Torsional Properties

The behaviors shown by textile fibre, when it is subjected to twisting is known as torsional properties.

a) Torsional rigidity:

Torsional rigidity is the resistance of a textile fibre against twisting. It can also be defined as the torque applied to insert unit twist per unit length of fibre. The unit of torsional rigidity is N-mm², N-m² etc.

Mathematically, $Rt = \underline{\eta}ET^2$

Where, $\eta =$ Shape factor

E =Specific shear modulus (in N/tex)

T = Linear density (in tex)

 $\rho = \text{Density} (\text{in gram/cm}^3)$

Specific torsional rigidity:

The specific torsional rigidity is the torsional rigidity of a textile fibre of unit linear density. Specific torsional rigidity is usually expressed as N-mm²/tex, N-m²/tex etc.

Mathematically, Specific torsional rigidity = $\underline{\eta E} (1)^2 = \underline{\eta E}$

Where, $\eta =$ Shape factor

E = Specific shear modulus (in N/tex)

T = Linear density (in tex)

 $\rho = \text{Density} (\text{in gram/cm}^3)$

Specific torsional rigidity of different fibres:

Fibre	Specific torsional rigidity (mN-mm ² /tex)		
Cotton	0.16		
Wool	0.12		
Silk	0.16		
Viscose	0.085		
Nylon-6.6	0.06		
Polyester	0.067		

b) Breaking twist:

Breaking twist is the twist for which a textile fibre will break. Breaking twist can also be defined as the number of turns or twists required to break a fibre. Breaking twist depends upon the diameter of fibre and is inversely proportional to the diameter.

So, Breaking twist, Tb $\infty 1/d$ [d = fibre diameter]

Breaking twist angle:

The angle through which the outer layers of fibres are sheared at breaking is known as breaking twist angle. Breaking twist angle is usually expressed as α .

Mathematically, Breaking twist angle, $\alpha = \tan^{-1} (\prod d Tb)$

Where, d = Fibre diameter & Tb = Breaking twist per unit length of fibre

Breaking twist angle of different fibres:

Fibre	Breaking twist	Fibre	Breaking twist
	angle (α)		angle (α)
Cotton	35^{0}	Wool	40^{0}
Viscose	33 ⁰	Silk	39^{0}
Polyester	50^{0}	Glass	4^{0}

C) Shear modulus:

Shear modulus can be defined as the ratio between shear stress and shear strain.

So, Shear modulus = $\frac{\text{Shear stress}}{\text{Shear strain}}$

Shear strain is usually measured in radian. Shear modulus of a fibre is expressed as kN/mm^2 . For example, shear modulus of wool is 1.3 kN/mm^2 .

