Parsing

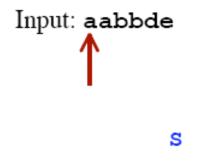
Part III

Top Down Parsing

- Find a left-most derivation
- Find (build) a parse tree
- Start building from the root and work down...
- As we search for a derivation
 - Must make choices:
 - Which rule to use
 - Where to use it
- May run into problems!!

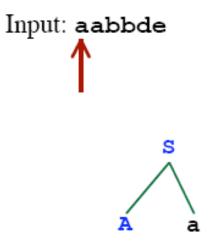
Top-Down Parsing

- Recursive-Descent Parsing
 - Backtracking is needed (If a choice of a production rule does not work, we backtrack to try other alternatives.)
 - It is a general parsing technique, but not widely used.
 - Not efficient
- Predictive Parsing
 - no backtracking
 - efficient
 - needs a special form of grammars (LL(1) grammars).
 - Recursive Predictive Parsing is a special form of Recursive Descent parsing without backtracking.
 - Non-Recursive (Table Driven) Predictive Parser is also known as LL(1) parser.



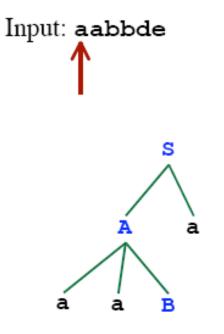
1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



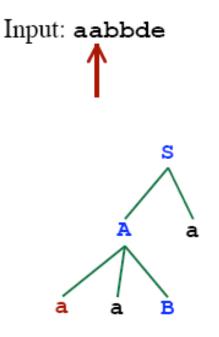
1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



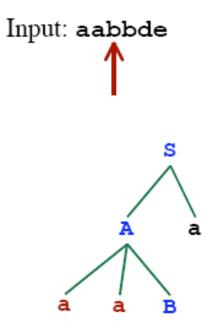
1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



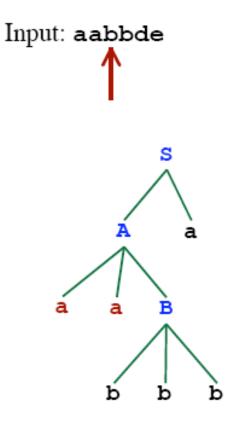
1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



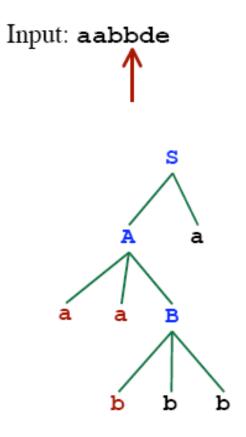
1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



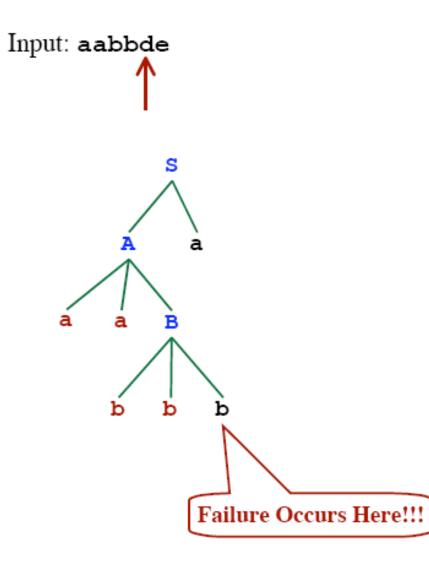
1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



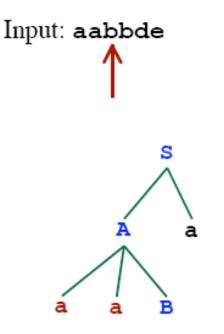
1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



1.
$$S \rightarrow Aa$$

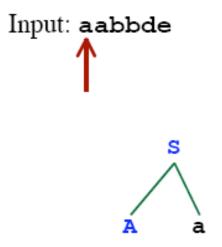
2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



1.
$$S \rightarrow Aa$$

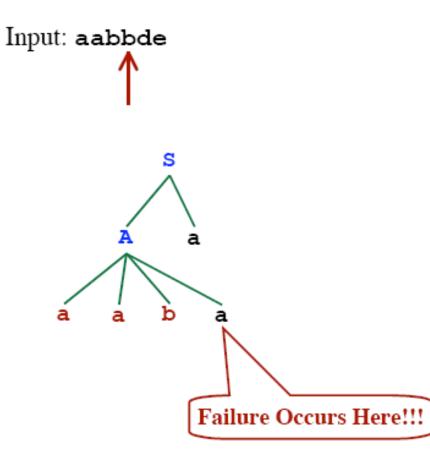
2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$

We need an ability to back up in the input!!!



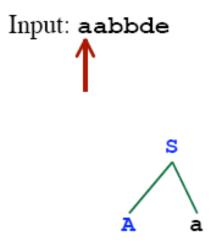
1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



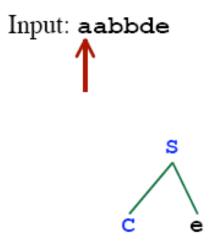
1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$

Input: aabbde

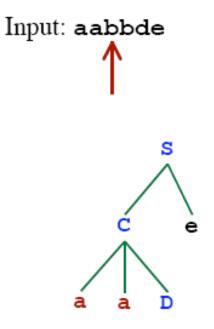
1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



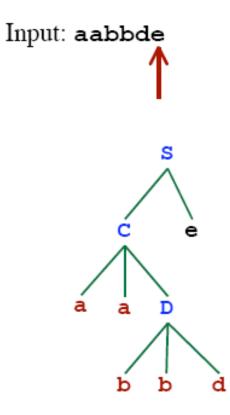
1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



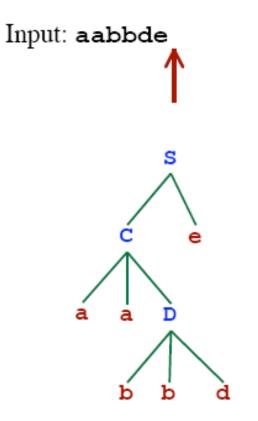
1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$



1.
$$S \rightarrow Aa$$

2. $\rightarrow Ce$
3. $A \rightarrow aaB$
4. $\rightarrow aaba$
5. $B \rightarrow bbb$
6. $C \rightarrow aaD$
7. $D \rightarrow bbd$

Successfully parsed!!

Recursive-Descent Parsing Algorithm

- A recursive-descent parsing program consists of a set of procedures – one for each non-terminal
- Execution begins with the procedure for the start symbol
 - Announces success if the procedure body scans the entire input

```
void A(){

for (j=1 \text{ to } t){ /* assume there is t number of A-productions */

Choose a A-production, A_j \rightarrow X_1 X_2 \dots X_k;

for (i=1 \text{ to } k){

if (X_i \text{ is a non-terminal})

call procedure X_i();

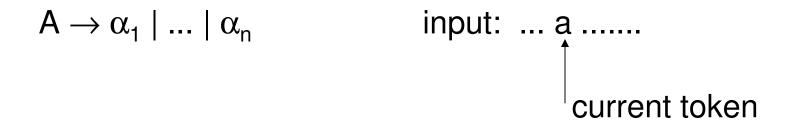
else if (X_i \text{ equals the current input symbol } a)

advance the input to the next symbol;

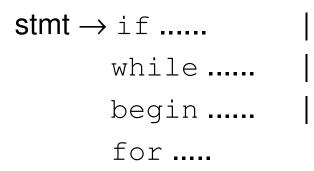
else backtrack in input and reset the pointer
```

Predictive Parser

When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a production rule by just looking the current symbol in the input string.



Predictive Parser (example)



- When we are trying to write the non-terminal *stmt*, if the current token is *if* we have to choose first production rule.
- When we are trying to write the non-terminal *stmt*, we can uniquely choose the production rule by just looking the current token.
- We eliminate the left recursion in the grammar, and left factor it. But it may not be suitable for predictive parsing (not LL(1) grammar).

Recursive Predictive Parsing

- Each non-terminal corresponds to a procedure.
- Ex: $A \rightarrow aBb$ (This is only the production rule for A) proc A { - match the current token with a, and move to the next token;
 - call 'B';

}

- match the current token with b, and move to the next token;

Recursive Predictive Parsing (cont.)

 $A \to aBb \ | \ bAB$

proc A {

case of the current token {

- 'a': match the current token with a, and move to the next token;
 - call 'B';
 - match the current token with b, and move to the next token;
- 'b': match the current token with b, and move to the next token;- call 'A';
 - call 'B';

Recursive Predictive Parsing (cont.)

• When to apply ε -productions.

 $A \rightarrow aA \mid bB \mid \epsilon$

- If all other productions fail, we should apply an ε -production. For example, if the current token is not a or b, we may apply the ε -production.
- Most correct choice: We should apply an ε-production for a non-terminal A when the current token is in the follow set of A (which terminals can follow A in the sentential forms).

Recursive Predictive Parsing (Example)

$$A \rightarrow aBe \mid cBd \mid C$$
$$B \rightarrow bB \mid \varepsilon$$
$$C \rightarrow f$$

proc A {

case of the current token {

- a: match the current token with a, and move to the next token;
 - call B;
 - match the current token with e, and move to the next token;
- c: match the current token with c, and move to the next token;

First set of C

- call B;
- match the current token with d, and move to the next token;

f: - call C

proc C { match the current token with f, and move to the next token; }

proc B {

case of the current token {
 b: - match the current token with b,
 and move to the next token;
 - call B
 e,d: do nothing
}
follow set of B

First Function

Let α be a string of symbols (terminals and nonterminals) <u>Define</u>: FIRST (α) = The set of terminals that could occur first

in any string derivable from α = { $\mathbf{a} \mid \alpha \Rightarrow^* \mathbf{aw}$, plus \mathbf{e} if $\alpha \Rightarrow^* \mathbf{e}$ }

Example: $E \rightarrow T E' \\
E' \rightarrow + T E' \mid e \\
T \rightarrow F T' \\
T' \rightarrow * F T' \mid e \\
F \rightarrow (E) \mid \underline{id}$ FIRST (F) = { (, <u>id</u> } FIRST (T') = { + e}

FIRST (T') = { *,
$$\epsilon$$
}
FIRST (T) = { (, id }
FIRST (E') = { +, ϵ }
FIRST (E) = { (, id }

Computing the First Function

For all symbols X in the grammar...

```
if X is a terminal then
   FIRST(X) = \{X\}
if X \rightarrow \varepsilon is a rule then
   add & to FIRST(X)
<u>if X \rightarrow Y_1 Y_2 Y_3 \dots Y_k is a rule then</u>
   <u>if</u> a \in FIRST(Y_1) <u>then</u>
       add a to FIRST(X)
   <u>if</u> \varepsilon \in \text{FIRST}(\underline{Y}_1) and a \in \text{FIRST}(\underline{Y}_2) then
       add a to FIRST(X)
   \underline{if} \in FIRST(\underline{Y}_1) and \underline{\varepsilon} \in FIRST(\underline{Y}_2) and \underline{a} \in FIRST(\underline{Y}_2) then
      add a to FIRST(X)
    . . .
   if \varepsilon \in FIRST(Y_i) for all Y_i then
      add E to FIRST(X)
```

<u>Repeat until nothing more can be added to any sets.</u>

To Compute the FIRST(X1X2X3...XN)

```
Result = {}
Add everything in FIRST(X,), except 8, to result
if \varepsilon \in FIRST(X, ) then
   Add everything in FIRST (X_2), except \varepsilon, to result
   if \varepsilon \in FIRST(X_{2}) then
      Add everything in FIRST(X_3), except \varepsilon, to result
      \underline{if} \in FIRST(X_2) then
         Add everything in FIRST(X_4), except \varepsilon, to result
          . . .
            if \varepsilon \in \text{FIRST}(X_{N-1}) then
               Add everything in FIRST (X_N), except \varepsilon, to result
               \underline{\text{if}} \in \text{FIRST}(X_N) \underline{\text{then}}
                   // Then X_1 \Rightarrow^* \epsilon, X_2 \Rightarrow^* \epsilon, X_3 \Rightarrow^* \epsilon, \dots X_N \Rightarrow^* \epsilon
                   Add & to result
               endIf
            endIf
          . . .
      endIf
   endIf
endIf
```

First - Example

- $P \rightarrow i | c | n T S$
- $Q \rightarrow P \mid a S \mid b S c S T$
- $R \rightarrow b \mid \epsilon$
- $S \rightarrow c | R n | \epsilon$
- $T \rightarrow R S q$

- FIRST(P) = {i,c,n}
- FIRST(Q) = {i,c,n,a,b}
- FIRST(R) = $\{b, \varepsilon\}$
- FIRST(S) = {c,b,n,ε}
- FIRST(T) = {b,c,n,q}

First - Example

- $S \rightarrow a S e | S T S$
- $T \rightarrow R S e | Q$
- $R \rightarrow r S r | \epsilon$
- $Q \rightarrow ST \mid \varepsilon$

- FIRST(S) = {a}
- FIRST(R) = {r, ε}
- FIRST(T) = {r, a, ε }
- FIRST(Q) = {a, ε}

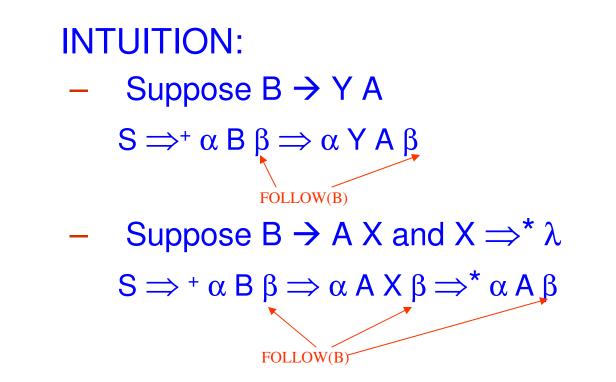
FOLLOW Sets

- FOLLOW(A) is the set of terminals (including end marker of input - \$) that may follow non-terminal A in some sentential form.
- FOLLOW(A) = {c | S \Rightarrow^+ ...Ac...} \cup {\$} if S \Rightarrow^+ ...A
- For example, consider L ⇒⁺ (())(L)L
 Both ')' and end of file can follow L
- NOTE: ε is *never* in FOLLOW sets

Computing FOLLOW(A)

- 1. If A is start symbol, put \$ in FOLLOW(A)
- 2. Productions of the form $B \rightarrow \alpha A \beta$, Add FIRST(β) – { ϵ } to FOLLOW(A)

INTUITION: Suppose B \rightarrow AX and FIRST(X) = {c} S $\Rightarrow^+ \alpha$ B $\beta \Rightarrow \alpha$ A X $\beta \Rightarrow^+ \alpha$ A c $\delta \beta$ = FIRST(X) 3. Productions of the form $B \rightarrow \alpha A$ or $B \rightarrow \alpha A \beta$ where $\beta \Rightarrow^* \varepsilon$ Add FOLLOW(B) to FOLLOW(A)



Example

- $S \rightarrow a S e \mid B$
- $B \rightarrow b B C f | C$
- $C \rightarrow c C g | d | \epsilon$
- FIRST(C) = {c,d,ε}
- FIRST(B) = {b,c,d,ε}
- FIRST(S) = $\{a,b,c,d,\epsilon\}$

- FOLLOW(C) =
- FOLLOW(B) =
- FOLLOW(S) = {\$}

 1 1

Assume the first non-terminal is the start symbol

- S → a <u>S e</u> | B
- $B \rightarrow b \underline{BCf} | C$
- $C \rightarrow c \underline{C} \underline{g} | d | \epsilon$
- FIRST(C) = {c,d,ε}
- FIRST(B) = {b,c,d,ε}
- FIRST(S) = $\{a,b,c,d,\epsilon\}$

- FOLLOW(C) = {f,g}
- FOLLOW(B) = $\{c,d,f\}$
- FOLLOW(S) = {\$,e}

Using rule #2

- $S \rightarrow a S e \mid \underline{B}$
- $B \rightarrow b B C f | \underline{C}$
- $C \rightarrow c C g | d | \epsilon$
- FIRST(C) = {c,d,ε}
- FIRST(B) = {b,c,d,ε}
- FIRST(S) = $\{a,b,c,d,\epsilon\}$

• FOLLOW(C) = $\{f,g\} \cup FOLLOW(B)$ $= \{c,d,e,f,g,\$\}$

- FOLLOW(B) = $\{c,d,f\} \cup FOLLOW(S)$ $= \{c,d,e,f,\$\}$
- FOLLOW(S) = {\$, e }

Using rule #3

- S → (A) | ε
- $A \rightarrow T E$
- $E \rightarrow \& T E | \varepsilon$
- $T \rightarrow (A) | a | b | c$
- FIRST(T) = {(,a,b,c}
- FIRST(E) = {&, ε }
- FIRST(A) = {(,a,b,c}
- FIRST(S) = {(, ε}

- FOLLOW(S) =
- FOLLOW(A) =
- FOLLOW(E) =
- FOLLOW(T) =

- S → (A) | ε
- $A \rightarrow T E$
- $E \rightarrow \& T E | \varepsilon$
- T → (A) | a | b | c
- FIRST(T) = {(,a,b,c}
- FIRST(E) = {&, ε }
- FIRST(A) = {(,a,b,c}
- FIRST(S) = {(, ε}

- FOLLOW(S) = {\$}
- FOLLOW(A) = {) }
- FOLLOW(E) =
- $FOLLOW(A) = \{ \ \}$
- FOLLOW(T) =

 $FIRST(E) \cup FOLLOW(A) \cup FOLLOW(E) = \{\&, \}\}$

Will never backtrack!

<u>Requirement:</u>

For every rule:

$\frac{Example}{A} \rightarrow aB$ $\rightarrow cD$ $\rightarrow E$

Assuming $a,c \notin FIRST$ (E)

$\frac{Example}{\text{Stmt}} \rightarrow \underline{\text{if}} \ E_{\mathbf{x}pr} \dots \\ \rightarrow \underline{\text{for}} \ LValue \dots \\ \rightarrow \underline{\text{while}} \ E_{\mathbf{x}pr} \dots \\ \rightarrow \underline{\text{return}} \ E_{\mathbf{x}pr} \dots \\ \rightarrow \underline{\text{ID}} \dots$

• LL(1) Grammars

- Can do predictive parsing
- Can select the right rule
- Looking at only the next 1 input symbol
 - First L : Left to Right Scanning
 - Second L: Leftmost derivation
 - 1 : one input symbol look-ahead for predictive decision

• LL(k) Grammars

- Can do predictive parsing
- Can select the right rule
- Looking at only the next k input symbols
- Techniques to modify the grammar:
 - Left Factoring
 - Removal of Left Recursion

• LL(k) Language

- Can be described with an LL(k) grammar

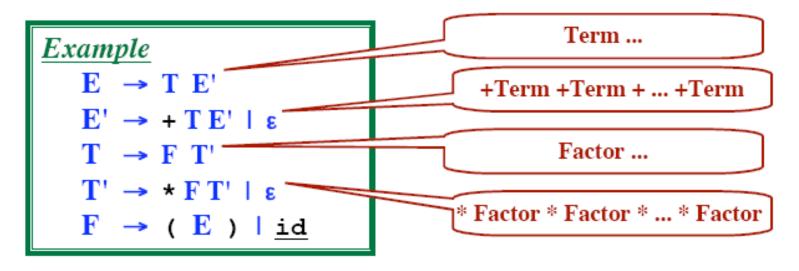
Table Driven Predictive Parsing

Assume that the grammar is LL(1)

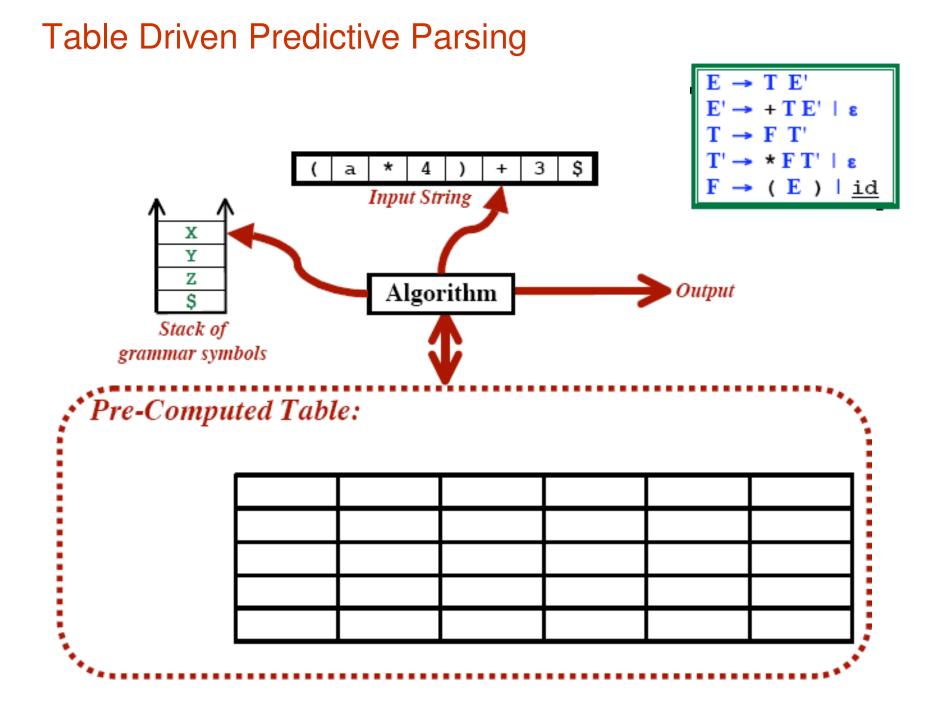
i.e., Backtracking will never be needed

Always know which righthand side to choose (with one look-ahead)

- No Left Recursion
- Grammar is Left-Factored.



- Step 1: From grammar, construct table.
- <u>Step 2:</u> Use table to parse strings.



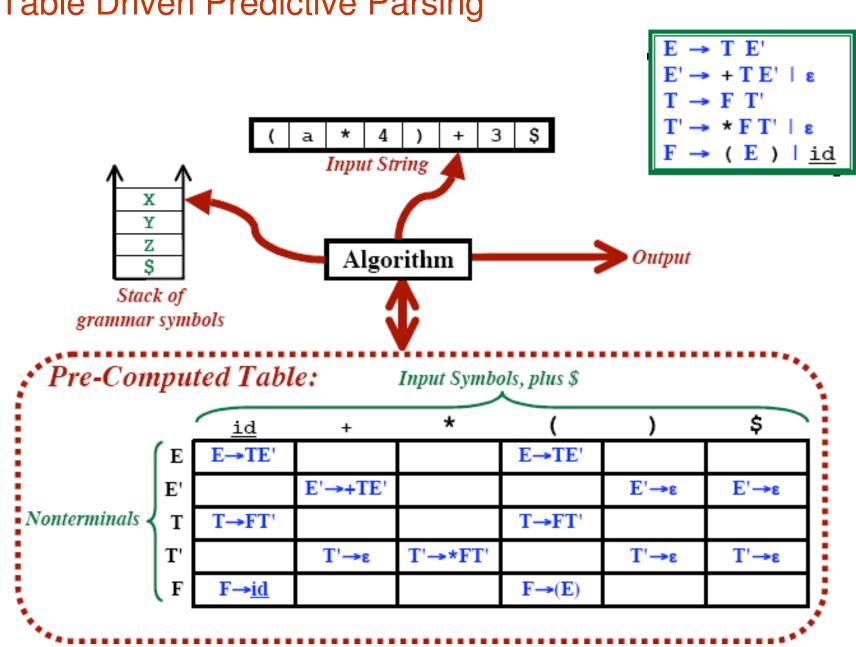
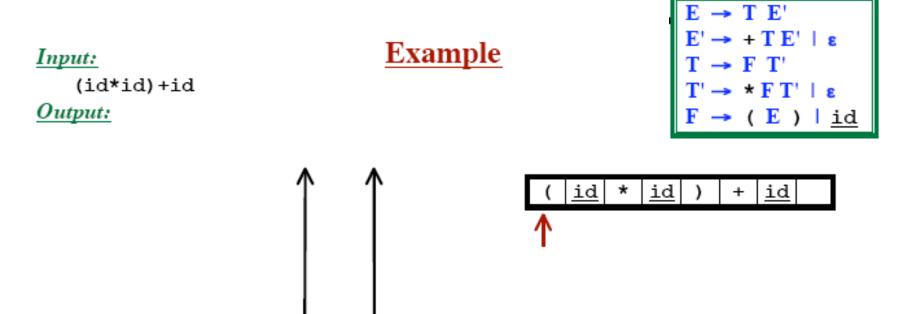


Table Driven Predictive Parsing

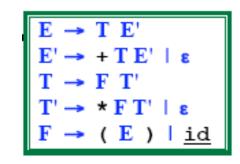
Predictive Parsing Algorithm

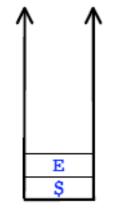
```
Set input ptr to first symbol; Place $ after last input symbol
Push $
Push S
<u>repeat</u>
  X = stack top
  a = current input symbol
  if X is a terminal or X = $ then
     if X == a then
       Pop stack
       Advance input ptr
    else
       Error
     endIf
  elseIf Table[X,a] contains a rule then // call it X \rightarrow Y_1 Y_2 \dots Y_K
     Pop stack
    Push Yr
                                                                          Y<sub>1</sub>
     . . .
                                                                          Υ,
    Push Y<sub>2</sub>
     Push Y
     Print ("X \rightarrow Y<sub>1</sub> Y<sub>2</sub> ... Y<sub>K</sub>")
                                                                          . . .
  else // Table[X,a] is blank
                                                 Х
                                                                          Yĸ
     Syntax Error
                                                 Α
                                                                           Α
  endIf
                                                  S
                                                                           S
until X == $
```

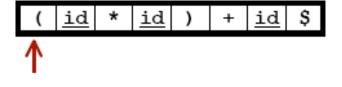


	<u>id</u>	+	*	()	\$
Ε	E→TE'			E→TE'		
E '		E'→+TE'			Ε'→ε	Ε'→ε
Т	T→FT'			T→FT'		
T'		T' →ε	T'→*FT'		T'→ε	Τ'→ε
F	F→ <u>id</u>			F→ (E)		

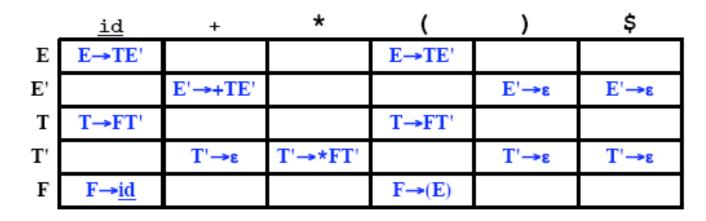
Input: (id*id)+id Output:

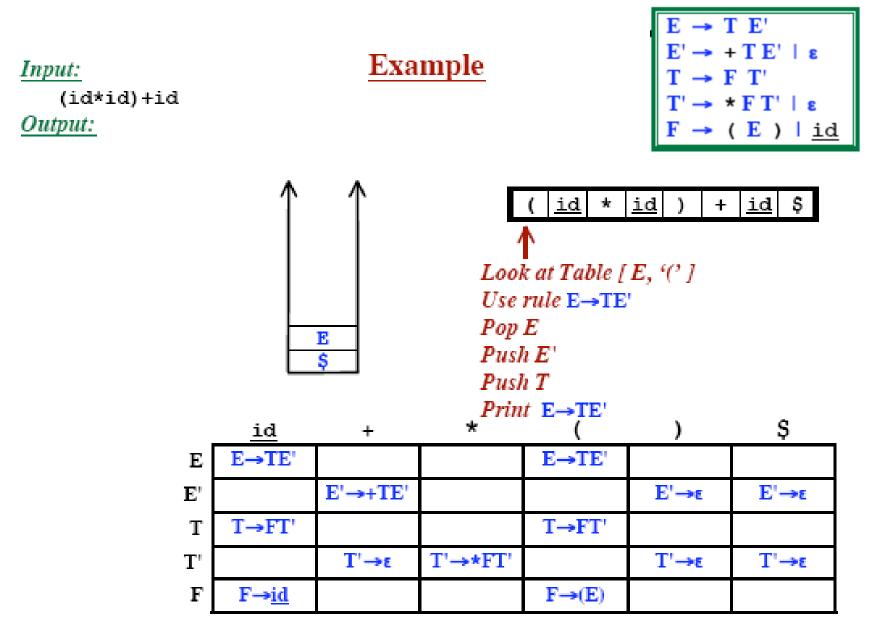


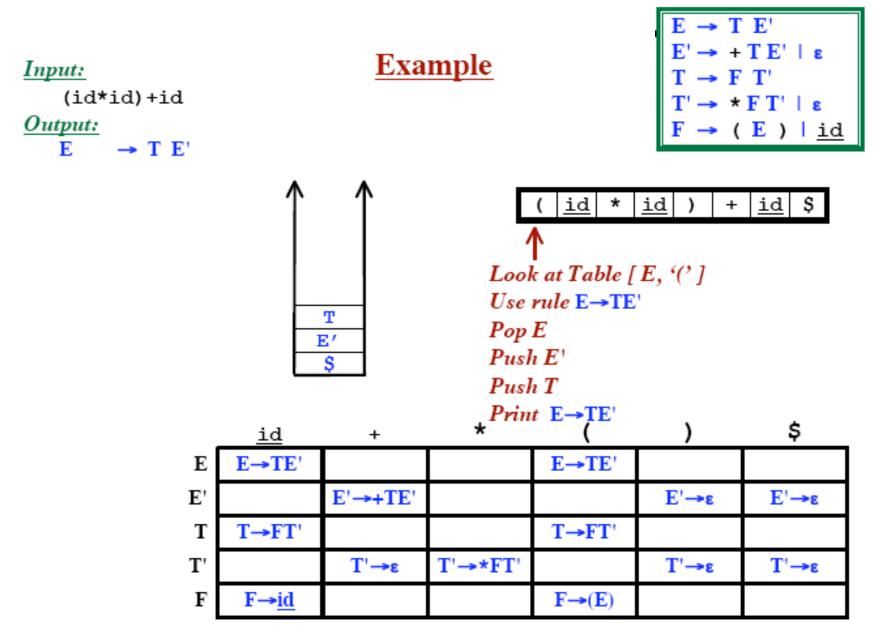


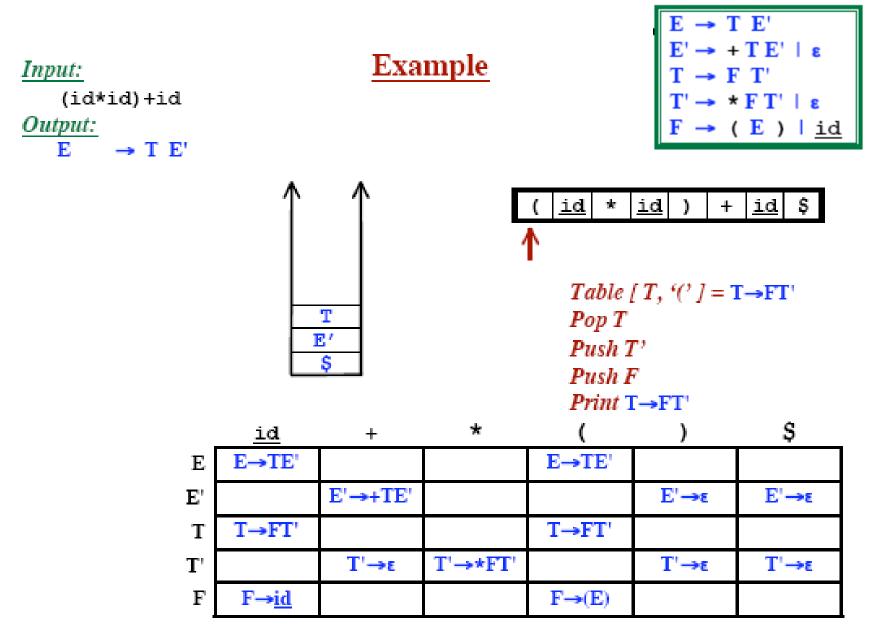


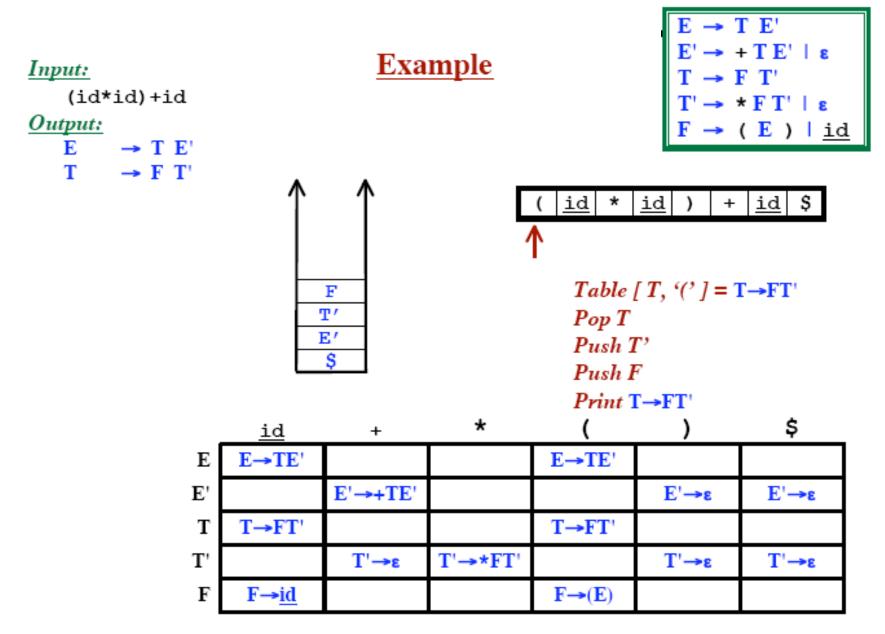
Add \$ to end of input Push \$ Push E

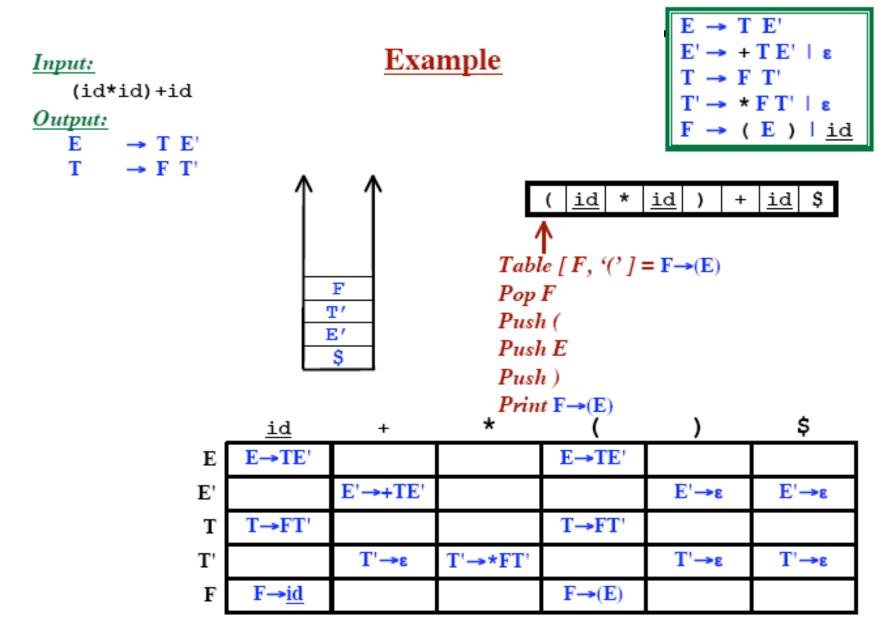


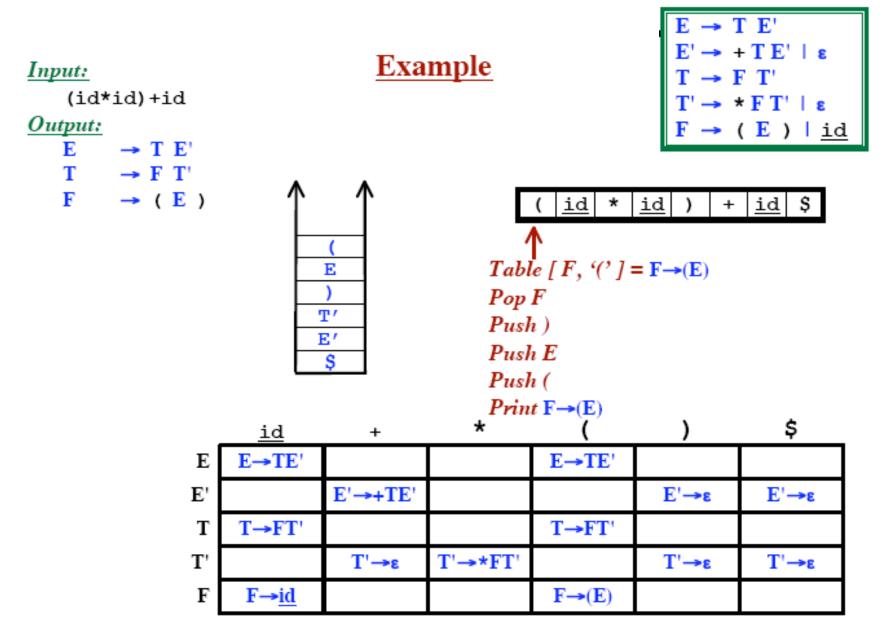




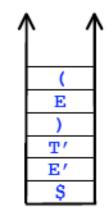




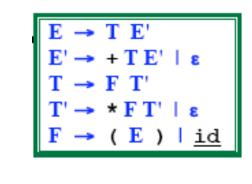


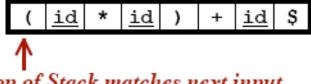


<u>Input:</u> (id*	id)+id
Output:	
E	→ T E'
Т	→ F T'
F	→ (E)



Example

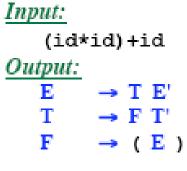




Top of Stack matches next input Pop and Scan

	id	+	*	()	\$
Ε	E→TE'			E→TE'		
\mathbf{E}'		E'→+TE'			E'→ε	Ε'→ε
Т	T→FT'			T→FT'		
T'		T'→ε	T'→*FT'		T'→ε	T'→ε
F	F→ <u>id</u>			F→ (E)		

Example



1	× /	١
	Е	
)	
	T'	
	Ε′	
	\$	

 $E \rightarrow T E'$ E' → + T E' | ε T → F T' T' → * F T' | ε F → (E) | id (id * id) + id \$Table [E, id] = E→TE' Pop E Push E' Push T Print E→TE'

_	id	+	*	()	\$
Е	E→TE'			E→TE'		
\mathbf{E}^{\prime}		E'→+TE'			E'→ε	E'→ε
Т	T→FT'			T→FT'		
T'		T'→ε	T'→*FT'		T'→ε	T'→ε
F	F→ <u>id</u>			F→(E)		

<u>Input:</u>				
(id*	id)	+i	ld	
Output:				
E	\rightarrow	Τ	\mathbf{E}'	
Т	->	F	T'	
F	→	(Е)
E	\rightarrow	T	\mathbf{E}'	

/	N 1	١
	Т	
	E'	
)	
	Τ'	
	E'	
	Ş	

<u>Example</u>	$E \rightarrow T E'$ $E' \rightarrow + T E' \mid \varepsilon$ $T \rightarrow F T'$ $T' \rightarrow * F T' \mid \varepsilon$ $F \rightarrow (E) \mid \underline{id}$
\ <u>id</u> *	<u>id</u>) + <u>id</u> \$
Table [Ē, id] Pop E Push E' Push T Print <mark>E→TE'</mark>	= E→TE'

_	id	+	*	()	\$
Ε	E→TE'			E→TE'		
\mathbf{E}^{\prime}		E'→+TE'			Ε'→ε	E'→ε
Т	T→FT'			T→FT'		
T'		T'→ε	$T' \rightarrow *FT'$		T'→ε	T'→ε
F	F→ <u>id</u>			F→(E)		

<u>Input:</u> (id*id)+id <u>Output:</u> E → T E'		<u>Exa</u>	<u>mple</u>		$\begin{array}{c} T \rightarrow 1 \\ T' \rightarrow \end{array}$	Γ E' + T E' ε F T' * F T' ε (E) <u>id</u>	
$\begin{array}{ccc} T & \rightarrow F & T' \\ F & \rightarrow (E) \\ E & \rightarrow T & E' \end{array}$		T 5') T' 5' \$		1	<u>id</u>) + [, id] = T-		
	id	+	*	()	Ş	
E	E→TE'			E→TE'			
Ε'		E'→+TE'			E'→ε	E'→ε	
Т	T→FT'			T→FT'			

T'→ε $T' \rightarrow *FT'$ T'→ε T'→ε \mathbf{T}^{\prime} F→<u>id</u> $F \rightarrow (E)$ \mathbf{F}

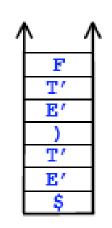
<u>Input:</u> (id*id)+id <u>Output:</u> E → T E'		<u>Exa</u>	<u>mple</u>		$\begin{array}{c} T \rightarrow H \\ T' \rightarrow \end{array}$	ΤEΊε
$T \rightarrow F T'$ $F \rightarrow (E)$ $E \rightarrow T E'$ $T \rightarrow F T'$		F E' E' E' E' E' S	C	1	<u>id</u>) + [, id] = T-	<u>id</u> \$ •FT'
	id	+	*	()	Ş.
E	E→TE'			E→TE'		
Ε'		E'→+TE'			E'→ε	E'→ε
Т	T→FT'			T→FT'		
Τ'		T'→ε	$T' {\rightarrow} * FT'$		T'→ε	Τ'→ε

F→<u>id</u>

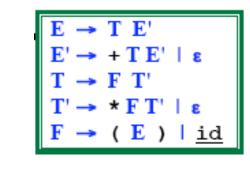
 \mathbf{F}

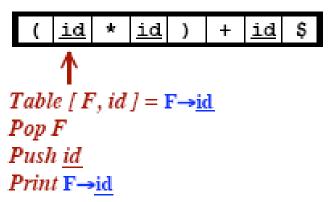
 $F \rightarrow (E)$

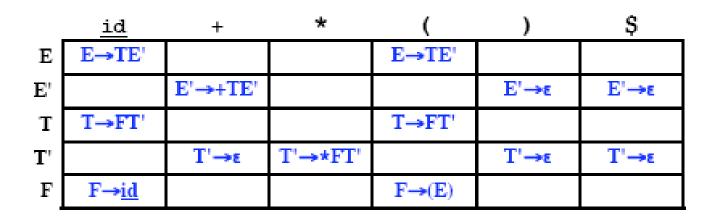
Input:				
(id*	id)	+i	\mathbf{d}	
Output:				
Е	-	Т	\mathbf{E}'	
Т	-	F	T'	
F	-	(Е	2
E	->	Т	\mathbf{E}'	
Т	-	F	T'	



Example







(id*id)+id

 $\mathbf{F} \rightarrow (\mathbf{E})$

 $T \rightarrow F T'$

 \rightarrow T E'

 \rightarrow F T'

 \rightarrow T E'

→ <u>id</u>

Input:

Output:

E

Т

E

F

Example

id

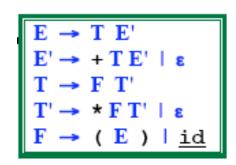
 $\mathbf{T'}$

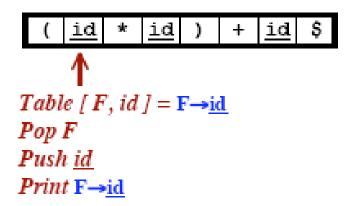
 \mathbf{E}'

 \mathbf{T}'

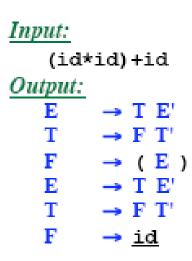
Ε'

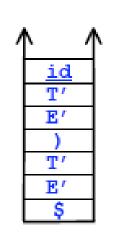
Ŝ



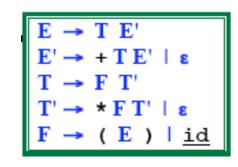


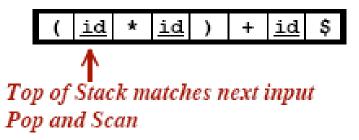
	id	+	*	()	\$
Ε	E→TE'			E→TE'		
\mathbf{E}^{\prime}		E'→+TE'			Ε'→ε	E'→ε
Т	T→FT'			T→FT'		
Τ'		T'→ε	$T' \rightarrow *FT'$		T'→ε	T'→ε
F	F→ <u>id</u>			F→(E)		

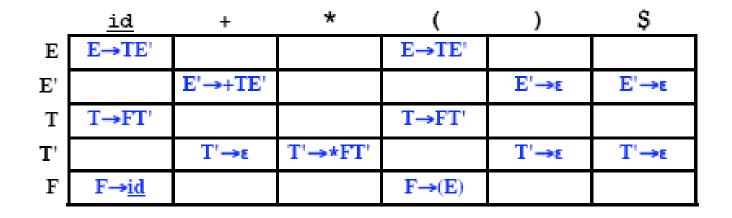


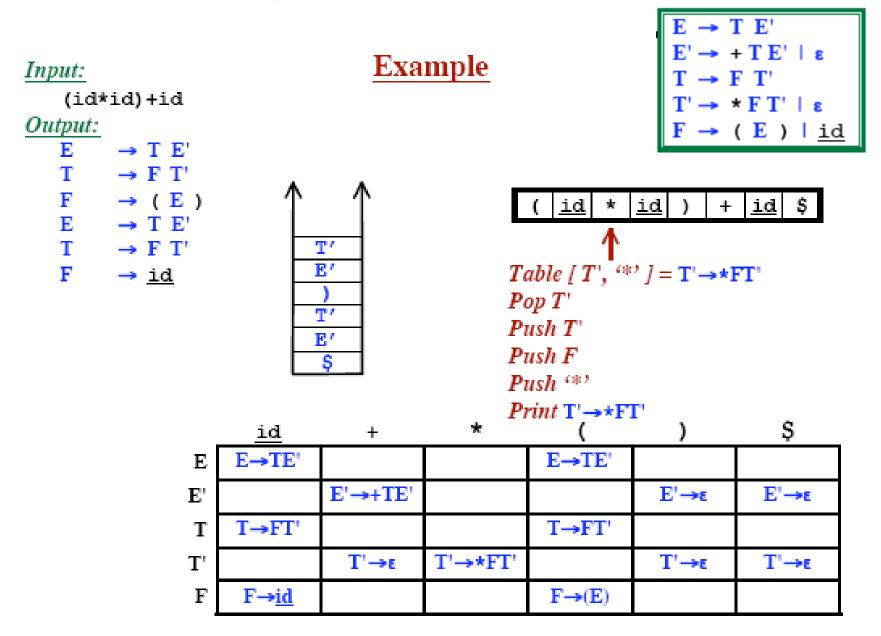


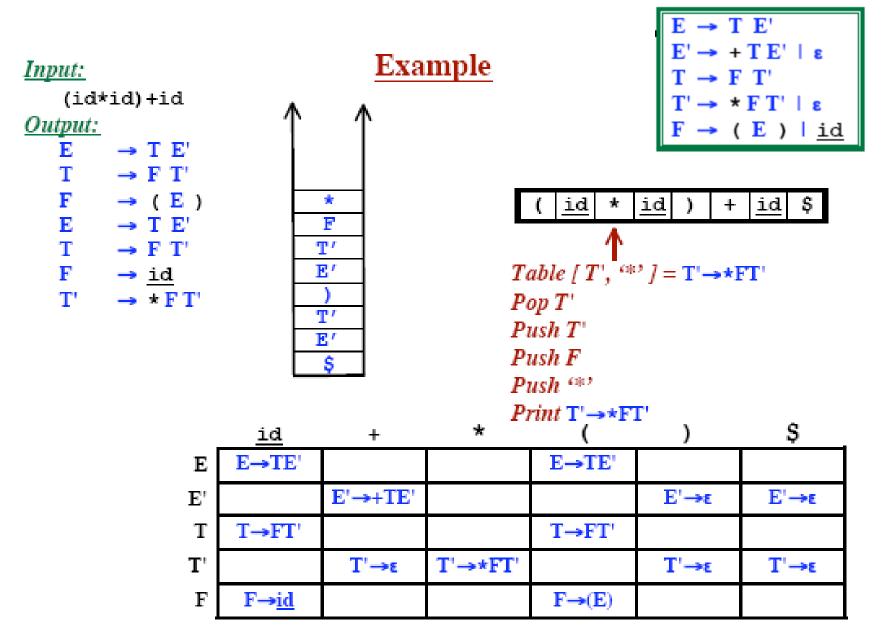
Example

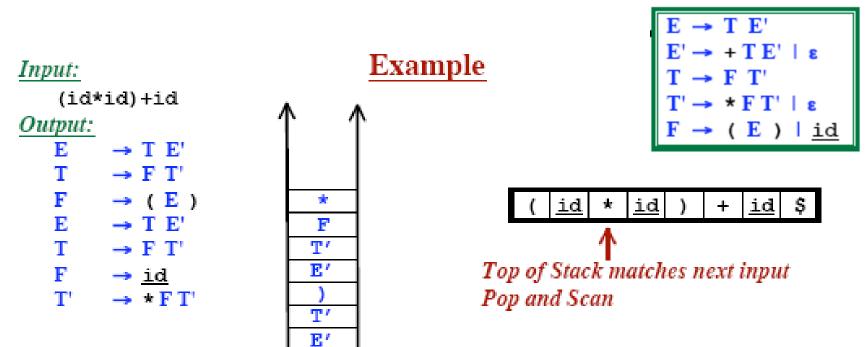




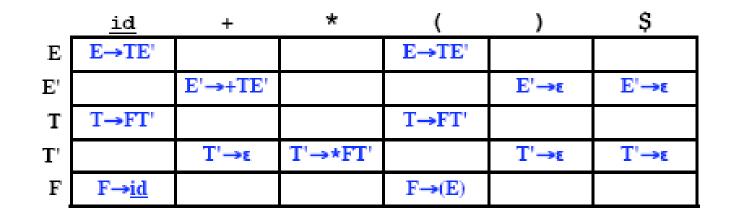


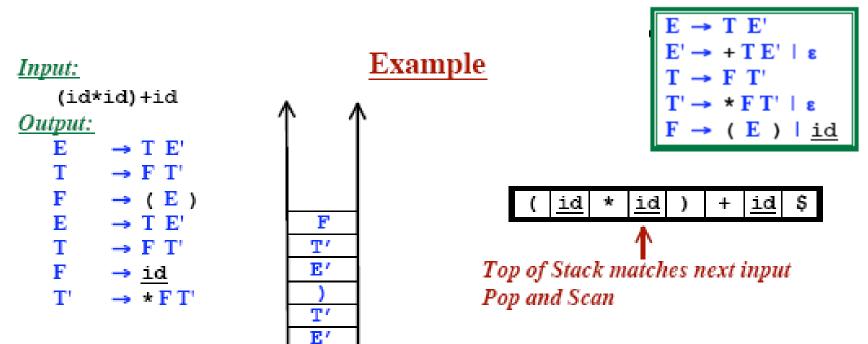




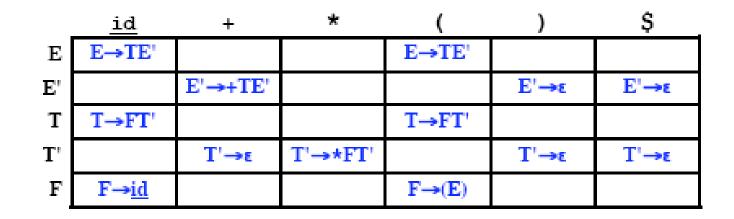


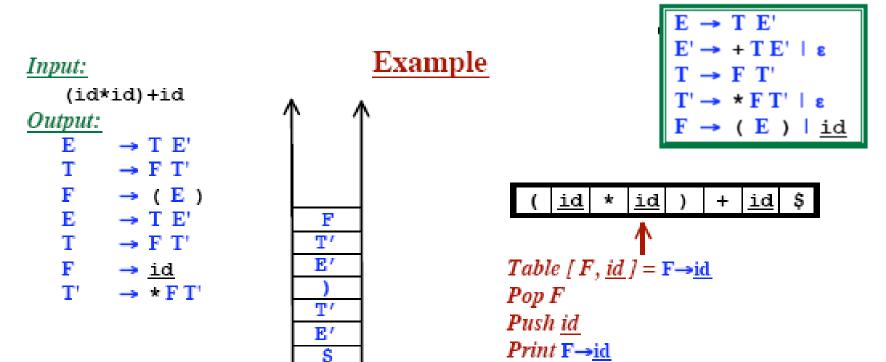
S



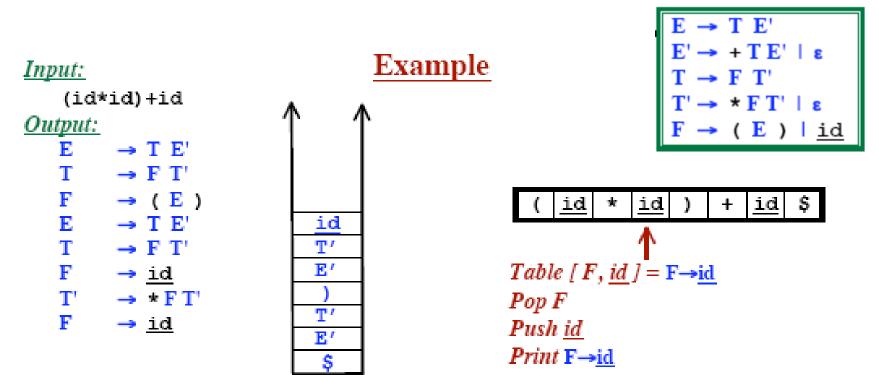


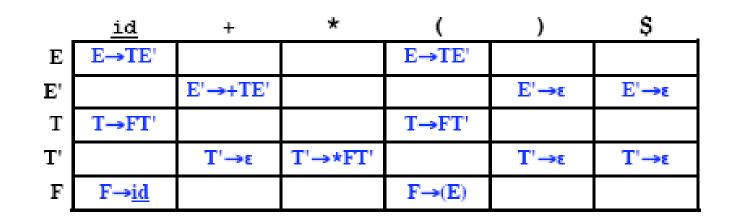
S

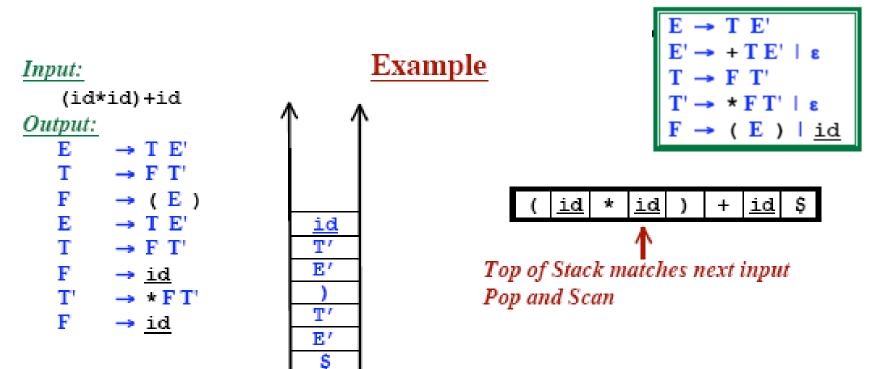


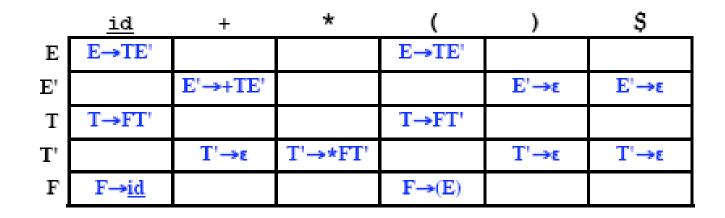


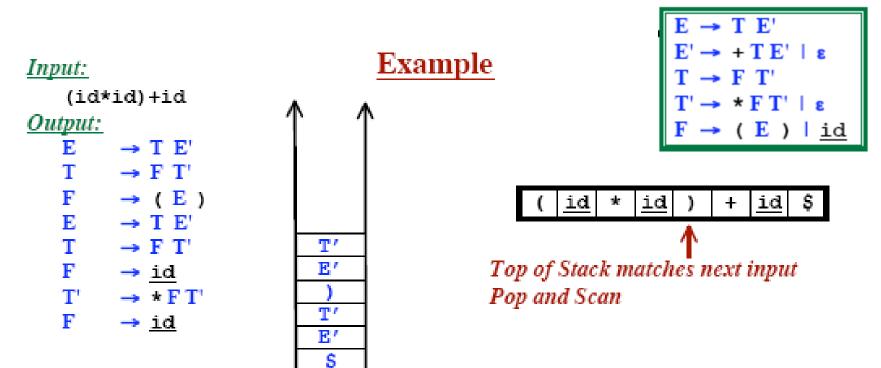
_	id	+	*	()	\$
Е	E→TE'			E→TE'		
\mathbf{E}^{\prime}		E'→+TE'			E'→ε	E'→ε
Т	T→FT'			T→FT'		
Τ'		T'→ε	T'→*FT'		T'→ε	T'→ε
F	F→ <u>id</u>			F→(E)		

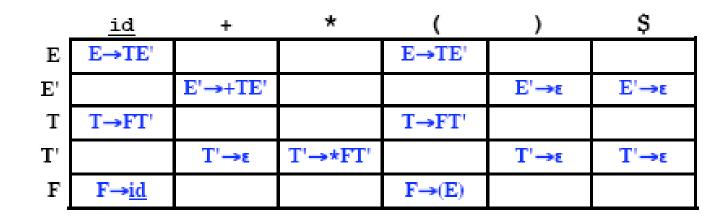


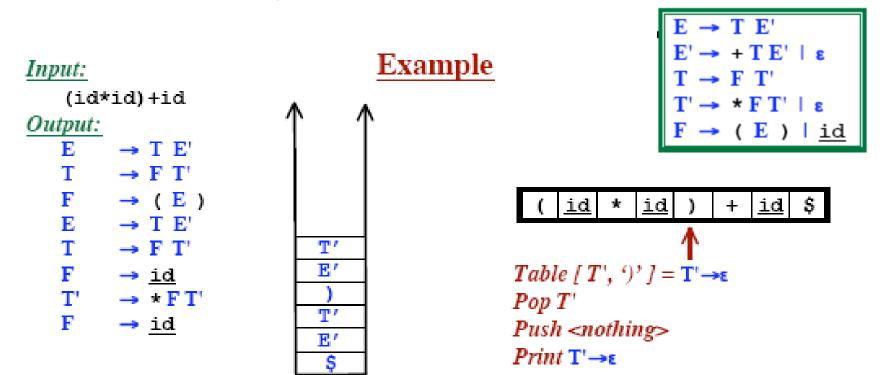


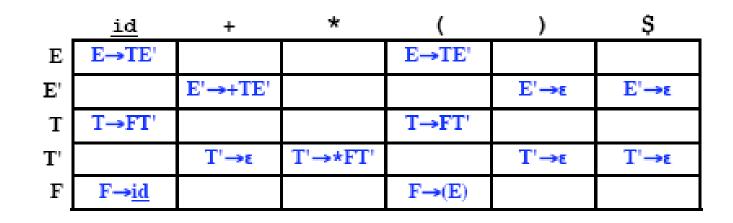


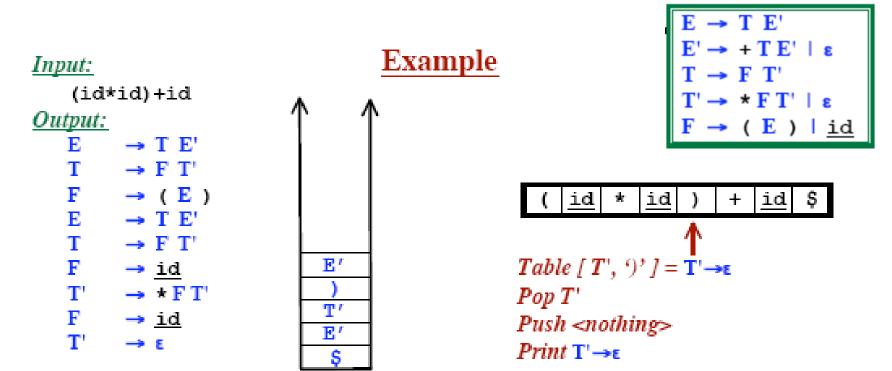


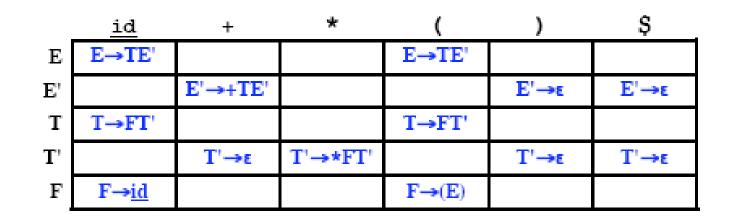


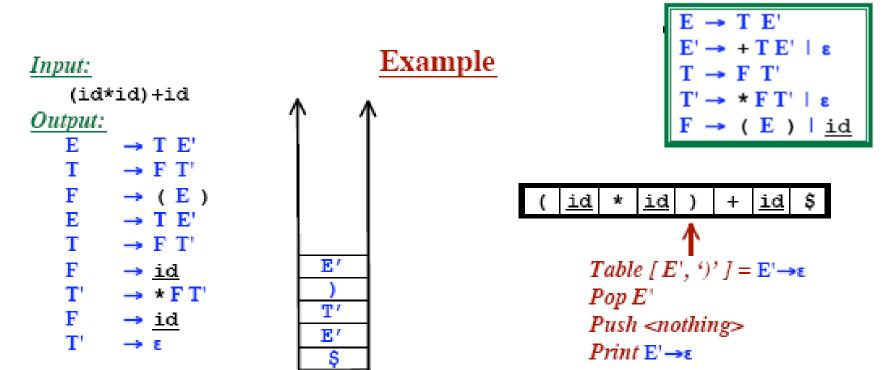


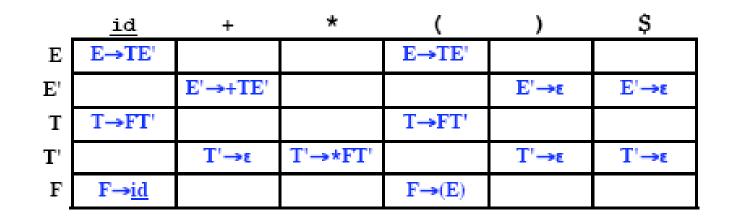


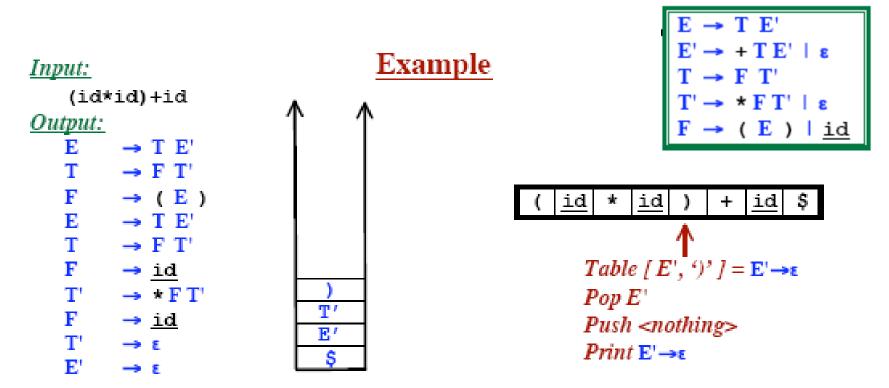




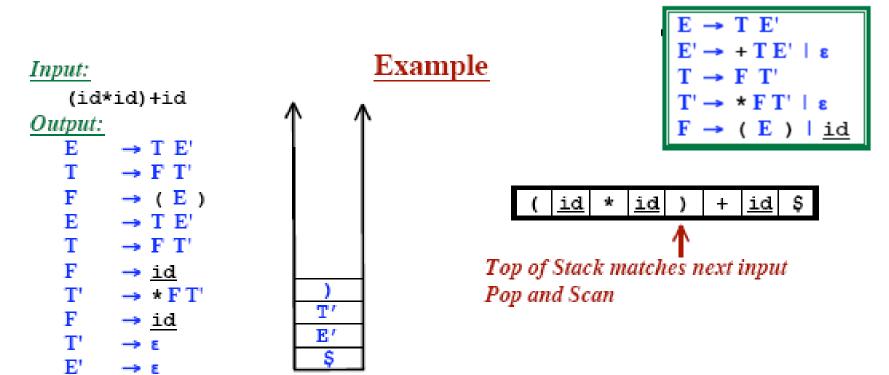




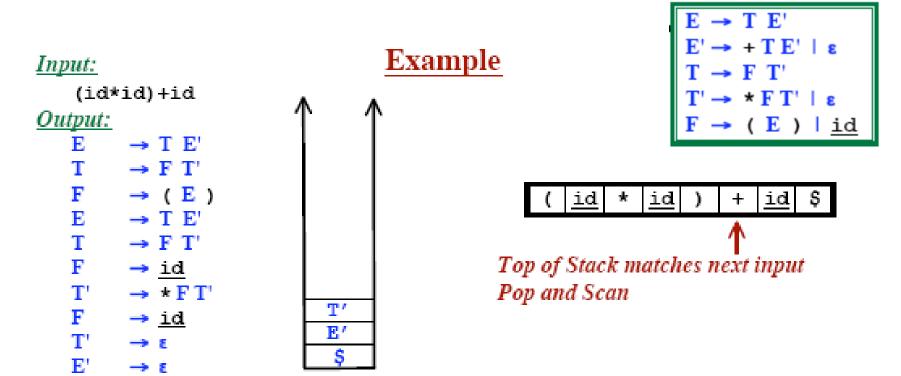


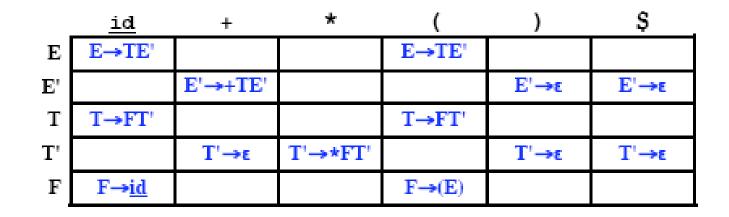


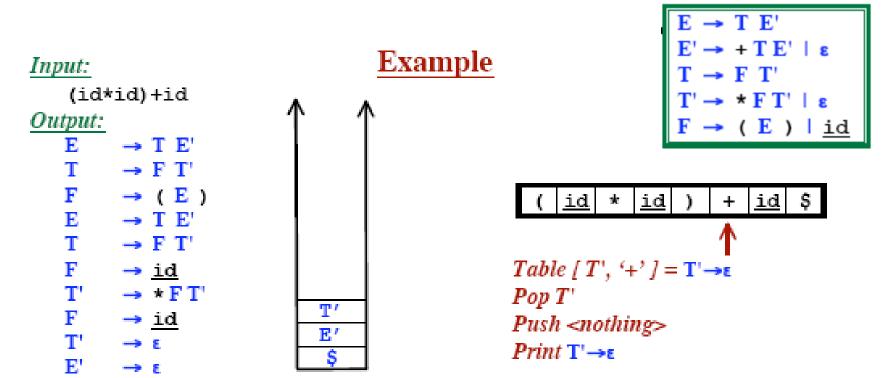
	id	+	*	()	Ş
Е	E→TE'			E→TE'		
\mathbf{E}'		E'→+TE'			Ε'→ε	Ε'→ε
Т	T→FT'			T→FT'		
Τ'		T'→ε	$T' \rightarrow *FT'$		T'→ε	T'→ε
\mathbf{F}	F→ <u>id</u>			F→(E)		



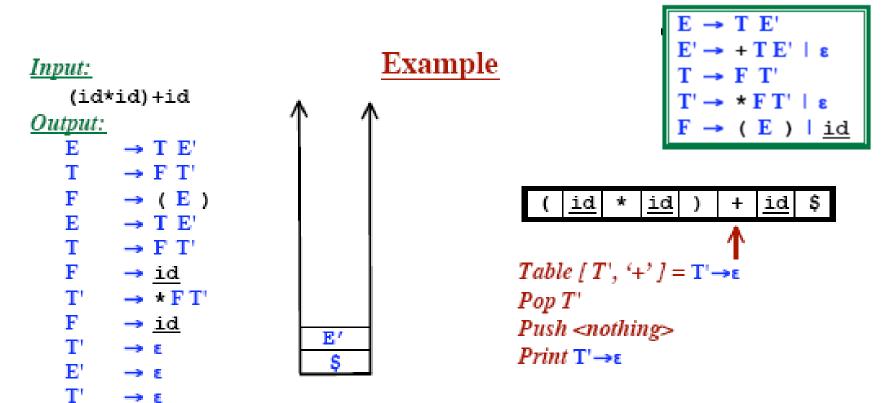
	id	+	*	()	\$
Е	E→TE'			E→TE'		
\mathbf{E}^{\prime}		E'→+TE'			E'→ε	E'→ε
Т	T→FT'			T→FT'		
T'		T'→ε	T'→*FT'		T'→ε	T'→ε
F	F→ <u>id</u>			F→(E)		





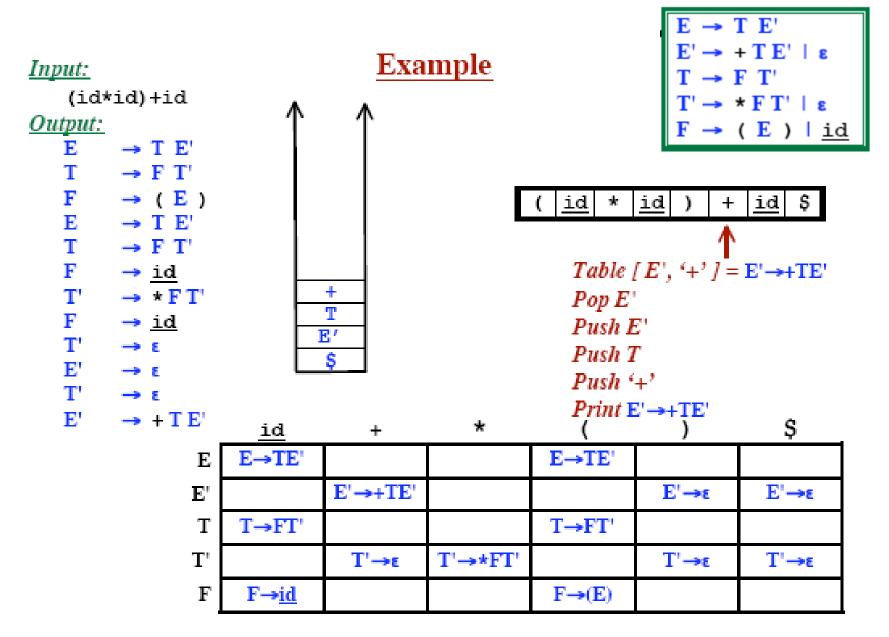


_	id	+	*	()	\$
Е	E→TE'			E→TE'		
\mathbf{E}^{\prime}		E'→+TE'			E'→ε	E'→ε
Т	T→FT'			T→FT'		
T'		T'→ε	T'→*FT'		T'→ε	T'→ε
F	F→ <u>id</u>			F→(E)		



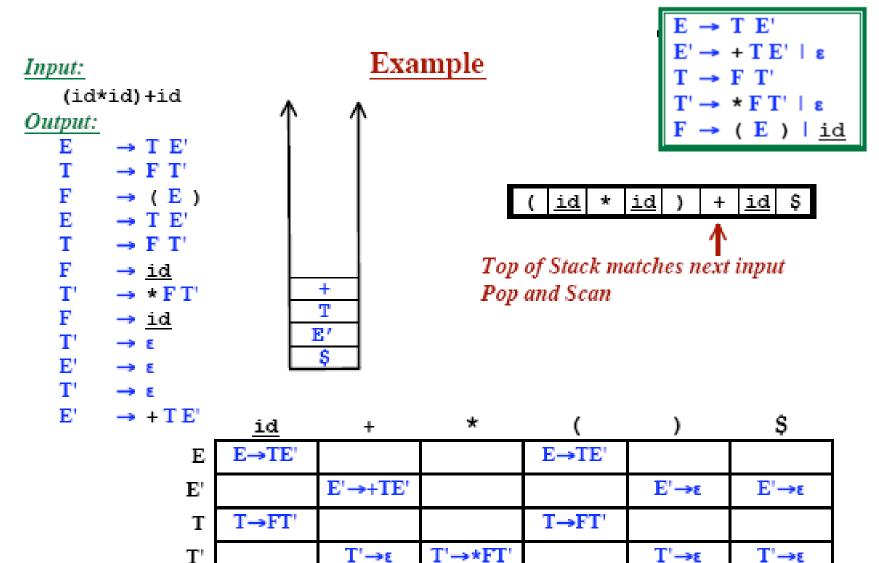
	<u>id</u>	+	*	()	\$
Ε	E→TE'			E→TE'		
\mathbf{E}'		E'→+TE'			E'→ε	E'→ε
Т	T→FT'			T→FT'		
Τ'		T'→ε	T'→*FT'		T' →ε	T'→ε
F	F→ <u>id</u>			F→(E)		



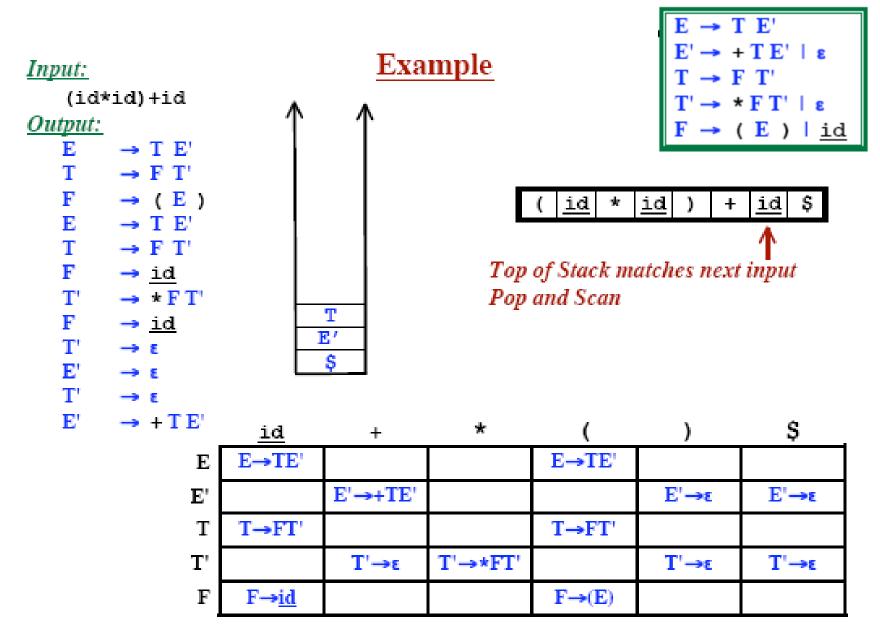


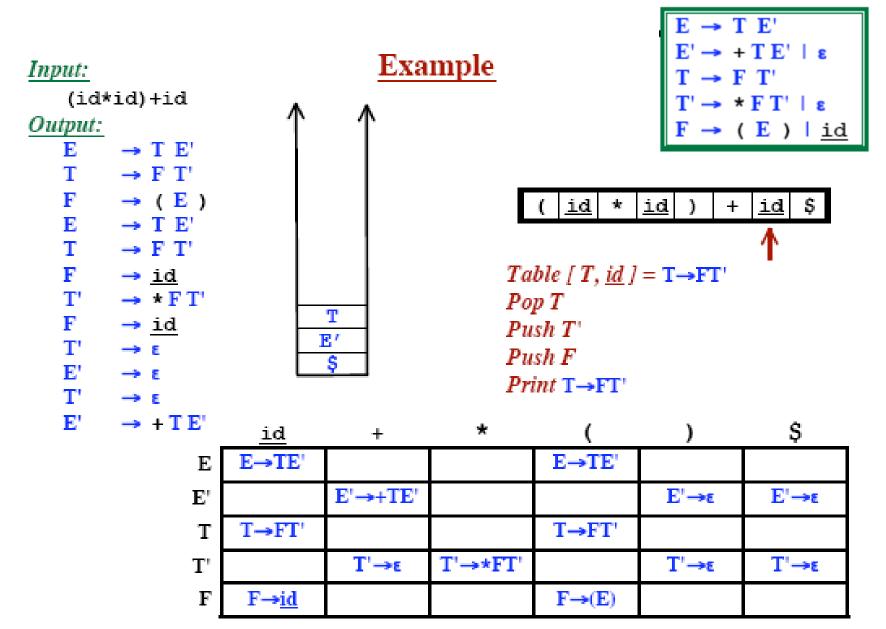
 \mathbf{F}

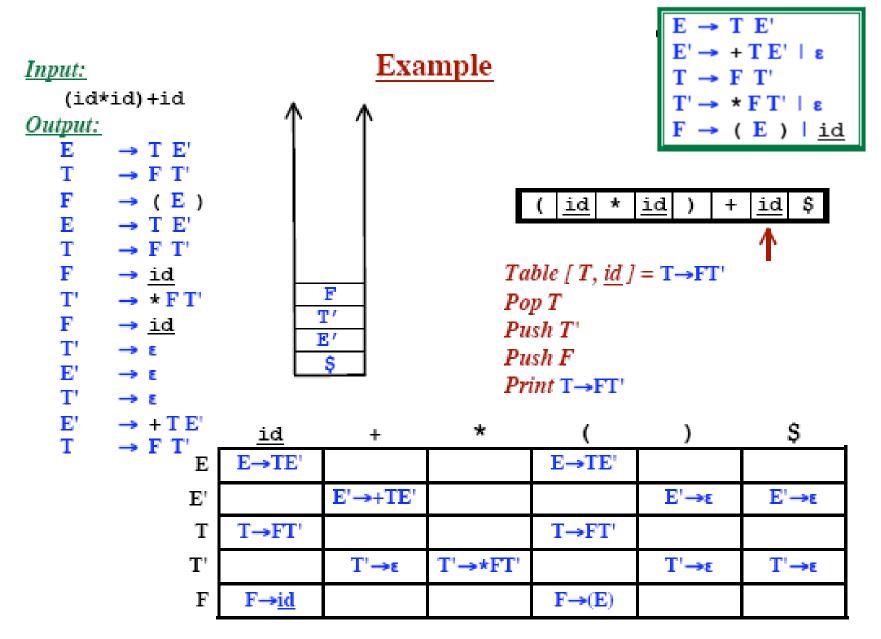
F→<u>id</u>

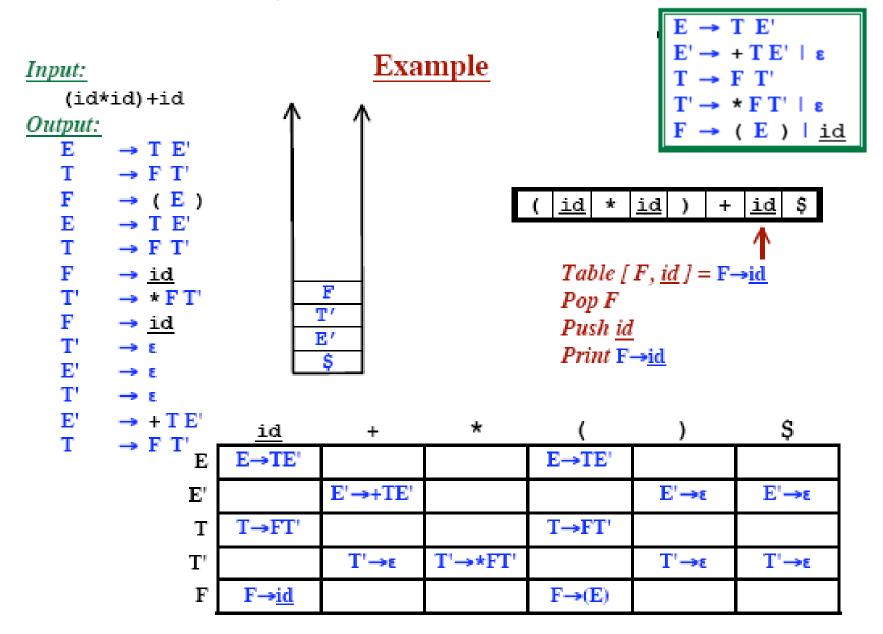


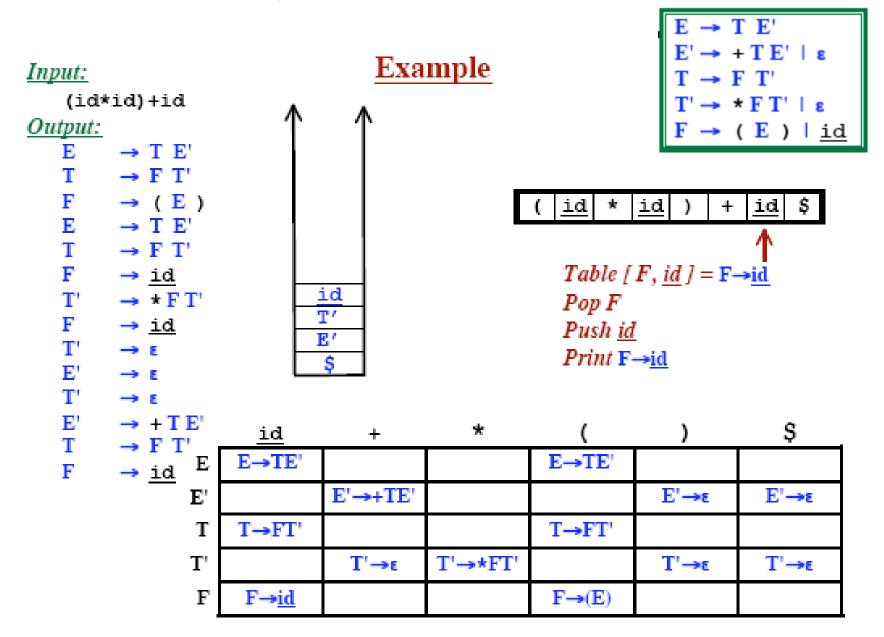
 $F \rightarrow (E)$

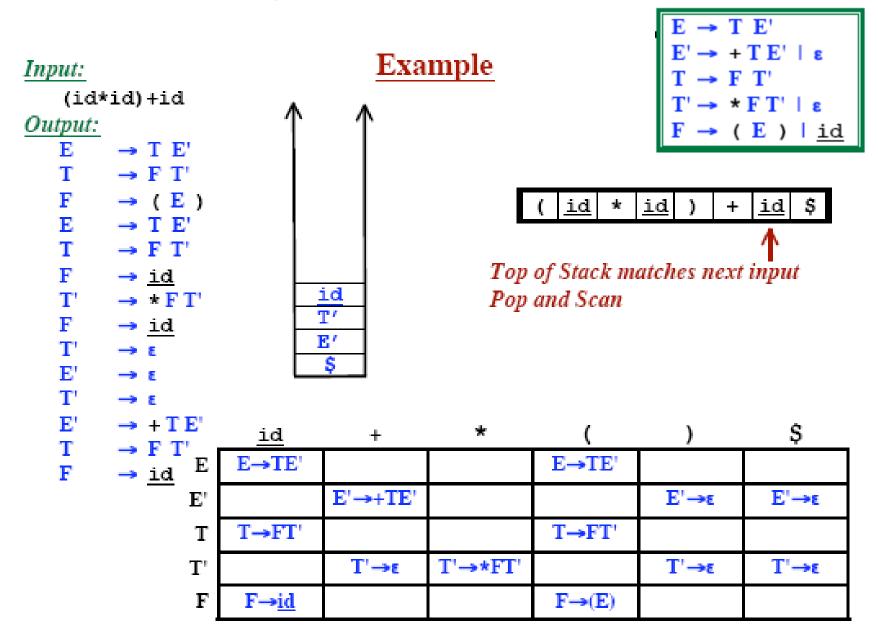


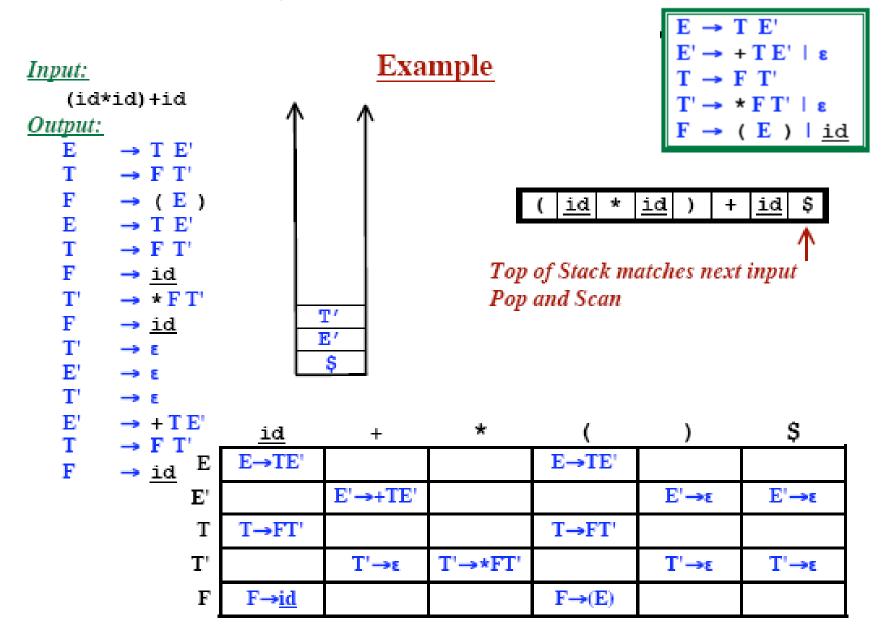


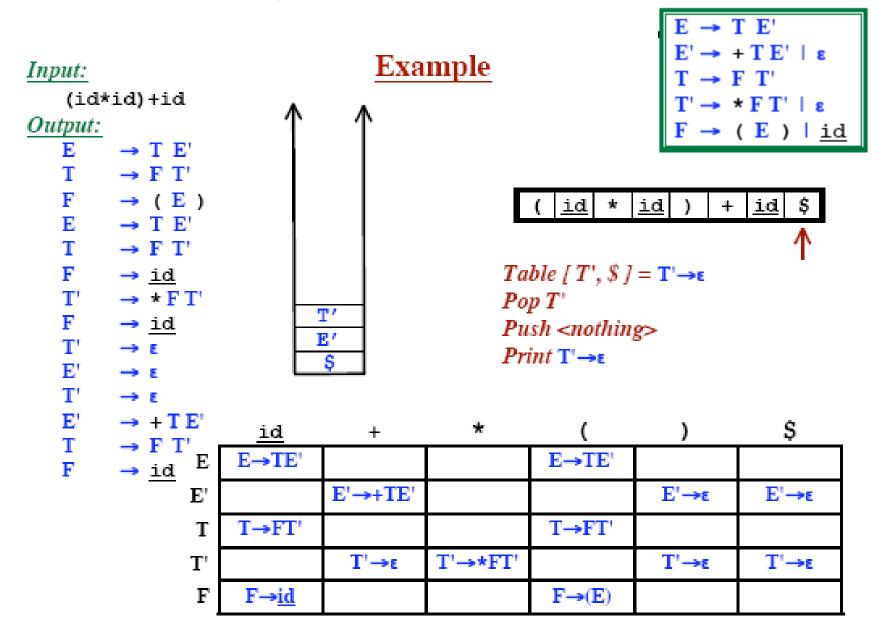


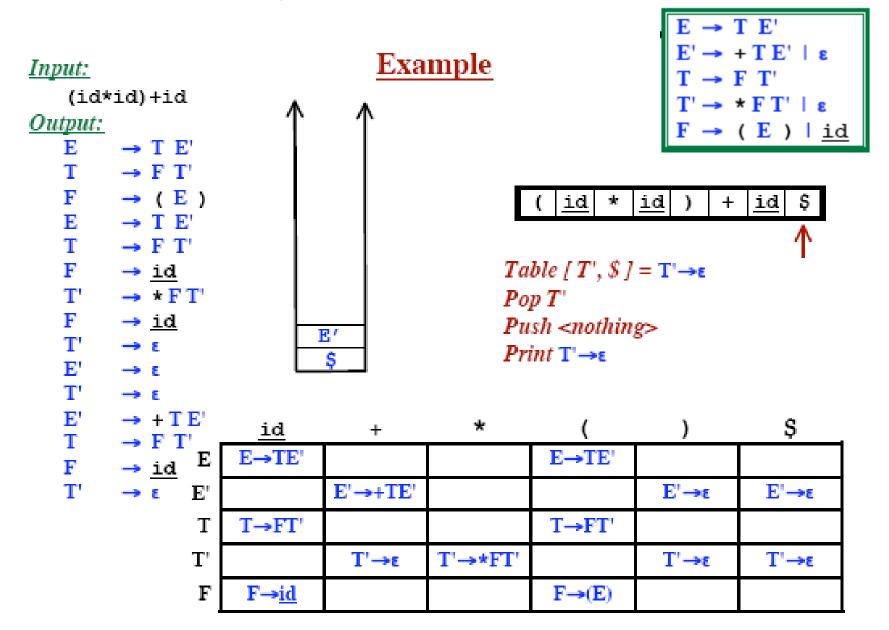


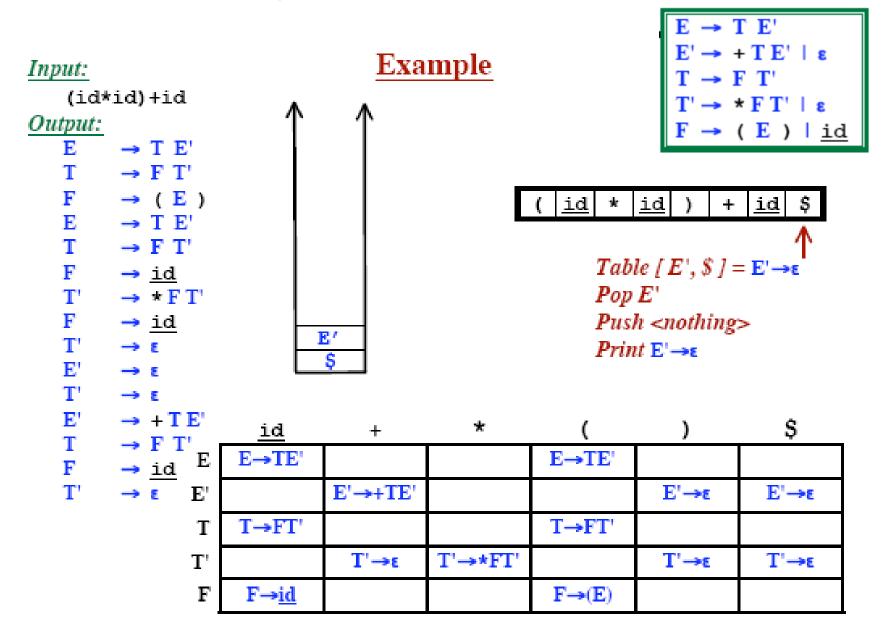


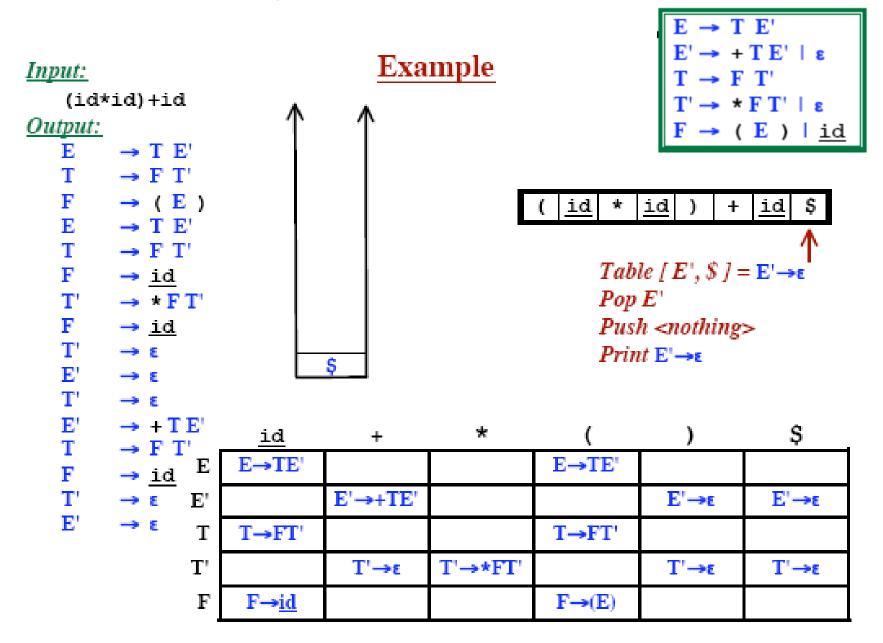


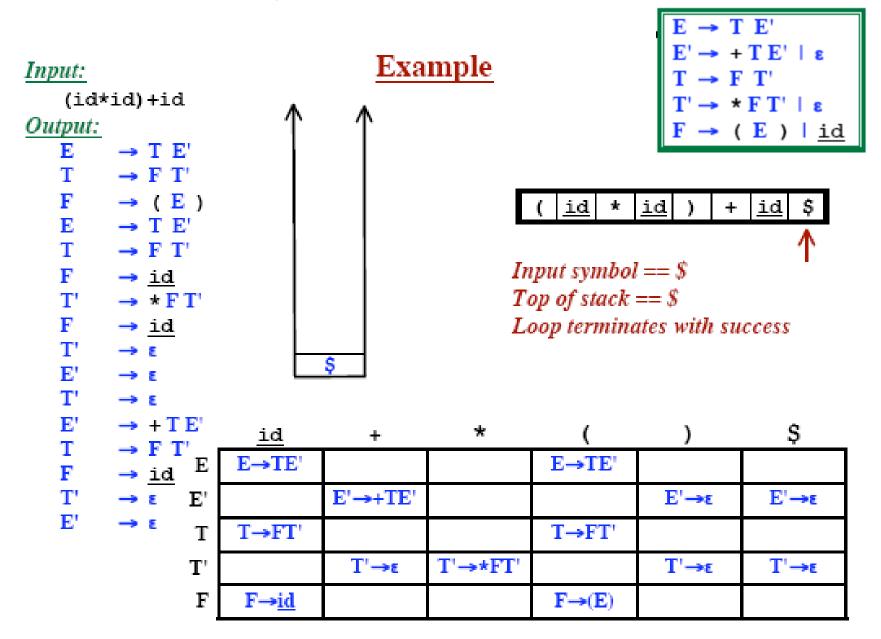




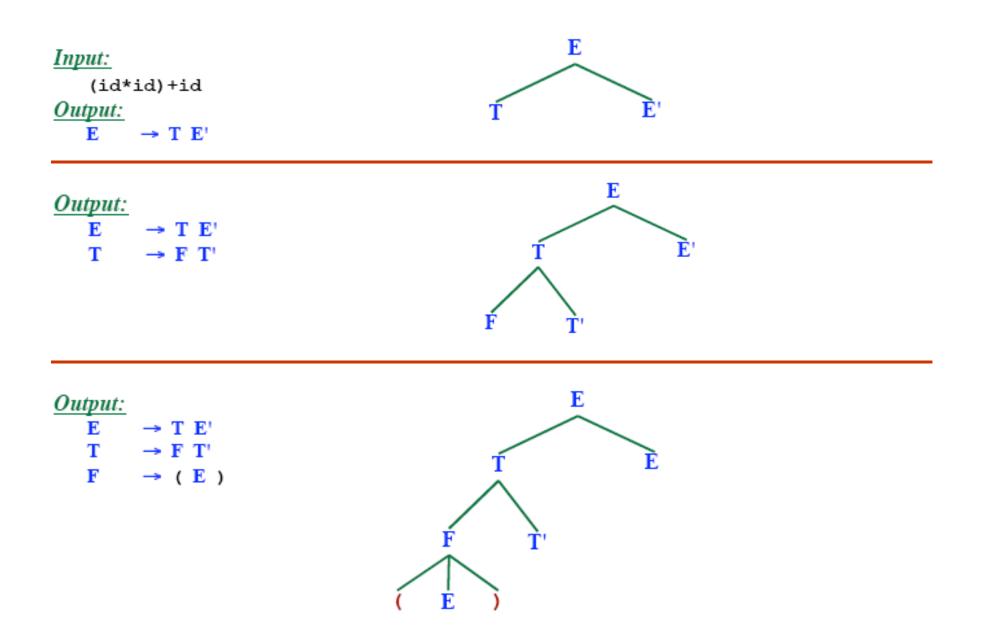




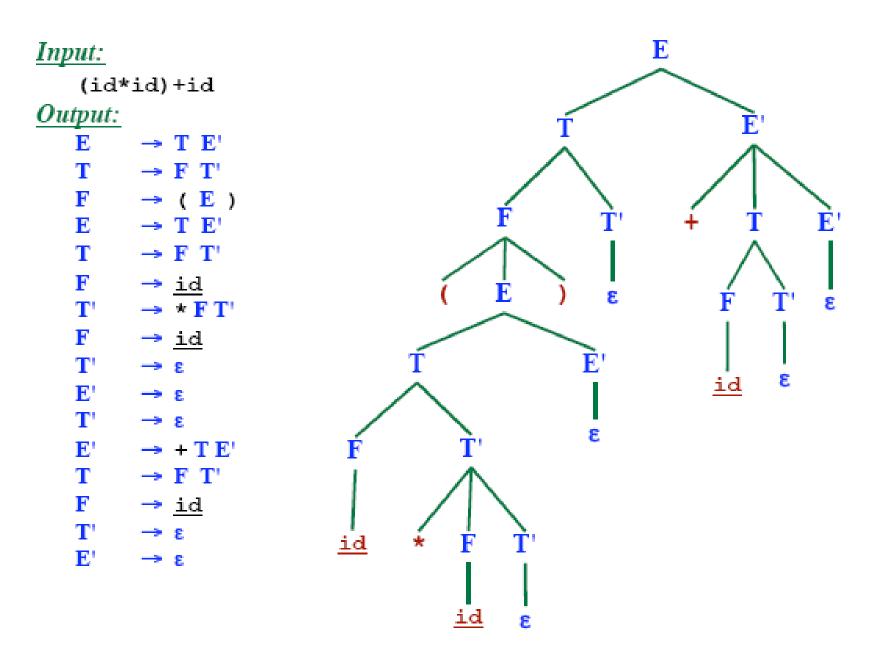




Reconstructing the Parse Tree



Reconstructing the Parse Tree



Reconstructing the Parse Tree

Input:	
(id*	id)+id
Output:	
E	→ T E'
Т	→ F T'
F	→ (E)
E.	→ T E'
Т	→ F T'
F	→ <u>id</u>
Τ'	→ * F T'
F	→ <u>id</u>
Τ'	-> ε
E'	→ ε
T '	⇒ ε
E	→ + T E'
Т	→ F T'
F	→ <u>id</u>
Τ'	-> ε
E '	→ ε

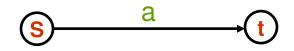
Leftmost Derivation:
E
T E'
F T' E'
(E) T'E'
(TE') T'E'
(FT'E') T'E'
(<u>id</u> T'E') T'E'
(<u>id</u> * F T' E') T' E'
(<u>id</u> * <u>id </u> T' E') T' E'
(<u>id</u> * <u>id</u> E') T'E'
(<u>id</u> * <u>id</u>) <mark>T'E</mark> '
(<u>id</u> * <u>id</u>) <mark>E</mark> '
(<u>id</u> * <u>id</u>) + T E '
(<u>id</u> * <u>id</u>) + <mark>F T'E</mark> '
(<u>id</u> * <u>id</u>) + <u>id</u> T'E '
(<u>id</u> * <u>id</u>) + <u>id</u> <mark>E</mark> '
(<u>id</u> * <u>id</u>) + <u>id</u>

Transition Diagram for Predictive Parsers

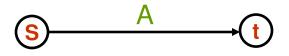
- Useful for visualizing predictive parsers.
- To construct Transition Diagram from a grammar
 - Eliminate left recursion
 - Left factor the grammar
 - Then for each nonterminal A
 - Create an initial and final state
 - For each production A → X₁X₂...X_k, create a path from the initial to the final state, with edges labeled X₁, X₂, ..., X_k. If A→ε, the path is an edge labeled ε.

Transition Diagram for Predictive Parsers

- Predictive parser begins in the start state for the start symbol
- Suppose at any time it is in state s with an edge
 - labeled by a terminal a to state t



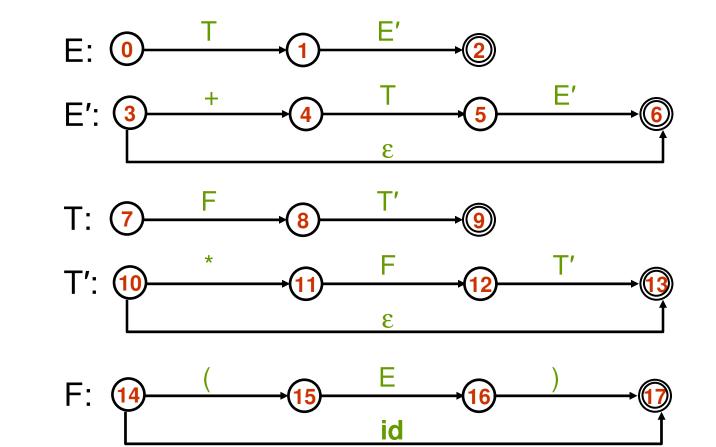
- If the next input is a the parser advances in input and moves to state t
- If the edge from s to t is labeled by ε, then the parser moves immediately to state t without advancing the input
- labeled by a nonterminal A



- Parser goes to the start state for A
- If it ever reaches the final state of A it will immediately go back to state t

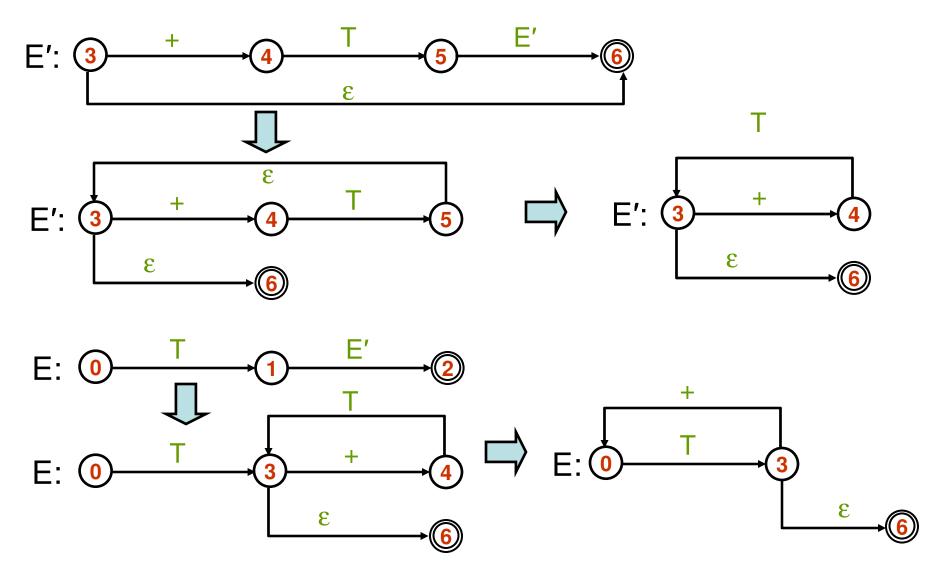
Transition Diagram for Predictive Parsers

 $E \rightarrow TE'$ $E' \rightarrow +TE' \mid \varepsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \varepsilon$ $F \rightarrow (E) \mid id$



Simplification of Transition Diagrams

• TDs can be simplified by substituting one in another



Simplification of Transition Diagrams

- Complete set of TDs
- A C implementation of this simplified version of the parser runs 20-25% faster than the original version

