
V2.0 8-1

1 Introduction
(10 minutes)

Query optimisation is an important
component of a modern relational
database system. When processing
user queries, the query optimiser
transforms them into a set of low
level operations, and decides in
what order these operations are to
be executed in the most efficient
way.

In a non-relational database system, any optimisation has to be carried out
manually. Relational database systems, however, offer a system-managed
optimisation facility by making use of the wealth of statistical information
available to the system. The overall objective of a query optimiser is to improve
the efficiency and performance of a relational database system.

Inform students that a handout containing a full set of visuals will be provided to
them at the end of this lecture.

1.1 Summary of Topics to be Covered

The topics detailed in the visual will
be discussed during this session.

Session 8
Query Optimisation

V8. 1

Advanced Database
Management Systems

Session 8
Query Optimisation

V8. 2

Contents
The Need for Query Optimisation
Effects of Optimisation - An
Example
Four Stages of Optimisation
Transformation Rules
Database Statistics

Session 8 � Query Optimisation Advanced Database Management Systems

8-2 V2.0

2 The Need for Query Optimisation
(10 minutes)

 Description

A query optimiser is essentially
a program which is used for the
efficient evaluation of relational
queries, making use of relevant
statistic information.

 Objective

The main objective of query
optimisation is to choose the
most efficient strategy for
implementing a given relational
query, and thereby improve on
the system performance.

 Need

 To perform automatic navigation

A database system based on either the hierarchical model or network
model requires users to navigate across the database to locate and
retrieve the desired data. A relational database system, however, allows
users simply to state what data they require and leave the system to
locate that data in the database.

 To achieve acceptable performance

Although there are many different ways available to perform a single
user query, this automatic navigation can be optimised by choosing and
executing the most efficient plan, selected on the basis of system
statistical information. By executing queries in the most cost-effective
way, the overall system performance can be improved /enhanced.

 To minimise existing discrepancies

The speed discrepancy between CPU and I/O devices is still enormous
despite rapid recent advances in computer technology. As an I/O access
is one of the most costly and frequently performed operations in a typical
database system, it is the main aim of the query optimiser to minimise
the I/O activities by choosing the cheapest query plan for a given query,
usually the one with a minimum number of tuple I/O operations.

V8. 3

Description
� A program for efficient evaluation of relational

queries, making use of relevant statistic information
Objective
� Choose the most efficient strategy for implementing

a given relational query, thereby improve system
performance

Need
� Perform automatic navigation
� Achieve acceptable performance
� Minimise existing discrepancies

The Need for Query
Optimisation

Advanced Database Management Systems Session 8 � Query Optimisation

V2.0 8-3

3 Effects of Optimisation - An Example
(30 minutes)

In order to appreciate the effects of
query optimisation on database
performance, we use a simple
example as an illustration.

Consider the following 3 tables:
Student, Lending and Book. The
attributes highlighted are the keys
for the relevant relations shown in
Visual V8.4.

Issue Handout 8.1 which shows the example given here.

Consider the following query:

Retrieve the names of
students who have
borrowed the book B1.

This query can be expressed in SQL
as shown in Visual V8.5.

We further make the following two
assumptions:

 The database contains 100 students and 10,000 lendings, of which only 50
are for book B1.

 It is possible to hold up to 50 tuples in memory, without having to write back
to disk.

3.1 Query Execution Plan A - No Optimisation

In this first approach, the operations
required by the query are performed
in the sequence:

Join-Select-Project

We calculate the number of database
accesses (tuple I/O operations)
occurred in each operation.

V8.4

Student = (Stud_No, Stud_Name, Gender, Address)

Lending = (Lending_No, Stud_No, Book_No)

Book = (Book_No, Title, Author, Edition)

Effects of Optimisation - 1

V8. 5

Effects of Optimisation - 2
Query: Retrieve the names of students who have borrowed the

book B1

Select Distinct Student.Stud_Name
From Student, Lending
Where Student.Stud_No = Lending.Stud_No
And Lending.Book_No = 'B1'

� Suppose the database contains 100 students and 10,000
lendings, of which only 50 are for book B1

� Assume that results of up to 50 tuples can be kept in memory

V8. 6

Query Execution Plan A - No
Optimisation

Join-Select-Project
1.Join relations Student and Lending over

Stud_No
2.Select the result of Step 1 for just the tuples for

book B1
3.Project the result of Step 2 over Stud_Name to

get result (50 max)
Total tuple I/O: 1,020,000

Session 8 � Query Optimisation Advanced Database Management Systems

8-4 V2.0

1. Join relations Student and Lending over Stud_no.

 For each Student row, every Lending row will be retrieved and tested
(reading each of the 100 Student rows 10,000 times);

 Every Lending row will match with one Student row, so the number of
joined rows in this intermediate relation is 10,000. These have to
written back to disk (only 50 tuples can be held in memory - see
assumptions).

So, the number of tuple I/Os occurred in this step is:

(100*10,000) + 10,000 = 1,010,000

2. Select the result of Step 1 for just the tuples for book B1.

 This results reading the 10,000 joined tuples (obtained in step 1) back
into memory.

 Then Select produces a relation containing only 50 tuples, which can be
kept in memory (see assumption).

The number of tuple I/Os in this step is:

10,000 + 0 = 10,000

3. Project the result of Step 2 over Stud_Name to get result (50 max).

 This results in reading a relation of 50 tuples (obtained in step 2) which
is already in memory, and producing a final relation of no more than 50
tuples, again in memory.

The number of tuple I/O in this step is:

0 + 0 = 0

Therefore, the total number of tuple I/Os for query plan A is:

(1,010,000 + 10,000).

Total tuple I/O: 1,020,000

Advanced Database Management Systems Session 8 � Query Optimisation

V2.0 8-5

3.2 Query Execution Plan B - With Optimisation

In this approach, the sequence of the
operations has been changed to the
following:

Select-Join-Project

1. Select the relation Lending for
just the tuples for Book B1.

 This results in reading
10,000 tuples of Lending
relation, but only generates a
relation with 50 tuples,
which will be kept in
memory (see assumption).

The number of tuple I/Os: 10,000 + 0 = 10,000

2. Join the result of Step 1 with relation Student over Stud_No.

 This results in reading 100 tuples of Student relation, and joining them
with the relation obtained in step 1 which is already in memory. This
join produces a relation of 50 tuples, which again will be kept in
memory.

The number of tuple I/Os: 100 + 0 = 100

3. Project the result of Step 2 over Stud_Name.

 Same as step 3 of Query Plan A.

Therefore, the total number of tuple I/Os for query plan B is (10,000 + 100)

Total tuple I/O: 10,100

3.3 Comparison of A and B

Ratio (Plan A to Plan B): 1,020,000 / 10,100 (102 / 1)

V8. 7

Query Execution Plan B -
With Optimisation

Select-Join-Project

1. Select the relation Lending to just the tuples
for Book B1

2. Join the result of Step 1 to relation Student
over Stud_No

3. Project the result of Step 2 over Stud_Name
Total tuple I/O: 10,100

Session 8 � Query Optimisation Advanced Database Management Systems

8-6 V2.0

Although plan A and plan B will
produce the same end result for the
given query, the order in which the
required relational operations are
executed is different. It is obvious
that plan B requires far fewer tuple
I/O accesses than plan A, and
therefore is far more efficient in
terms of performance.

If, furthermore, use was made in Plan B of an index on Book-No for the Lending
relation, the number of tuples read in Step 1 would be further reduced from
10,000 to just 50. Similarly, an index on Student.Stud-No would reduce
retrievals in Step 2 to only 50 tuples.

One or more similar examples should be shown to the students to demonstrate
how tuple I/Os should be calculated and used as a parameter in the comparison
of different query execution plans.

4 Four Stages of Optimisation Process
(20 minutes)

Having considered the above
example, now we describe the query
optimisation in a more systematic
way.

The whole optimisation process
generally involves 4 stages (Date):

1. Convert the query into a more suitable internal form.

First, the original query is converted into some internal representation which
is more suitable for machine manipulation.

The typical forms used for this representation are:

 query tree;
 relational algebra.

V8. 8

Comparison A vs B

Ratio (Plan A to Plan B):
1,020,000 / 10,100 (102 / 1)

Tuple I/Os can be further reduced
by using indexes

V8. 9

Four Stages of
Optimisation - 1

1. Convert query into internal form
suitable for machine manipulation -
e.g. Query tree, Relational algebra

2. Further convert internal form into
equivalent and more efficient canonical
form, using well-defined transformation
rules (laws)

Advanced Database Management Systems Session 8 � Query Optimisation

V2.0 8-7

2. Convert to a more efficient canonical form.

This internal representation is further converted into some equivalent
canonical form which is more efficient, making use of well-defined
transformation rules (see Visuals V8.11 and V8.12).

3. Choose low-level procedures.

Having completed steps 1 and
2, the query optimiser must now
decide how to evaluate the
transformed query.

The basic principle here is to
consider the transformed query
representation as specifying a
series of low-level operations,
using statistical information
about the database.

The main results produced in this stage are:

 a set of low-level operations (for example, join, restriction, etc.);
 a set of implementation procedures (one for each low-level operation);
 a set of cost formulae (one for each procedure).

4. Generate query plans and choose the best.

In this stage, a set of candidate query plans are generated by combining
together the set of candidate implementation procedures. A final decision is
made to choose the best (cheapest) of those plans by evaluating the cost
formulae.

5 Transformation Rules
(35 minutes)

Issue Handout 8.2 which details the
rules given below.

V8. 10

Four Stages of
Optimisation - 2

3. Choose set of candidate low-level
procedures, using statistics about the
database

� Low-level operation
� Implementation procedure
� Cost formula

4. Generate query plans and choose the
best (cheapest) plan by evaluating the
cost formulae

V8.11

Transformation Rules - 1
Rule 1

(A where Restrict-1) where Restrict-2
 A (where Restrict-1 AND Restrict-2)

Rule 2
A ([Project]) where Restrict

 (A where Restrict) [Project]
Rule 3

(A [Project-1]) [Project-2] A [Project-2]
Rule 4

 (A Join B) where Restrict-on-A AND Restrict-on-B
 (A where Restrict-on-A) Join (B where Restrict-on-B)

Session 8 � Query Optimisation Advanced Database Management Systems

8-8 V2.0

 Rule 1
Transform a sequence of restrictions against a given relation into a single
(ANDed) restriction.

(A where Restrict-1) where Restrict-2
 A (where Restrict-1 AND Restrict-2)

 Rule 2
Transform a restriction of a projection into a projection of a restriction.

A ([Project]) where Restrict
(A where Restrict) [Project]

 Rule 3
Transform a sequence of projections against a given relation into a single (the
last) projection.

(A [Project-1]) [project-2] A [Project-2]

 Rule 4
Distributivity (for restrictions and projections).

(A Join B) where Restrict-on-A AND Restrict-on-B
 (A where Restrict-on-A) Join (B where Restrict-on-B)

 Rule 5
Distributivity (for logical
expressions).

where p OR (q AND r)
 where (p OR q) AND (p OR r)

 Rule 6
Choose an optimal ordering of
the joins to keep the
intermediate results low in size.

(A Join B) Join C A Join (B Join C)

 Rule 7
Perform projections as early as possible.

 Rule 8
Perform restrictions as early as possible.

V8.12

Transformation Rules - 2
Rule 5

where p OR (q AND r)
 where (p OR q) AND (p OR r)

Rule 6
(A Join B) Join C A Join (B Join C)

Rule 7
Perform projections as early as possible

Rule 8
Perform restrictions as early as possible

Advanced Database Management Systems Session 8 � Query Optimisation

V2.0 8-9

5.1 Some General Principles

Some general guidelines can be drawn from the above rules. These include:

 Avoid having to build Cartesian products.

 Perform selects and projects before joins if possible to reduce the number of
rows which have to be joined.

 Use indexes for selects and joins where appropriate.

At this point, various examples should be shown to the students to illustrate the
use of the above rules

6 Database Statistics
(10 minutes)

Various decisions which have to be
made in the optimisation process are
based upon the database statistics
stored in the system, often in the
form of a system catalogue or a data
dictionary.

Typical statistics maintained by the
system include:

 For each base relation, for example:

 cardinality of the relation;
 number of pages for this relation.

 For each column of each base relation, for example:

 number of distinct values in this column;
 maximum, minimum, and average value for this column;
 actual values in this column and their frequencies (a histogram).

 For each index, for example:

 whether this is a clustering index;
 number of leaf pages in this index;
 number of levels in this index.

V8. 13

Database Statistics
System catalogue, or data dictionary
Typical statistics maintained by it include:

For each base table
� cardinality
� number of pages for this table

For each column of each base table
� maximum, minimum, and average value
� actual values and their frequencies

For each index
� whether a �clustering index�
� number of leaf pages
� number of levels

Session 8 � Query Optimisation Advanced Database Management Systems

8-10 V2.0

7 Summary
(5 minutes)

The following key points should be
emphasised for this topic:

 Objective - The importance of
query optimisation in terms of
minimising I/O operations,
speeding up query execution and
improving the efficiency and
performance of a relational
database system.

 Effects:
The dramatic effects of optimisation illustrated by the example. Students
should be able to compare different query executing plans by calculating the
number of tuple I/Os for each plan, as shown in the example.

 Processes:
The main tasks involved in each of the four stages of optimisation.

 Information needed:
The critical rôle of database statistics in the form of a system catalogue or
data dictionary.

V8. 14
Summary

Key points
Objective:
� Reduce I/Os and improve performance
Effects:
� With and without optimisation
Processes:
� Four stages
 Information needed:
� Database statistics

Advanced Database Management Systems Session 8 � Query Optimisation

V2.0 8-11

Handout 8.1 - Effects of Optimisation - An Example

Query

In order to appreciate the effects of query optimisation on database performance, we use a
simple example as an illustration.

Consider the following 3 tables: Student, Lending & Book. The attributes highlighted are
the keys for the relevant relations:

Student = (Stud_No, Stud_Name, Gender, Address)
Lending = (Lending_No, Stud_No, Book_No)
Book = (Book_No, Title, Author, Edition)

Consider the following query:

Retrieve the names of students who have borrowed the book B1.

This query can be expressed in SQL:

Select Distinct Student.Stud_Name
From Student, Lending
Where Student.Stud_No = Lending.Stud_No
And Lending.Book_No = 'B1'

We further make the following two assumptions:

 The database contains 100 students and 10,000 lendings, of which only 50
are for book B1.

 It is possible to hold up to 50 tuples in memory, without having to write back
to disk.

Session 8 � Query Optimisation Advanced Database Management Systems

8-12 V2.0

Query Execution Plan A - No Optimisation

In this first approach, the operations required by the query are performed in the sequence:

Join-Select-Project

We calculate the number of database accesses (tuple I/O operations) occurred in each
operation.

1. Join relations Student and Lending over Stud_no.

 For each Student row, every Lending row will be retrieved and tested
(reading each of the 100 Student rows 10,000 times);

 Every Lending row will match with one Student row, so the number of
joined rows in this intermediate relation is 10,000. These have to
written back to disk (only 50 tuples can be held in memory - see
assumptions).

So, the number of tuple I/Os occurred in this step is:

(100*10,000) + 10,000 = 1,010,000

2. Select the result of Step 1 for just the tuples for book B1.

 This results reading the 10,000 joined tuples (obtained in step 1) back
into memory.

 Then Select produces a relation containing only 50 tuples, which can be
kept in memory (see assumption).

The number of tuple I/Os in this step is:

10,000 + 0 = 10,000

3. Project the result of Step 2 over Stud_Name to get result (50 max).

 This results in reading a relation of 50 tuples (obtained in step 2) which
is already in memory, and producing a final relation of no more than 50
tuples, again in memory.

The number of tuple I/O in this step is:

0 + 0 = 0

Therefore, the total number of tuple I/Os for query plan A is:

(1,010,000 + 10,000).

Total tuple I/O: 1,020,000

Advanced Database Management Systems Session 8 � Query Optimisation

V2.0 8-13

Query Execution Plan B - With Optimisation

In this approach, the sequence of the operations has been changed to the following:

Select-Join-Project

1. Select the relation Lending for just the tuples for Book B1.

 This results in reading 10,000 tuples of Lending relation, but only
generates a relation with 50 tuples, which will be kept in memory (see
assumption).

The number of tuple I/Os: 10,000 + 0 = 10,000

2. Join the result of Step 1 with relation Student over Stud_No.

 This results in reading 100 tuples of Student relation, and joining them
with the relation obtained in step 1 which is already in memory. This
join produces a relation of 50 tuples, which again will be kept in
memory.

The number of tuple I/Os: 100 + 0 = 100

3. Project the result of Step 2 over Stud_Name.

 Same as step 3 of Query Plan A.

Therefore, the total number of tuple I/Os for query plan B is (10,000 + 100)

Total tuple I/O: 10,100

Session 8 � Query Optimisation Advanced Database Management Systems

8-14 V2.0

Advanced Database Management Systems Session 8 � Query Optimisation

V2.0 8-15

Handout 8.2 - Transformation Rules

 Rule 1
Transform a sequence of restrictions against a given relation into a single (ANDed)
restriction.

(A where Restrict-1) where Restrict-2
 A (where Restrict-1 AND Restrict-2)

 Rule 2
Transform a restriction of a projection into a projection of a restriction.

A ([Project]) where Restrict
(A where Restrict) [Project]

 Rule 3
Transform a sequence of projections against a given relation into a single (the
last) projection.

(A [Project-1]) [project-2] A [Project-2]
 Rule 4

Distributivity (for restrictions and projections).

(A Join B) where Restrict-on-A AND Restrict-on-B
(A where Restrict-on-A) Join (B where Restrict-on-B)

 Rule 5
Distributivity (for logical expressions).

where p OR (q AND r)
where (p OR q) AND (p OR r)

 Rule 6
Choose an optimal ordering of the joins to keep the intermediate results low in size.

(A Join B) Join C A Join (B Join C)
 Rule 7

Perform projections as early as possible.

 Rule 8
Perform restrictions as early as possible.

