Forward Kinematics

A. Sayef Reyadh Lecturer Department of Computer Science and Engineering Daffodil International University

Right hand Rule

Rotate about vector

Roll, Pitch and Yaw Angles

 $Roll$

Pitch

Yaw

 ${}^{U}_{B}R_{composite, \, rpy} = ROT(\widehat{Z}_U, \gamma) ROT(\widehat{Y}_U, \beta) ROT(\widehat{X}_U, \alpha)$

$$
= \begin{bmatrix} c\beta c\gamma & -c\alpha s\gamma + s\alpha s\beta c\gamma & s\alpha s\gamma + c\alpha s\beta c\gamma \\ c\beta s\gamma & c\alpha c\gamma + s\alpha s\beta s\gamma & -s\alpha c\gamma + c\alpha s\beta s\gamma \\ -s\beta & c\beta s\alpha & c\alpha c\beta \end{bmatrix}
$$

We compare with

We get

$$
{}_{B}^{U}R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}
$$

$$
\alpha = \tan^{-1} \left(\frac{r_{32}}{r_{33}} \right)
$$

$$
r = \tan^{-1} \left(\frac{-r_{31}}{\sqrt{r_{11}^2 + r_{21}^2}} \right)
$$

$$
\gamma = \tan^{-1} \left(\frac{r_{21}}{r_{11}} \right)
$$

A Numerical Example

The concept of roll, pitch and yaw angles has been used to represent the rotation or a name by matrix π above rotation can $\beta = \tan^{-1} \left(\frac{-r_{31}}{\sqrt{r_{11}^2 + r_{21}^2}} \right)$

$$
{}_{B}^{U}R = \begin{bmatrix} -0.250 & 0.433 & -0.866 \\ 0.433 & -0.750 & -0.500 \\ -0.866 & -0.500 & 0.000 \end{bmatrix}
$$

Determine the angles of rolling, pitching and yawing.

Solution:

Angle of rolling
$$
\alpha = \tan^{-1} \frac{r_{32}}{r_{33}} = \tan^{-1} \frac{-0.500}{0.000} = 90^{\circ}
$$

Angle of pitching
$$
\beta = \tan^{-1} \frac{-r_{31}}{\sqrt{r_{11}^2 + r_{21}^2}}
$$

= $\tan^{-1} \frac{0.866}{\sqrt{(-0.250)^2 + (0.433)^2}}$

Angle of yawing
$$
\gamma = \tan^{-1} \frac{-r_{21}}{r_{11}} = \tan^{-1} \frac{0.433}{-0.250}
$$

= -59.99 $\approx -60^{\circ}$

Denavit-Hartenberg Notations

Link and Joint Parameters

- Length of link; (a_i) : It is the mutual perpendicular distance between Axis_{i-1} and Axi_i
- Angle of twist of link, (a_i) : It is defined as the angle between Axis_{i-1} and Axis;

Notes: Revolute joint: θ_i **is variable** \cdot Prismatic joint: d_i is variable • Offset of link; (d_i) : It is the distance measured from a point where a_{i-1} intersects the $Axis_{i-1}$ to the point where a_i intersects the Axis_{i-1} measured along the said axis

• Joint Angle (θ_i) : It is defined as the angle between the extension of a_{i-1} and a_i measured about the Axis.

D,

 \bullet (joint angle) θ_1 is angle from x0 to x1 measured about Z0

DH prameters

▶ (Link Offset) d1 distance from O0 to O1 measured along z0

▶ (Link Length) a1 distance from z0 to z1 measured along x1

 \blacktriangleright (Link twist) α_1 is angle from z0 to z1 measured about x1

- 1. Link length a_i is the distance between z_{i-1} and z_i axes along the x_i -axis. a_i is the *kinematic length* of link (*i*).
- 2. Link twist α_i is the required rotation of the z_{i-1} -axis about the x_i axis to become parallel to the z_i -axis.
- 3. Joint distance d_i is the distance between x_{i-1} and x_i axes along the z_{i-1} -axis. Joint distance is also called *link offset*.
- 4. *Joint angle* θ_i is the required rotation of x_{i-1} -axis about the z_{i-1} -axis to become parallel to the x_i -axis.

FIGURE 5.3. DH parameters $a_i, \alpha_i, d_i, \theta_i$ defined for joint *i* and link (*i*).

DH Techniques

- Matrix A_i representing the four movements is found by: four \bullet movements
- 1. Rotation of θ about current Z axis
- 2. Translation of d along current Z axis
- 3. Translation of a along current X axis
- 4. Rotation of α about current X axis

$$
A_i = Rot_{z,\theta_i} Trans_{z,d_i} Trans_{x,a_i} Rot_{x,\alpha_i}
$$

$A_i = R_{z,\theta_i}$ Trans_{z,d_i}Trans_{x,a_i R_{x,α_i}}

 $\begin{array}{rcl} \mathcal{L} = & \left[\begin{array}{cccc} c_{\theta_i} & -s_{\theta_i} & 0 & 0 \ s_{\theta_i} & c_{\theta_i} & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array} \right] \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & d_i \ 0 & 0 & 0 & 1 \end{array} \right] \left[\begin{array}{cccc} 1 & 0 & 0 & a_i \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1$ $=\left[\begin{array}{cccc}c_{\theta_i}&-s_{\theta_i}c_{\alpha_i}&s_{\theta_i}s_{\alpha_i}&a_ic_{\theta_i}\\s_{\theta_i}&c_{\theta_i}c_{\alpha_i}&-c_{\theta_i}s_{\alpha_i}&a_is_{\theta_i}\\0&s_{\alpha_i}&c_{\alpha_i}&d_i\\0&0&0&1\end{array}\right]$

$$
_2^{Base}T = _1^{Base}T_2^1T \\
$$

$$
BaseT = ROT(\hat{Z}, \theta_1) TRANS(\hat{X}, L_1)
$$

=
$$
\begin{bmatrix} c_1 & -s_1 & 0 & L_1c_1 \\ s_1 & c_1 & 0 & L_1s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
{}_{2}^{1}T = ROT(\hat{Z}, \theta_{2})TRANS(\hat{X}, L_{2})
$$

=
$$
\begin{bmatrix} c_{2} & -s_{2} & 0 & L_{2}c_{2} \ s_{2} & c_{2} & 0 & L_{2}s_{2} \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}
$$

Link

1

 $\begin{smallmatrix}2\\3\end{smallmatrix}$

 $\overline{4}$

 a_i

 a_1

 a_2

 $\bf{0}$

 θ

* joint variable

22

$$
A_1 = \begin{bmatrix} c_1 & -s_1 & 0 & a_1c_1 \\ s_1 & c_1 & 0 & a_1s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
A_2 = \begin{bmatrix} c_2 & s_2 & 0 & a_2c_2 \\ s_2 & -c_2 & 0 & a_2s_2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T_4^0 = A_1 \cdots A_4 = \begin{bmatrix} c_{12}c_4 + s_{12}s_4 & -c_{12}s_4 + s_{12}c_4 & 0 & a_1c_1 + a_2c_{12} \\ s_{12}c_4 - c_{12}s_4 & -s_{12}s_4 - c_{12}c_4 & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & -1 & -d_3 - d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
A_4 = \begin{bmatrix} c_4 & -s_4 & 0 & 0 \\ s_4 & c_4 & 0 & 0 \\ 0 & 0 & 1 & d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}.
$$

23

Example 3 The three links cylindrical

variable ∗

Example 3 The three links cylindrical

$$
A_1 = \begin{bmatrix} c_1 & -s_1 & 0 & 0 \\ s_1 & c_1 & 0 & 0 \\ 0 & 0 & 1 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
A_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
A_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

Example 4 Spherical wrist

Example 4 Spherical wrist

$$
A_4 = \begin{bmatrix} c_4 & 0 & -s_4 & 0 \ s_4 & 0 & c_4 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \quad T_6^3 = A_4 A_5 A_6 = \begin{bmatrix} R_6^3 & O_6^3 \ 0 & 1 \end{bmatrix}
$$
(1)
\n
$$
A_5 = \begin{bmatrix} c_5 & 0 & s_5 & 0 \ s_5 & 0 & -c_5 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_4 c_5 c_6 - s_4 s_6 & -c_4 c_5 s_6 - s_4 c_6 & c_4 s_5 & c_4 s_5 d_6 \ s_4 c_5 c_6 + c_4 s_6 & -s_4 c_5 s_6 + c_4 c_6 & s_4 s_5 & s_4 s_5 d_6 \ -s_5 c_6 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
A_6 = \begin{bmatrix} c_6 & -s_6 & 0 & 0 \ s_6 & c_6 & 0 & 0 \ 0 & 0 & 1 & d_6 \ 0 & 0 & 0 & 1 \end{bmatrix}.
$$
(21)

The three links cylindrical with Spherical wrist

The three links cylindrical with Spherical wrist

$$
T_6^0 = T_3^0 T_6^3
$$

• given by example 3 given by example 4.

$$
T^{\,0}_{\,3}\qquad \qquad T^{\,6}
$$

The three links cylindrical with Spherical wrist

 $T_6^0 \;\; = \;\; \left[\begin{array}{cccc} c_1 & 0 & -s_1 & -s_1 d_1 \\ s_1 & 0 & c_1 & c_1 d_3 \\ 0 & -1 & 0 & d_1 + d_2 \\ 0 & 0 & 0 & 1 \end{array} \right] \left[\begin{array}{cccc} c_4 c_5 c_6 - s_4 s_6 & -c_4 c_5 s_6 - s_4 c_6 & c_4 s_5 & c_4 s_5 d_6 \\ s_4 c_5 c_6 + c_4 s_6 & -s_4 c_5 s_6 + c_4 c_6 & s_4 s_5 & s_4 s_5 d_6 \\ -s_5 c_6 & s_$ r_{11} r_{12} r_{13} d_x $=\begin{array}{|rrrr} r_{21} & r_{22} & r_{23} & d_y\\ r_{31} & r_{32} & r_{33} & d_z\\ 0 & 0 & 0 & 1 \end{array}$

$$
r_{11} = c_1c_4c_5c_6 - c_1s_4s_6 + s_1s_5c_6
$$

$$
r_{21} = s_1c_4c_5c_6 - s_1s_4s_6 - c_1s_5c_6
$$

$$
r_{31} = -s_4c_5c_6 - c_4s_6
$$

$$
r_{12} = -c_1c_4c_5s_6 - c_1s_4c_6 - s_1s_5c_6
$$

$$
r_{22} = -s_1c_4c_5s_6 - s_1s_4s_6 + c_1s_5c_6
$$

$$
r_{32} = s_4c_5c_6 - c_4c_6
$$

$$
r_{13} = c_1c_4s_5 - s_1c_5
$$

$$
r_{23} = s_1c_4s_5 + c_1c_5
$$

$$
r_{33} = -s_4s_5
$$

$$
d_x = c_1c_4s_5d_6 - s_1c_5d_6 - s_1d_3
$$

$$
d_y = s_1 c_4 s_5 d_6 + c_1 c_5 d_6 + c_1 d_3
$$

 $=$ $-s_4s_5d_6 + d_1 + d_2.$

FIGURE 5.4. Illustration of a $3R$ planar manipulator robot and DH frames of $\rm each$ link.

FIGURE 5.5. $3R$ PUMA manipulator and links coordinate frame.

References

- Lecture on Kinematics-Fall2019 by Honorable Prof. Dr. Syed Akhter Hossain Sir
- Lectures by honourable Prof D K Pratihar of NPTEL
- <https://youtu.be/6Wb0rmIvIlI>
- <https://youtu.be/AbRhzpReb2Q>
- https://youtu.be/h4_2xAPj3y0