Flexural properties

The behaviors shown by textile materials (fibre, yarn and fabric), when it is subjected to bending, are known as flexural properties.

a) Flexural rigidity:

Flexural rigidity is the resistance of a textile fibre against bending. It can also be defined as the couple required to bend the fibre to unit curvature. The unit of flexural rigidity is N-mm², N-m² etc.

Mathematically, Flexural rigidity, $Rf = \underline{1} x \underline{\eta} ET^2$

Where, η = Shape factor

E = Specific shear modulus (in N/tex)

T = Linear density (in tex)

 $\rho = \text{Density} (\text{in gram/cm}^3)$

Specific flexural rigidity:

The specific flexural rigidity is the flexural rigidity of a textile fibre of unit linear density. Specific flexural rigidity is usually expressed as N-mm²/tex, N-m²/tex etc.

Mathematically, Specific flexural rigidity = $\frac{1}{4\Pi} x \frac{\eta E(1)^2}{\rho} = \frac{1}{4\Pi} x \frac{\eta E}{\rho}$

b) Bending recovery:

The power of recovery from an immediate curvature of textile fibre is known as bending recovery. For example, nylon of 15 denier shows 100% recovery from a small curvature, whereas only 20% recovery is obtained from a large curvature.

c) Bending modulus:

Bending modulus can be defined as the ratio between bending stress and bending strain. Here, bending strain is usually expressed as degree or radian.

So, Bending modulus = <u>Bending stress</u> Bending strain

Shape factor:

Shape factor is a quantity or number that indicates the thickness or cross-section of a fibre. Shape factor is usually expressed by η .

If $\eta = 1$, then the fibre is round shaped.

If $\eta > 1$, then the fibre thickness is increased.

If $\eta < 1$, then the fibre thickness is reduced.

Shape factor of different fibres:

Fibre	Shape factor	Fibre	Shape factor
Viscose	0.74	Acetate	0.67
Wool	0.80	Nylon	0.91
Silk	0.59	Glass	1.0