
 PROMPT3 DB 'The sum of the two numbers is: ','$'
.CODE
MAIN PROC
 LEA DX,PROMPT1 ;DISPLAY PROMPT1
 MOV AH,09H
 INT 21H

 MOV AH,01H ;READ FIRST NUMBER
 INT 21H
 SUB AL,30H ;Convert character to number
 MOV CL,AL ;SAVE THE NUMBER IN CL

 LEA DX,CRLF ;MOVE CURSOR TO NEXT LINE
 MOV AH,09H
 INT 21H
 LEA DX,PROMPT2 ;DISPLAY PROMPT2
 MOV AH,09H
 INT 21H

 MOV AH,01H ;READ SECOND NUMBER
 INT 21H
 SUB AL,30H ;Convert character to number

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 8

 ADD AL,CL ;PERFORM ADDITION AND SAVE RESULT IN CL

 MOV CL,AL
 ADD CL,30H ;CONVERT DIGIT TO CHARACTER

 LEA DX,CRLF ;MOVE CURSOR TO NEXT LINE
 MOV AH,09H
 INT 21H
 LEA DX,PROMPT3 ;DISPLAY PROMPT3
 MOV AH,09H
 INT 21H

 MOV DL,CL ;DISPLAY SUM
 MOV AH,02H
 INT 21H
MAIN ENDP
END MAIN

Program 3.2:

Write a program to convert a given lowercase letter to its uppercase form and prints it.

Source: Example 4.3 in section 4.9 in reference book [1].

Post Lab Exercise:

Individual Assignments will be given based on the Skills developed in this session by the course
teacher.

References:

1. Assembly Language Programming and Organization of the IBM PC by Ytha Yu, Charles Marut.

Further Readings:

1. Assembly Language for x86 Processors by Kip Irvine.

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 9

Session 4: Branching operations in assembly language

Intended Learning Outcome:
a. Learn to implement branching instructions in assembly language
b. Learn to use these instructions to solve problems

Expected Skills:
a. Aptitude to solve more complex decision making problems using branching instructions

Tools Required:
a. EMU 8086

Session Detail:

Students will be introduced with branching operations and they will be asked to solve problems
using these operations.

Compare instruction:

The compare instruction is used to compare two numbers. At most one of these numbers may reside
in memory. The compare instruction subtracts its source operand from its destination operand and
sets the value of the status flags according to the subtraction result. The result of the subtraction is
not stored anywhere. The flags are set as indicated in Table below.

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 10

Jump Instructions:

The jump instructions are used to transfer the flow of the process to the indicated operator.
An overview of all the jump instructions is given in Table below.

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 11

Program 4.1:

Suppose AL and BL contains extended ASCII characters. Display the one that comes first in the
character sequence.

Source: Example 6.2 in reference book [1].

Program 4.2:

IF AX contains a negative number, put -1 in BX; if AX contains 0, put 0 in BX; if AX contains a positive
number, put 1 in BX.

Source: Example 6.3 in reference book [1].

Program 4.3:

Read a character and if it’s an uppercase letter, display it.

Source: Example 6.4 in reference book [1].

Program 4.4:

Read a character. If it’s “y” or “Y”, display it; otherwise, terminate the program.

Source: Example 6.6 in reference book [1].

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 12

Program 4.5:

Read two numbers and print the maximum number.

Source: Left as an exercise.

Post Lab Exercise:

Individual Assignments will be given based on the Skills developed in this session by the course
teacher.

References:

1. Assembly Language Programming and Organization of the IBM PC by Ytha Yu, Charles Marut.

Further Readings:

1. Assembly Language for x86 Processors by Kip Irvine.

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 13

Session 5: Looping operations in assembly language

Intended Learning Outcome:
a. Learn to implement looping instructions in assembly language
b. Learn to use these instructions to solve problems

Expected Skills:
a. Capability of solving problems using looping techniques.

Tools Required:
a. EMU 8086

Session Detail:

Students will be introduced with looping operations and they will be asked to solve problem using
these operations.

Types of looping:

 For

 While

 Do While

In this lab session we will see the use of all of these looping operations.

The LOOP Instructions:

The LOOP instruction is a combination of a DEC and JNZ instructions. It causes execution to branch to
the address associated with the LOOP instruction. The branching occurs a number of times equal to
the number stored in the CX register.

Program 5.1:

Write a count-controlled loop to display a row of 80 stars.

Source: Example 6.8 in reference book [1].

Program 5.2:

Write some code to count the number of characters in an input line.

Source: Example 6.9 in reference book [1].

Program 5.3:

Write some code to read characters until a blank is read.

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 14

Source: Example 6.10 in reference book [1].

Post Lab Exercise:

Individual Assignments will be given based on the Skills developed in this session by the course
teacher.

References:

1. Assembly Language Programming and Organization of the IBM PC by Ytha Yu, Charles Marut.

Further Readings:

1. Assembly Language for x86 Processors by Kip Irvine.

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 15

Session 6: Solving complex problems using branching and looping operations

Intended Learning Outcome:
a. Learn to more about combining branching and looping operations for solving problems
b. Learn to use these operations to solve problems

Expected Skills:
a. Aptitude to solve problems associated with these operations

Tools Required:
a. EMU 8086

Session Detail:

Program 6.1:

Prompt the user to enter a line of text. On the next line, display the capital letter entered that comes
first alphabetically and the one that comes last. If no capital letters are entered, display "No capital
letters".

Source: Example 6.11 in section 6.5 in reference book [1].

*More practice problems like the one above can be used by the course teacher.

Program 6.2:

Store the sum of the series 1 + 4 + 7+ ...+ 148 in AX.

Source: Left as an exercise.

*More practice problems like the one above can be used by the course teacher.

Post Lab Exercise:

Individual Assignments will be given based on the Skills developed in this session by the course
teacher.

References:

1. Assembly Language Programming and Organization of the IBM PC by Ytha Yu, Charles Marut.

Further Readings:

1. Assembly Language for x86 Processors by Kip Irvine.

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 16

Session 7 & 8: Logic, Shift and Rotate operations

Intended Learning Outcome:
a. Learn to implement logical operations on data
b. Learn to use these operations to solve problems

Expected Skills:
a. Ability to solve problems associated with these operations

Tools Required:
a. EMU 8086

Session Detail:

Students will be introduced with basic logical operations and they will be asked to solve problems
using these operations.

Logical Instructions:

Logic shift and rotate instructions are called bit manipulation operations. These operations are
designed for low-level operations, and are commonly used for low level control of input/output
devices. The list of the logic operations of the 8086 is given below along with examples.

The Shift Operations:

The shift operations are used to multiply or divide a number by another number that is a power of 2
(i.e. 2n or 2–n). Multiplication by 2 is achieved by a one-bit left shift, while division by 2 is achieved by
a one-bit right shift. The Shift Arithmetic Right (SAR) instruction is used to manipulate signed
numbers. The regular Right Shift (SHR) of a signed number affects the sign bit, which could cause
numbers to change their sign. The SAR preserves the sign bit by filling the vacated bits with the sign
of the number. Shift Arithmetic Left (SAL) is identical in operation to SAR.

The Rotate Operations:

The rotate operations are very similar to the shift operations, but the bits are shifted out from one
end of a number and fed back into the other end to fill the vacated bits. They are provided to
facilitate the shift of long numbers (i.e. numbers of more than 16 bits). They are also used to

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 17

reposition a certain bit of a number into a desired bit location. The rotate right or left instructions
through the carry flag (RCL and RCR) are similar to the regular rotate instructions (ROL and ROR), but
the carry flag is considered as a part of the number. Hence, before the rotate operation, the carry
flag bit is appended to the number as the least significant bit in the case of RCL, or as the most
significant bit in the case of RCR.

Program 7.1:

This program shows the effect of the logic instructions.

Source:

.MODEL SMALL

.STACK 100H

.DATA
NUM1 DW 0FA62H
NUM2 DB 94H
.CODE

MAIN PROC

MOV AX, NUM1 ;load AX with number NUM1
AND AX, 0FFDFH ;Reset 6th bit of AX
OR AL, 20H ;Set 6th bit of AL

 XOR NUM1, 0FF00H; Complement the high order byte of NUM1
 NOT NUM2 ; Complement NUM2
 XOR AX, AX ; Clear AX
 MOV AX, NUM1
 AND AX, 0008H; Isolate bit 4 of NUM1
 XOR AX, 0080H; Complement 4th bit of AX

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 18

MAIN PROC
END MAIN
Program 7.2:

Use ROL to count the number of l bits In BX, without changing BX. Put the answer In AX.

Source: Example 7.12 in reference book [1].

Program 7.3:

Reverse a binary number stored in AL.

Source: Example 7.13a in reference book [1] pp. no. 130.

Program 7.4:

Read a binary number from input and store it in AX.

Source: Section 7.4 in reference book [1].

Program 7.5:

Write a binary number stored in AX into the output.

Source: Section 7.4 in reference book [1].

Post Lab Exercise:

Individual Assignments will be given based on the Skills developed in this session by the course
teacher.

References:

1. Assembly Language Programming and Organization of the IBM PC by Ytha Yu, Charles Marut.

Further Readings:

1. Assembly Language for x86 Processors by Kip Irvine.

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 19

Session 9: Solving problems using Stack

Intended Learning Outcome:
a. Learn to implement stack in assembly language
b. Learn to use stack as a means to solve relevant problems

Expected Skills:
a. Capability to solve problems using stack.

Tools Required:
a. EMU 8086

Session Detail:

Students will be acquainted with stack and its implementation and then they will be given relevant
problems which can be solved using stack.

The Stack:

The stack is a special segment in memory used to facilitate subroutine handling. The SS register
contains the Stack Segment number where the stack is stored. The ".STACK" directive instructs the
assembler to reserve a stack segment of a desired size. The stack always starts at a high address and
grows towards the beginning of the stack segment at a lower address. When a program starts, the
stack is empty, and its size is zero. The microprocessor stores data on the stack as needed, and uses
the SP register to point to the last item stored on the stack. The stack size dynamically changes as
data is stored or retrieved from the stack.

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 20

Program 9.1:

Write a program that read a string and prints its reverse string.

Source: Section 8.2 in reference book [1].

Post Lab Exercise:

Individual Assignments will be given based on the Skills developed in this session by the course
teacher.

References:

1. Assembly Language Programming and Organization of the IBM PC by Ytha Yu, Charles Marut.

Further Readings:

1. Assembly Language for x86 Processors by Kip Irvine.

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 21

Session 10: Solving problems using string manipulation operations

Intended Learning Outcome:
a. Learn to use string manipulation operations in assembly language
b. Learn to solve relevant problems using string manipulation

Expected Skills:
a. Capability of solving problems using string manipulation operations.

Tools Required:
a. EMU 8086

Session Detail:

String Handling Instructions:

String handling instructions are very powerful because they allow the programmer to manipulate
large blocks of data with relative ease. Block data manipulation occurs with the string instructions.
Each of the string instructions defines an operation for one element of a string only. Thus, these
operations must be repeated to handle a string of more than one element.

String handling instructions use the direction flag, SI and DI registers. The Direction Flag (DF) selects
auto-increment or auto-decrement operation for the DI and SI registers during string operations.
Whenever a string instruction transfers a byte, the contents of SI and/or DI get increased or
decreased by 1. If a word is transferred, the contents of SI and/or DI get increased or decreased by 2.

Basic String Handling Instructions

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 22

String Movement Instructions

String Comparison Instructions

Program 10.1:

Write a program that reads and stores a character string.

Source: Program listing 11.1 in chapter 11 in reference book [1].

Program 10.2:

Write a program that writes a character string in the output.

Source: Program listing 11.2 in chapter 11 in reference book [1].

Program 10.3:

Write a program that reads a character string and displays the number of vowels and consonants in
the output.

Source: Program listing 11.4 in chapter 11 in reference book [1].

Department of Computer Science and Engineering
CSE 232: Microprocessor and Assembly language Lab Credits: 1.0 Lab Manual v.2017.04

Copyright © Daffodil International University, 2017 23

Post Lab Exercise:

Individual Assignments will be given based on the Skills developed in this session by the course
teacher.

References:

1. Assembly Language Programming and Organization of the IBM PC by Ytha Yu, Charles Marut.

Further Readings:

1. Assembly Language for x86 Processors by Kip Irvine.

