
Transaction

A transaction is a single logical unit of work which accesses and possibly

modifies the contents of a database. Transactions access data using read and write

operations. .

Each transaction begins with a specific task and ends when all the tasks in the group

successfully complete. If any of the tasks fail, the transaction fails. Therefore, a

transaction has only two results: success or failure.

Incomplete steps result in the failure of the transaction. A database transaction, by

definition, must be atomic, consistent, isolated and durable. These are popularly

known as ACID properties.

How to implement Transactions using SQL?

Following commands are used to control transactions. It is important to note that

these statements cannot be used while creating tables and are only used with the

DML Commands such as – INSERT, UPDATE and DELETE.

1. BEGIN TRANSACTION: It indicates the start point of an explicit or local

transaction.

Syntax:

BEGIN TRANSACTION transaction_name ;

2. SET TRANSACTION: Places a name on a transaction.

Syntax:
SET TRANSACTION [READ WRITE | READ ONLY];

3. COMMIT: If everything is in order with all statements within a single

transaction, all changes are recorded together in the database is

called committed. The COMMIT command saves all the transactions to the

database since the last COMMIT or ROLLBACK command.

Syntax: COMMIT;

https://www.geeksforgeeks.org/sql-transactions/
https://en.wikipedia.org/wiki/ACID

Following is an example which would delete those records from the table which

have age = 20 and then COMMIT the changes in the database.

Queries:

DELETE FROM Student WHERE AGE = 20;

COMMIT;

Output:

Thus, two rows from the table would be deleted and the SELECT statement would

look like,

4. ROLLBACK: If any error occurs with any of the SQL grouped statements, all

changes need to be aborted. The process of reversing changes is

called rollback. This command can only be used to undo transactions since the last

COMMIT or ROLLBACK command was issued.

Syntax: ROLLBACK;

Example: From the above example Sample table1,

Delete those records from the table which have age = 20 and then ROLLBACK

the changes in the database.

Queries: DELETE FROM Student WHERE AGE = 20;

ROLLBACK;

Advantages of COMMIT and ROLLBACK:

• Ensure data consistency

• Preview data changes before making changes permanent

• Group logically related operations

Transaction Control
• Savepoints:

• Savepoints are sort of markers that help in splitting a long transaction into smaller

units by setting some checkpoints.

• By setting savepoints within a long transaction, you can roll back to a checkpoint if

required.

• This is done by issuing the SAVEPOINT command.

• The general syntax for the SAVEPOINT command is:

SAVEPOINT < savepoint_name >;

ACID PROPERTIES:

Atomicity

By this, we mean that either the entire transaction takes place at once or doesn’t

happen at all. There is no midway i.e., transactions do not occur partially. Each

transaction is considered as one unit and either runs to completion or is not

executed at all. It involves the following two operations.

—Abort: If a transaction aborts, changes made to database are not visible.

—Commit: If a transaction commits, changes made are visible.

Atomicity is also known as the ‘All or nothing rule’.

 Consider the following transaction T consisting of T1 and T2: Transfer of 100

from account X to account Y.

If the transaction fails after completion of T1 but before completion of T2.(say,

after write(X) but before write(Y)), then amount has been deducted from X but

not added to Y. This results in an inconsistent database state. Therefore, the

transaction must be executed in entirety in order to ensure correctness of database

state.

Consistency

This means that integrity constraints must be maintained so that the database is

consistent before and after the transaction. It refers to the correctness of a database.

Referring to the example above,

The total amount before and after the transaction must be maintained.

Total before T occurs = 500 + 200 = 700.

Total after T occurs = 400 + 300 = 700.

Therefore, database is consistent. Inconsistency occurs in case T1 completes

but T2 fails. As a result, T is incomplete

Isolation

This property ensures that multiple transactions can occur concurrently without

leading to the inconsistency of database state. Transactions occur independently

without interference. Changes occurring in a particular transaction will not be

visible to any other transaction until that particular change in that transaction is

written to memory or has been committed. This property ensures that the execution

of transactions concurrently will result in a state that is equivalent to a state

achieved these were executed serially in some order.

Durability:

This property ensures that once the transaction has completed execution, the

updates and modifications to the database are stored in and written to disk and they

persist even if a system failure occurs. These updates now become permanent and

are stored in non-volatile memory. The effects of the transaction, thus, are never

lost.

