
Combining Black Box Testing with White Box Code
Analysis: A Heterogeneous Approach for Testing

Enterprise SaaS Applications

Stefano Rosiello∗, Amish Choudhary†, Arpan Roy‡ and Rajeshwari Ganesan§
∗Department of Computer and Systems Engineering, Federico II University of Naples, Naples, Italy.

†Infosys Ltd., Product Research and Development Unit, Bangalore 560100, India.
‡Infosys Labs, Dependability Center of Excellence, Bangalore 560100, India.

§EdgeVerve Systems Limited, Systems Engineering Group, Bangalore 560100, India.
Email:∗st.rosiello@studenti.unina.it, †Amish_Choudhary@infosys.com, ‡Arpan_Roy02@infosys.com,

§Rajeshwari_Ganesan@edgeverve.com

Abstract—Faulty enterprise applications may be producing
incorrect outputs or performing below service expectations due
to code vulnerabilities that do not show up in standard code ana-
lyzers (e.g., CAST [1]). A tester can figure out such functionality
or performance issues by black box functional testing and fault
injection. Then based on the specific test scenario, targeted white
box code analysis can be done to figure out the code errors causing
the application functionality or performance issue. In this paper,
we use such a heterogeneous testing approach that combines black
box testing with white box code analysis for testing an enterprise
licensing application (ELA). We describe experiments designed to
uncover functionality and performance issues in ELA and then
explore the corresponding code errors causing the issues. We
find that our approach is effective in faster detection and fixing
of application performance and functionality errors than simple
white box code analysis.

Keywords—enterprise application, code analysis, process kill,
functional testing, synchronization errors

I. INTRODUCTION

Enterprise applications are bound by strict service level
agreements of response time and availability. Underperform-
ing applications respond slowly or are sometimes rendered
unavailable. In this paper, we propose a framework for testing
enterprise applications that combines black box testing with
white box code analysis. This approach has several advantages
over simple white box code analysis. In white box code
analysis, usually first a code vulnerability is discovered and
then its corresponding functionality or performance issue (if
any) is unearthed by targeted fault injections. On the other
hand, in our approach we first use black box testing to pinpoint
application functionality or performance issues. Then based
on the specific functionality or sub-functionality error, we
do targeted source code analysis to figure out code errors
that may be causing the issue. Usually this approach enables
faster detection and fixing of application performance and
functionality issues than simple white box code analysis. More
specifically, in this paper

∙ we discuss a testing strategy where first black box
testing is applied to pinpoint specific application func-
tionality issues and then if need be, white box code
analysis is done to find the causes of those issues,

∙ we discuss the experiments we designed to test our
sample application, an enterprise licensing application
(ELA) and the errors discovered during each test and

∙ finally we explore the cause of the errors discovered
by targeted analysis of the application source code.

The rest of this paper is organized as follows. Our testing
strategy is introduced in Section II along with some related
work. In Section III, we discuss the architecture of the appli-
cation under study. In Section IV we discuss our experiments,
the observed errors and methods of mitigating said errors.
Finally, we discuss the signficance of the results we obtained
in Section V.

II. TESTING OF ENTERPRISE APPLICATIONS AND
RELATED WORK

In order to develop robust applications, it is necessary to
test all the logical paths in the code before deploying the
software to production.

A. Application Testing: Black box vs. White box Approach

White box testing of an enterprise application can be done
using both code analysis tools and fault injection tools (soft-
ware implemented fault injection or SWIFI) . SWIFI is about
reproducing software errors and consequently the failures that
would have been produced by subsequent hardware faults.
Software code analysis reveals points of vulnerabilities in the
source code such as: (i) point where a COTS component is
called, (ii) point where a database is called, (iii) point where
a message queue is updated etc.. This is followed by fault
injection using fault models such as (i) Process Crash: Code
is injected into the application under test such that while
trying to execute it, the client JVM crashes rendering the
service unavailable. (ii) Session Crash: Code is injected into
the application under test such that when this code is activated
only one session of the application crashes and (iii) Delay:
Code is injected into the application under test such that when
this code is activated, the lines after this code are executed
after a certain delay causing subsequent SLA violations. After
injection, it is checked if the application output is coherent.

2014 IEEE International Symposium on Software Reliability Engineering Workshops

978-1-4799-7377-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ISSREW.2014.113

359

In white box testing, code analysis comes first and then
faults are injected to study the failures at the vulnerable points.
However in black box testing, first faults are injected and
then subsequent failure behavior is observed. Then based on
the failure behavior, software code is analyzed for specific
bugs. Hence, in white box testing there are two phases: golden
run (fault-free run of the application) and resilience test (run
with injected faults). Black box testing has only one phase:
resilience testing. For our purposes, we use two methods of
black box testing an application:

1. Functional Testing: We send a payload composed of
a heterogeneous set of requests to the application. Then we
check the database before and after the sending of requests to
verify number of successful requests of each type.

2. Fault Injections: We crash one of the system processes
(e.g., the primary DBMS process for the application) during
the test run and then we observe how the incoming requests
to the database are handled.

B. Related Work

Code analysis, fault injection and functional testing are
common techniques for studying the failure behavior of the
application. White box code analysis tools such as CAST [1]
needs the source code of the application under test exposed to
its APIs. On the other hand, performance testing tools such as
Apache JMeter [2]) perform black box stress tests by applying
different loads on the application. Fault injection can be:

∙ hardware fault injection where fault is injected by
contact (e.g., a socket is inserted into the circuit and
complex logic faults are injected using this additional
hardware) or fault is injected without contact (e.g.,
heavy ion radiation is used to cause faults without
any phyiscal contact to system) [3] or

∙ software fault injection where different injectors have
different novel aspects for injecting faults. For in-
stance, Xception [4] uses hardware debugging reg-
isters, Ferrari [5] uses traps and Orchestra corrupts
messages [6] to inject faults. Hardware and software
fault injection can be combined. For instance, the fault
injection tool NFTAPE [7] allows for both hardware
fault injections using simple fault signals such as bit
flips, bit inversion, delays (fault effects demonstrated
over Myrinet LAN [8]) and a software implemented
fault injector (SWIFI) that injects faults at points of
code vulnerabilities using more complex fault models
such as session crash, process crash (demonstrated
over a image processing application [8]).

We avoid using any such proprietary software for our testing
needs (our scripts are standalone and specifically crafted for
the application we are testing). In this paper, we present a
case study that uses a unified approach combining all three
above mentioned application testing approaches. We show
how a combination of black box fault injection and load
testing combined with white box code analysis can bring out
faults that could not have been discovered by any one of
these approaches alone.

C. Our Heterogeneous Testing Approach

In order to setup the test process, it was necessary for us to
analyze the requirements of the system under test to identify:

∙ the architecture and its components,

∙ the system’s purpose and its high level functionalities,

∙ the features of the workload and

∙ the system’s interfaces (exposed to the users, to other
systems and between the architectural components).

The purpose of the above analysis is to:

1) Identify a component for testing with the targeted work-
load

2) Identify the interfaces and the functionality to build the
test scenarios. Assign priorities to different functionalities
to create a test plan.

3) Identify a criteria for each functionality by which we can
distinguish faulty results from correct results. To identify
correct functional behavior, it might be useful to try to
identify some execution invariants.

4) Identify a way to inject faults into the system from the
external environment (i.e. operating system).

We can split our testing process into two phases:

PHASE I: Pure functional testing is done to ensure that
the system meets its requirements.

1) apply the workload to the system and collect the response.
2) use the functionality criteria to check if the system meets

its requirements and behaves correctly and
3) if the output reveals functional defects, perform code

analysis to detect the cause of defect and fix it. Then
proceed to 𝑃𝐻𝐴𝑆𝐸 𝐼𝐼 .

PHASE II: Fault injections for assessing the system’s
behavior in presence of faults (after ensuring that the system
is behaving correctly).

1) Apply the same workload used in 𝑃𝐻𝐴𝑆𝐸 𝐼 .
2) While applying the load, inject the fault from the OS into

the component under test.
3) Observe the system behavior and analyze the logs during

the fault of one of its components.
4) Use the functionality criteria to check if the system is in

coherent status after the application of load.
5) If not coherent, fix with or without code analysis.

III. CASE STUDY: ENTERPRISE LICENSING APPLICATION
(ELA)

In this section, we describe the architecture of the appli-
cation under study and then we describe the test environment
(environment in which the application is deployed).

A. Enterprise Application Under Study

The enterprise licensing application (ELA [9]) is an appli-
cation that helps manage licenses of products sold and used by
clients worldwide. The service can concurrently serve a large
number of users. The enterprise licensing application can have
one of three architectural modes (as shown in Figure 1):

360

H2
Database

Applica�on

Embedded Mode

Applica�on
H2

Database

Applica�on

Applica�on
H2

Database

Applica�on

Applica�on
H2

Database

Applica�on

Secondary

TCP Mode
Server

HA Mode

Primary

Secondary

Fig. 1. Application Architectural Modes

∙ Embedded Mode: Here the H2 persistent SQL
database containing the product licensing information
is embedded in the same Java VM as the license
management service. Additional features include the
use of an in-memory query caching system

∙ TCP Server Mode: The H2 persistent SQL database
is located in a VM different from the application VM.
The application VM communicates with the database
over a TCP connection.

∙ High Availability Mode: In the High Availability
(HA) mode, two instances of the application VM and
the database VM are created on two different machines
- primary and secondary to allow for better fault
tolerance. In this clustered application mode, there
are three different functional modes: (i) normal HA
mode where the primary machine is working and the
secondary as redundant spare, (ii) failover HA mode
where the primary has failed and the secondary is
working and (iii) failback HA mode where the primary
machine is in recovery and the secondary machine
is working. Data stored in the primary machine is
synchronously stored in the secondary machine so that
the secondary can take over at any point when the
primary has failed.

The license file specific to each client of a certain product
is stored in the database in AES encrypted format. Content
of license file can be exposed over SSL in xml format. The
file contains information such as product name, no. of users
and no. of machines (with the IP addresses of machines
currently using a license). A license management analyst can
(i) upload a license file, (ii) update an existing license file or
(iii) delete a license file. For each client, APIs exposed allow
for operations such as (i) registering a user, (ii) validating a
user, (iii) getMetricsInfo for each user and (iv) deregistering a
user. For our testing purposes we use an additional operation
involving a random mix of the first four operations. Databases
can be on disk or in-memory with failover and failback
modes possibles (between a primary database and a secondary
replicated database). Failures in this licensing application may
result in use of unlicensed application, unavailability of li-
censed application and SLA violations (all resulting in loss
of revenue). A sample application architecture is shown in
Figure 2.

B. Test Environment

The test environment is the license server application
deployed in VMs hosted in the following server.

License
Configura�on

Applica�on

Upload

Update

Delete

License Server

Server
Configura�on

API

Server
Valida�on

API

Client Applica�on

GetMetricInfo

Register

Validate

Unregister

Fig. 2. Application Architecture

∙ Intel(R) Xeon(R) CPU E7-4830 @ 2.13GHz -8CORE

∙ 8GB Ram

∙ Red Hat Enterprise Linux Server release 6.2

∙ OpenJDK64-Bit Server VM

∙ H2 Database Engine v. 1.3.176

∙ Virtualized using VMWare ESX 5.1

C. Test Parameters

During 𝑃𝐻𝐴𝑆𝐸 𝐼 of our heterogeneous testing approach,
we do load testing where a workload (consisting of a number
of register and deregister requests) is applied to the licens-
ing application and the output is observed. We estimate the
correct output (output from a fault free application) and then
compare it with the real output (output of the actual faulty
application). The workload simulates a number of users, a
fixed number of requests per user, a specific request type (or
a random sequence of requests) and a maximum duration 𝑇
upto which test will run. The server response to each request
can be: (i) success, (ii) failure or (iii) service unavailable.
For each operation, a summary report containing the thread
ID, operation type, start and stop timestamps, duration and
response code is generated. Additionally at the server side,
the following information is studied: (i) initial metric value
(e.g., initial number of registered users), (ii) number and types
of operations performed, (iii) number of ‘success’ responses,
(iv) final expected metric value and (v) final actual metric
value. During 𝑃𝐻𝐴𝑆𝐸 𝐼𝐼 of our testing process, we do black
box fault injection where we kill different processes and the
subsequent effect on system response using above parameters.
Code analysis is done manually during both 𝑃𝐻𝐴𝑆𝐸 𝐼 and
𝑃𝐻𝐴𝑆𝐸 𝐼𝐼 to find and fix application bugs causing faulty
behavior.

IV. EXPERIMENTS: TESTING OF THE ENTERPRISE
LICENSING APPLICATION

In this section, we describe sequentially the different test
scenarios for black box testing of our application. For each test
scenario, we describe the workload, the expected outcomes, the
observed outcomes, reproducibility of the error and the cause
of error and performance impact associated with each error.

361

A. Test Scenario I: High Concurrent Workloads

In the first case, the application is loaded with a large
number of concurrent requests from the user and the output is
studied for anomalies.

Phase I (Functional Testing): The server contains a Li-
cense file for 500 different users. Initially there are 283 regis-
tered users in the database. A concurrent workload is generated
for 50 users with 10 requests per user. The distribution for the
requests is 110 register requests, 132 unregister requests, 125
validate requests and 133 GetMetricInfo requests. At the end
of the test, the count of the number of users registered in
the database should be 261 (283 initial + 110 registration –
132 deregistrations). But the observed number of users in the
database was seen to be 263. This issue could be reproduced
under the same load but the final number of users in the
database is random.

Finding (Incorrect Read-Write Synchronization): We con-
cluded that since this happens only on concurrent workloads,
the application code contained some critical sections which are
not properly protected from concurrent access. On inspecting
the code, we discovered the possible cause of error to be
use of incorrect synchronization mechanism for read/write
lock. Read/write lock was only being used in read lock mode
to protect a critical section instead of a mutual exclusion
lock between read and write. This is a simple readers/writers
problem. In a read/write lock, read locks prevent a write during
an ongoing read but allow for multiple concurrent reads during
an ongoing write. This makes 𝑑𝑖𝑟𝑡𝑦 𝑟𝑒𝑎𝑑𝑠 possible. Since the
readers in a Readers/Writers problem can access the critical
section concurrently during a write, there is no synchronization
at all.

Fix: The type of lock was changed from ReentrantRead-
WriteLock [10] to ReentrantLock [11]. The corresponding
changes in code is shown in Table I.

Performance Impact: We observed that changing the lock
type caused the system throughput to drop from 3170 requests
per minute to 828 request per minute on average. Moving
the I/O code outside the critical section for a fine-grain
synchronization, caused the throughput to increase to 2730
request per minute on average. After making above changes,
on applying the same load there was no mismatch in the
expected number of registered users and actual number of users
registered.

B. Test Scenario II: Database Unavailable in TCP mode

Some errors are specific to the architectural modes of the
application. In TCP Mode, the application is connected to the
database system through TCP/IP stack.

1) Sub-scenario 1: In this case, we kill the database
process and study the system response.

Phase II (Fault Injection): A 𝑃𝑂𝑆𝐼𝑋𝑆𝐼𝐺𝐾𝐼𝐿𝐿 signal
is sent to DBMS process during the test run.

kill -9 $(ps aux | grep LicenseServer | grep -v grep | awk
‘{print }‘)

This is to simulate a crash on DBMS’s machine as well as
a network problem. A concurrent high workload is generated

for 50 users and 1000 requests per user. The request type dis-
tribution consists of 12425 Register requests, 12484 Unregister
requests, 12581 Validate and 12510 GetMetricInfo requests.

Finding (“Out of Memory” Error): It is expected that the
server should discard new requests when the DBMS is down
or should send an error response to clients (immediately after
DBMS crash or after a timeout). It was observed that the server
remains waiting for DBMS connection indefinitely (HANG)
without sending any response to clients. In high workload
situations like this, the server will eventually go 𝑂𝑢𝑡 𝑂𝑓
𝑀𝑒𝑚𝑜𝑟𝑦. Note the applied load above is higher than 𝑇𝑒𝑠𝑡
𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼 to look for an 𝑂𝑢𝑡 𝑂𝑓 𝑀𝑒𝑚𝑜𝑟𝑦 error. This fault
can be reproduced anytime when TCP mode is on and the
database server is unavailable.

2) Sub-scenario 2: In this case, we apply a workload on
the ELA application. Then we kill and restore the database
process and study the system response.

Phase II (Fault Injection): As in the last test case, a POSIX
SIGKILL signal is sent to the DBMS process during the
test run. After a while the database is restored. A concurrent
workload is generated with 50 users and 10 requests for each
user. The request type distribution is 110 Register requests,
132 Unregister requests, 125 Validate and 133 GetMetricInfo
requests.

Finding (Serving aborted clients): The server kept queuing
new requests in memory without processing them. When
DBMS comes up again the server starts processing all queued
requests even if the clients have already aborted. This results
in inconsistencies at the client end. Note, the load is not as
high as Sub-scenario 1 as we are not looking for exhaustive
errors like 𝑂𝑢𝑡 𝑂𝑓 𝑀𝑒𝑚𝑜𝑟𝑦. Generally it is expected that in
such situations the server should discard new requests when
the DBMS is down or should send an error response to clients
(immediately or after a timeout) during DBMS unavailability.

Fix: For both errors/sub-scenarios, discarding of new re-
quests or switching to the secondary machine in HA mode
would have solved the problem. However in order to get rid
of this error, the ELA team removed support for TCP Mode
as it was useful only in the early developmental stages for ac-
cessing DBMS from an external application. DBMS is always
embedded in the application VM in the new architecture.

C. Test scenario III: HA Mode Cluster Coherency

In high availability (HA) Mode, initially the TCP server
mode architecture is replicated on two different machines (pri-
mary and secondary). The cluster synchronization is handled
completely by H2 DBMS Cluster Mode.

Phase II (Fault Injection): A concurrent high workload is
generated for 50 users at 10 requests per user. Initially there are
283 registered users in the database. The distribution for the
requests is 110 register requests, 132 unregister requests, 125
validate requests and 133 GetMetricInfo requests. A POSIX
SIGKILL signal is sent to DBMS process in the primary
machine during the test run. Results should suggest a coherent
failover mode i.e., all requests served with a positive response
to the client should be recorded in the secondary database and
request for which the client received no response shouldn’t be
recorded in the secondary DB.

362

TABLE I. TEST SCENARIO I: SYNCHRONIZATION ERROR

BEFORE AFTER

private final static ReentrantReadWriteLock lock private final static Lock lock = new ReentrantLock();
= new ReentrantReadWriteLock();
@Override @Override
public void run() { // Worker Thread public void run() { // Worker Thread
lock.readLock().lock(); // Start Critical Section operation = getRequestFromClient();
operation = getRequestFromClient(); lock.lock(); // Start Critical Section
if ("1".equals(operation)) // registration if ("1".equals(operation)) // registration

result = lb.register(clientRequest); result = lb.register(clientRequest);
else if ("2".equals(operation)) // validation else if ("2".equals(operation)) // validation

result = lb.validateLicense(clientRequest); result = lb.validateLicense(clientRequest);
else if ("3".equals(operation)) // Unregister else if ("3".equals(operation)) // Unregister

result = lb.unRegister(clientRequest); result = lb.unRegister(clientRequest);
else if ("4".equals(operation)) // getMetricDetails else if ("4".equals(operation)) // getMetricDetails

result = lb.getMetricDetails(clientRequest); result = lb.getMetricDetails(clientRequest);
else else

result = "Not valid request"; result = "Not valid request";
sendResultToClient(result); lock.unlock(); // End Critical Section
lock.readLock().unlock(); // End Critical Section sendResultToClient(result);

} }
} }

Findings (Crash before/after output): From our test, we
found that the number of requests acknowledged to the client
was different from the number of such requests committed to
the secondary database. The fault could be reproduced anytime
in HA mode when the primary DBMS fails with random
results. The error arises mostly due to the fact that status of the
synchronization between the primary and secondary machines
is not clarified in HA mode architecture design. Separate
ACKs are not returned to the application after synchronization
between primary and secondary. Specifically the two errors
possible in HA mode are:

1. Crash before output: In HA mode, if the primary ma-
chine crashed between applying changes to primary database
and updating the primary cache in HA mode, the secondary
machine may or may not have been updated. But the client
can only contact the database cluster, cannot contact and
update secondary database on his own. In new HA architecture,
if primary database updation is ACKed, secondary database
updation can be done by contacting the secondary database
separately.

2. Crash after output: In HA mode, the client contacts
the database cluster as a whole. The client can’t contact the
secondary database separately. So if primary crashes after
the client receives acknowledgement of the database commit,
there are no guarantees that the secondary is updated (whether
secondary update has happened depends on an in-database
synchronization mechanism). In new HA architecture because
of the sequence of ACKs, if primary crashes after the client
receives acknowledgement of commit, secondary update is
guaranteed.

Fix: Use of a simple ACK-based (acknowledgement) syn-
chronization mechanism gets rid of this error. A new architec-
ture consisting of Hazelcast Distributed Cache to synchronize
the updation of the primary and secondary databases. Work-
flow of the primary and secondary database commits using
hazelcast cache is as in Table II.

With this architecture, during the normal HA mode, both
spares are making the same changes to their respective
databases. The DBMS works in embedded mode in both the
primary and the spare. This new architecture can tolerate the
following situations: (i) A primary crash between steps 1 and

2 (before the response) results in no response to the client. So
the client can resend the request to the secondary spare. The
secondary is updated and coherent with all changes if the pri-
mary crashes after 7 (after the response). However this failure
doesn’t impact the system throughput (i.e., performance).

D. Additional Errors: Safe MultiThreading

These errors were discovered just by 𝑤ℎ𝑖𝑡𝑒 𝑏𝑜𝑥 𝑐𝑜𝑑𝑒
𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛. These errors refer to multiple threads creating
multiple instances of the same object and using them, when
ideally only one singleton instance of an object needs to be
created and shared among multiple threads.

1) Singleton LicenseBusiness Object Error: Different
threads were creating different instances of the LicenseBusi-
ness object instead of sharing one common instance. The
LicenseBusiness object singleton instance creation is not syn-
chronized. On inspecting the code, it was found that multiple
threads were creating multiple instances of the model. The
solution is to implement thread-safe singleton pattern. Out of
the multiple instances of the LicenseBusiness object, all the
threads used the instance created last. All other instances were
left in memory unused. Hence, this issue did not affect system
throughput. The current setup is an 8 core machine. This means
that (ideally) 8 threads can check the null condition at the same
time. However in our tests with an 8 core machine, it was found
that only 2 threads check the null condition at the same time.
Hence this error did not create any performance issues. The
corresponding change in code is shown in Table III.

2) Singleton LicenseCache Object Error: While inspecting
the code, it was also found that multiple instances of the
License Cache Model are generated by different threads.
The License Cache Model Singleton instance creation is not
synchronized. Multiple threads can create different instances
of the model. This was because of the multiple instances
of cache created, the threads only used two of the cache
object instances created. The other cache instances, though
created were stored in memory unused. So the issue did not
affect system throughput. To resolve the issue, a thread-safe
singleton LicenseCache object creation was implemented. The
corresponding change in code is shown in Table IV.

363

TABLE II. WORKFLOW FOR DATABASE UPDATION

Primary Cache Distributed Cache (Hazelcast) Secondary Cache
1. Apply changes to Database
2. Put request in cache 3. Send notification to all active spares 4. Execute request from cache

5. Send an ACK to a distributed cache
6. Send an ACK to primary

7. Send response to client

TABLE III. SINGLETON LICENSEBUSINESS OBJECT ERROR

BEFORE AFTER

private static LicenseBusiness licenseBusiness = null; protected static final LicenseBusiness licenseBusiness
= new LicenseBusiness();

public static LicenseBusiness getLicenseBusiness(){ protected LicenseBusiness(){
if (licenseBusiness == null){ logger.debug("LicenseBusiness Constructor: ");

licenseBusiness=new licenseBusiness(); licenseCache = LicenseCache.getLicenseCache();
licenseCache=LicenseCache.getLicenseCache(); if(Configuration.hamode!=null &&
if(Configuration.hamode!=null && “true”.equalsIgnoreCase(Configuration.hamode)){
“true”.equalsIgnoreCase(Configuration.hamode)){ try{

try{ HazelcastUtil.getHazelCastInstance();
HazelcastUtil.getHazelCastInstance(); }

} catch(Exception exception){
catch(Exception exception){ System.out.println(“Hazelcast Cannot be started
System.out.println("Hazelcast Cannot be started as port is already in use”);
as port is already in use"); // Unregister }
} }

} }
} public static LicenseBusiness getLicenseBusiness(){
return licenseBusiness; return licenseBusiness;

} }

TABLE IV. TEST SCENARIO IV: LICENSECACHE OBJECT SYNCHRONIZATION ERROR

BEFORE AFTER

private static LicenseCache licenseCache = null; protected static final LicenseCache
licenseCache = new LicenseCache();

public static LicenseCache getLicenseCache() { protected LicenseCache() {
if(licenseCache == null) { logger.debug("LicenseBusiness Constructor: ");

logger.debug("New LicenseCache object created"); }
licenseCache = new LicenseCache(); public static LicenseCache getLicenseCache()

} return licenseCache;
return licenseCache; }

}

V. CONCLUSION

White box code analyzers can parse through millions of
lines of code and shortlist only a couple of hundred code
vulnerabilities. We used CAST code analyzer [1] to analyze
the code of ELA. CAST uncovered coding issues that include
(i) performance issues such as expensive calls in loops, (ii)
architectural design issues such as avoiding cyclical calls and
inheritance among parameters, (iii) security issues spanning
input validation and object-level dependencies and others.
However, not all of these errors directly contribute to erroneous
application output or application underperformance. In order
to find only the errors that affect application functional-
ity/performance, we performed black box functional testing
and fault injections on ELA. Then if need be, we did targeted
analysis of the application source code to figure out the specific
code errors causing the functionality or performance issue.
Hence, we conclude that combining black box testing with
white box code analysis can help address critical errors in
enterprise applications more efficiently. Our approach is also
useful in cases where the application source code is not
available to the tester or if the application uses any third
party COTS components (source code for COTS components
is usually unavailable to the application tester).

REFERENCES

[1] http://www.castsoftware.com/products/application-intelligence-
platform.

[2] http://jmeter.apache.org/.

[3] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques
and tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[4] J. Carreira, H. Madeira, and J. Silva, “Xception: Software fault injection
and monitoring in processor functional units,” Dependable Computing
and Fault Tolerant Systems, vol. 10, pp. 245–266, 1998.

[5] G. Kanawati, A. Kanawati, and J. Abraham, “Ferrari: A flexible
software-based fault and error injection system,” IEEE Transactions on
Computers, vol. 44, no. 2, pp. 248–260, 1995.

[6] S. Dawson, F. F Jahanian, and T. Mitton, “Orchestra: A probing and
fault injection environment for testing protocol implementations,” in
Proc. IPDS. IEEE, 1996, p. 56.

[7] http://www.armored-computing.com/nftapeoverview.html.

[8] D. Stott, B. Floering, D. Burke, Z. Kalbarczyk, and R. Iyer, “Nftape:
a framework for assessing dependability in distributed systems with
lightweight fault injectors,” in Proc. IPDS. IEEE, 2000, pp. 91–100.

[9] http://www.infosys.com/engineering-services/service-
offerings/Pages/software-cloud-mobile-enablement.aspx.

[10] http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/
ReentrantReadWriteLock.html.

[11] http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/
ReentrantLock.html.

364

