
7.2 Deadlock Characterization 319

1. Mutual exclusion. At least one resource must be held in a nonsharable
mode; that is, only one process at a time can use the resource. If another
process requests that resource, the requesting process must be delayed
until the resource has been released.

2. Hold and wait. A process must be holding at least one resource and
waiting to acquire additional resources that are currently being held by
other processes.

3. No preemption. Resources cannot be preempted; that is, a resource can
be released only voluntarily by the process holding it, after that process
has completed its task.

4. Circular wait. A set {P0, P1, ..., Pn} of waiting processes must exist such
that P0 is waiting for a resource held by P1, P1 is waiting for a resource
held by P2, ..., Pn−1 is waiting for a resource held by Pn, and Pn is waiting
for a resource held by P0.

We emphasize that all four conditions must hold for a deadlock to
occur. The circular-wait condition implies the hold-and-wait condition, so the
four conditions are not completely independent. We shall see in Section 7.4,
however, that it is useful to consider each condition separately.

7.2.2 Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called
a system resource-allocation graph. This graph consists of a set of vertices V
and a set of edges E. The set of vertices V is partitioned into two different types
of nodes: P = {P1, P2, ..., Pn}, the set consisting of all the active processes in the
system, and R = {R1, R2, ..., Rm}, the set consisting of all resource types in the
system.

A directed edge from process Pi to resource type Rj is denoted by Pi → Rj ;
it signifies that process Pi has requested an instance of resource type Rj and
is currently waiting for that resource. A directed edge from resource type Rj
to process Pi is denoted by Rj → Pi ; it signifies that an instance of resource
type Rj has been allocated to process Pi . A directed edge Pi → Rj is called a
request edge; a directed edge Rj → Pi is called an assignment edge.

Pictorially, we represent each process Pi as a circle and each resource type
Rj as a rectangle. Since resource type Rj may have more than one instance, we
represent each such instance as a dot within the rectangle. Note that a request
edge points to only the rectangle Rj , whereas an assignment edge must also
designate one of the dots in the rectangle.

When process Pi requests an instance of resource type Rj , a request edge
is inserted in the resource-allocation graph. When this request can be fulfilled,
the request edge is instantaneously transformed to an assignment edge. When
the process no longer needs access to the resource, it releases the resource. As
a result, the assignment edge is deleted.

The resource-allocation graph shown in Figure 7.1 depicts the following
situation.

• The sets P, R, and E:

◦ P = {P1, P2, P3}

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight



320 Chapter 7 Deadlocks

R1 R3

R2

R4

P3P2P1

Figure 7.1 Resource-allocation graph.

◦ R = {R1, R2, R3, R4}
◦ E = {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, R3 → P3}

• Resource instances:

◦ One instance of resource type R1

◦ Two instances of resource type R2

◦ One instance of resource type R3

◦ Three instances of resource type R4

• Process states:

◦ Process P1 is holding an instance of resource type R2 and is waiting for
an instance of resource type R1.

◦ Process P2 is holding an instance of R1 and an instance of R2 and is
waiting for an instance of R3.

◦ Process P3 is holding an instance of R3.

Given the definition of a resource-allocation graph, it can be shown that, if
the graph contains no cycles, then no process in the system is deadlocked. If
the graph does contain a cycle, then a deadlock may exist.

If each resource type has exactly one instance, then a cycle implies that a
deadlock has occurred. If the cycle involves only a set of resource types, each
of which has only a single instance, then a deadlock has occurred. Each process
involved in the cycle is deadlocked. In this case, a cycle in the graph is both a
necessary and a sufficient condition for the existence of deadlock.

If each resource type has several instances, then a cycle does not necessarily
imply that a deadlock has occurred. In this case, a cycle in the graph is a
necessary but not a sufficient condition for the existence of deadlock.

To illustrate this concept, we return to the resource-allocation graph
depicted in Figure 7.1. Suppose that process P3 requests an instance of resource

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight



7.2 Deadlock Characterization 321

R1 R3

R2

R4

P3P2P1

Figure 7.2 Resource-allocation graph with a deadlock.

type R2. Since no resource instance is currently available, we add a request edge
P3 → R2 to the graph (Figure 7.2). At this point, two minimal cycles exist in the
system:

P1 → R1 → P2 → R3 → P3 → R2 → P1
P2 → R3 → P3 → R2 → P2

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource
R3, which is held by process P3. Process P3 is waiting for either process P1 or
process P2 to release resource R2. In addition, process P1 is waiting for process
P2 to release resource R1.

Now consider the resource-allocation graph in Figure 7.3. In this example,
we also have a cycle:

P1 → R1 → P3 → R2 → P1

R2

R1

P3

P4

P2

P1

Figure 7.3 Resource-allocation graph with a cycle but no deadlock.

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight



322 Chapter 7 Deadlocks

However, there is no deadlock. Observe that process P4 may release its instance
of resource type R2. That resource can then be allocated to P3, breaking the cycle.

In summary, if a resource-allocation graph does not have a cycle, then the
system is not in a deadlocked state. If there is a cycle, then the system may or
may not be in a deadlocked state. This observation is important when we deal
with the deadlock problem.

7.3 Methods for Handling Deadlocks

Generally speaking, we can deal with the deadlock problem in one of three
ways:

• We can use a protocol to prevent or avoid deadlocks, ensuring that the
system will never enter a deadlocked state.

• We can allow the system to enter a deadlocked state, detect it, and recover.

• We can ignore the problem altogether and pretend that deadlocks never
occur in the system.

The third solution is the one used by most operating systems, including Linux
and Windows. It is then up to the application developer to write programs that
handle deadlocks.

Next, we elaborate briefly on each of the three methods for handling
deadlocks. Then, in Sections 7.4 through 7.7, we present detailed algorithms.
Before proceeding, we should mention that some researchers have argued that
none of the basic approaches alone is appropriate for the entire spectrum of
resource-allocation problems in operating systems. The basic approaches can
be combined, however, allowing us to select an optimal approach for each class
of resources in a system.

To ensure that deadlocks never occur, the system can use either a deadlock-
prevention or a deadlock-avoidance scheme. Deadlock prevention provides a
set of methods to ensure that at least one of the necessary conditions (Section
7.2.1) cannot hold. These methods prevent deadlocks by constraining how
requests for resources can be made. We discuss these methods in Section 7.4.

Deadlock avoidance requires that the operating system be given additional
information in advance concerning which resources a process will request
and use during its lifetime. With this additional knowledge, the operating
system can decide for each request whether or not the process should wait.
To decide whether the current request can be satisfied or must be delayed, the
system must consider the resources currently available, the resources currently
allocated to each process, and the future requests and releases of each process.
We discuss these schemes in Section 7.5.

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may arise. In this environment,
the system can provide an algorithm that examines the state of the system to
determine whether a deadlock has occurred and an algorithm to recover from
the deadlock (if a deadlock has indeed occurred). We discuss these issues in
Section 7.6 and Section 7.7.

DIU
Highlight

DIU
Highlight

DIU
Highlight

DIU
Highlight




