Bottom Up (Shift Reduce) Parsing

Bottom-Up Parsing

- A bottom-up parser creates the parse tree of the given input starting from leaves towards the root
- A bottom-up parser tries to find the right-most derivation of the given input in the reverse order.

$$
\mathrm{S} \Rightarrow \ldots \Rightarrow \omega \quad \text { (the right-most derivation of } \omega \text {) }
$$

\leftarrow (the bottom-up parser finds the right-most derivation in the reverse order)

Bottom Up Parsing

- LR Parsing
- Also called "Shift-Reduce Parsing"
- Find a rightmost derivation
- Finds it in reverse order
- LR Grammars
- Can be parsed with an LR Parser
- LR Languages
- Can be described with LR Grammar
- Can be parsed with an LR Parser

LR Parsing Techniques

- LR Parsing
- Most General Approach
- SLR
- Simpler algorithm, but not as general
- LALR
- More complex, but saves space

LL vs. LR

- LR (shift reduce) is more powerful than LL (predictive parsing)
- Can detect a syntactic error as soon as possible.
- LR is difficult to do by hand (unlike LL) and
- LL accepts a much smaller set of grammars.

Rightmost Derivation

Rules Used:

Right-Sentential Forms:
$\mathrm{E} \rightarrow \mathrm{T}$

$$
\mathrm{T} \rightarrow \mathrm{~T} * \mathrm{~F} \quad \mathrm{~T}
$$

$$
F \rightarrow \underline{i d}
$$

$$
\mathbf{T} \rightarrow \mathbf{F}
$$

$$
F \rightarrow(E)
$$

$$
\text { F * } \underline{\text { id }}
$$

$$
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}
$$

(E) *id

$$
\mathbf{T} \rightarrow \mathbf{F}
$$

$$
(\mathrm{E}+\mathrm{T}) * \text { id }
$$

$$
F \rightarrow \text { id }
$$

$$
(E+F) * \text { id }
$$

$$
\mathrm{E} \rightarrow \mathrm{~T}
$$

$$
\mathbf{T} \rightarrow \mathbf{F}
$$

$$
F \rightarrow \text { id }
$$

Rightmost Derivation In reverse

Rules Used:
$\mathrm{F} \rightarrow$ id
$\mathrm{T} \rightarrow \mathrm{F}$
$\mathrm{E} \rightarrow \mathrm{T}$
$(T+i d)$ * $\underline{i d}$
$(E+i d)$ * $\underline{i d}$
$(E+F)$ *id
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$
Right-Sentential Forms:
$(\underline{i d}+\underline{i d})$ * \underline{d}
$(F+i d)$ *id

F \rightarrow id
$\mathrm{T} \rightarrow \mathrm{F}$
(E) *id
$(E+T)$ *id

1. $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$
2. $\mathbf{E} \rightarrow \mathbf{T}$
3. $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathrm{T} \rightarrow \mathrm{F}$
5. $\mathrm{F} \rightarrow(\mathrm{E})$
6. $\mathrm{F} \rightarrow$ id

Rules Used:	Right-Sentential Forms:
$\mathrm{F} \rightarrow$ id	$(\underline{i d}+\underline{i d}) * \underline{i d}$
	$(\mathrm{F}+\underline{i d})$ * $\underline{i d}$
$\mathrm{T} \rightarrow \mathrm{F}$ $\mathrm{E} \rightarrow \mathrm{T}$	$(\mathrm{T}+\underline{i d})$ * $\underline{i d}$
	$(E+\underline{i d}) * \underline{i d}$
$\mathrm{F} \rightarrow$ id	
$\mathrm{T} \rightarrow \mathrm{F}$	$(E+F)$ * id
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$	$(E+T) *$ id
$\mathrm{F} \rightarrow$ (E	(E) * id
$\mathrm{T} \rightarrow \mathrm{F}$	F * id
$\mathrm{F} \rightarrow$ id	T * id
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}$	T * F
	T
	E

LR parsing corresponds to rightmost derivation in reverse

Reduction

- A reduction step replaces a specific substring (matching the body of a production)

$$
\begin{array}{ll}
(\underline{i d}+\underline{i d}) * \underline{i d} & (E) * \underline{i d} \\
(F+\underline{i d}) * \underline{i d} & F * \underline{i d} \\
(T+\underline{i d}) * \underline{i d} & T * \underline{i d} \\
(E+\underline{i d}) * \underline{i d} & T * F \\
(E+F) * \underline{i d} & T \\
(E+T) * \underline{i d} & E
\end{array}
$$

$$
\begin{array}{|lll|}
\hline \text { 1. } & \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \\
\text { 2. } & \mathrm{E} \rightarrow \mathrm{~T} \\
\text { 3. } & \mathrm{T} \rightarrow \mathrm{~T} * \mathrm{~F} \\
\text { 4. } & \mathrm{T} \rightarrow \mathrm{~F} \\
\text { 5. } & \mathrm{F} \rightarrow \text { (E }) \\
\text { 6. } & \mathrm{F} \rightarrow \text { id } \\
\hline
\end{array}
$$

- Reduction is the opposite of derivation
- Bottom up parsing is a process of reducing a string ω to the start symbol S of the grammar

Shift-Reduce Parsing

- Bottom-up parsing is also known as shift-reduce parsing because its two main actions are shift and reduce.
- data structures: input-string and stack
- Operations
- At each shift action, the current symbol in the input string is pushed to a stack.
- At each reduction step, the symbols at the top of the stack (this symbol sequence is the right side of a production) will replaced by the non-terminal at the left side of that production.
- Accept: Announce successful completion of parsing
- Error: Discover a syntax error and call error recovery

Shift Reduce Parsing Example

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tb} \mathrm{c} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$

Remaining input: abbcde

Rightmost derivation:

abbcde

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tb} \mathrm{c} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a

Remaining input: bbcde

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b

Remaining input: bcde

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{b}$

Remaining input: bcde

Rightmost derivation:
\rightarrow aTbcde
$\rightarrow \mathbf{a b b c d e}$

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b
\rightarrow Reduce $T \rightarrow b$
\rightarrow Shift b

Remaining input: cde

Rightmost derivation:
$\rightarrow \mathrm{aTbcde}$
$\rightarrow \mathbf{a b b c d e}$

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{b}$
\rightarrow Shift b, Shift c

Remaining input: de

$\rightarrow \mathrm{aTbcde}$
$\rightarrow \mathbf{a b b c d e}$

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tb} \mathrm{c} \| \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b
\rightarrow Reduce $T \rightarrow b$
\rightarrow Shift b, Shift c
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{Tbc}$

Remaining input: de

\rightarrow a Tde
\rightarrow aTbcde
$\rightarrow \mathbf{a b b c d e}$

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tb} \mathrm{c} \| \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b
\rightarrow Reduce $T \rightarrow b$
\rightarrow Shift b, Shift c
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{Tbc}$
\rightarrow Shift d

Remaining input: e

a

Rightmost derivation:
\rightarrow aTde
\rightarrow aTbcde
$\rightarrow \mathbf{a b b c d e}$

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tb} \mathrm{c} \| \mathrm{b}$
$R \rightarrow d$
\rightarrow Shift a, Shift b
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{b}$
\rightarrow Shift b, Shift c
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{Tbc}$
\rightarrow Shift d
\rightarrow Reduce $\mathrm{R} \rightarrow \mathrm{d}$

Remaining input: e

a

Rightmost derivation:
\rightarrow aTRe
\rightarrow aTde
\rightarrow aTbcde
$\rightarrow \mathbf{a b b c d e}$

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tb} \mathrm{c} \| \mathrm{b}$
$R \rightarrow d$
\rightarrow Shift a, Shift b
\rightarrow Reduce $T \rightarrow b$
\rightarrow Shift b, Shift c
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{Tbc}$
\rightarrow Shift d
\rightarrow Reduce $\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift e

Remaining input:

Shift Reduce Parsing

$\mathrm{S} \rightarrow$ aTRe
$\mathrm{T} \rightarrow \mathrm{Tbc\mid b}$
$R \rightarrow d$
\rightarrow Shift a, Shift b
\rightarrow Reduce $T \rightarrow b$
\rightarrow Shift b, Shift c
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{Tbc}$
\rightarrow Shift d
\rightarrow Reduce $\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift e
\rightarrow Reduce $S \rightarrow$ a T R e

Remaining input:

$$
\begin{aligned}
S & \rightarrow \text { a TRe } \\
& \Rightarrow \text { aTde } \\
& \Rightarrow \text { aTbcde } \\
& \Rightarrow \text { abbcde }
\end{aligned}
$$

Example Shift-Reduce Parsing

Consider the grammar:

Stack	Input	Action
$\$$	$\mathrm{id}_{1}+\mathrm{id}_{2} \$$	shift
$\$ \mathrm{id}_{1}$	$+\mathrm{id}_{2} \$$	reduce 6
$\$ \mathrm{~F}$	$+\mathrm{id}_{2} \$$	reduce 4
$\$ \mathrm{~T}$	$+\mathrm{id}_{2} \$$	reduce 2
$\$ \mathrm{E}$	$+\mathrm{id}_{2} \$$	shift
$\$ \mathrm{E}+$	$\mathrm{id}_{2} \$$	shift
$\$ \mathrm{E}+\mathrm{id}_{2}$		reduce 6
$\$ \mathrm{E}+\mathrm{F}$		reduce 4
$\$ \mathrm{~T}+\mathrm{T}$		reduce 1
$\$ \mathrm{E}$		accept

1.	$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$
2.	$\mathrm{E} \rightarrow \mathrm{T}$
3.	$\mathrm{T} \rightarrow \mathrm{T}$ * F
4.	$\mathrm{T} \rightarrow \mathrm{F}$
5.	$\mathrm{F} \rightarrow$ (E)
6.	$\mathrm{F} \rightarrow$ id

Conflicts During Shift-Reduce Parsing

- There are context-free grammars for which shift-reduce parsers cannot be used.
- Stack contents and the next input symbol may not decide action:
- shift/reduce conflict: Whether make a shift operation or a reduction.
- reduce/reduce conflict: The parser cannot decide which of several reductions to make.
- If a shift-reduce parser cannot be used for a grammar, that grammar is called

- An ambiguous grammar can never be a LR grammar.

Shift-Reduce Conflict in Ambiguous Grammar

$s t m t \rightarrow$ if expr then stmt
| if expr then stmt else stmt
| other

STACK
....if expr then stmt

INPUT
else\$

- We can't decide whether to shift or reduce?

Reduce-Reduce Conflict in Ambiguous Grammar

1. stmt $\rightarrow \mathrm{id}$ (parameter_list)
2. stmt \rightarrow expr: $=$ expr
3. parameter_list \rightarrow parameter_list, parameter
4. parameter_list \rightarrow parameter
5. parameter_list \rightarrow id
6. expr $\rightarrow \mathbf{i d}($ expr_list)
7. expr \rightarrow id
8. expr_list \rightarrow expr_list, expr
9. expr_list \rightarrow expr

STACK
id (id

INPUT
, id) ...\$

- We can't decide which production will be used to reduce id?

Shift-Reduce Parsers

There are two main categories of shift-reduce parsers

1. Operator-Precedence Parser

- simple, but only a small class of grammars.

2. LR-Parsers

- covers wide range of grammars.
- SLR - simple LR parser

- LR - most general LR parser
- LALR - intermediate LR parser (lookhead LR parser)
- SLR, LR and LALR work same, only their parsing tables are different.

LR Parsers

LR parsing is attractive because:

- LR parsing is most general non-backtracking shift-reduce parsing, yet it is still efficient.
- The class of grammars that can be parsed using LR methods is a proper superset of the class of grammars that can be parsed with predictive parsers.

LL(1)-Grammars $\subset \mathrm{LR}(1)$-Grammars

- An LR-parser can detect a syntactic error as soon as it is possible to do so a left-to-right scan of the input.
- LR parsers can be constructed to recognize virtually all programming language constructs for which CFG grammars can be written

Drawback of LR method:

- Too much work to construct LR parser by hand
- Fortunately tools (LR parsers generators) are available

LR Parsing Algorithm

Bottom-Up Parsing: LR(0) Table Construction

Constructing SLR Parsing Tables - LR(0) Item

- An $\mathbf{L R}(0)$ item of a grammar G is a production of G a dot at the some position of the right side.
- Ex: $A \rightarrow a B b \quad$ Possible LR(0) Items:
(four different possibility)

$$
\begin{aligned}
& \mathrm{A} \rightarrow \cdot \mathrm{aBb} \\
& \mathrm{~A} \rightarrow \mathrm{a} \cdot \mathrm{Bb} \\
& \mathrm{~A} \rightarrow \mathrm{aB} \cdot \mathrm{~b} \\
& \mathrm{~A} \rightarrow \mathrm{aBb} \cdot
\end{aligned}
$$

- Sets of $\operatorname{LR}(0)$ items will be the states of action and goto table of the SLR parser.
- States represent sets of "items"
- LR parser makes shift-reduce decision by maintaining states to keep track of where we are in a parsing process

Constructing SLR Parsing Tables - LR(0) Item

- An item indicates how much of a production we have seen at a given point in the parsing process
- For Example the item $A \rightarrow X$ • YZ
- We have already seen on the input a string derivable from X
- We hope to see a string derivable from YZ
- For Example the item A \rightarrow •XYZ
- We hope to see a string derivable from XYZ
- For Example the item A \rightarrow XYZ •
- We have already seen on the input a string derivable from XYZ
- It is possibly time to reduce XYZ to A
- Special Case:

Rule: A $\rightarrow \varepsilon$ yields only one item

$$
A \rightarrow \cdot
$$

Constructing SLR Parsing Tables

- A collection of sets of $\operatorname{LR}(0)$ items (the canonical LR(0) collection) is the basis for constructing SLR parsers.
- Canonical LR(0) collection provides the basis of constructing a DFA called LR(0) automaton
- This DFA is used to make parsing decisions
- Each state of $\mathrm{LR}(0)$ automaton represents a set of items in the canonical LR(0) collection
- To construct the canonical LR(0) collection for a grammar
- Augmented Grammar
- CLOSURE function
- GOTO function

Grammar Augmentation

Augment the grammar by adding...

- A new start symbol, S'
- A new rule $\mathrm{S}^{\prime} \rightarrow$ S

$$
\begin{aligned}
& \text { 1. } \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \\
& \text { 2. } \mathrm{E} \rightarrow \mathrm{~T} \\
& \text { 3. } \mathrm{T} \rightarrow \mathrm{~T} * \mathrm{~F} \\
& \text { 4. } \mathrm{T} \rightarrow \mathrm{~F} \\
& \text { 5. } \mathrm{F} \rightarrow \text { (} \mathrm{E} \text {) } \\
& \text { 6. } \mathrm{F} \rightarrow \text { id }
\end{aligned}
$$

Our goal is to find an S^{\prime}, followed by \$.

$$
S^{\prime} \rightarrow \cdot \mathbf{E}, \$
$$

Whenever we are about to reduce using rule $0 \ldots$
Accept! Parse is finished!

The Closure Operation

- If \boldsymbol{I} is a set of $\mathrm{LR}(0)$ items for a grammar G, then closure(I) is the set of $\operatorname{LR}(0)$ items constructed from I by the two rules:

1. Initially, every $\operatorname{LR}(0)$ item in I is added to closure(I).
2. If $\mathrm{A} \rightarrow \alpha \cdot \mathrm{B} \beta$ is in closure(I) and $\mathrm{B} \rightarrow \gamma$ is a production rule of G ;
then $\mathrm{B} \rightarrow . \gamma$ will be in the closure($(\mathrm{I}$).
We will apply this rule until no more new $\operatorname{LR}(0)$ items can be added to closure(I).

The Closure Operation -- Example

$$
\begin{aligned}
& \mathrm{E}^{\prime} \rightarrow \mathrm{E} \\
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \\
& \mathrm{E} \rightarrow \mathrm{~T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{\star} \mathrm{F} \\
& \mathrm{~T} \rightarrow \mathrm{~F} \\
& \mathrm{~F} \rightarrow(\mathrm{E}) \\
& \mathrm{F} \rightarrow \mathrm{id}
\end{aligned}
$$

$$
\text { closure }\left(\left\{\mathrm{E}^{\prime} \rightarrow . E\right\}\right)=
$$

$$
\left\{E^{\prime} \rightarrow \bullet E \longleftarrow\right. \text { kernel items }
$$

$$
\mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T}
$$

$$
\mathrm{E} \rightarrow \bullet \mathrm{~T}
$$

$$
\mathrm{T} \rightarrow \bullet \mathrm{~T}^{\star} \mathrm{F}
$$

$$
\mathrm{T} \rightarrow \bullet \mathrm{~F}
$$

$$
\begin{aligned}
& \mathrm{F} \rightarrow \bullet(\mathrm{E}) \\
& \mathrm{F} \rightarrow \bullet \mathrm{id}\}
\end{aligned}
$$

GOTO Operation

- If I is a set of $\mathrm{LR}(0)$ items and X is a grammar symbol (terminal or non-terminal), then $\operatorname{GOTO}(1, X)$ is defined as follows:
- If $A \rightarrow \alpha \cdot X \beta$ in I
then every item in closure($\{\mathbf{A} \rightarrow \boldsymbol{\alpha} \mathbf{X} \cdot \beta\}$) will be in GOTO $(1, X)$.

Example:

$$
\begin{array}{rl}
\mathrm{I}=\left\{\begin{array}{l}
\mathrm{E}
\end{array} \rightarrow \bullet \mathrm{E}, \mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T}, \mathrm{E} \rightarrow \bullet \mathrm{~T},\right. \\
\mathrm{T} \rightarrow \bullet \mathrm{~T} & \mathrm{~F}, \mathrm{~T} \rightarrow \bullet \mathrm{~F}, \\
\mathrm{~F} \rightarrow \bullet(\mathrm{E}), \mathrm{F} \rightarrow \bullet \mathrm{id}\} \\
\mathrm{GOTO}(\mathrm{I}, \mathrm{E})= & \left\{\mathrm{E}^{\prime} \rightarrow \mathrm{E} \bullet \mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{T}\right\} \\
\mathrm{GOTO}(\mathrm{I}, \mathrm{~T})= & \left\{\mathrm{E} \rightarrow \mathrm{~T} \bullet, \mathrm{~T} \rightarrow \mathrm{~T} \bullet{ }^{*} \mathrm{~F}\right\} \\
\mathrm{GOTO}(\mathrm{I}, \mathrm{~F})= & \{\mathrm{T} \rightarrow \mathrm{~F} \bullet\} \\
\mathrm{GOTO}(\mathrm{I},()= & \left\{\mathrm{F} \rightarrow(\bullet \mathrm{E}), \mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T}, \mathrm{E} \rightarrow \bullet \mathrm{~T}, \mathrm{~T} \rightarrow \bullet \mathrm{~T}^{\star} \mathrm{F}, \mathrm{~T} \rightarrow \bullet \mathrm{~F},\right. \\
& \mathrm{F} \rightarrow \bullet(\mathrm{E}), \mathrm{F} \rightarrow \bullet \text { id }\} \\
\mathrm{GOTO}(\mathrm{I}, \mathrm{id})= & \{\mathrm{F} \rightarrow \mathrm{id} \bullet\}
\end{array}
$$

LR(0) Automation

\square Start with start rule \& compute initial state with closure

- Pick one of the items from the states and move "." to the right one symbol (as if you parsed the symbol)
- this creates a new item..
- ... and a new state when you compute the closure of the new item
- mark the edge between the two states with:
\checkmark a terminal T, if you moved "." over T
\checkmark a non-terminal X, if you moved "." over x
\square Continue until there are no further ways to move "." across items and generate the new states or new edges in the automation.

Grammar:

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- L::= S
- L::=L, S

$$
\begin{aligned}
& S^{\prime}::=@ \text { S \$ } \\
& \text { S ::= (L) } \\
& \text { S ::= @ x }
\end{aligned}
$$

Grammar:

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- L::=S
- L::=L, S

Grammar:

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- L::=S
- L::=L, S

Grammar:

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- L::=S
- L::=L, S

Grammar:

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- L::=S
- L::=L,S

Grammar:
0. S'::= S \$

- $S::=(L)$
- $S::=x$
- L::= S
- L::=L,S

Grammar:
0. S'::= S \$

- $S::=(L)$
- $S::=x$
- L::= S
- L::=L,S

Grammar:
0. S'::= S \$

- $S::=(L)$
- $S::=x$
- L::=S
- L::=L,S

Grammar:
0. S'::= S \$

- $S::=(L)$
- $S::=x$
- L::= S
- L::=L,S

Grammar:
0. S'::= S \$

- $S::=(L)$
- $S::=x$
- L::= S
- L::=L,S

Grammar:
0. S'::= S \$

- $S::=(L)$
- $S::=x$
- L::= S
- L::=L,S

Grammar:
0. S'::= S \$

- $S::=(L)$
- $S::=x$
- L::= S
- L::=L,S

Grammar:
0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- L::=S
- L::=L,S

Grammar:
0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- L::=S
- L::= L, S

Grammar:
0. S' ::= S \$

- $S::=(L)$
- $S:=x$
- L::= S
- L::=L,S

Assigning numbers to states:
0. S' :: = S \$

- $S::=(L)$
- $S::=x$
- $\mathrm{L}::=\mathrm{S}$
- L::=L,S

Computing Parse table

- At every point in the parse, the LR parser table tells us what to do next according to the automaton state at the top of the stack
- shift
- reduce
- accept
- error

Computing Parse table

- State i contains X ::= s @ \$ ==> table $[i, \$]=$ a
- State i contains rule k: X ::= s @ ==> table[i,T] = rk for all terminals T
- Transition from i to j marked with $\mathrm{T}==>$ table $[\mathrm{i}, \mathrm{T}]=\mathrm{sj}$
- Transition from i to j marked with $X==>$ table $[i, X]=$ gj for all nonterminals X

states	Terminal seen next ID, NUM, $:=\ldots$	Non-terminals $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \ldots$
1	$\mathbf{s n}=$ shift \& goto state n	$\mathbf{g n}=$ goto state n
2	$\mathbf{r k}=$ reduce by rule k	
3	$\mathbf{a}=$ accept	
\ldots	$=$ error	
n		

The Parse Table

- Reducing by rule k is broken into two steps:
- current stack is: A 8 B 3 C 7 RHS 12
- rewrite the stack according to $X::=$ RHS: A 8 B 3 C 7 X
- figure out state on top of stack (ie: goto 13) A 8 B 3 C 7 X 13

states	Terminal seen next ID, NUM, $:=\ldots$	Non-terminals $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \ldots$
1		$\mathrm{gn}=$ goto state n
2	$\mathrm{sn}=$ shift \& goto state n	
3	$\mathrm{rk}=$ reduce by rule k	
\ldots	$\mathrm{a}=$ accept	
n	$=$ error	

0. $S^{\prime}::=S \$$

- $S::=(L)$
- $S::=x$
- L::= S
- L::=L,S

$$
1
$$

states	$($	$)$	x	,	$\$$	S	L
1							
2							
3							
4							
\ldots							

0. $S^{\prime}::=S \$$

- $S::=(L)$
- $S::=x$
- L::= S
- L::=L,S

$$
1
$$

states	$($	$)$	x	,	$\$$	S	L
1	s 3						
2							
3							
4							
\ldots							

0. $S^{\prime}::=S \$$

- $S::=(L)$
- $S::=x$
- L::= S
- L::=L,S

$$
1
$$

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2				
2							
3							
4							
\ldots							

0. $S^{\prime}::=S \$$

- $S::=(L)$
- $S::=x$
- L::= S
- L::=L,S

$$
1
$$

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			g 4	
2							
3							
4							
\ldots							

0. $S^{\prime}::=S \$$

- $S::=(L)$
- $S::=x$
- L::= S
- L::=L,S

$$
1
$$

states	$($	$)$	x	,	$\$$	S	L
1	s3		s2			$g 4$	
2	r2	r2	r2	r2	r2		
3							
4							
\ldots							

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- L::= S
- L::=L,S

$$
1
$$

states	$($	$)$	x	,	$\$$	S	L
1	s3		s2			$g 4$	
2	r2	r2	r2	r2	r2		
3	s3		s2				
4							
\ldots							

0. S' ::= S \$

- $S::=(L)$
- $S:=x$
- $\mathrm{L}::=\mathrm{S}$
- L::=L,S

$$
1
$$

states	$($	$)$	x	,	$\$$	S	L
1	s3		$s 2$			$g 4$	
2	r2	r2	r2	r2	r2		
3	s3		s2			$g 7$	$g 5$
4							
\ldots							

0. S' ::= S \$

- $S::=(L)$
- $S:=x$
- $\mathrm{L}::=\mathrm{S}$
- L::=L,S

$$
1
$$

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			g 4	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
\ldots							

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			$g 4$	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
5		s 6		s 8			
6	r 1	r 1	r 1	r 1	r 1		
7	r 3	r 3	r 3	r 3	r 3		
8	s 3		s 2			g 9	
9	r 4	r 4	r 4	r 4	r 4		

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- $L::=S$
- $L::=L, S$
input: $\quad(x, x) \$$
stack: 1

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			$g 4$	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
5		s 6		s 8			
6	r 1	r 1	r 1	r 1	r 1		
7	r 3	r 3	r 3	r 3	r 3		
8	s 3		s 2			g 9	
9	r 4	r 4	r 4	r 4	r 4		

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- $L::=S$
- $L::=L, S$
input: $\quad(x, x) \$$
stack: 1 (3

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			$g 4$	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
5		s 6		s 8			
6	r 1	r 1	r 1	r 1	r 1		
7	r 3	r 3	r 3	r 3	r 3		
8	s 3		s 2			g 9	
9	r 4	r 4	r 4	r 4	r 4		

0.. S' ::= S \$

- $S::=(L)$
- $S::=x$
- $L::=S$
- $L::=L, S$
input: $\quad(x, x) \$$
stack: $1(3 \times 2$

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			g 4	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
5		s 6		s 8			
6	r 1	r 1	r 1	r 1	r 1		
7	r 3	r 3	r 3	r 3	r 3		
8	s 3		s 2			g 9	
9	r 4	r 4	r 4	r 4	r 4		

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- $L::=S$
- $L::=L, S$
input: $\quad(x, x) \$$
stack: 1 (3 S

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			g 4	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
5		s 6		s 8			
6	r 1	r 1	r 1	r 1	r 1		
7	r 3	r 3	r 3	r 3	r 3		
8	s 3		s 2			g 9	
9	r 4	r 4	r 4	r 4	r 4		

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- $L::=S$
- $L::=L, S$
input: $\quad(x, x) \$$
stack: 1 (3 S 7

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			g 4	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
5		s 6		s 8			
6	r 1	r 1	r 1	r 1	r 1		
7	r 3	r 3	r 3	r 3	r 3		
8	s 3		s 2			g 9	
9	r 4	r 4	r 4	r 4	r 4		

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- $L::=S$
- $L::=L, S$
input: $\quad(x, x) \$$
stack: 1 (3 L

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			g 4	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
5		s 6		s 8			
6	r 1	r 1	r 1	r 1	r 1		
7	r 3	r 3	r 3	r 3	r 3		
8	s 3		s 2			g 9	
9	r 4	r 4	r 4	r 4	r 4		

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- $L::=S$
- $L::=L, S$
input: $\quad(x, x) \$$
stack: 1 (3 L 5

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			g 4	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
5		s 6		s 8			
6	r 1	r 1	r 1	r 1	r 1		
7	r 3	r 3	r 3	r 3	r 3		
8	s 3		s 2			g 9	
9	r 4	r 4	r 4	r 4	r 4		

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- $L::=S$
- $L::=L, S$
input: $\quad(x, x) \$$
stack: 1(3L5,8

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			g 4	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
5		s 6		s 8			
6	r 1	r 1	r 1	r 1	r 1		
7	r 3	r 3	r 3	r 3	r 3		
8	s 3		s 2			g 9	
9	r 4	r 4	r 4	r 4	r 4		

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- $L::=S$
- $L::=L, S$

yet to read

input: $\quad(x, x) \$$
stack: 1 ($3 \mathrm{~L} 5,8 \times 2$

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			g 4	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
5		s 6		s 8			
6	r 1	r 1	r 1	r 1	r 1		
7	r 3	r 3	r 3	r 3	r 3		
8	s 3		s 2			g 9	
9	r 4	r 4	r 4	r 4	r 4		

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- $L::=S$
- $L::=L, S$

yet to read

input: $\quad(x, x) \$$
stack: 1 (3L5, 8 S

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			g 4	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
5		s 6		s 8			
6	r 1	r 1	r 1	r 1	r 1		
7	r 3	r 3	r 3	r 3	r 3		
8	s 3		s 2			g 9	
9	r 4	r 4	r 4	r 4	r 4		

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- $L::=S$
- $L::=L, S$

yet to read

input: $\quad(x, x) \$$
stack: 1 (3L5, 8S9

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			g 4	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
5		s 6		s 8			
6	r 1	r 1	r 1	r 1	r 1		
7	r 3	r 3	r 3	r 3	r 3		
8	s 3		s 2			g 9	
9	r 4	r 4	r 4	r 4	r 4		

0. S' ::= S \$

- $S::=(L)$
- $S::=x$
- $L::=S$
- $L::=L, S$

yet to read

input: $\quad(x, x) \$$
stack: 1 (3 L

states	$($	$)$	x	,	$\$$	S	L
1	$s 3$		$s 2$			$g 4$	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5
4					a		
5		s 6		s 8			
6	r 1	r 1	r 1	r 1	r 1		
7	r 3	r 3	r 3	r 3	r 3		
8	s 3		s 2			g 9	
9	r 4	r 4	r 4	r 4	r 4		

0. $S^{\prime}::=S \$$

- $S::=(L)$
- $S::=x$
- L::=S
- L::= L, S

yet to read

input: $\quad(x, x) \$$
stack: 1 (3 L 5
etc

LR(0)

- Even though we are doing LR(0) parsing we are using some look ahead (there is a column for each non-terminal)
- however, we only use the terminal to figure out which state to go to next, not to decide whether to shift or reduce

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			g 4	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5

LR(0)

- Even though we are doing $\mathrm{LR}(0)$ parsing we are using some look ahead (there is a column for each non-terminal)
- however, we only use the terminal to figure out which state to go to next, not to decide whether to shift or reduce

states	$($	$)$	x	,	\$	S	L
1	s 3		s 2			g 4	
2	r 2	r 2	r 2	r 2	r 2		
3	s 3		s 2			g 7	g 5

$\sqrt{ }$ ignore next automaton state

states	no look-ahead	S	L
1	shift	g 4	
2	reduce 2		
3	shift	g 7	g 5

LR(0)

- Even though we are doing $\mathrm{LR}(0)$ parsing we are using some look ahead (there is a column for each non-terminal)
- however, we only use the terminal to figure out which state to go to next, not to decide whether to shift or reduce
- If the same row contains both shift and reduce, we will have a conflict ==> the grammar is not LR(0)
- Likewise if the same row contains reduce by two different rules

states	no look-ahead	S	L
1	shift, reduce 5	g 4	
2	reduce 2, reduce 7		
3	shift	g 7	g 5

SLR

- SLR (simple LR) is a variant of $\operatorname{LR}(0)$ that reduces the number of conflicts in $\operatorname{LR}(0)$ tables by using a tiny bit of look ahead
- To determine when to reduce, 1 symbol of look ahead is used.
- Only put reduce by rule (X ::= RHS) in column T if T is in Follow(X)

states	$($	$)$	x	,	$\$$	S	L
1	s 3		s 2			g 4	
2	r 2	s 5	r 2				
3	r 1		r 1	r 5	r 5	g 7	g 5

cuts down the number of rk slots \& therefore cuts down conflicts

LR(1) \& LALR

- $\operatorname{LR}(1)$ automata are identical to $\operatorname{LR}(0)$ except for the "items" that make up the states
- LR(0) items:
X ::= s1 . s2
- LR(1) items

X : := s1 . s2, T
look-ahead symbol added

- Idea: sequence s1 is on stack; input stream is s2 T
- Find closure with respect to $X::=s 1$. Y s2, T by adding all items $Y::=s 3, U$ when $Y::=s 3$ is a rule and U is in First(s2 T)
- Two states are different if they contain the same rules but the rules have different look-ahead symbols
- Leads to many states
- $\operatorname{LALR}(1)=\operatorname{LR}(1)$ where states that are identical aside from look-ahead symbols have been merged
- ML-Yacc \& most parser generators use LALR
- READ: Appel 3.3 (and also all of the rest of chapter 3)

Grammar Relationships

Unambiguous Grammars

Ambiguous Grammars

Summary

- LR parsing is more powerful than LL parsing, given the same look ahead
- to construct an LR parser, it is necessary to compute an LR parser table
- the LR parser table represents a finite automaton that walks over the parser stack
- ML-Yacc uses LALR, a compact variant of LR(1)

