

Daffodil International University

Department of Computer Science and Engineering

Faculty of Science & Information TechnologyMidterm Examination, Summer 2021 @ DIU Blended Learning CenterCourse Code: CSE 323Course Title: Operating SystemsLevel: 3Term: 2Section: PC-A+PC-BInstructor: MSZModality: Open Book ExamDate: Tuesday 6 July, 2021Time: 1:30-4:00pmTwo and half hours (2:30) to support online open/case study based assessment
Marks: 25

[Answer all of the questions]

1.	a.	Consider the following Code:	3.0
		<pre>#include<iostream> using namespace std; int main(){ return 0; }</iostream></pre>	
		The code is inside a file named " myprogram.cpp ", you want to copy the contents of this file in another file named " copiedprogram.cpp ". What will be the steps to perform this operation? Explain in brief.	
	b.	"Multitasking is the logical extension of multiprogramming" Explain your answer.	2.0
2.	a.	Explain the role of PCB in short term scheduling?	2.0
	b.	How can a parent process and its child process communicate with each other? Show with required figures.	3.0
3.	a.	Draw the Gantt chart and find out the average waiting and response time for the following processes in round robin. If your ID is an odd number then time quantum is 2 otherwise, time quantum is 3.	6.0

	Processes	Arrival Time	Burst Time	
	P1	2	10	
	P2	4	9	
	P3	2	2	
	P4	8	12	
	P5	5	5	
	P6	15	1	
and fin algorit	nd out the average thm.	waiting time from the		
and fin algoria	nd out the average thm. Processes	waiting time from the Burst Time	following scenario usir Arrival Time	
and fin algoria	nd out the average thm.	waiting time from the	following scenario usir	
and fin algoria	nd out the average thm. Processes	waiting time from the Burst Time	following scenario usir Arrival Time	
and fin algoria	nd out the average thm. Processes P1	waiting time from the Burst Time 12.0	following scenario usir Arrival Time 0.0	
and fin algoria	nd out the average thm. Processes P1 P2	waiting time from the Burst Time 12.0 3.0	following scenario usir Arrival Time 0.0 3.0	
and fin algoria	nd out the average thm. Processes P1 P2 P3	waiting time from the Burst Time 12.0 3.0 1.0	following scenario usir Arrival Time 0.0 3.0 0.0	

Good Luck!