
Parsing

Part III



Top Down Parsing

• Find a left-most derivation
• Find (build) a parse tree
• Start building from the root and work down…
• As we search for a derivation 

– Must make choices:
• Which rule to use
• Where to use it

• May run into problems!!



Top-Down Parsing

• Recursive-Descent Parsing
• Backtracking is needed (If a choice of a production rule 

does not work, we backtrack to try other alternatives.)
• It is a general parsing technique, but not widely used.
• Not efficient

• Predictive Parsing
• no backtracking 
• efficient
• needs a special form of grammars (LL(1) grammars).
• Recursive Predictive Parsing  is a special form of 

Recursive Descent parsing without backtracking.
• Non-Recursive (Table Driven) Predictive Parser is also 

known as LL(1) parser. 
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Recursive Descent Parsing (Backtracking)



Recursive Descent Parsing (Backtracking)

Successfully parsed!!



Recursive-Descent Parsing Algorithm

• A recursive-descent parsing program consists of a set of 
procedures – one for each non-terminal

• Execution begins with the procedure for the start symbol
– Announces success if the procedure body scans the entire input

void A(){
for (j=1 to t){ /* assume there is t number of A-productions */ 

Choose a A-production, Aj�X1X2…Xk;
for (i=1 to k){

if (Xi is a non-terminal)
call procedure Xi();

else if (Xi equals the current input symbol a)
advance the input to the next symbol;

else backtrack in input and reset the pointer
}

}
}



Predictive Parser

When re-writing a non-terminal in a derivation step, a 
predictive parser can uniquely choose a production rule by 
just looking the current symbol in the input string.

A → α1 | ... | αn input:  ... a .......

current token



Predictive Parser (example)

stmt → if ......  |
while ...... |
begin ...... |
for .....

• When we are trying to write the non-terminal stmt, if the current 
token is if we have to choose first production rule.

• When we are trying to write the non-terminal stmt, we can 
uniquely choose the production rule by just looking the current 
token.

• We eliminate the left recursion in the grammar, and left factor it. 
But it may not be suitable for predictive parsing (not LL(1) 
grammar).



Recursive Predictive Parsing

• Each non-terminal corresponds to a procedure.

Ex:  A → aBb (This is only the production rule for A)

proc A {
- match the current token with a, and move to the next token;
- call ‘B’;
- match the current token with b, and move to the next token;

}



Recursive Predictive Parsing (cont.)

A → aBb |  bAB

proc A {
case of the current token {

‘a’:   - match the current token with a, and move to the next token;
- call ‘B’;
- match the current token with b, and move to the next token;

‘b’:   - match the current token with b, and move to the next token;
- call ‘A’;
- call ‘B’;

}
}



Recursive Predictive Parsing (cont.)

• When to apply ε-productions.

A → aA | bB | ε

• If all other productions fail, we should apply an ε-
production. For example, if the current token is not a 
or b, we may apply the ε-production.

• Most correct choice: We should apply an ε-production 
for a non-terminal A when the current token is in the 
follow set of A (which terminals can follow A in the 
sentential forms).



Recursive Predictive Parsing (Example)

A → aBe | cBd |  C
B → bB | ε
C → f

proc C { match the current token with f, 
proc A { and move to the next token; }

case of the current token {
a: - match the current token with a,

and move to the next token; proc B { 
- call B; case of the current token {
- match the current token with e, b: - match the current token with b,

and move to the next token; and move to the next token;
c: - match the current token with c, - call B

and move to the next token; e,d:  do nothing
- call B; }
- match the current token with d, }

and move to the next token;
f: - call C

}
}

follow set of B 

first set of C



First Function



Computing the First Function



To Compute the FIRST(X1X2X3...XN)



First - Example 

• P � i  | c | n T S
• Q � P | a S | b S c S T
• R � b | ε
• S � c | R n | ε
• T � R S q

• FIRST(P) = {i,c,n}
• FIRST(Q) = {i,c,n,a,b}
• FIRST(R) = {b,ε}
• FIRST(S) = {c,b,n,ε}
• FIRST(T) = {b,c,n,q}



First - Example

• S � a S e | S T S
• T � R S e | Q
• R � r S r | ε
• Q � S T | ε

• FIRST(S) = {a}
• FIRST(R) = {r, ε}
• FIRST(T) = {r, a, ε}
• FIRST(Q) = {a, ε}



FOLLOW Sets

• FOLLOW(A) is the set of terminals (including end 
marker of input - $) that may follow non-terminal A in 
some sentential form.

• FOLLOW(A) = {c | S �+ …Ac…} ∪ {$} if S �+ …A
• For example, consider L �+ (())(L)L 

Both ‘)’ and end of file can follow L
• NOTE: ε is never in FOLLOW sets



Computing FOLLOW(A)

1. If  A is start symbol, put $ in FOLLOW(A)
2. Productions of the form B � α A β,

Add FIRST(β) – {ε} to FOLLOW(A)

INTUITION:  Suppose B � AX and FIRST(X) = {c}

S �+ α B β � α A X β �+ α A c δ β

= FIRST(X)



3. Productions of the form B � α A or 

B � α A β where β �* ε
Add FOLLOW(B) to FOLLOW(A)

INTUITION: 
– Suppose B � Y A

S �+ α B β � α Y A β

– Suppose B � A X and X �* λ
S � + α B β � α A X β �* α A β

FOLLOW(B)

FOLLOW(B)



Example 

• S � a S e | B
• B � b B C f | C
• C � c C g | d |  ε

• FIRST(C) = {c,d,ε}
• FIRST(B) = {b,c,d,ε}
• FIRST(S) = {a,b,c,d,ε}

• FOLLOW(C) = 

• FOLLOW(B) = 

• FOLLOW(S) = {$}       

Assume the first non-terminal is
the start symbol

Using rule #1



Example 

• S � a S e | B
• B � b B C f | C
• C � c C g | d |  ε

• FIRST(C) = {c,d,ε}
• FIRST(B) = {b,c,d,ε}
• FIRST(S) = {a,b,c,d,ε}

• FOLLOW(C) = {f,g}

• FOLLOW(B) = {c,d,f}

• FOLLOW(S) = {$,e}       

Using rule #2



Example 

• S � a S e | B
• B � b B C f | C
• C � c C g | d |  ε

• FIRST(C) = {c,d,ε}
• FIRST(B) = {b,c,d,ε}
• FIRST(S) = {a,b,c,d,ε}

• FOLLOW(C) =

• FOLLOW(B) = 

• FOLLOW(S) = {       }$, e

{c,d,f} ∪ FOLLOW(S) 
= {c,d,e,f,$}

{f,g} ∪ FOLLOW(B) 
= {c,d,e,f,g,$}

Using rule #3



Example 

• S � ( A) | ε
• A � T E
• E � & T E | ε
• T � ( A ) | a | b | c

• FIRST(T) = {(,a,b,c}
• FIRST(E) = {&, ε }
• FIRST(A) = {(,a,b,c}
• FIRST(S) = {(, ε}

• FOLLOW(S) =
• FOLLOW(A) =
• FOLLOW(E) =
• FOLLOW(T) =



Example 

• S � ( A) | ε
• A � T E
• E � & T E | ε
• T � ( A ) | a | b | c

• FIRST(T) = {(,a,b,c}
• FIRST(E) = {&, ε }
• FIRST(A) = {(,a,b,c}
• FIRST(S) = {(, ε}

• FOLLOW(S) = {$}
• FOLLOW(A) = { ) }
• FOLLOW(E) = 
FOLLOW(A) = { ) }
• FOLLOW(T) = 
FIRST(E) ∪ FOLLOW(A) ∪

FOLLOW(E) = {&, )}



Predictive Parsing



Predictive Parsing

• LL(1) Grammars
– Can do predictive parsing
– Can select the right rule
– Looking at only the next 1 input symbol

• First L : Left to Right Scanning
• Second L: Leftmost derivation
• 1 : one input symbol look-ahead for predictive decision

• LL(k) Grammars
– Can do predictive parsing
– Can select the right rule
– Looking at only the next k input symbols

• Techniques to modify the grammar:
– Left Factoring
– Removal of Left Recursion

• LL(k) Language
– Can be described with an LL(k) grammar



Table Driven Predictive Parsing 
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Table Driven Predictive Parsing 



Predictive Parsing Algorithm
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Predictive Parsing



Predictive Parsing



Reconstructing the Parse Tree
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Reconstructing the Parse Tree



Transition Diagram for Predictive Parsers

• Useful for visualizing predictive parsers.
• To construct Transition Diagram from a grammar

– Eliminate left recursion
– Left factor the grammar
– Then for each nonterminal A

• Create an initial and final state
• For each production A � X1X2…Xk, create a path from 

the initial to the final state, with edges labeled X1, X2, …, 
Xk. If A�ε, the path is an edge labeled ε.



Transition Diagram for Predictive Parsers

• Predictive parser begins in the start state for the start symbol
• Suppose at any time it is in state s with an edge 

– labeled by a terminal a to state t

• If the next input is a the parser advances in input and moves to 
state t

• If the edge from s to t is labeled by ε, then the parser moves 
immediately to state t without advancing the input

– labeled by a nonterminal A

• Parser goes to the start state for A
• If it ever reaches the final state of A it will immediately go back 

to state t

S t
a

S t
A



Transition Diagram for Predictive Parsers

E � TE�
E�� +TE� | ε
T � FT�
T�� *FT� | ε
F � (E) | id
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Simplification of Transition Diagrams

• TDs can be simplified by substituting one in another
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Simplification of Transition Diagrams

• Complete set of TDs
• A C implementation of this simplified version of the 

parser runs 20-25% faster than the original version
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