
V2.0 10-1

Session 10
Distributed Databases

1 Introduction
 (5 minutes)

This is a very broad topic and it will only be
possible in this session to present some of the
fundamental ideas and concepts.

Distributed databases (DDBs) bring many
potential advantages but due to their size and
complexity there can be severe problems with this
technology.

Inform students that a handout containing a full
set of visuals will be provided to them at the end
of this lecture.

1.1 Summary of Topics to be Covered

The topics detailed in the visual will be discussed
during this session.

V10. 1

V10. 2

Advanced Database
Management

Systems

Session 10
Distributed Databases

Advanced Database
Management

Systems

Session 10
Distributed Databases

Contents
Distributed Databases - A
Definition
Advantages of DDBs
Difficulties with DDBs
Components of a DDB
Homogeneous or
Heterogeneous DDBs
Replication
Transparency in Distributed
Systems
Fragmentation
Query Processing in
Distributed Systems

Contents
Distributed Databases - A
Definition
Advantages of DDBs
Difficulties with DDBs
Components of a DDB
Homogeneous or
Heterogeneous DDBs
Replication
Transparency in Distributed
Systems
Fragmentation
Query Processing in
Distributed Systems

Session 10 - Distributed Databases Advanced Database Management Systems

10-2 2.0

2 Distributed Databases - A Definition
(5 minutes)

�A distributed database is a collection of multiple, logically interrelated
databases which are physically distributed over a computer network.�

In visual V10.3, the words logically interrelated
are highlighted to emphasise the fact that it only
makes sense to group together data in a
distributed fashion if there is some relationship
between them.

The words physically distributed are highlighted
to emphasise the fact that two or more separate
sites is usual. This will of course have advantages
and disadvantages.

The words computer network are highlighted to
emphasise the fact that obviously some type of
network technology will have to be utilised in this
area. Again there will be advantages and
disadvantages to this.

�A distributed database management system is defined as the software system
that permits the management of the DDBs and makes the distribution transparent
to the users.�

This is simply to clarify that even in the distributed environment a DBMS is
necessary for management purposes. It shares many of the aspects of a
centralised DBMS, but has to have additional facilities such as making the use of
the DDB transparent to the users.

V10. 3

Distributed
Databases

A distributed database is
defined as "a collection of
multiple, logically interrelated
databases which are physically
distributed over a computer
network"

A distributed database
management system is defined
as "the software system that
permits the management of the
DDBs and makes the
distribution transparent to the
users"

Distributed
Databases

A distributed database is
defined as "a collection of
multiple, logically interrelated
databases which are physically
distributed over a computer
network"

A distributed database
management system is defined
as "the software system that
permits the management of the
DDBs and makes the
distribution transparent to the
users"

Advanced Database Management Systems Session 10 - Distributed Databases

V2.0 10-3

3 Advantages of DDBs
(10 minutes)

From Ceri & Pelagatti:

 Distributed nature of some database
applications: Many database applications are
naturally distributed over some different
locations. For example, a company may have
locations in different cities.

 Increased reliability and availability: These are
two of the most common potential advantages
cited for DDBs. Reliability is broadly defined as
the probability that a system is up at a particular
moment in time, whereas availability is the
probability that the system is continuously
available during a time interval. In a distributed
environment, one site may fail while other sites
continue in operation - this improves both
reliability and availability.

 Optimised use of resources: Load sharing has commonly been quoted as a
major advantage of resource-sharing computer networks. DDBs with
replicated data offer the opportunity for sharing the immediate processing
load across a number of sites.

 Interconnection of existing databases: DDBs are the natural solution when
several databases already exist in an organisation and the necessity of
performing global applications arises. In this case, the distributed database is
created bottom-up from the pre-existing local databases.

 Improved performance: By distributing a large database over multiple sites,
smaller databases will exist at each site. Local queries and transactions
accessing data at a single site will potentially demonstrate better performance
because of having to process smaller local databases.

 Flexibility/Deployability: Implementation timescales often can be minimised
by installing computer systems in parallel rather than having to rely on the
implementation of one or two large-scale computer centres.

V10. 4

Advantages of
DDBs

Distributed nature of
some database
applications
Increased reliability and
availability
Optimised use of
resources
Interconnection of
existing databases
Improved performance
Flexibility

Source: Ceri & Pelagatti

Advantages of
DDBs

Distributed nature of
some database
applications
Increased reliability and
availability
Optimised use of
resources
Interconnection of
existing databases
Improved performance
Flexibility

Source: Ceri & Pelagatti

Session 10 - Distributed Databases Advanced Database Management Systems

10-4 2.0

4 Difficulties with DDBs
(10 minutes)

From Ceri & Pelagatti:

 Access control: This is more difficult to
implement because of the necessity of deciding
where to locate the control mechanism. The
vulnerability of dispersed data may become an
issue and it may be necessary to locate access
control with each distributed component which
may be costly.

 Query decomposition and optimisation: Users
may often express access requests which require
the synthesis of data which has been retrieved
from many local DBMSs. Because of the
communication costs in assembling data from
many remote sites the aim of a distributed
DBMS should be to minimise these internode
accesses.

 Consistency and synchronisation: Because of the inherent nature of
communication networks it is important that it can be asserted that
transactions cause consistent updates when dealing with multiple node
accesses for example. Means have to be found of synchronising the accesses
and of detecting when inconsistency may result.

 Integrity: An integral part of a DBMS�s objective is the ability to have
continuous operation. This implies provisions for the recovery of data and
the restart of operations. In a distributed environment the task becomes more
difficult when applied to a partitioned, non-redundant distribution and when
considered in conjunction with the synchronisation issue.

 Performance: If the implemented system cannot perform efficiently enough
to meet response requirements, the service goals are not met and the system
fails. There is always the risk that the communication overhead incurred in
the interests of system integration and control will degrade performance
sufficiently for the user to question the responsiveness of the system as a
whole.

V10. 5

Difficulties with
DDBs

Access control

Query decomposition
and optimisation

Consistency and
synchronisation

Integrity

Performance

Source: Ceri & Pelagatti

Difficulties with
DDBs

Access control

Query decomposition
and optimisation

Consistency and
synchronisation

Integrity

Performance

Source: Ceri & Pelagatti

Advanced Database Management Systems Session 10 - Distributed Databases

V2.0 10-5

5 Components of a DDB
(15 minutes)

The local data processor software is responsible
for local data management at a site, much like
centralised DBMS software.

The data dictionary holds information on sites,
fragments and replicated copies.

The remote data processor software is responsible
for most of the distribution functions; it accesses
data distribution information from the data
dictionary and is responsible for processing all
requests that require access to more than one site.
An important function of the RDP is to hide the
details of data distribution from the user - this
point will be detailed later.

The network processor provides the communication primitives that are used by
the RDP to transmit commands and data among the various sites as needed.

5.1 Centralised Schematic View

The ANSI/SPARC Study Group defined a three-level architecture for database
systems. The architecture is useful since we require a framework on which we
can discuss architectural issues for databases.

The external schema describes the database view
of one group of database users. Each view
typically describes the part of the database that a
particular user group is interested in and hides the
rest of the database from that user group.

The conceptual schema is a global description of
the database that hides the details of physical
storage structures and concentrates on describing
entities, data types, relationships and constraints.

The internal schema describes the physical
storage structure of the database.

This centralised schematic view is mentioned here
purely to contrast with the distributed schematic
view.

V10. 6

V10. 7

Components of a
DDB

Remote
data

processor
Data

dictionary
Local data
processor

Network processor

Remote
data

processor
Data

dictionary
Local data
processor

Network
processor

Remote data
processor

Local data
processor

Data
dictionary

Site C

DDBMS

Site B DDBMS

Site A

DDBMS

Network
processor

Components of a
DDB

Remote
data

processor
Data

dictionary
Local data
processor

Network processor

Remote
data

processor
Data

dictionary
Local data
processor

Network
processor

Remote data
processor

Local data
processor

Data
dictionary

Site C

DDBMS

Site B DDBMS

Site A

DDBMS

Network
processor

Centralised
Schematic View

Conceptual
Schema

External
Schema

User

Internal
Schema

Centralised
Schematic View

Conceptual
Schema

External
Schema

User

Internal
Schema

Session 10 - Distributed Databases Advanced Database Management Systems

10-6 2.0

5.2 Distributed Schematic View

From Ceri & Pelagatti:

The global schema defines all the data which are
contained in the distributed database as if the
database were not distributed at all. So, at the top
level the distributed database acts conceptually as
a single centralised database, and the global
conceptual schema, therefore, represents to the
end user a unified view of data for the complete
distributed system. This schema description is the
union of each local external schema description.
A class of end users can be envisaged which
interact with this global data model through a
global schema. External schemas use subsets of
conceptual schemas and a global external schema
is, therefore, a particular global user of the global
conceptual schema. Note that in a non-distributed
database, external schemas use subsets of the
conceptual schema whilst in the distributed
environment local external schemas describe
subsets of the global conceptual schema. Thus
these mappings are in opposite directions.

6 Homogeneous or Heterogeneous DDBs
(10 minutes)

From Draffon & Poole:

An important property of DDBs is whether they are
homogeneous or heterogeneous. Homogeneity and
heterogeneity can be considered at different levels in a
distributed database: the hardware, the operating
system, and the local DBMSs.

However, the important distinction for us is at the
level of local DBMSs, because differences at
lower levels are managed by the communication
software.

Therefore, in the following, the term homogeneous DDB refers to a DB with the
same DBMS at each site, even if the computers and/or the operating systems are
not the same. Note that this situation is not uncommon, because the same vendor
often provides the same DBMS on several computers and because software
houses produce DBMSs which run on different computers of different vendors.

V10. 8

V10. 9

Distributed
Schematic View

Global
user (1)

Global
external
schema (2)

Global
external
schema (1)

Local
user (1)

Replication
schema

Fragmen-
tation

schema

Global
conceptual

schema

Allocation
schema

Local ext.
schema (1)

Local
user (2)

Local conc.
schema (1)

Local int.
schema (1)

Local ext.
schema (2)

Local conc.
schema (2)

Local int.
schema (2)

Global
user (2)

Distributed
Schematic View

Global
user (1)

Global
external
schema (2)

Global
external
schema (1)

Local
user (1)

Replication
schema

Fragmen-
tation

schema

Global
conceptual

schema

Allocation
schema

Local ext.
schema (1)

Local
user (2)

Local conc.
schema (1)

Local int.
schema (1)

Local ext.
schema (2)

Local conc.
schema (2)

Local int.
schema (2)

Global
user (2)

Homogeneous or
Heterogeneous

DDBs?
At the level of local DBMSs:

�Homogeneous DDB�
refers to a DB with the
same DBMS at each site

�Heterogeneous DDB�
refers to a DB with at least
two different DBMSs at
each site

Homogeneous or
Heterogeneous

DDBs?
At the level of local DBMSs:

�Homogeneous DDB�
refers to a DB with the
same DBMS at each site

�Heterogeneous DDB�
refers to a DB with at least
two different DBMSs at
each site

Advanced Database Management Systems Session 10 - Distributed Databases

V2.0 10-7

A heterogeneous DDB uses instead at least two different DBMSs. Heterogeneous
DDBs add the problem of translating between the different data models of the
different local DBMSs to the complexity of homogeneous systems. For this
reason, if the development of a distributed database is performed top-down
without a pre-existing system, it is convenient to develop a homogeneous system.
However, in some cases the motivation for creating a distributed database is the
necessity of integrating several pre-existing databases; in which case it is
necessary to develop a heterogeneous DDB, capable of building a global view of
the database.

7 Replication
(15 minutes)

Among the desirable properties of DDBs is the ability to have a local repository
of frequently used data, while still being able to access data stored at other
network sites.

Replicated database - is a distributed database
where stored data is duplicated at various sites.

Fully replicated database - a replicated database
where all occurrences are allocated to all sites.

Replication has a different effect on read-only and
update applications. Read-only applications take
advantage of replication, because it is more likely
that they can reference data locally.

For update applications replication is not
convenient since they must update all copies in
order to preserve consistency.

Replicated data enhances locality of reference by satisfying more read requests
locally. This reduces the response time for a request and reduces traffic on the
communication network. Furthermore, replicated data provides grater reliability
through backup copies from which data can be recovered in the event of media
failures.

V10. 10

Replication

Stored data is
duplicated at various
sites

Full replication occurs
when all occurrences
are allocated to all sites

Has a different effect on
read-only and update
operations

Replication

Stored data is
duplicated at various
sites

Full replication occurs
when all occurrences
are allocated to all sites

Has a different effect on
read-only and update
operations

Session 10 - Distributed Databases Advanced Database Management Systems

10-8 2.0

7.1 Replication - Update Strategies

From Ozsu & Valduriez:

Unanimous Agreement Update Strategy - So far,
only read requests have been discussed. It is with
write requests that having replicas becomes
expensive. Most proposals about replicated data
have as their goal the presentation to the end user
of a single copy image of data. One of the easiest
designs to reflect a single copy image of
replicated files is to propagate updates to all
replicas immediately. Unanimous acceptance of
the proposed update by all sites having replicas is
necessary in order to make a modification, and all
of those sites must be available for this to happen.
Updates are refused unless they have unanimous
acceptance.

Single Primary Update Strategy - Many solutions differ from the above and
attempt to improve the success of an update taking place.

The first such solution is to designate one replica as primary and the remaining
replicas as secondaries. Update requests are issued to the primary replica, which
serves to serialise updates and thereby preserve data consistency. Under this
scheme, the secondaries diverge temporarily from the primary. After having
performed the update, the primary will broadcast it to all the secondaries at some
later time. There are different proposals for this broadcast, some proposals call
for the update requests to be sent to the secondaries immediately; others package
updates and broadcast them at the end of the transaction. Still others broadcast
updates at only specified intervals - once an hour, overnight, etc.

8 Transparency in Distributed Systems
(10 minutes)

From Ceri & Pelagatti:

An important aspect of a distributed environment
is to hide the details of data distribution from the
user.

Distribution Transparency: the user should write
global queries and transactions as though the
database were centralised, without having to
specify the sites at which the data referenced in
the query or transaction resides. This property is
called distribution transparency.

V10. 11

V10. 12

Replication
Update Strategies

Unanimous Agreement
Update Strategy
� updates refused unless

they have unanimous
acceptance

Single Primary Update
Strategy
� update requests issued

to primary replica, which
serialises all updates

Replication
Update Strategies

Unanimous Agreement
Update Strategy
� updates refused unless

they have unanimous
acceptance

Single Primary Update
Strategy
� update requests issued

to primary replica, which
serialises all updates

Transparency in
Distributed

Systems
Important to hide the
details of data
distribution from the
user

Types of transparency:
� Distribution
� Replication
� Fragmentation

Transparency in
Distributed

Systems
Important to hide the
details of data
distribution from the
user

Types of transparency:
� Distribution
� Replication
� Fragmentation

Advanced Database Management Systems Session 10 - Distributed Databases

V2.0 10-9

Replication Transparency: Assuming that data is replicated, the issue related to
transparency that needs to be addressed is whether the users should be aware of
the existence of copies or whether the system should handle the management of
copies and the user should act as if there is a single copy of the data (note that we
are not referring to the placement of copies, only their existence).

Fragmentation Transparency: When database objects are fragmented, we have
to deal with the problem of handling user queries that were specified on entire
relations but now have to be performed on subrelations. In other words, the issue
is one of finding a query processing strategy based on the fragments rather than
the relations, even though the queries are specified on the latter.

9 Fragmentation
(30 minutes)

From Ullman:

Before we decide how to distribute the data, we
must determine the logical units of the database
that are to be distributed. The simplest of these
are the relations themselves. However, in many
cases a relation can be divided into smaller logical
units for distribution. To do this we need to
partition each relation using a technique called
fragmentation.

9.1 Advantages

 Since application views are usually based on only parts of an entire relation,
it makes sense in a distributed environment to only deal with subrelations.

 If the relation can be decomposed into fragments, it is possible to allow a
number of transactions to execute concurrently.

 Parallel execution can be utilised whereby a single query can be split into a
set of subqueries that operate on fragments.

9.2 Disadvantages

 In the event that applications have conflicting requirements, it may not be
possible to generate appropriate fragments, which could lead to a
performance degradation.

V10. 13

Fragmentation

Advantages:
� improves access
� permits concurrent

transaction processing
� results in parallel

execution of queries

Disadvantages:
� performance degradation
� inhibits integrity checking

.... is basically the dividing
of relations for distribution

Fragmentation

Advantages:
� improves access
� permits concurrent

transaction processing
� results in parallel

execution of queries

Disadvantages:
� performance degradation
� inhibits integrity checking

.... is basically the dividing
of relations for distribution

Session 10 - Distributed Databases Advanced Database Management Systems

10-10 2.0

 Integrity checking can be made more complex because checking for attribute
dependencies (where the attributes in question are scattered) may mean
having to chase after data.

9.3 Fragmentation Rules

From Ullman:

Completeness - All the data of the global relation
must be mapped into the fragments, i.e. it must
not happen that a data item which belongs to a
global relation does not belong to any fragment.

Reconstruction - It must always be possible to
reconstruct each global relation from its
fragments. The necessity of this condition is
obvious: in fact, only fragments are stored in the
distributed database, and global relations have to
be built through this reconstruction operation if
necessary.

Disjointness - It is convenient that fragments be disjoint, so that the replication of
data can be controlled explicitly at the allocation level.

9.4 Horizontal Fragmentation

From Ullman:

A horizontal fragment of a relation is a subset of
the tuples in that relation.

The tuples that belong to the horizontal fragment
are specified by a condition on one or more
attributes of the relation. Often only a single
attribute is involved. For example, we may define
three horizontal fragments on the EMPLOYEE
relation with the following conditions: (DNO =
10), (DNO = 30) and (DNO = 20); each fragment
contains the employee tuples working for a
particular department.

As we can see, horizontal fragmentation divides a relation horizontally by
grouping rows or creating subsets of tuples, where each subset has a certain
logical meaning. These fragments can then be assigned to different sites in the
distributed system.

V10. 14

V10. 15

Fragmentation
Rules

Completeness

Reconstruction

Disjointness

Fragmentation
Rules

Completeness

Reconstruction

Disjointness

Horizontal
Fragmentation -

An Example
10
10
30
20
10
30
10

Taylor
May
Smith
Porter
Kline
Downs
Landon

1890
1772
4327
3357
2095
3056
5557

17/03/61
30/04/55
02/08/60
12/11/57
28/03/58
04/09/60
15/09/61

29 Fork Way
334 Mill Hill
45 High St
301 Oak Rd
99 Stone Vale
101 Holden Rd
33 Wood St

30000
34000
28000
30000
31000
45000
29000

ENAME ENO BDATE ADDRESS SALARY DNO

ENAME
Taylor
May
Kline
Landon

1890
1772
2095
5557

17/03/61
30/04/55
28/03/58
15/09/61

29 Fork Way
334 Mill Hill
99 Stone Vale
33 Wood St

30000
34000
31000
29000

10
10
10
10

Smith
Downs

4327
3056

02/08/60
04/09/60

45 High St
101 Holden Rd

28000
45000

30
30

DNOSALARYADDRESSBDATEENO

ENAME DNOSALARYADDRESSBDATEENO

ENAME DNOSALARYADDRESSBDATEENO
Porter 3357 12/11/57 301 Oak Rd 30000 20

Horizontal
Fragmentation -

An Example
10
10
30
20
10
30
10

Taylor
May
Smith
Porter
Kline
Downs
Landon

1890
1772
4327
3357
2095
3056
5557

17/03/61
30/04/55
02/08/60
12/11/57
28/03/58
04/09/60
15/09/61

29 Fork Way
334 Mill Hill
45 High St
301 Oak Rd
99 Stone Vale
101 Holden Rd
33 Wood St

30000
34000
28000
30000
31000
45000
29000

ENAME ENO BDATE ADDRESS SALARY DNO

ENAME
Taylor
May
Kline
Landon

1890
1772
2095
5557

17/03/61
30/04/55
28/03/58
15/09/61

29 Fork Way
334 Mill Hill
99 Stone Vale
33 Wood St

30000
34000
31000
29000

10
10
10
10

Smith
Downs

4327
3056

02/08/60
04/09/60

45 High St
101 Holden Rd

28000
45000

30
30

DNOSALARYADDRESSBDATEENO

ENAME DNOSALARYADDRESSBDATEENO

ENAME DNOSALARYADDRESSBDATEENO
Porter 3357 12/11/57 301 Oak Rd 30000 20

Advanced Database Management Systems Session 10 - Distributed Databases

V2.0 10-11

A set of horizontal fragments whose conditions include all tuples in the base
relation is called a complete horizontal fragmentation. In many cases a complete
horizontal fragmentation is also disjoint - that is there are no overlapping tuples.

Our example of horizontal fragmentation for the EMPLOYEE relation was both
complete and disjoint.

In order to reconstruct the base relation from a complete horizontal
fragmentation, we need to apply the UNION operation to the fragments.

9.5 Vertical Fragmentation

From Ullman:

Another type of fragmentation is called vertical
fragmentation. A vertical fragment of a relation
keeps only certain attributes in the relation that are
related together in some way.

For example, we may want to fragment the
EMPLOYEE relation into two vertical fragments
where the first fragment includes personal
information - ENAME, BDATE and ADDRESS
- and the second includes work-related
information - ENO, SALARY, DNO.

This vertical fragmentation is not quite proper because if the two fragments are
stored separately we cannot put the original employee tuples back together as
there is no common attribute between the two fragments. To be able to do this, it
is necessary to include the primary key attribute in any vertical fragment so that
the full relation can be reconstructed. Hence, we must add the ENO attribute to
the personal fragment.

A set of vertical fragments whose projection lists L1, L2,.... include all the
attributes in R but share only the primary key attribute of R is called a complete
vertical fragmentation of R. To reconstruct the relation R from a complete
vertical fragmentation, we apply the natural join operation to the fragments.

V10. 16

Vertical
Fragmentation -

An Example

Taylor
May
Smith
Porter
Kline
Downs
Landon

1890
1772
4327
3357
2095
3056
5557

17/03/61
30/04/55
02/08/60
12/11/57
28/03/58
04/09/60
15/09/61

29 Fork Way
334 Mill Hill
45 High St
301 Oak Rd
99 Stone Vale

33 Wood St

ENAME ENO BDATE ADDRESS

101 Holden Rd

ENAME ENO
Taylor
May
Smith
Porter
Kline
Downs
Landon

1890
1772
4327
3357
2095
3056
5557

17/03/61
30/04/55
02/08/60
12/11/57
28/03/58
04/09/60
15/09/61

29 Fork Way
334 Mill Hill
45 High St
301 Oak Rd
99 Stone Vale
101 Holden Rd
33 Wood St

30000
34000
28000
30000
31000
45000
29000

BDATE ADDRESS SALARY DNO
10
10
30
20
10
30
10

1890
1772
4327
3357
2095
3056
5557

30000
34000
28000
30000
31000
45000
29000

SALARY DNO
10
10
30
20
10
30
10

 ENO

Vertical
Fragmentation -

An Example

Taylor
May
Smith
Porter
Kline
Downs
Landon

1890
1772
4327
3357
2095
3056
5557

17/03/61
30/04/55
02/08/60
12/11/57
28/03/58
04/09/60
15/09/61

29 Fork Way
334 Mill Hill
45 High St
301 Oak Rd
99 Stone Vale

33 Wood St

ENAME ENO BDATE ADDRESS

101 Holden Rd

ENAME ENO
Taylor
May
Smith
Porter
Kline
Downs
Landon

1890
1772
4327
3357
2095
3056
5557

17/03/61
30/04/55
02/08/60
12/11/57
28/03/58
04/09/60
15/09/61

29 Fork Way
334 Mill Hill
45 High St
301 Oak Rd
99 Stone Vale
101 Holden Rd
33 Wood St

30000
34000
28000
30000
31000
45000
29000

BDATE ADDRESS SALARY DNO
10
10
30
20
10
30
10

1890
1772
4327
3357
2095
3056
5557

30000
34000
28000
30000
31000
45000
29000

SALARY DNO
10
10
30
20
10
30
10

 ENO

Session 10 - Distributed Databases Advanced Database Management Systems

10-12 2.0

9.6 Mixed Fragmentation

From Ullman:

We can intermix the two types of fragmentation,
yielding a mixed fragmentation. For example, we
may combine the horizontal and vertical
fragmentations of the EMPLOYEE relation given
earlier into a mixed fragmentation that includes
six fragments. In this case the original operation
can be reconstructed by applying UNION and
JOIN operations in the appropriate order.

10 Query Processing in Distributed Systems
(30 minutes)

From Ullman:

We have discussed the issues involved in processing and optimising a query in a
centralised DBMS. In a distributed system there are several additional factors
that must be taken into account, which further complicate query processing. The
first and most important additional factor to consider is the cost of transferring
data over the network. This data includes intermediate files that are transferred to
other sites for further processing, as well as the final result files that may need to
be transferred to the site where the query result is needed.

Although these costs may not be very high if the sites are connected via a high-
performance local area network, they become quite significant in other types of
network. Hence, many DDBMS query optimisation algorithms consider the goal
of reducing the amount of data transfer as the main optimisation criterion in
choosing a distributed query execution strategy.

V10. 17

Mixed
Fragmentation -

An Example

1890
1772
2095
5557

30000
34000
31000
29000

SALARY DNO
10
10
10
10

 ENO

4327
3056

28000
45000

SALARY DNO
30
30

 ENO

3357 30000
SALARY DNO

20
 ENO

1890
1772
2095

ENO
Taylor
May
Kline
Landon 5557

17/03/61
30/04/55
28/03/58
15/09/61

29 Fork Way
334 Mill Hill
99 Stone Vale
33 Wood St

ENAME BDATE ADDRESS

Smith
Downs

432702/08/60
04/09/60

45 High Street
101 Holden Rd

ENAME BDATE ADDRESS ENO

3056

Porter 335712/11/57 301 Oak Rd
ENAME BDATE ADDRESS ENO

Mixed
Fragmentation -

An Example

1890
1772
2095
5557

30000
34000
31000
29000

SALARY DNO
10
10
10
10

 ENO

4327
3056

28000
45000

SALARY DNO
30
30

 ENO

3357 30000
SALARY DNO

20
 ENO

1890
1772
2095

ENO
Taylor
May
Kline
Landon 5557

17/03/61
30/04/55
28/03/58
15/09/61

29 Fork Way
334 Mill Hill
99 Stone Vale
33 Wood St

ENAME BDATE ADDRESS

Smith
Downs

432702/08/60
04/09/60

45 High Street
101 Holden Rd

ENAME BDATE ADDRESS ENO

3056

Porter 335712/11/57 301 Oak Rd
ENAME BDATE ADDRESS ENO

Advanced Database Management Systems Session 10 - Distributed Databases

V2.0 10-13

10.1 Distributed Query Processing - An Example

Example modified slightly from Ullman.

We illustrate this with a simple query. Suppose
the EMPLOYEE and DEPARTMENT relations
are distributed as shown. We will assume in this
example that neither relation is fragmented. The
size of the EMPLOYEE relation is 100*10,000 =
10,00000 bytes, and the size of the
DEPARTMENT relation is 35*100 = 3500 bytes.

Consider the query: �For each department,
retrieve the department name and the name of the
department manager.� This can be stated as:

SELECT DNAME, ENAME

FROM DEPARTMENT, EMPLOYEE

WHERE MGR = ENO;

Suppose the query is submitted at site 3. Note
that the result of the query will include only 100
records, assuming each department has a manager.

There are three possible strategies for executing
this distributed query:

 Transfer both the EMPLOYEE and
DEPARTMENT relations to the result site
and perform the query at site 3. In this case
we need to transfer a total of 1,000,000 +
3500 = 1,003,500 bytes.

 Transfer the EMPLOYEE relation to site 2,
execute the query at site 2, and send the result
to site 3. The size of the query result is
40*100 = 4000 bytes, so we transfer 4000 +
1,000,000 = 1,004,000 bytes.

V10. 18

V10. 19

V10. 20

Distributed
Processing Query

- An Example

Site 1
EMPLOYEE
ENAME ENO BDATE ADDRESS SALARY MGR DNO

10,000 records
each record is 100 bytes long
ENO field is 9 bytes long
DNO field is 4 bytes long
ENAME field is 15 bytes long

Site 2
DEPARTMENT
DNAME DNO MGR DLOCATION

each record is 35 bytes long
100 records

DNO field is 4 bytes long
MGR field is 9 bytes long
DNAME is 10 bytes long

Site 3 (Result site)
NO RELATIONS HELD HERE

Distributed
Processing Query

- An Example

Site 1
EMPLOYEE
ENAME ENO BDATE ADDRESS SALARY MGR DNO

10,000 records
each record is 100 bytes long
ENO field is 9 bytes long
DNO field is 4 bytes long
ENAME field is 15 bytes long

Site 2
DEPARTMENT
DNAME DNO MGR DLOCATION

each record is 35 bytes long
100 records

DNO field is 4 bytes long
MGR field is 9 bytes long
DNAME is 10 bytes long

Site 3 (Result site)
NO RELATIONS HELD HERE

"For each department, retrieve
the department name and the
name of the department manager"

SELECT DNAME, ENAME
FROM DEPARTMENT, EMPLOYEE
WHERE MGR = ENO;

Distributed
Processing Query,

An Example - 1
"For each department, retrieve
the department name and the
name of the department manager"

SELECT DNAME, ENAME
FROM DEPARTMENT, EMPLOYEE
WHERE MGR = ENO;

Distributed
Processing Query,

An Example - 1

Distributed
Processing Query,

An Example - 2
Three possible strategies:

Transfer both the EMPLOYEE and
DEPARTMENT relations to the
result site (3) and perform the
query there
Transfer 1003500 bytes (1000000
+ 3500)
Transfer the EMPLOYEE relation
to site 2, execute the query there
and send the result to site 3
Transfer 1004000 bytes (1000000
+ 4000)
Transfer the DEPARTMENT
relation to site 1, execute the
query there and send the result to
site 3

Transfer 7500 bytes (4000 + 3500)

Distributed
Processing Query,

An Example - 2
Three possible strategies:

Transfer both the EMPLOYEE and
DEPARTMENT relations to the
result site (3) and perform the
query there
Transfer 1003500 bytes (1000000
+ 3500)
Transfer the EMPLOYEE relation
to site 2, execute the query there
and send the result to site 3
Transfer 1004000 bytes (1000000
+ 4000)
Transfer the DEPARTMENT
relation to site 1, execute the
query there and send the result to
site 3

Transfer 7500 bytes (4000 + 3500)

Session 10 - Distributed Databases Advanced Database Management Systems

10-14 2.0

 Transfer the DEPARTMENT relation to site 1, execute the query at site 1,
and send the result to site 3. In this case we transfer 4000 + 3500 = 7500
bytes.

If minimising the amount of data transfer is the optimising criterion, we would
choose strategy 3.

10.2 Distributed Query Processing Using Semijoin

From Ullman:

The idea behind distributed query processing using the semijoin operation is to
reduce the number of tuples in a relation before transferring it to another site.
Intuitively, the idea is to send the joining column of one relation R to the site
where the other relation S is located. This column is then joined with S, and the
join attributes and attributes required in the result are projected out and shipped
back to the original site and joined with R.

Hence only the joining column of R is transferred in one direction, and a subset of
S with no extraneous tuples is transferred in the other directions. If only a small
fraction of the tuples in S participate in the join, this could be quite an efficient
solution to minimising data transfer.

To illustrate this, consider the following strategy
for executing the sample query:

 Project the join attributes of DEPARTMENT
at site 2 and then transfer those attributes to
site 1. We transfer MGR whose size is 9*100
= 900 bytes.

 Join the transferred file with the EMPLOYEE
relation at site 1, and transfer the required
attributes from the resulting file to site 3. We
transfer <MGR,ENAME>, whose size is
39*100 = 3900 bytes.

 Execute the query by joining the transferred
file with DEPARTMENT, and present the
result to the user at site 3.

Using this strategy, we transfer only 4800 bytes. The reason is that we limited the
EMPLOYEE tuples transmitted to site 2 in step 2 to only those tuples that will
actually be joined with a DEPARTMENT tuple in step 3.

11 Summary
(10 minutes)

Distributed database systems are important because they can potentially offer
many benefits in terms of the way in which a company wishes to organise itself.

V10. 21

Distributed
Processing Query

Using Semijoin
This strategy has three steps:

Project the join attributes of
DEPARTMENT at site 2 and then
transfer those attributes to site 1
Transfer <MGR> i.e. 900 bytes
(9*100)
Join the transferred file with the
EMPLOYEE relation at site 1, and
transfer the required attributes
from the resulting file to site 3
Transfer <MGR,ENAME> i.e. 3900
bytes (39*100)
Execute the query by joining the
transferred file with
DEPARTMENT, and present the
result to the user at site 3

Distributed
Processing Query

Using Semijoin
This strategy has three steps:

Project the join attributes of
DEPARTMENT at site 2 and then
transfer those attributes to site 1
Transfer <MGR> i.e. 900 bytes
(9*100)
Join the transferred file with the
EMPLOYEE relation at site 1, and
transfer the required attributes
from the resulting file to site 3
Transfer <MGR,ENAME> i.e. 3900
bytes (39*100)
Execute the query by joining the
transferred file with
DEPARTMENT, and present the
result to the user at site 3

Advanced Database Management Systems Session 10 - Distributed Databases

V2.0 10-15

They do however pose many problems, in particular they add complexity to the
standard database system functionality.

Most DBMS vendors now have many distribution
facilities available within their packages but a
truly distributed database system is still very much
an ideal.

Distributed concepts which were dealt with in
some detail in this session include:

 replication;
 transparency;
 fragmentation;
 distributed query processing.

V10. 22

Summary

Replication

Transparency

Fragmentation

Distributed query
processing

Distributed concepts which
were dealt with:

Summary

Replication

Transparency

Fragmentation

Distributed query
processing

Distributed concepts which
were dealt with:

