
Parsing

Part III

Top Down Parsing

• Find a left-most derivation
• Find (build) a parse tree
• Start building from the root and work down…
• As we search for a derivation

– Must make choices:
• Which rule to use
• Where to use it

• May run into problems!!

Top-Down Parsing

• Recursive-Descent Parsing
• Backtracking is needed (If a choice of a production rule

does not work, we backtrack to try other alternatives.)
• It is a general parsing technique, but not widely used.
• Not efficient

• Predictive Parsing
• no backtracking
• efficient
• needs a special form of grammars (LL(1) grammars).
• Recursive Predictive Parsing is a special form of

Recursive Descent parsing without backtracking.
• Non-Recursive (Table Driven) Predictive Parser is also

known as LL(1) parser.

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Recursive Descent Parsing (Backtracking)

Successfully parsed!!

Recursive-Descent Parsing Algorithm

• A recursive-descent parsing program consists of a set of
procedures – one for each non-terminal

• Execution begins with the procedure for the start symbol
– Announces success if the procedure body scans the entire input

void A(){
for (j=1 to t){ /* assume there is t number of A-productions */

Choose a A-production, Aj�X1X2…Xk;
for (i=1 to k){

if (Xi is a non-terminal)
call procedure Xi();

else if (Xi equals the current input symbol a)
advance the input to the next symbol;

else backtrack in input and reset the pointer
}

}
}

Predictive Parser

When re-writing a non-terminal in a derivation step, a
predictive parser can uniquely choose a production rule by
just looking the current symbol in the input string.

A → α1 | ... | αn input: ... a

current token

Predictive Parser (example)

stmt → if |
while |
begin |
for

• When we are trying to write the non-terminal stmt, if the current
token is if we have to choose first production rule.

• When we are trying to write the non-terminal stmt, we can
uniquely choose the production rule by just looking the current
token.

• We eliminate the left recursion in the grammar, and left factor it.
But it may not be suitable for predictive parsing (not LL(1)
grammar).

Recursive Predictive Parsing

• Each non-terminal corresponds to a procedure.

Ex: A → aBb (This is only the production rule for A)

proc A {
- match the current token with a, and move to the next token;
- call ‘B’;
- match the current token with b, and move to the next token;

}

Recursive Predictive Parsing (cont.)

A → aBb | bAB

proc A {
case of the current token {

‘a’: - match the current token with a, and move to the next token;
- call ‘B’;
- match the current token with b, and move to the next token;

‘b’: - match the current token with b, and move to the next token;
- call ‘A’;
- call ‘B’;

}
}

Recursive Predictive Parsing (cont.)

• When to apply ε-productions.

A → aA | bB | ε

• If all other productions fail, we should apply an ε-
production. For example, if the current token is not a
or b, we may apply the ε-production.

• Most correct choice: We should apply an ε-production
for a non-terminal A when the current token is in the
follow set of A (which terminals can follow A in the
sentential forms).

Recursive Predictive Parsing (Example)

A → aBe | cBd | C
B → bB | ε
C → f

proc C { match the current token with f,
proc A { and move to the next token; }

case of the current token {
a: - match the current token with a,

and move to the next token; proc B {
- call B; case of the current token {
- match the current token with e, b: - match the current token with b,

and move to the next token; and move to the next token;
c: - match the current token with c, - call B

and move to the next token; e,d: do nothing
- call B; }
- match the current token with d, }

and move to the next token;
f: - call C

}
}

follow set of B

first set of C

First Function

Computing the First Function

To Compute the FIRST(X1X2X3...XN)

First - Example

• P � i | c | n T S
• Q � P | a S | b S c S T
• R � b | ε
• S � c | R n | ε
• T � R S q

• FIRST(P) = {i,c,n}
• FIRST(Q) = {i,c,n,a,b}
• FIRST(R) = {b,ε}
• FIRST(S) = {c,b,n,ε}
• FIRST(T) = {b,c,n,q}

First - Example

• S � a S e | S T S
• T � R S e | Q
• R � r S r | ε
• Q � S T | ε

• FIRST(S) = {a}
• FIRST(R) = {r, ε}
• FIRST(T) = {r, a, ε}
• FIRST(Q) = {a, ε}

FOLLOW Sets

• FOLLOW(A) is the set of terminals (including end
marker of input - $) that may follow non-terminal A in
some sentential form.

• FOLLOW(A) = {c | S �+ …Ac…} ∪ {$} if S �+ …A
• For example, consider L �+ (())(L)L

Both ‘)’ and end of file can follow L
• NOTE: ε is never in FOLLOW sets

Computing FOLLOW(A)

1. If A is start symbol, put $ in FOLLOW(A)
2. Productions of the form B � α A β,

Add FIRST(β) – {ε} to FOLLOW(A)

INTUITION: Suppose B � AX and FIRST(X) = {c}

S �+ α B β � α A X β �+ α A c δ β

= FIRST(X)

3. Productions of the form B � α A or

B � α A β where β �* ε
Add FOLLOW(B) to FOLLOW(A)

INTUITION:
– Suppose B � Y A

S �+ α B β � α Y A β

– Suppose B � A X and X �* λ
S � + α B β � α A X β �* α A β

FOLLOW(B)

FOLLOW(B)

Example

• S � a S e | B
• B � b B C f | C
• C � c C g | d | ε

• FIRST(C) = {c,d,ε}
• FIRST(B) = {b,c,d,ε}
• FIRST(S) = {a,b,c,d,ε}

• FOLLOW(C) =

• FOLLOW(B) =

• FOLLOW(S) = {$}

Assume the first non-terminal is
the start symbol

Using rule #1

Example

• S � a S e | B
• B � b B C f | C
• C � c C g | d | ε

• FIRST(C) = {c,d,ε}
• FIRST(B) = {b,c,d,ε}
• FIRST(S) = {a,b,c,d,ε}

• FOLLOW(C) = {f,g}

• FOLLOW(B) = {c,d,f}

• FOLLOW(S) = {$,e}

Using rule #2

Example

• S � a S e | B
• B � b B C f | C
• C � c C g | d | ε

• FIRST(C) = {c,d,ε}
• FIRST(B) = {b,c,d,ε}
• FIRST(S) = {a,b,c,d,ε}

• FOLLOW(C) =

• FOLLOW(B) =

• FOLLOW(S) = { }$, e

{c,d,f} ∪ FOLLOW(S)
= {c,d,e,f,$}

{f,g} ∪ FOLLOW(B)
= {c,d,e,f,g,$}

Using rule #3

Example

• S � (A) | ε
• A � T E
• E � & T E | ε
• T � (A) | a | b | c

• FIRST(T) = {(,a,b,c}
• FIRST(E) = {&, ε }
• FIRST(A) = {(,a,b,c}
• FIRST(S) = {(, ε}

• FOLLOW(S) =
• FOLLOW(A) =
• FOLLOW(E) =
• FOLLOW(T) =

Example

• S � (A) | ε
• A � T E
• E � & T E | ε
• T � (A) | a | b | c

• FIRST(T) = {(,a,b,c}
• FIRST(E) = {&, ε }
• FIRST(A) = {(,a,b,c}
• FIRST(S) = {(, ε}

• FOLLOW(S) = {$}
• FOLLOW(A) = {) }
• FOLLOW(E) =
FOLLOW(A) = {) }
• FOLLOW(T) =
FIRST(E) ∪ FOLLOW(A) ∪

FOLLOW(E) = {&,)}

Predictive Parsing

Predictive Parsing

• LL(1) Grammars
– Can do predictive parsing
– Can select the right rule
– Looking at only the next 1 input symbol

• First L : Left to Right Scanning
• Second L: Leftmost derivation
• 1 : one input symbol look-ahead for predictive decision

• LL(k) Grammars
– Can do predictive parsing
– Can select the right rule
– Looking at only the next k input symbols

• Techniques to modify the grammar:
– Left Factoring
– Removal of Left Recursion

• LL(k) Language
– Can be described with an LL(k) grammar

Table Driven Predictive Parsing

Table Driven Predictive Parsing

Table Driven Predictive Parsing

Predictive Parsing Algorithm

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Predictive Parsing

Reconstructing the Parse Tree

Reconstructing the Parse Tree

Reconstructing the Parse Tree

Transition Diagram for Predictive Parsers

• Useful for visualizing predictive parsers.
• To construct Transition Diagram from a grammar

– Eliminate left recursion
– Left factor the grammar
– Then for each nonterminal A

• Create an initial and final state
• For each production A � X1X2…Xk, create a path from

the initial to the final state, with edges labeled X1, X2, …,
Xk. If A�ε, the path is an edge labeled ε.

Transition Diagram for Predictive Parsers

• Predictive parser begins in the start state for the start symbol
• Suppose at any time it is in state s with an edge

– labeled by a terminal a to state t

• If the next input is a the parser advances in input and moves to
state t

• If the edge from s to t is labeled by ε, then the parser moves
immediately to state t without advancing the input

– labeled by a nonterminal A

• Parser goes to the start state for A
• If it ever reaches the final state of A it will immediately go back

to state t

S t
a

S t
A

Transition Diagram for Predictive Parsers

E � TE�
E�� +TE� | ε
T � FT�
T�� *FT� | ε
F � (E) | id

0 1
T

2
E�

3 4
+

5
T

6
E�

ε

7 8
F

9
T�

10 11
*

12
F

13
T�

ε

14 15
(

16
E

17
)

id

E:

E�:

T:

T�:

F:

Simplification of Transition Diagrams

• TDs can be simplified by substituting one in another

3 4
+

5
T

6
E�

ε
E�:

3 4
+

5
T

6
ε

E�:
ε

3 4
+

T

6
ε

E�:

0 1
T

2
E�

E:

0
T

E: 3 4
+

T

6
ε

E: 0 3
T

6
ε

+

Simplification of Transition Diagrams

• Complete set of TDs
• A C implementation of this simplified version of the

parser runs 20-25% faster than the original version

E: 0 3
T

6
ε

+

T: 7 8
F

13
ε

*

14 15
(

16
E

17
)

id
F:

