
V2.0 7-1

1 Introduction
(10 minutes)

Database concurrency and recovery
are two inter-related subjects, both
being parts of the more general topic
of transaction processing.

Database systems typically provide
multi-user access to a shared
database. As such, concurrency
control is critical in ensuring that
concurrent operations are carried out
correctly and efficiently.

This session will discuss the importance of database concurrency, introduce some
of its basic ideas and describe various techniques and mechanisms used in the
implementation of this function.

Inform students that a handout containing a full set of visuals will be provided to
them at the end of this lecture.

1.1 Summary of Topics to be Covered

The topics detailed in the visual will
be discussed during this session.

Note: Throughout this session, in addition to the examples provided, further
examples and diagrams should be given to enable students to gain a
better understanding of the topic.

Session 7
Concurrency

V7. 1

Advanced Database
Management Systems

Session 7
Concurrency

V7. 2

Contents

Concurrency Problems
Solutions to Concurrency
Problems
Locking
Deadlock Problem

Session 7 � Concurrency Advanced Database Management Systems

7-2 V2.0

2 Concurrency Problems
(15 minutes)

There are three concurrency
problems, i.e. three types of
potential mistake which could occur
if concurrency control is not
properly enforced in the database
system.

 The lost update problem - This relates to a situation where two concurrent
transactions, say A and B, are allowed to update an uncommitted change on
the same data item, say x. The second update by transaction B replaces the
value of the first update by transaction A. Consequently, the updated value
of x by A is lost following the second update by B.

 The uncommitted dependency problem - This problem relates to a situation
where one transaction A is allowed to retrieve, or update, a data item which
has been updated by another transaction B but has not yet been committed by
B. Therefore, there is a risk that it may never be committed but be rolled
back instead. In that situation, transaction A will have used some data which
are now non-existent.

There are two cases in this category:

 Transaction A uses an uncommitted update by transaction B which is
subsequently undone.

 Transaction A updates an uncommitted change by B whose subsequent
rollback loses both of the previous updates.

 The inconsistent analysis problem - This problem relates to a situation where
transaction A uses an data item which is in an inconsistent state and as a
result carries out an inconsistent analysis.

V7. 3

Concurrency Problems
There are three concurrency problems:

The lost update -
Transaction A�s update is overwritten by the
subsequent update by transaction B
The uncommitted dependency -
Transaction A uses/updates an uncommitted update
by B which is rolled back subsequently
The inconsistent analysis -
Transaction A uses a data item in an �inconsistent�
state (caused by transaction B�s access)

Advanced Database Management Systems Session 7 � Concurrency

V2.0 7-3

3 Solutions to Concurrency Problems
(15 minutes)

Various solutions are available to
concurrency problems:

 Serialisation - One solution is
to adopt a policy which permits
serial execution of transactions
only, i.e. transaction A must
process a complete transaction
before B can start, or vice versa.

The downside of this solution is
the slow response time and long
CPU idle time.

 Concurrency control - Obviously some form of concurrency control
mechanism is necessary to enable transactions to run concurrently as far as
possible; but controlled in such a way that the effect is the same as if they
had been run serially.

 There are three mechanisms available:

 locking;
 optimistic scheduling;
 time stamping.

Locking is the most common mechanism of currency control, therefore is
concentrated on in greater detail in this session.

It is recommended, however, that an introduction to the basic principle and
technique of time stamping is given here.

4 Locking
(40 minutes)

 Ensure serialisability by locking
- The idea of locking is quite
simple: when a transaction
requires to know that a data
item will not change during the
course of processing, it acquires
a lock, which locks other
transactions out of the item,
preventing them changing it.
The first transaction knows that
the data item remains stable for
its duration.

V7. 4

Solutions to
Concurrency Problems

Serialisation
� Permit serial execution of transactions only

Concurrency control
� Allow concurrent execution of transactions,

in a controlled way
� Three mechanisms

locking
optimistic scheduling
time stamping

V7. 5

Locking
Ensure serialisability by locking

When a transaction requires to know that
some data will not change during the course
of processing, it acquires a lock to prevent
other transactions changing the data

Locking granularity
The size of item to be locked
The duration of which a lock is applied

Session 7 – Concurrency Advanced Database Management Systems

7-4 V2.0

 Locking granularity - The size of object to be locked is referred to as the
degree of granularity (locking granularity). It could be:

 the entire database;
 a disk block;
 a database relation;
 a tuple in a relation, or a field of a tuple.

The larger the data item, the lower is the degree of concurrency, the fewer the
number of locks to be set, and the lower the processing overhead.

The data item should be locked for the whole of the transaction, or to the
next synchronisation point.

4.1 Two Types of Lock

There are two types of lock
available:

 Exclusive locks (X locks, or
write locks):

– grant read/write access
to the transaction which
holds the lock;

– prevent any other trans-
actions reading or
writing the data.

 Shared locks (S locks, or read locks):

 give read-only access to the transaction which holds the lock;
 prevent any transaction writing the data;
 several transactions may hold a shared lock on an item.

4.2 Rules for Locking

 Compatibility Matrix - The
rules governing the X lock and
S lock can be summarised as
shown in the compatibility
matrix for locks in Visual V7.7.

V7. 6

Two Types of Lock
 Exclusive locks (X locks, or write locks)

– grant read/write access to the transaction which
holds the lock

– prevent any other transactions reading or writing
the data

 Shared locks (S locks, or read locks)
– give read-only access to the transaction which

holds the lock
– prevent any transaction writing the data
– several transactions may hold a shared lock on an

item

V7.7

Rules for Locking

Locking Protocol
–Get S lock before reading
–Get X lock before writing
–Wait if lock request is denied until its release

Compatibility Matrix

X

S
X N

N
N Y

Y
YY

Y
Y

S

-

-

A has

B request
Y: grant

N: wait

- : no lock

Advanced Database Management Systems Session 7 � Concurrency

V2.0 7-5

 Locking protocol:

 A transaction must acquire an S lock on the data item it wishes to
retrieve.

 A transaction must acquire an X lock on the data item it wishes to
update.

 If a lock request is denied, the transaction goes into wait state.

 A transaction in wait state resumes operation only when the lock
requested is released.

 X locks are held until Commit or Rollback, S locks are normally the
same.

Use examples to demonstrate to the students that the three concurrency problems
can be solved by applying the locking technique discussed. Date�s book contains
a discussion on this.

5 Deadlock Problem
(65 minutes)

Locking can be used to solve the three concurrency problems, but it can also
produce the problem of deadlock.

5.1 Definition of Deadlock

�A system is in a state of deadlock if there exists a set of transactions such that
every transaction in the set is waiting for another transaction in the set.�

In other words, �there exists a set of waiting transactions (T0, T1, T2....Tn) such
that T0 is waiting for a data item which is held by T1, T1 is waiting for a data item
held by T2 and Tn is waiting for a data item held by T0�.

Visual V7.8 gives an example of a
deadlock situation (Date).

V7. 8

Deadlock Problem
Definition:

�...every transaction in the set is waiting for
another transaction in the set�

Example:
Transaction A Transaction BTime

t1lock p1 Exclusive
- -

wait
wait wait

wait

-
- t2 lock p2 Exclusive

t3lock p2 Exclusive -
t4wait lock p1 Exclusive

Session 7 � Concurrency Advanced Database Management Systems

7-6 V2.0

5.2 Deadlock Handling

There are two main methods for dealing with the deadlock problem:

 Deadlock prevention - Use a
deadlock prevention protocol to
ensure that the system will
never enter a deadlock state.

 Deadlock detection and
recovery - Allow the system to
enter a deadlock state and then
attempt to recover from it using
a deadlock detection and
recovery scheme.

Both methods may result in transaction rollback. Both methods require
overheads.

The prevention method is commonly used if the probability of the system entering
a deadlock state is relatively high; otherwise, detection and recovery methods
should be used.

5.3 Deadlock Prevention

There are a number of different
schemes for deadlock prevention,
but the simplest scheme works on
the following protocol:

 Each transaction locks all its
required data items before it
begins execution.

 Either all are locked in one step,
or none are locked.

The disadvantages of this scheme are apparent:

 Low data utilisation - Many data items may be locked but unused for a long
period of time.

 Possible starvation - A transaction which requires a number of data items for
its operation may find itself in a indefinite wait state while at least one of the
data items is always locked by some other transaction.

V7. 9

Deadlock Handling
Two main methods for deadlock
handling:
� deadlock prevention
� deadlock detection and recovery
Both may result in rollback
Both cause overhead

V7. 10

Deadlock Prevention
A simple scheme
� each transaction locks all its data

items before it begins execution
� either all are locked in one step, or

none are locked
Disadvantages of this scheme
� low data utilisation
� possible starvation

Advanced Database Management Systems Session 7 � Concurrency

V2.0 7-7

5.4 Deadlock Detection and Recovery

 Basic idea - The state of the
system is examined periodically
to detect whether a deadlock has
occurred. If it has, the system
attempts to recover from the
deadlock.

 General Procedure:

 Keep information about the current allocation of data items to different
transactions, as well as any outstanding requests for data items.

 Invoke an algorithm which uses this information to determine whether
the system has entered a deadlock state.

 Recover from deadlock.

5.5 Deadlock Detection

5.5.1 Use Wait-for Graph

Deadlocks can be described by a directed graph called a wait-for graph.

 A wait-for graph consists of a pair G = (V,E) where V is a set of vertices and
E is a set of edges.

 The set of vertices consists of all transactions in the system.

 Each element in the set E of edges is an ordered pair (Ti, Tj).

 If (Ti, Tj) E, then there is a directed edge from transaction Ti to Tj,
implying that Ti is waiting for Tj to release a data item it requires.

V7. 11

Deadlock Detection and
Recovery

Basic Idea
� Periodically detect whether a deadlock

has occurred in the system
� If yes, try to recover from it

General Procedure

V7. 12

Deadlock Detection

Use wait-for graph
Detect a deadlock
Timing for detection

Session 7 � Concurrency Advanced Database Management Systems

7-8 V2.0

 When transaction Ti requests a data item currently being held by transaction
Tj, then the edge (Ti, Tj) is inserted in the wait-for graph. This edge is
removed only when transaction Tj is no longer holding a data item needed by
transaction Ti.

5.5.2 Detecting a Deadlock

 A deadlock exists in the system if and only if a cycle is found in the wait-for
graph. Each transaction involved in the cycle is then said to be deadlocked.

 To detect deadlocks, the system maintains the wait-for graph, and
periodically invokes an algorithm which searches for a cycle in the graph.

5.5.3 Timing for Detection

The question of when and how often the detection algorithm should be called into
action depends mainly on the following factors:

 the frequency of deadlock occurrences;

 the number of transactions which would likely be affected by the deadlock.

5.5.4 Examples

 The example given in Visual
V7.13 illustrates a wait-for
graph with no cycle:

� Transaction T8 is
waiting for transactions
T9 and T10.

� Transaction T10 is
waiting for transaction
T9.

� Transaction T9 is
waiting for transaction
T11.

It is clear that the system is not in a deadlock state, as no cycle is present in the
graph.

V7. 13

Wait-for Graph - No Cycle

T8

T9

T10

T11

Advanced Database Management Systems Session 7 � Concurrency

V2.0 7-9

Visual V7.14 gives an example of a
wait-for graph with cycle. If
transaction T11 is now requesting an
item held by T10, then the edge
(T11, T10) will be added to the wait-
for graph. As a result, the graph for
the new system state contains one
cycle:

It can be seen that T9 T11 T10
 T9 forms a cycle, implying that

transactions T9, T10, and T11 are all
deadlocked.

5.6 Deadlock Recovery

 After a detection algorithm has
identified a deadlock, the
system must try to recover from
it.

 The most common solution is to
roll back one or more
transactions so that the deadlock
can be broken.

 Bear in mind that data items
held by deadlocked transactions
will be unavailable to other
transactions until the deadlock
is broken.

Three issues need to be addressed in deadlock recovery:

 Issue of choosing a victim:

 Determine which transaction(s), among a set of deadlocked transactions,
to roll back to break the deadlock.

 Criteria for choosing a victim depends mainly on the cost factor: choose
one which will incur the minimum cost.

 The information which assists the calculation of costs includes:

 how long the transaction has computed, and how much longer the
transaction will compute before completing its job;

 how many data items the transaction has used, and how many more
are needed for the transaction to complete;

 how many transactions will be involved in the rollback.

V7.14

Wait-for Graph - With Cycle

T8

T9

T10

T11

V7. 15

Deadlock Recovery

Three issues:
Issue of choosing a victim
Issue of rollback operation
Issue of starvation

Session 7 � Concurrency Advanced Database Management Systems

7-10 V2.0

 Issue of rollback operation:

 Determine how far the chosen victim transaction should be rolled back.

 Simple solution: total rollback, i.e. abort the transaction and then restart
it.

 A more complex solution: roll back the transaction only as far as
necessary to break the deadlock.

 Issue of starvation:

 Some transaction may always be chosen as the victim due to cost factors
based selection. This may prevent it from ever completing its job.

 This can be avoided by adopting a simple policy that a transaction can be
chosen as a victim only a (small) finite number of times. The most
common solution is to include the number of rollbacks in the cost factor.

6 Summary
(5 minutes)

Concurrency control in a multi-user
database environment is an essential
function performed by the
underlying database management
system. This session has discussed
the topic, introduced its concept,
principles and some of the basic and
important techniques used for
database concurrency control. The
key points are as follows:

 Importance of database concurrency.
 Three types of concurrency problem.
 Solutions to concurrency problems.
 Locking mechanism for concurrency control.
 Deadlock handling: its cause, prevention, detection and recovery.
 Rôle of the wait-for diagram in deadlock detection.

V7. 16
Summary

Importance of database concurrency
Three types of concurrency problem
Solutions to concurrency problems
Locking mechanism for concurrency
control
Deadlock handling: its cause, prevention,
detection and recovery
Rôle of the wait-for diagram in deadlock
detection

