
CPU
Scheduling

CPU Scheduling

CPU scheduling is a process which allows one process to use the CPU while the execution of
another process is on hold (in waiting state) due to unavailability of any resource like I/O etc,
thereby making full use of CPU. The aim of CPU scheduling is to make the system efficient, fast
and fair.

Scheduling Criteria

There are many different criteria to check when considering the "best" scheduling algorithm :

 CPU utilization

To make out the best use of CPU and not to waste any CPU cycle, CPU would be working

most of the time (Ideally 100% of the time). Considering a real system, CPU usage should

range from 40% (lightly loaded) to 90% (heavily loaded.)

 Throughput

It is the total number of processes completed per unit time or rather say total amount of work

done in a unit of time. This may range from 10/second to 1/hour depending on the specific

processes.

 Turnaround time

It is the amount of time taken to execute a particular process, i.e. The interval from time of

submission of the process to the time of completion of the process (Wall clock time).

 Waiting time

The sum of the periods spent waiting in the ready queue amount of time a process has been

waiting in the ready queue to acquire get control on the CPU.

 Load average

It is the average number of processes residing in the ready queue waiting for their turn to get

into the CPU.

 Response time

Amount of time it takes from when a request was submitted until the first response is

produced. Remember, it is the time till the first response and not the completion of process

execution (final response).

In general CPU utilization and Throughput are maximized and other factors are reduced for
proper optimization.

Basic Concepts
In a single-processor system, only one process can run at a time. Others must wait until the CPU
is free and can be rescheduled. The objective of multiprogramming is to have some process
running at all times, to maximize CPU utilization. A process is executed until it must wait,
typically for the completion of some I/O request. In a simple computer system, the CPU then just
sits idle. All this waiting time is wasted; no useful work is accomplished. With
Multiprogramming, we try to use this time productively. Several processes are kept in memory at
one time.

When one process has to wait, the operating system takes the CPU away from that process and
gives the CPU to another process. Every time one process has to wait, another process can take
over use of the CPU. Scheduling of this kind is a fundamental operating-system function. Almost
all computer resources are scheduled before use. The CPU is, of course, one of the primary
computer resources. Thus, its scheduling is central to operating-system design.

Figure 6.1 Alternating sequence of CPU and I/O bursts.

CPU Burst: While scheduling, each process gets to use the CPU for it's slice. The slice that it
gets, is called the CPU burst. In simple terms, the duration for which a process gets control of
the CPU is the CPU burst time, and the concept of gaining control of the CPU is the CPU burst.

The time when the process is being executed in the CPU, i.e. CPU is the resource being used by
the process at that time.

I/O Burst : I/O burst- The time when the process requests for I/O and is using I/O as a resource
i.e. I/O burst.

CPU–I/O Burst Cycle
Process execution consists of a cycle of CPU execution and I/O wait. Processes alternate
between these two states. Process execution begins with a CPU burst. That is followed by an
I/O burst, which is followed by another CPU burst, then another I/O burst, and so on.
Eventually, the final CPU burst ends with a system request to terminate execution (Figure 6.1).

The durations of CPU bursts have been measured extensively. Although they vary from process
to process and from computer to computer, they tend to have a frequency curve similar to that
shown in Figure 6.2. The curve is generally characterized as exponential or hyperexponential,
with a large number of short CPU bursts and a small number of long CPU bursts. An I/O-bound
program typically has many short CPU bursts. A CPU-bound program might have a few long
CPU bursts. This distribution can be important in the selection of an appropriate CPU-scheduling
algorithm.

Figure 6.2 Histogram of CPU-burst durations.

CPU Scheduler:
CPU scheduler selects a process among the processes that are ready to execute and allocates
CPU to one of them.

Whenever the CPU becomes idle, the operating system must select one of the processes in the
ready queue to be executed. The selection process is carried out by the short-term scheduler, or
CPU scheduler. The scheduler selects a process from the processes in memory that are ready to
execute and allocates the CPU to that process.

1. Short Term Scheduler. It is also called as CPU scheduler. CPU scheduler selects a
process among the processes that are ready to execute and allocates CPU to one of

Commented [A1]: Scheduling Queues:
Job Queue, Ready Queue, Device Queue

Commented [A2R1]:

Commented [A3]:

them. Short-term schedulers, also known as dispatchers, make the decision of which
process to execute next.

2. Long Term Scheduler: Selects which process should be brought in the ready queue.

CPU-scheduling decisions may take place under the following four circumstances:
1. When a process switches from the running state to the waiting state (for example, as the result
 of an I/O request or an invocation of wait () for the termination of a child process)

2. When a process switches from the running state to the ready state (for example, when an
 interrupt occurs)
3. When a process switches from the waiting state to the ready state (for example, at completion
 of I/O)
4. When a process terminates

When scheduling takes place only under circumstances 1 and 4, we say that the scheduling
scheme is non-preemptive or cooperative. Otherwise, it is preemptive.

 All other scheduling is preemptive (require special hardware)

 Preemptive scheduling can result in race conditions when data are shared among
several processes.

 Consider preemption while in kernel mode

 Consider interrupts occurring during crucial OS activities

 Need synchronization
 Dispatcher

Another component involved in the CPU-scheduling function is the dispatcher. The
dispatcher is the module that gives control of the CPU to the process selected by the
short-term scheduler. This function involves the following:
 • Switching context
 • Switching to user mode
 •Jumping to the proper location in the user program to restart that program

 •The dispatcher should be as fast as possible, since it is invoked during every process
 switch.

 The time it takes for the dispatcher to stop one process and start another running is known

as the dispatch latency.

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible
 Throughput – # of processes that complete their execution per time unit
 Turnaround time – amount of time to execute a particular process
 Waiting time – amount of time a process has been waiting in the ready queue

 Response time – amount of time it takes from when a request was submitted until the
first response is produced, not output (for time-sharing environment)

 Response time is the amount of time after which a process gets the CPU for the first
time after entering the ready queue.

 Response Time = Time at which process first gets the CPU – Arrival time

Scheduling Algorithm Optimization Criteria

 Max CPU utilization
 Max throughput
 Min turnaround time
 Min waiting time
 Min response time

 Scheduling Algorithms

We'll discuss four major scheduling algorithms here which are the following :

1. First Come First Serve(FCFS) Scheduling

2. Shortest-Job-First(SJF) Scheduling

3. Priority Scheduling

4. Round Robin(RR) Scheduling

5. Multilevel Queue Scheduling

First-Come, First-Served (FCFS) Scheduling

 Simplest CPU scheduling algorithm
 The process that requests the CPU first is allocated the CPU first
 Managed by a FIFO queue
 When a process enters the ready queue, its PCB is linked onto the tail of the queue
 When the CPU is free, it is allocated to the process at the head of the queue
 The running process is then removed from the queue

1. Problem

 Average waiting time often quite long

 Process Burst Time
 P1 24

 P2 3
 P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order:
 P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time: (6 + 0 + 3)/3 = 3
 Much better than previous case
 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes
There is a convoy effect as all the other processes wait for the one big process to get off the
CPU. This effect results in lower CPU and device utilization than might be possible if the shorter
processes were allowed to go first.

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst
 Use these lengths to schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of processes
 The difficulty is knowing the length of the next CPU request
 Could ask the user

2. Problem
Process Burst Time

 P1 6
 P2 8
 P3 7

P4 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Shortest Job first (with Arrival time and Burst Time):

3. Problem

Process Arrival Time Burst Time
 P1 1 7
 P2 2 5
 P3 3 1

P4 4 2
P4 5 8

AT= Arrival Time , BT= Burst Time ,CT= Completion Time, TAT=Turn around Time WT= Waiting
Time.
CT gets from figure P1=8, p2=16, p3=9,p4=11 and p5=24
TAT=CT-AT; WT=TAT-BT

Example of Shortest-remaining-time-first (Preemptive)

 Now we add the concepts of varying arrival times and preemption to the analysis
 Process Arrival Time Burst Time
 P1 0 8
 P2 1 4
 P3 2 9
 P4 3 5

 Preemptive SJF Gantt Chart

CT: P1=17,p2=5,p3=26,p4=10

TAT=CT-AT

WT=TAT-BT

Average waiting time= 9 +0+15+2=26/4=6.5 msec

Examples:

FCFS algorithm:

FCFS with CPU idle time:

SJF- Non-preemptive:

SJF---preemptive:

What is convoy effect?

Convoy effect is slowing down of the whole operating system because of few slow processes. It's usually used in
context of vehicle traffics. Basically, a convoy affected region is the one where the slow moving traffic slows down
the speed of all the vehicles and makes the whole process lengthier.

It is the disadvantage of FCFS algorithm.
SJF algorithm used to solved the convoy effect.

What is difference between kernel and operating system?
The operating system is the software package that communicates directly to the hardware and our application.
The kernel is the lowest level of the operating system. The kernel is the main part of the operating system and is
responsible for translating the command into something that can be understood by the computer.

Priority Scheduling

 A priority number (integer) is associated with each process
 The CPU is allocated to the process with the highest priority (smallest integer highest

priority)
 Preemptive
 Non-preemptive
 SJF is priority scheduling where priority is the inverse of predicted next CPU burst

time
 Problem Starvation – low priority processes may never execute
 Solution Aging – as time progresses increase the priority of the process

Starvation: Starvation is resource management problem where a process does not get the
resources it needs for a long time because the resources are being allocated to other processes.

Starvation is the name given to the indefinite postponement of a process because it requires some resource before it
can run, but the resource, though available for allocation, is never allocated to this process.

Aging: Aging is a technique to avoid starvation in a scheduling system.

Example of Priority Scheduling(Non Preemptive)

 Process Burst Time Priority
 P1 10 3
 P2 1 1
 P3 2 4
 P4 1 5
 P5 5 2

 Priority scheduling Gantt Chart

Average waiting time = 8.2 msec

Example of Priority Scheduling(Non Preemptive)

 Process Priority Arrival Time Burst Time
 P1 2 0 4
 P2 4 1 2
 P3 6 2 3
 P4 10 3 5
 P5 8 4 1
 p6 12 5 4
 p7 9 6 6

Example of Priority Scheduling(Preemptive)

Round Robin (RR)
 Each process gets a small unit of CPU time (time quantum q), usually 10-100

milliseconds. After this time has elapsed, the process is preempted and added to the
end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q, then each
process gets 1/n of the CPU time in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

 Timer interrupts every quantum to schedule next process
 Performance

 q large FIFO
 q small q must be large with respect to context switch, otherwise overhead is

too high

Example of RR with Time Quantum = 4
Process Burst Time
P1 24
P2 3
 P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response
 q should be large compared to context switch time
 q usually 10ms to 100ms, context switch < 10 u sec

What is context switching in operating system?
In computing, a context switch is the process of storing and restoring the state (more specifically, the context) of a
process or thread so that execution can be resumed from the same point at a later time.

Example:

Example:

Example:

Example:

Time quantum is increased: - Context switching is decreased and Response time is increased.
Time quantum is decreased: Context switching is increased and Response time is decreased.

Example:

Multilevel Queue
 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)
 background (batch)

 Process permanently in a given queue
 Each queue has its own scheduling algorithm:
 foreground – RR
 background – FCFS
 Scheduling must be done between the queues:
 Fixed priority scheduling; (i.e., serve all from foreground then from background).

Possibility of starvation.
 Time slice – each queue gets a certain amount of CPU time which it can schedule

amongst its processes; i.e., 80% to foreground in RR
 20% to background in FCFS

Fig: Multilevel Queue Scheduling

System Process: In computing, a process is an instance of a computer program that is being
executed. It contains the program code and its current activity. Depending on the operating system(OS),
a process may be made up of multiple threads of execution that execute instructions concurrently.

Example: OS
Interactive Processes: When we playing online game.
Batch processes: submit lots of jobs

What is a batch processing system?
Batch processing is the execution of a series of jobs in a program on a computer without manual intervention (non-
interactive). Strictly speaking, it is a processing mode: the execution of a series of programs each on a set or
"batch" of inputs, rather than a single input (which would instead be a custom job).

Batch processing: collecting jobs in a single batch and then execute them without further
interaction what the user. Interactive processing: Allows a program being executed to carry on a
dialogue with the user through remote terminals. Requires real-time processing.

Student process: It might have executed some program.

Example:

