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The satisfaction of understanding how rainbows are
formed, how ice skaters spin, or why ocean tides roll in and
out—phenomena that we have all seen or experienced—
is one of the best motivators available for building sci-
entific literacy. This book attempts to make that sense of
satisfaction accessible to non-science majors. Intended
for use in a one-semester or two-quarter course in con-
ceptual physics, this book is written in a narrative style,
frequently using questions designed to draw the reader
into a dialogue about the ideas of physics. This inclusive
style allows the book to be used by anyone interested in
exploring the nature of physics and explanations of
everyday physical phenomena.

“Griffith has done a very respectable job in present-
ing his conceptual physics course in a clear, useable
fashion. It is a fine work that is evidently quickly
evolving into a top-notch textbook.”

—Michael Bretz,
University of Michigan

How This Book Is Organized
With the exception of the reorganization of chapters
15, 16, and 17 introduced in the fourth edition, we
have retained the same order of topics as in the previ-
ous editions. It is traditional with some minor varia-
tions. The chapter on energy (chapter 6) appears prior to
that on momentum (chapter 7) so that energy ideas can
be used in the discussion of collisions. Wave motion is
found in chapter 15, following electricity and magnetism
and prior to chapters 16 and 17 on optics. The chapter
on fluids (chapter 9) follows mechanics and leads into
the chapters on thermodynamics. The first 17 chapters
are designed to introduce students to the major ideas of
classical physics and can be covered in a one-semester
course with some judicious paring.

The complete 21 chapters could easily support a two-
quarter course, and even a two-semester course in which
the ideas are treated thoroughly and carefully. Chapters 18
and 19 on atomic and nuclear phenomena, are considered

essential by many instructors, even in a one-semester
course. If included in such a course, we recommend cur-
tailing coverage in other areas to avoid student overload.
Sample syllabi for these different types of courses can be
found on the Instructor Center of the Online Learning
Center.

Some instructors would prefer to put chapter 20 on
relativity at the end of the mechanics section or just prior
to the modern physics material. Relativity has little to
do with everyday phenomena, of course, but is included
because of the high interest that it generally holds for stu-
dents. The final chapter (21) introduces a variety of topics
in modern physics—including particle physics, cosmol-
ogy, semiconductors, and superconductivity—that could
be used to stimulate interest at various points in a
course.

One plea to instructors, as well as to students using
this book: Don’t try to cram too much material into too
short a time! We have worked diligently to keep this book
to a reasonable length while still covering the core con-
cepts usually found in an introduction to physics. These
ideas are most enjoyable when enough time is spent in
lively discussion and in consideration of questions so that
a real understanding develops. Trying to cover material
too quickly defeats the conceptual learning and leaves stu-
dents in a dense haze of words and definitions. Less can be
more if a good understanding results.

Mathematics in a Conceptual 
Physics Course
The use of mathematics in a physics course is a formida-
ble block for many students, particularly non-science
majors. Although there have been attempts to teach con-
ceptual physics without any mathematics, these attempts
miss an opportunity to help students gain confidence in
using and manipulating simple quantitative relationships.

Clearly mathematics is a powerful tool for express-
ing the quantitative relationships of physics. The use of
mathematics can be carefully limited, however, and sub-
ordinated to the physical concepts being addressed. Many
users of the first edition of this text felt that mathematical

preface
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expressions appeared too frequently for the comfort of some
students. In response, we substantially reduced the use of
mathematics in the body of the text in the second edition.
Most users have indicated that the current level is about
right, so we have not changed the mathematics level in sub-
sequent editions.

“The level of presentation is pitch-perfect for a college
physics course. I happen to have a need for a book at just
this level, compromising between a math-free conceptual
book and one that goes for the full college-level (but not
university-level) treatment. The brevity of presentation also
lends itself well to a one-semester survey course format.”

—Brent Royuk,
Concordia University

Logical coherence is a strong feature of this book. For-
mulas are introduced carefully after conceptual arguments
are provided, and statements in words of these relation-
ships generally accompany their introduction. We have
continued to fine tune the example boxes that present sam-
ple exercises and questions. Most of these provide simple
numerical illustrations of the ideas discussed. No mathe-
matics prerequisite beyond high school algebra should be
necessary. A discussion of the basic ideas of very simple
algebra is found in appendix A, together with some prac-
tice exercises, for students who need help with these ideas.

New to This Edition
We have made several significant changes to the sixth edition.
As the book has evolved, however, we have tried to remain
faithful to the principles that have guided the writing of the
book from the outset. One of these has been to keep the book
to a manageable length, both in the number of chapters and
the overall content. Many books become bloated as users and
reviewers request more and more pet topics, We have tried to
add material judiciously and have pared material elsewhere
so that the overall length of the book has not changed. The
changes include the following:

1. New Everyday Phenomenon Boxes. We have added
five new everyday phenomenon boxes to this edition.
Three of these are related to energy issues designed to
better support instructors interested in building an energy
emphasis into their courses. The new boxes are:

everyday phenomenon box 6.1 Conservation of Energy
everyday phenomenon box 7.1 The Egg Toss
everyday phenomenon box 12.1 Cleaning Up the
Smoke
everyday phenomenon box 15.1 Electric Power
from Waves
everyday phenomenon box 19.1 Smoke Detectors

2. New Sample Exercises. Many users have pointed out
a need for more sample exercises in some chapters. We

ix

have added several new sample exercises in places
where the need was apparent. Except for the first and
the last chapter, most chapters now have three or four
sample exercises.

3. Building an Energy Emphasis. Although this book
remains a basic conceptual physics text, we are work-
ing to make the book better serve instructors who want
to teach a conceptual physics course with an energy
emphasis. This is reflected in the new everyday phe-
nomenon boxes, but also in other places within the
body of the text. In the past few editions, we have
added everyday phenomenon boxes on fuel cells and
hybrid automobiles, and boxes on solar collectors and
nuclear reactors were already included. We have
enhanced the discussion of the greenhouse effect in
everyday phenomenon box 10.1. A syllabus for instruc-
tors wishing to teach a course with an energy emphasis
can be found on the Instructor Center of the text website.
We plan to continue building this emphasis in future
editions.

4. New Home Experiments. We have added several new
home experiments and have also added a few new syn-
thesis problems. Many users have found these features
to be very useful.

5. Continued Refinements in Artwork and Textual Clarity.
Although the textual clarity of this text has been exten-
sively praised by many reviewers and users, it can
always be improved. Reviewers continue to point out
places where either the art or text can be improved, and
we have responded to many of these suggestions. To this
end, we have made many changes, often subtle, to both
the art and text. More noticeable changes include an
improved and simplified discussion of planetory motion
and Kepler’s Laws in chapter 5 and on updated discus-
sion of integrated circuits in chapter 21.

Learning Aids
The overriding theme of this book is to introduce physical
concepts by appealing to everyday phenomena whenever
possible. To achieve this goal, this text includes a variety of
features to make the study of The Physics of Everyday Phe-
nomena more effective and enjoyable. A few key concepts
form the basis for understanding physics, and the textual fea-
tures described here reinforce this structure so that the reader
will not be lost in a flurry of definitions and formulas.

“The presentation is outstanding: Clear, concise, not
too complicated, not trivial either. The style is refresh-
ing. Students are invited to think; they are not over-
whelmed by complicated explanations. . . .”

—Klaus Rossberg,
Oklahoma City University
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Chapter Openers
Each chapter begins with an illustration from everyday
experience and then proceeds to use it as a theme for intro-
ducing relevant physical concepts. Physics can seem
abstract to many students, but using everyday phenomena
and concrete examples reduces that abstractness. The chapter
overview previews the chapter’s contents and what students
can expect to learn from reading the chapter. The overview
introduces the concepts to be covered, facilitating the integra-
tion of topics, and helping students to stay focused and
organized while reading the chapter for the first time. The
chapter outline includes all the major topic headings within
the body of the chapter. It also contains questions that pro-
vide students with a guide of what they will be expected to
know in order to comprehend the major concepts of the
chapter. (These questions are then correlated to the end-of-
chapter summaries.)

chapter overview
In this chapter, we explore momentum and impulse and examine the use
of these concepts in analyzing events such as a collision between a
fullback and defensive back. The principle of conservation of momentum
is introduced and its limits explained. A number of examples will shed
light on how these ideas are used, particularly conservation of
momentum. Momentum is central to all of these topics—it is a powerful
tool for understanding a lot of life’s sudden changes.

chapter outline
1 Momentum and impulse. How can rapid changes in motion be

described using the ideas of momentum and impulse? How do these
ideas relate to Newton’s second law of motion?

2 Conservation of momentum. What is the principle of conservation of
momentum, and when is it valid? How does this principle follow from
Newton’s laws of motion?

3 Recoil. How can we explain the recoil of a rifle or shotgun using
momentum? How is this similar to what happens in firing a rocket?

4 Elastic and inelastic collisions. How can collisions be analyzed using
conservation of momentum? What is the difference between an elastic
and an inelastic collision?

5 Collisions at an angle. How can we extend momentum ideas to two
dimensions? How does the game of pool resemble automobile
collisions?

124

un
it

 o
ne

Momentum and
Impulse

c h a p t e r

7 “I found the liberal use of questions such as “Do you
believe in atoms? And, if so, why?” to motivate the dis-
cussion to be outstanding. I also found the interwoven
history used to guide the discussion to be excellent. I
often use that approach myself. It usually leads to a nat-
ural flow of concepts and also informs the student how
we know what we know, as well as giving them training
in scientific thinking and showing them how science is
done in real life. . . . Only someone who actively resis-
ted understanding could fail to understand Griffith’s
text. He writes clearly, logically, and interestingly.”

—Charles W. Rogers,
Southwestern Oklahoma 

State University

Subsection headings are often cast in the form of ques-
tions to motivate the reader and pique curiosity.

Rotational displacement, rotational velocity, and rotational
acceleration are the quantities that we need to fully describe
the motion of a rotating object. They describe how far the
object has rotated (rotational displacement), how fast it
is rotating (rotational velocity), and the rate at which the
rotation may be changing (rotational acceleration). These
definitions are analogous to similar quantities used to
describe linear motion. They tell us how the object is
rotating, but not why. Causes of rotation are considered
next.

The chapter outlines, questions, and summaries provide a
clear framework for the ideas discussed in each chapter. One
of the difficulties that students have in learning physics (or
any subject) is that they fail to construct the big picture of
how things fit together. A consistent chapter framework can
be a powerful tool in helping students see how ideas mesh.

Other Text Features
Running summary paragraphs are found at the end
of each chapter section to supplement the more general
summary at the end of the chapter.

What is the difference between
speed and velocity?
Imagine that you are driving a car around a curve (as illus-
trated in figure 2.5) and that you maintain a constant speed
of 60 km/h. Is your velocity also constant in this case? 
The answer is no, because velocity involves the direction
of motion as well as how fast the object is going. The
direction of motion is changing as the car goes around the
curve.

To simply state this distinction speed as we have de

“Very good chapter overview and chapter outline for
each chapter and for each unit. Very clear introduc-
tion and illustration of physics phenomena, concepts,
and principles, and excellent exercises, problems, and
home experiments/observations at the end of each
chapter.”

—Hai-Sheng Wu,
Minnesota State University, Mankato

gri12117_fm_i-xvi.qxd  7/31/08  18:41  Page x



Rev. confirming pages

xi

Study hints and study suggestions provide students with pointers on their use of the textbook, tips on applying the principles
of physical concepts, and suggestions for home experiments.

Visualizing these angular momentum vectors and their
changes can be an abstract and difficult task. The effect
will seem much more real if you can directly experience it.
If a bicycle wheel mounted on a hand-held axle (such as
that pictured in figure 8.23) is available, try the tilt effect
yourself. Grasp the wheel with both hands by the handles
on each side and have someone give it a good spin with
the wheel in a vertical plane. Then try tilting the wheel
downward to the left to simulate a fall. The wheel will
seem to have a mind of its own and will turn to the left
as suggested by figure 8.22.

study hint

Measuring Blood Pressure

The Situation. When you visit your doctor’s office, the nurse
will almost always take your blood pressure before the doctor
spends time with you. A cuff is placed around your upper arm
(as shown in the photograph) and air is pumped into the cuff,
producing a feeling of tightness in your arm. Then the air is
slowly released while the nurse listens to something with a
stethoscope and records some numbers, such as 125 over 80.

What is the significance of these two numbers? What is
blood pressure and how is it measured? Why are these read-
ings an important factor, along with your weight, tempera-
ture, and medical history, in assessing your health?

The Analysis. Your blood flows through an elaborate system
of arteries and veins in your body. As we all know, this flow is
driven by your heart, which is basically a pump. More accu-
rately, the heart is a double pump. One-half pumps blood
through your lungs, where the blood cells pick up oxygen and
discard carbon dioxide. The other half of the heart pumps blood
through the rest of your body to deliver oxygen and nutrients.
Arteries carry blood away from the heart into small capillaries
that interface with other cells in muscles and organs. The veins
collect blood from the capillaries and carry it back to the heart.

We measure the blood pressure in a major artery in your
upper arm at about the same height as your heart. When air
is pumped into the cuff around your upper arm, it compresses
this artery so that the blood flow stops. The nurse places the
stethoscope, a listening device, near this same artery at a
lower point in the arm and listens for the blood flow to
restart as the air in the cuff is released.

The heart is a pulsating pump that pumps blood most
strongly when the heart muscle is most fully compressed. The
pressure therefore fluctuates between high and low values.
The higher reading in the blood pressure measurement, the 
systolic pressure, is taken when the blood just begins to spurt 

through the compressed artery at the peak of the heart’s cycle.
The lower reading, the diastolic pressure, is taken when blood
flow occurs even at the low point in the cycle. There are distinc-
tive sounds picked up by the stethoscope at these two points.

The pressure recorded is actually the pressure in the air
cuff for these two conditions. It is a gauge pressure, meaning
that it is the pressure difference between the pressure being
measured and atmospheric pressure. It is recorded in the
units mm of mercury, which is the common way of recording
atmospheric pressure. Thus a reading of 125 means that the
pressure in the cuff is 125 mm of mercury above atmospheric
pressure. A mercury manometer that is open to the air on one
side (see the drawing) will measure gauge pressure directly.

High blood pressure can be a symptom of many health prob-
lems, but most specifically, it is a warning sign for heart attacks
and strokes. When arteries become constricted from the buildup
of plaque deposits inside, the heart must work harder to pump
blood through the body. Over time this can weaken the heart
muscle. The other danger is that blood vessels might burst in the
brain, causing a stroke, or blood clots might break loose and
block smaller arteries in the heart or brain. In any case, high
blood pressure is an important indicator of a potential problem.

Low blood pressure can also be a sign of problems. It can
cause dizziness when not enough blood is reaching the brain.
When you stand up quickly, you sometimes experience a feel-
ing of “light-headedness” because it takes a brief time for
the heart to adjust to the new condition where your head is
higher. Giraffes have a blood pressure about three times
higher than humans (in gauge pressure terms). Why do you
suppose this is so?

everyday phenomenon
box 9.1

An open-ended manometer can be used to measure the gauge
pressure of the cuff. The stethoscope is used to listen for sounds
indicating the restart of blood flow.

Release valve

Stethoscope

Open end
Cuff

Having your blood pressure measured is a standard procedure for
most visits to a doctor’s office. How does this process work?

Everyday phenomenon boxes relate physical concepts
discussed in the text to real-world topics, societal issues,
and modern technology, underscoring the relevance of
physics and how it relates to our day-to-day lives. The list
of topics includes:

The Case of the Malfunctioning Coffee Pot 
(chapter 1)

Transitions in Traffic Flow (chapter 2)
The 100-m Dash (chapter 2)
Shooting a Basketball (chapter 3)
The Tablecloth Trick (chapter 4)
Riding an Elevator (chapter 4)
Seat Belts, Air Bags, and Accident Dynamics

(chapter 5)
Explaining the Tides (chapter 5)
Conservation of Energy (chapter 6)
Energy and the Pole Vault (chapter 6)
The Egg Toss (chapter 7)
An Automobile Collision (chapter 7)
Achieving the State of Yo (chapter 8)
Bicycle Gears (chapter 8)
Measuring Blood Pressure (chapter 9)
Throwing a Curveball (chapter 9)
Solar Collectors and the Greenhouse Effect

(chapter 10)
Hybrid Automobile Engines (chapter 11)
A Productive Pond (chapter 11)
Cleaning Up the Smoke (chapter 12)
Lightning (chapter 12)
Electrical Impulses in Nerve Cells (chapter 13)
The Hidden Switch in Your Toaster (chapter 13)
Direct-Current Motors (chapter 14)
Vehicle Sensors at Traffic Lights (chapter 14)
Electric Power from Waves (chapter 15)
A Moving Car Horn and the Doppler Effect 

(chapter 15)
Why Is the Sky Blue? (chapter 16)
Antireflection Coatings on Eyeglasses

(chapter 16)
Rainbows (chapter 17)
Laser Refractive Surgery (chapter 17)
Fuel Cells and the Hydrogen Economy

(chapter 18)
Electrons and Television (chapter 18)
Smoke Detectors (chapter 19)
What Happened at Chernobyl? (chapter 19)
The Twin Paradox (chapter 20)
Holograms (chapter 21)

“This book compared to others is simply interesting.
Topics like physics of music and color perception really
engaged me, even as I read most of the chapters in one
sitting. It indeed does a good job at getting at everyday
phenomena.”

—Tim Bolton,
Kansas State University
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End-of-Chapter Features

• The summary highlights the key elements of the chap-
ter and correlates to the questions asked about the chap-
ter’s major concepts on the chapter opener.

• Exercises and synthesis problems are
intended to help students test their grasp of
problem-solving. The odd-numbered exer-
cises have answers in appendix D. By
working through the odd-numbered exer-
cises and checking the answer in appendix
D, students can gain confidence in tackling
the even-numbered exercises, and thus
reinforce their problem-solving skills.

• Key terms are page-referenced to
where students can find the terms
defined in context.

• Questions are designed to challenge
students to demonstrate their under-
standing of the key concepts. Selected
answers are provided in appendix D
to assist students with their study of
more difficult concepts.

Key Terms

Questions

Except for the examples involving impulse, most of the sit-
uations described in this chapter highlight the principle of
conservation of momentum. The basic ideas used in apply-
ing conservation of momentum are:

1. External forces are assumed to be much smaller than
the very strong forces of interaction in a collision or
other brief event. If external forces acting on the sys-
tem can be ignored, momentum is conserved.

2. The total momentum of the system before the collision
or other brief interaction pinitial is equal to the momen-
tum after the event pfinal. Momentum is conserved and
does not change.

3. Equality of momentum before and after the event can
be used to obtain other information about the motion
of the objects.

For review, look back at how these three points are used
in each of the examples in this chapter. The total momen-
tum of the system before and after the event is always
found by adding the momentum values of the individual
objects as vectors. You should be able to describe the mag-
nitude and direction of this total momentum for each of
the examples.

* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. Does the length of time that a force acts on an object have
any effect on the strength of the impulse produced? Explain.

Q2. Two forces produce equal impulses, but the second force
acts for a time twice that of the first force. Which force, if
either, is larger? Explain.

Q3. Is it possible for a baseball to have as large a momentum 
as a much more massive bowling ball? Explain.

Q4. Are impulse and force the same thing? Explain.

Q5. Are impulse and momentum the same thing? Explain.

Q6. If a ball bounces off a wall so that its velocity coming back
has the same magnitude that it had prior to bouncing:
a. Is there a change in the momentum of the ball? Explain.
b. Is there an impulse acting on the ball during its colli-

sion with the wall? Explain.

Q7. Is there an advantage to following through when hitting a
baseball with a bat, thereby maintaining a longer contact
between the bat and the ball? Explain.

Q8. What is the advantage of a padded dashboard compared to
a rigid dashboard in reducing injuries during collisions?
Explain using momentum and impulse ideas.

Q9. What is the advantage of an air bag in reducing injuries
during collisions? Explain using impulse and momentum
ideas.

*Q10. If an air bag inflates too rapidly and firmly during a colli-
sion, it can sometimes do more harm than good in low-
velocity collisions. Explain using impulse and momentum
ideas.

Q11. If you catch a baseball or softball with your bare hand,
will the force exerted on your hand by the ball be reduced
if you pull your arm back during the catch? Explain.

Q12. A truck and a bicycle are moving side by side with the
same velocity. Which, if either, will require the larger im-
pulse to bring it to a halt? Explain.

Q13. Is the principle of conservation of momentum always valid,
or are there special conditions necessary for it to be valid?
Explain.

Q14. A ball is accelerated down a fixed inclined plane under
the influence of the force of gravity. Is the momentum
of the ball conserved in this process? Explain.

Q15. Two objects collide under conditions where momentum is
conserved. Is the momentum of each object conserved in
the collision? Explain.

Q16. Which of Newton’s laws of motion are involved in justify-
ing the principle of conservation of momentum? Explain.

key terms

Impulse, 124
Momentum, 124
Impulse-momentum principle, 124

Conservation of momentum, 126
Recoil, 129
Perfectly inelastic collision, 130

Elastic collision, 130
Partially inelastic collision, 130

study hint

questions

summary

In this chapter, we recast Newton’s second law in terms of im-
pulse and momentum to describe interactions between objects,
such as collisions, that involve strong interaction forces acting
over brief time intervals. The principle of conservation of mo-
mentum, which follows from Newton’s second and third laws,
plays a central role.

1 Momentum and impulse. Newton’s second law can
be recast in terms of momentum and impulse, yielding the state-
ment that the net impulse acting on an object equals the change in
momentum of the object. Impulse is defined as the average force
acting on an object multiplied by the time interval during which
the force acts. Momentum is defined as the mass of an object
times its velocity.

2 Conservation of momentum. Newton’s second and
third laws combine to yield the principle of conservation of mo-
mentum: if the net external force acting on a system is zero, the
total momentum of the system is a constant.

3 Recoil. If an explosion or push occurs between two ob-
jects initially at rest, conservation of momentum dictates that the
total momentum after the event must still be zero if there is no net
external force. The final momentum vectors of the two objects are
equal in size but opposite in direction.

4 Elastic and inelastic collisions. A perfectly inelas-
tic collision is one in which the objects stick together after the
collision. If external forces can be ignored, the total momentum is
conserved. An elastic collision is one in which the total kinetic
energy is also conserved.

5 Collisions at an angle. Conservation of momentum
is not restricted to one-dimensional motion. When objects collide
at an angle, the total momentum of the system before and after
the collision is found by adding the momentum vectors of the in-
dividual objects.

Impulse ∆p

Fnet∆t = ∆p, p = mv

Before

If Fexternal = 0

After

PP

Ptotal = constant

Before

After

pf = pi

pf

Elastic
Perfectly
inelastic

vi

vf

vi

p2

p2 = –p1

p1

Summary

Synthesis Problems

synthesis problems

SP1. A fast ball thrown with a velocity of 40 m/s (approximately
90 MPH) is struck by a baseball bat, and a line drive 
comes back toward the pitcher with a velocity of 60 m/s.
The ball is in contact with the bat for a time of just 0.04 s.
The baseball has a mass of 120 g (0.120 kg).
a. What is the change in momentum of the baseball during

this process?
b. Is the change in momentum greater than the final mo-

mentum? Explain.
c. What is the magnitude of the impulse required to pro-

duce this change in momentum?
d. What is the magnitude of the average force that acts on

the baseball to produce this impulse?

SP2. A bullet is fired into a block of wood sitting on a block of
ice. The bullet has an initial velocity of 500 m/s and a mass
of 0.005 kg. The wooden block has a mass of 1.2 kg and is
initially at rest. The bullet remains embedded in the block
of wood afterward.
a. Assuming that momentum is conserved, find the veloc-

ity of the block of wood and bullet after the collision.
b. What is the magnitude of the impulse that acts on the

block of wood in this process?
c. Does the change in momentum of the bullet equal that

of the block of wood? Explain.

SP3. Consider two cases in which the same ball is thrown against
a wall with the same initial velocity. In case A, the ball sticks
to the wall and does not bounce. In case B, the ball bounces
back with the same speed that it came in with.
a. In which of these two cases is the change in momentum

th l t?

SP4. A car traveling at a speed of 18 m/s (approximately 40 MPH)
crashes into a solid concrete wall. The driver has a mass of
90 kg.
a. What is the change in momentum of the driver as he

comes to a stop?
b. What impulse is required in order to produce this change

in momentum?
c. How does the application and magnitude of this force

differ in two cases: the first, in which the driver is wear-
ing a seat belt, and the second, in which he is not wearing
a seat belt and is stopped instead by contact with the
windshield and steering column? Will the time of action
of the stopping force change? Explain.

SP5. A 1500-kg car traveling due north with a speed of 25 m/s
collides head-on with a 4500-kg truck traveling due south
with a speed of 15 m/s. The two vehicles stick together after
the collision.
a. What is the total momentum of the system prior to the

collision?
b. What is the velocity of the two vehicles just after the

collision?
c. What is the total kinetic energy of the system before the

collision?
d. What is the total kinetic energy just after the collision?
e. Is the collision elastic? Explain.

exercises

E1. An average force of 300 N acts for a time interval of 0.04 s
on a golf ball.
a. What is the magnitude of the impulse acting on the golf

ball?
b. What is the change in the golf ball’s momentum?

E2. What is the momentum of a 1200-kg car traveling with a
speed of 27 m/s (60 MPH)?

E3. A bowling ball has a mass of 6 kg and a speed of 1.5 m/s.
A baseball has a mass of 0.12 kg and a speed of 40 m/s.
Which ball has the larger momentum?

E4. A force of 45 N acts on a ball for 0.2 s. If the ball is ini-
tially at rest:
a. What is the impulse on the ball?
b. What is the final momentum of the ball?

E5. A 0.12-kg ball traveling with a speed of 40 m/s is brought
to rest in a catcher’s mitt. What is the size of the impulse
exerted by the mitt on the ball?

E6. A ball experiences a change in momentum of 24 kg·m/s.
a. What is the impulse acting on the ball?
b. If the time of interaction is 0.15 s, what is the magni-

tude of the average force acting on the ball?

A 60 k f i i i i i ll i h

E10. A fullback with a mass of 100 kg and a velocity of 3.5 m/s
due west collides head-on with a defensive back with a
mass of 80 kg and a velocity of 6 m/s due east.
a. What is the initial momentum of each player?
b. What is the total momentum of the system before the

collision?
c. If they stick together and external forces can be ignored,

what direction will they be traveling immediately after
they collide?

E11. An ice skater with a mass of 80 kg pushes off against a 
second skater with a mass of 32 kg. Both skaters are ini-
tially at rest.
a. What is the total momentum of the system after they

push off?
b. If the larger skater moves off with a speed of 3 m/s,

what is the corresponding speed of the smaller skater?

E12. A rifle with a mass of 1.2 kg fires a bullet with a mass of
6.0 g (0.006 kg). The bullet moves with a muzzle velocity
of 600 m/s after the rifle is fired.
a. What is the momentum of the bullet after the rifle is

fired?
b. If external forces acting on the rifle can be ignored,

what is the recoil velocity of the rifle?

Exercises

example box 2.4

Sample Exercise: Uniform Acceleration

A car traveling due east with an initial velocity of 10 m/s
accelerates for 6 seconds at a constant rate of 4 m/s2.

a. What is its velocity at the end of this time?
b. How far does it travel during this time?

a. v0 � 10 m/s v � v0 � at

a � 4 m/s2 � 10 m/s � (4 m/s2)(6 s)

t � 6 s � 10 m/s � 24 m/s

v � ? � 34 m/s

v � 34 m/s due east

Example boxes are included within the chapter and con-
tain one or more concrete, worked examples of a problem
and its solution as it applies to the topic at hand. Through
careful study of these examples, students can better appre-
ciate the many uses of problem solving in physics.
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• Because many courses for non-science majors do not
have a laboratory component, home experiments and
observations are found at the end of each chapter.
The spirit of these home experiments is to enable
students to explore the behavior of physical phe-
nomena using easily available rulers, string, paper
clips, balls, toy cars, flashlight batteries, and so on.
Many instructors have found them useful for putting
students into the exploratory and observational frame
of mind that is important to scientific thinking. This is
certainly one of our objectives in developing scientific
literacy.

xiii

“The selection of problems and questions at the end of
each chapter is excellent. They provide students with a
comprehensive review of the chapters and at the same
time present challenges to reinforce the concepts. . . .
Many students taking an introductory physics course do
not have a chance to take a lab component with the
course. The home experiments can go a long way toward
addressing this deficiency.”

—Farhang Amiri,
Weber State University

Supplements

Text Website
A text-specific website that provides students with useful
study tools designed to help improve their understanding of
the material presented in the text and class. For the instruc-
tor, the website is designed to help ease the time burdens of
the course by providing valuable presentation and prepara-
tion tools.

Home Experiments
and Observations

HE1. Take two marbles or steel balls of the same size and prac-
tice shooting one into the other. Make these observations:
a. If you produce a head-on collision with the second

marble initially at rest, does the first marble come to a
complete stop after the collision?

b. If the collision with a second marble occurs at an angle,
is the angle between the paths of the two marbles after
the collision a right angle (90°)?

c. If marbles of different sizes and masses are used, how
do the results of parts a and b differ from those ob-
tained with marbles of the same mass?

HE2. If you have access to a pool table, try parts a and b of
the observations in home experiment 1 on the pool table.
What effect does putting spin on the first ball have on the
collisions?

HE3. If you have both a basketball and a tennis ball, try drop-
ping the two of them onto a floor with a hard surface, first
individually and then with the tennis ball placed on top of
the basketball before the two are dropped together.
a. Compare the height of the bounce of each ball in these

different cases. The case where the two are dropped to-
gether may surprise you.

b. Can you devise an explanation for these results using
impulse and Newton’s third law? (Consider the force
between the basketball and the floor as well as that be-
tween the tennis ball and the basketball for the case
where they are dropped together.)

HE4. Place a cardboard box on a smooth tile or wood floor. 
Practice rolling a basketball or soccer ball at different
speeds and allowing the ball to collide with the box. Ob-
serve the motion of both the box and the ball just after the
collision.
a. How do the results of the collision vary for different

speeds of the ball (slow, medium, fast)?
b. If we increase the weight of the box by placing books

inside, how do the results of the collision change for 
the cases in part a?

c. Can you explain your results using conservation of
momentum?

home experiments and observations

For Students

Student Study Guide Integration 
• Mastery Quiz
• Know
• Understand
• Study Hints
• Practice Problems
• Answers to Selected Questions

Animations
Crossword Puzzles
Links Library
Chapter Summary
Chapter Objectives

For Instructors

All Student Content
PowerPoint Lectures
Instructor’s Manual
Sample Syllabi
CPS eInstruction Questions for Personal Response Systems
Powerpoints of Art and Photos from the Text
Test Bank 
Formula Summaries

Personal Response Systems
Personal Response Systems (clickers) can bring interactivity
into the classroom or lecture hall. Wireless response sys-
tems give the instructor and students immediate feedback
from the entire class. The wireless response pads are essen-
tially remotes that are easy to use and engage students,
allowing instructors to motivate student preparation, inter-
activity, and active learning. Instructors receive immediate
feedback to gauge which concepts students understand.
Questions covering the content of The Physics of Everyday
Phenomena text are formatted in PowerPoint and are avail-
able on the text website.

gri12117_fm_i-xvi.qxd  8/6/2008  8:29 AM  Page xiii



Confirming Pages

Computerized Test Bank Online
A comprehensive bank of test questions is provided on the
text website within a computerized test bank powered by
McGraw-Hill's flexible electronic testing program EZ Test
Online (www.eztestonline.com). EZ Test Online allows you
to create paper and online tests or quizzes in this easy to
use program!

Imagine being able to create and access your test or quiz
anywhere, at any time, without installing the testing soft-
ware. Now, with EZ Test Online, instructors can select
questions from multiple McGraw-Hill test banks, or author
their own, and then either print the test for paper distribu-
tion or give it online.

Test Creation

• Author/edit questions online using the 14 different
question type templates

• Create printed tests or deliver online to get instant
scoring and feedback.

• Create question pools to offer multiple versions online—
great for practice

• Export your tests for use in WebCT, Blackboard, Page-
Out, and Apple's iQuiz

• Compatible with EZ Test Desktop tests you have already
created

• Sharing tests with collegues, adjuncts, TAs is easy

Online Test Management

• Set availability dates and time limits for your quiz or test
• Control how your test will be presented
• Assign points by question or question type with drop-

down menu
• Provide immediate feedback to students or delay until

all finish the test
• Create practice tests online to enable student mastery
• Your roster can be uploaded to enable student self-

registration

Online Scoring and Reporting

• Automated scoring for most of EZ Test's numerous
question types

• Allows manual scoring for essay and other open response
questions

• Manual re-scoring and feedback is also available
• EZ Test's grade book is designed to easily export to

your grade book
• View basic statistical reports

Support and Help

• User's Guide and built-in page-specific help
• Flash tutorials for getting started on the support site
• Support Website - www.mhhe.com/eztest
• Product specialist available at 1-800-331-5094
• Online Training: http://auth.mhhe.com/mpss/workshops/

xiv

Electronic Books
If you or your students are ready for an alternative version
of the traditional textbook, McGraw-Hill brings you inno-
vative and inexpensive electronic textbooks. By purchasing
e-books from McGraw-Hill, students can save as much as
50% on selected titles delivered on the most advanced e-
book platforms available.

E-books from McGraw-Hill are smart, interactive, searchable,
and portable, with such powerful tools as detailed searching,
highlighting, note taking, and student-to-student or instructor-
to-student note sharing. E-books from McGraw-Hill will help
students to study smarter and quickly find the information
they need. Students will also save money. Contact your
McGraw-Hill sales representative to discuss e-book packag-
ing options.
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First of all, we should admit that there are no secrets. Conscientious work

and follow-through with reading, problem assignments, and class partici-

pation will reap the rewards that students can expect from such efforts in

other courses. Failing to do so will also lead to expected results.

There are some ways, however, in which studying physics is dif-

ferent from your studies in biology, history, or many other courses.

Physics is not an area of study that can be mastered by memorizing

discrete facts or by cramming before tests. Students sometimes bring

study strategies to physics that have worked in other courses and are

disappointed when they fail to work in their physics class. The sugges-

tions that follow are sure-fire steps to getting the most out of your

physics course and this textbook.

1. Experiment. Experiments play a key role in the development of

physics but also in the growth of understanding for anyone

approaching physics concepts. We often suggest in the text that you

try simple experiments that might involve throwing a ball, walking

across a room, or other very rudimentary activities. Do them right

away as they arise in the text. Not only will you gain the benefit of

increased blood flow to various parts of the body including the

brain, but what follows in your reading will make more sense.

Experience with everyday phenomena cannot be gained passively.

2. Get the big picture. Physics is a big-picture subject. Your under-

standing of Newton’s laws of motion, for example, cannot be

encapsulated by a formula or by memorizing the laws them-

selves. You need to see the entire context, understand the defini-

tions, and work with how the laws are applied. The outlines and

summaries provided at the beginning and end of each chapter

can help to provide the context. They cannot stand alone, how-

ever. You need to place the examples and descriptions provided

in the classroom and text in the framework provided by the out-

lines and summaries. If you grasp the big picture, the details will

often follow.

3. Explore questions. The textbook provides a list of conceptual

questions at the end of each chapter, but also raises questions in

the body of the text. The greatest benefit is gained by attacking

these questions first on your own and then by discussion with

classmates. Write out answers to these questions using full sen-

tences, not just short-answer phrases. Compare your answers with

those provided at the back of the text for selected questions, but

only after having a good crack at answering the questions yourself.

4. Try the exercises. The textbook also provides exercises and syn-

thesis problems at the end of each chapter. Their purpose is to

provide practice with simple numerical applications of physics

concepts. They are only useful if you do them yourself and write

out the solution steps in such a way that you can follow your

work. Copying answers and steps from classmates or other

sources may gain points on the assignment but provides no bene-

fit in understanding. As in sports and many other activities, suc-

cess on physics exams will come to those who practice.

5. Be there. College students set their own priorities for use of time,

and sometimes class attendance is not at the top of the list. In

some classes, this may be justified by the nature of the benefit of

class activities, but that is seldom the case in physics. The demon-

strations, explanations, working of exercises, and class discus-

sions that are usually part of what occurs during a physics class

provide an invaluable aid to grasping the big picture and filling in

holes in your understanding. The demonstrations alone are often

worth the price of admission. (You do pay—it’s called tuition.)

6. Ask questions. If the explanations of demonstrations or other

issues are not clear, ask questions. If you are confused, chances

are good that many other students are likewise befuddled. They

will love you for raising the flag. Unless the instructor is unusu-

ally insecure, he or she will also love you for providing the

opportunity to achieve better clarity. Physics instructors already

know this stuff, so they sometimes have difficulty seeing where

student hang-ups may lie. Questions provide the lubrication for

moving things forward.

7. Review understanding. Preparing for tests should not be a matter

of last-minute cramming and memorization. Instead, you should

review your understanding of the big picture and question yourself

on why we did what we did in answering questions and working

exercises done previously. Memorization is usually pointless

because many physics instructors provide or permit formula sheets

that may include definitions and other information. Late-night

cramming is counterproductive because it detracts from getting a

good night’s sleep. Sleep can be critical to having a clear head the

next day to meet the challenges provided by the test.

Although there is an element of common sense in most of these sug-

gestions, you will probably not be surprised to learn that many students do

not approach things following these guidelines. Old habits are hard to

break and peer pressure can also be a negative influence at times. Students

fall into patterns that they know are ineffective, but are unable to climb

out of the rut. We have done our duty in disclosing these secrets. You are

on your own if you choose a different path. Let us know if it works.

Secrets to Success in Studying Physics 

xvi
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1

chapter

Physics, the 
Fundamental Science

1
chapter overview
The main objective of this chapter is to help you understand what
physics is and where it fits in the broader scheme of the sciences.
A secondary purpose is to acquaint you with the metric system of units
and the advantages of the use of simple mathematics.

chapter outline
1 The scientific enterprise. What is the scientific method? How do

scientific explanations differ from other types of explanation?

2 The scope of physics. What is physics? How is it related to the other
sciences and to technology? What are the major subfields of physics?

3 The role of measurement and mathematics in physics. Why are
measurements so important? Why is mathematics so extensively used
in science? What are the advantages of the metric system of units?

4 Physics and everyday phenomena. How is physics related to everyday
experience and common sense? What are the advantages of using
physics to understand common experience?

un
it

 o
ne
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and in many other areas of human activity. The greatest
rewards of scientific study are the fun and excitement
that come from understanding something that has not
been understood before. This is true whether we are
talking about a physicist making a major scientific break-
through or about a bike rider understanding how rain-
bows are formed.

2 Chapter 1 Physics, the Fundamental Science

1.1 The Scientific Enterprise
How do scientists go about explaining something like the
rainbow described in the introduction to this chapter? How
do scientific explanations differ from other types of expla-
nations? Can we count on the scientific method to explain
almost anything? It is important to understand what sci-
ence can and cannot do.

Philosophers have devoted countless hours and pages
to questions about the nature of knowledge, and of scien-
tific knowledge in particular. Many issues are still being

refined and debated. Science grew rapidly during the twen-
tieth century and has had a tremendous impact on our lives.
Innovations in medicine, communications, transportation,
and computer technology all have resulted from advances
in science. What is it about science that explains its impres-
sive advances and steady expansion?

Science and rainbows
Let’s consider a specific example of how a scientific expla-
nation comes to be. Where would you turn for an explana-
tion of how rainbows are formed? If you returned from
your bike ride with that question on your mind, you might
turn to an encyclopedia or a textbook on physics, look up
rainbow in the index, and read the explanation found there.
Are you behaving like a scientist?

The answer is both yes and no. Many scientists would
do the same if they were unfamiliar with the explanation.
When we do this, we appeal to the authority of the text-
book author and to those who preceded the author in in-
venting the explanation. Appeal to authority is one way of
gaining knowledge, but you are at the mercy of your source
for the validity of your explanation. You are also hoping
that someone has already raised the same question and
done the work to create and test an explanation.

Imagine that you are riding your bike on a country road
on an Indian-summer afternoon. The sun has come out
after a brief shower, and as the rain clouds move on, a
rainbow appears in the east (fig. 1.1). A leaf flutters to
the ground, and an acorn, shaken loose by a squirrel,
misses your head by only a few inches. The sun is warm on
your back, and you are at peace with the world around
you.

No knowledge of physics is needed to savor the mo-
ment, but your curiosity may bring some questions to
mind. Why does the rainbow appear in the east rather
than in the west, where it may also be raining? What
causes the colors to appear? Why does the acorn fall
more rapidly than the leaf? Why is it easier to keep your
bicycle upright while you are moving than when you are
standing still?

Your curiosity about questions like these is similar to
what motivates scientists. Learning to devise and apply
theories or models that can be used to understand, ex-
plain, and predict such phenomena can be a rewarding
intellectual game. Crafting an explanation and testing it
with simple experiments or observations is fun. That
enjoyment is often missed when the focus of a science
course is on accumulating facts.

This book can enhance your ability to enjoy the phe-
nomena that are part of everyday experience. Learning
to produce your own explanations and to perform sim-
ple experimental tests can be gratifying. The questions
posed here lie in the realm of physics, but the spirit of
inquiry and explanation is found throughout science

If you have a clear idea of what you want to accomplish
before you begin to read a chapter, your reading will be
more effective. The questions in the chapter outline—as
well as those in the subheadings of each section—can
serve as a checklist for measuring your progress as you
read. A clear picture of what questions are going to be
addressed and where the answers will be found forms a
mental road map to guide you through the chapter. Take a
few minutes to study the outline and fix this road map in
your mind. It will be time well spent.

study hint

figure 1.1 A rainbow appears to the east in the Columbia
River Gorge in Oregon. How can this phenomenon be explained?
(See pages 354–355.)
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Suppose you go back three hundred years or more and
try the same approach. One book might tell you that a rain-
bow is a painting of the angels. Another might speculate
on the nature of light and its interactions with raindrops but
be quite tentative in its conclusions. Either of these books
might have seemed authoritative in its day. Where, then, do
you turn? Which explanation will you accept?

If you are behaving like a scientist, you might begin by
reading the ideas of other scientists about light and then
test these ideas against your own observations of rainbows.
You would carefully note the conditions when rainbows ap-
pear, the position of the sun relative to you and the rainbow,
and the position of the rain shower. What is the order of the
colors in the rainbow? Have you observed that order in
other phenomena?

You would then invent an explanation or hypothesis
using current ideas on light and your own guess about what
happens as light passes through a raindrop. You could de-
vise experiments with water drops or glass beads to test
your hypothesis. (See chapter 17 for a modern view of how
rainbows are formed.)

If your explanation is consistent with your observations
and experiments, you could report it by giving a paper or
talk to scientific colleagues. They may criticize your expla-
nation, suggest modifications, and perform their own exper-
iments to confirm or refute your claims. If others confirm
your results, your explanation will gain support and eventu-
ally become part of a broader theory* about phenomena
involving light. The experiments that you and others do
may also lead to the discovery of new phenomena, which
will call for refined explanations and theories.

What is critical to the process just described? First is the
importance of careful observation. Another aspect is the idea
of testability. An acceptable scientific explanation should
suggest some means to test its predictions by observations
or experiment. Saying that rainbows are the paintings of
angels may be poetic, but it certainly is not testable by mere
humans. It is not a scientific explanation.

Another important part of the process is a social one, the
communication of your theory and experiments to col-
leagues (fig. 1.2). Submitting your ideas to the criticism (at
times blunt) of your peers is crucial to the advancement of
science. Communication is also important in assuring your
own care in performing the experiments and interpreting the
results. A scathing attack by someone who has found
an important error or omission in your work is a strong
incentive for being more careful in the future. One person
working alone cannot hope to think of all of the possible
ramifications, alternative explanations, or potential mistakes

in an argument or theory. The explosive growth of science
has depended heavily on cooperation and communication.

What is the scientific method?
Is there something we could call scientific method within
this description, and if so, what is it? The process just de-
scribed is a sketch of how the scientific method works.
Although there are variations on the theme, this method is
often described as shown in table 1.1.

The steps in table 1.1 are all involved in our description
of how to develop an explanation of rainbows. Careful ob-
servation may lead to empirical laws for when and where
rainbows appear. An empirical law is a generalization de-
rived from experiments or observations. An example of an
empirical law is the statement that we see rainbows with
the sun at our backs as we look at the rainbow. This is an

1.1 The Scientific Enterprise 3

*The concept of a theory, as used in science, is often misunderstood. It is
much more than a simple hypothesis. A theory consists of a set of basic
principles from which many predictions can be deduced. The basic princi-
ples involved in the theory are often widely accepted by scientists working
in the field.

figure 1.2 A scientific meeting. Communication and debate
are important to the development of scientific explanations. The
speaker is Albert Einstein.

1. Careful observation of natural phenomena.

2. Formulation of rules or empirical laws based on
generalizations from these observations and experiences.

3. Development of hypotheses to explain the observations
and empirical laws, and the refinement of hypotheses into
theories.

4. Testing of the hypotheses or theories by further experiment
or observation.

table 1.1

Steps in the Scientific Method
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important clue for developing our hypothesis, which must
be consistent with this rule. The hypothesis, in turn, sug-
gests ways of producing rainbows artificially that could lead
to experimental tests and, eventually, to a broader theory.

This description of the scientific method is not bad, al-
though it ignores the critical process of communication. Few
scientists are engaged in the full cycle that these steps suggest.
Theoretical physicists, for example, may spend all of their
time with step 3. Although they have some interest in experi-
mental results, they may never do any experimental work
themselves. Today, little science is done simply by observing,
as implied by step 1. Most experiments and observations take
place to test a hypothesis or existing theory. Although the sci-
entific method is presented here as a stepwise process, in real-
ity these steps often happen simultaneously with much cycling
back and forth between steps (fig. 1.3).

How should science be presented?
Traditional science courses focus on presenting the results
of the scientific process rather than the story of how scien-
tists arrived at these results. This is why the general public
often sees science as a collection of facts and established
theories. To some extent, that charge could be made against
this book since it describes theories that have resulted from
the work of others without giving the full picture of their
development. Building on the work of others, without need-
ing to repeat their mistakes and unproductive approaches,
is a necessary condition for human and scientific progress.

This book attempts to engage you in the process of
making your own observations and developing and testing
your own explanations of everyday phenomena. By doing
home experiments or observations, constructing explana-
tions of the results, and debating your interpretations with
your friends, you will appreciate the give-and-take that is
the essence of science.

Whether or not we are aware of it, we all use the scien-
tific method in our everyday activities. The case of the
malfunctioning coffee pot described in everyday phenome-
non box 1.1 provides an example of scientific reasoning
applied to ordinary troubleshooting.

The process of science begins with, and returns to,
observations of or experiments on natural phenomena.
Observations may suggest empirical laws, and these
generalizations may be incorporated into a more compre-
hensive hypothesis. The hypothesis is then tested against
more observations or by controlled experiments to form a
theory. Working scientists are engaged in one or more of
these activities, and we all use the scientific method on
everyday problems.

1.2 The Scope of Physics
Where does physics fit within the sciences? Since this book
is about physics, rather than biology, chemistry, geology, or
some other science, it is reasonable to ask where we draw
the lines between the disciplines. It is not possible, how-
ever, to make sharp distinctions among the disciplines or to
provide a definition of physics that will satisfy everyone.
The easiest way to give a sense of what physics is and does
is by example, that is, by listing some of its subfields and
exploring their content. First, let’s consider a definition,
however incomplete.

How is physics defined?
Physics can be defined as the study of the basic nature of
matter and the interactions that govern its behavior. It is the
most fundamental of the sciences. The principles and theo-
ries of physics can be used to explain the fundamental inter-
actions involved in chemistry, biology, and other sciences at

4 Chapter 1 Physics, the Fundamental Science

Hypothesis
or

theory
Generalization

Observation
or

experiments

figure 1.3 The scientific method cycles back to observations
or experiments as we seek to test our hypotheses or theories.

example box 1.1

Sample Question: How Reliable Is Astrology?

Question: Astrologers claim that many events in our lives
are determined by the positions of the planets relative to
the stars. Is this a testable hypothesis?

Answer: Yes, it could be tested if astrologers were willing to
make explicit predictions about future events that could be
verified by independent observers. In fact, astrologers usually
carefully avoid doing this, preferring to cast their predictions
as vague statements subject to broad interpretation. This
prevents clean tests. Astrology is not a science!

The scientific method is a way of testing and refining
ideas. Note that the method only applies when experimen-
tal tests or other consistent observations of phenomena are
feasible. Testing is crucial for weeding out unproductive
hypotheses; without tests, rival theories may compete end-
lessly for acceptance. Example box 1.1 provides a sample
question and response illustrating these ideas.
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The Case of the Malfunctioning Coffee Pot

The Situation. It is Monday morning, and you are, as usual,
only half-awake and feeling at odds with the world. You are
looking forward to reviving yourself with a freshly brewed
cup of coffee when you discover that your coffeemaker
refuses to function. Which of these alternatives is most likely
to work?

1. Pound on the appliance with the heel of your hand.
2. Search desperately for the instruction manual that you

probably threw away two years ago.
3. Call a friend who knows about these things.
4. Apply the scientific method to troubleshoot the problem.

The Analysis. All of these alternatives have some chance
of success. The sometimes positive response of electrical or
mechanical appliances to physical abuse is well documented.
The second two alternatives are both forms of appeal to
authority that could produce results. The fourth alternative,
however, may be the most productive and quickest, barring
success with alternative 1.

How would we apply the scientific method as outlined in
table 1.1 to this problem? Step 1 involves calmly observing the
symptoms of the malfunction. Suppose that the coffeemaker

simply refuses to heat up. When the switch is turned on,
no sounds of warming water are heard. You notice that no
matter how many times you turn the switch on or off, no heat
results. This is the kind of simple generalization called for in
step 2.

We can now generate some hypotheses about the cause
of the malfunction, as suggested in step 3. Here are some
candidates:

a. The coffee pot is not plugged in.
b. The external circuit breaker or fuse has tripped.
c. The power is off in the entire house or neighborhood.
d. An internal fuse in the coffee pot has blown.
e. A wire has come loose or burned through inside the

coffeemaker.
f. The internal thermostat of the coffeemaker is broken.

No detailed knowledge of electrical circuits is needed to
check these possibilities, although the last three call for more
sophistication (and are more trouble to check) than the first
three. The first three possibilities are the easiest to check and
should be tested first (step 4 in our method). A simple remedy
such as plugging in the pot or flipping on a circuit breaker
may put you back in business. If the power is off in the build-
ing, other appliances (lights, clocks, and so on) will not work
either, which provides an easy test. There may be little that
you can do in this case, but at least you have identified the
problem. Abusing the coffee pot will not help.

The pot may or may not have an internal fuse. If it is
blown, a trip to the hardware store may be necessary.
A problem like a loose wire or a burnt-out connection often
becomes obvious by looking inside after you remove the
bottom of the pot or the panel where the power cord comes
in. (You must unplug the pot before making such an inspec-
tion!) If one of these alternatives is the case, you have iden-
tified the problem, but the repair is likely to take more time
or expertise. The same is true of the last alternative.

Regardless of what you find, this systematic (and calm)
approach to the problem is likely to be more productive and
satisfying than the other approaches. Troubleshooting, if done
this way, is an example of applying the scientific method on a
small scale to an ordinary problem. We are all scientists if we
approach problems in this manner.

the atomic or molecular level. Modern chemistry, for exam-
ple, uses the physical theory of quantum mechanics to
explain how atoms combine to form molecules. Quantum
mechanics was developed primarily by physicists in the
early part of this century, but chemists and chemical knowl-
edge also played important roles. Ideas about energy that

arose initially in physics are now used extensively in chem-
istry, biology, and other sciences.

The general realm of science is often divided into the
life sciences and the physical sciences. The life sciences 
include the various subfields of biology and the health-
related disciplines that deal with living organisms. The

1.2 The Scope of Physics 5

everyday phenomenon
box 1.1

Fixing a malfunctioning coffee pot—alternative 1.
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physical sciences deal with the behavior of matter in both
living and nonliving systems. In addition to physics, the
physical sciences include chemistry, geology, astronomy,
oceanography, and meteorology (the study of weather).
Physics underlies all of them.

Physics is also generally regarded as the most quantitative
of the sciences. It makes heavy use of mathematics and
numerical measurements to develop and test its theories.
This aspect of physics has often made it seem less accessible
to students, even though the models and ideas of physics can
be described more simply and cleanly than those of other
sciences. As we will discuss in section 1.3, mathematics
serves as a compact language, allowing briefer and more
precise statements than would be possible without its use.

What are the major subfields of physics?
The primary subfields of physics are listed and identified in
table 1.2. Mechanics, which deals with the motion (or lack
of motion) of objects under the influence of forces, was the
first subfield to be explained with a comprehensive theory.
Newton’s theory of mechanics, which he developed in the
last half of the seventeenth century, was the first full-fledged
physical theory that made extensive use of mathematics. It
became a prototype for subsequent theories in physics.

The first four subfields listed in table 1.2 were well de-
veloped by the beginning of the twentieth century, although
all have continued to advance since then. These subfields—
mechanics, thermodynamics, electricity and magnetism, and
optics—are sometimes grouped as classical physics. The
last four subfields—atomic physics, nuclear physics, parti-
cle physics, and condensed-matter physics—are often under
the heading of modern physics, even though all of the sub-
fields are part of the modern practice of physics. The dis-
tinction is made because the last four subfields all emerged
during the twentieth century and only existed in rudimen-
tary forms before the turn of that century. In addition to
the subfields listed in table 1.2, many physicists work in

interdisciplinary fields such as biophysics, geophysics, or
astrophysics.

The photographs in this section (figs. 1.4–1.7) illustrate
characteristic activities or applications of the subfields.
The invention of the laser has been an extremely important
factor in the rapid advances now taking place in optics
(fig. 1.4). The development of the infrared camera has pro-
vided a tool for the study of heat flow from buildings,
which involves thermodynamics (fig. 1.5). The rapid growth
in consumer electronics, as seen in the availability of home
computers, pocket calculators, and many other gadgets,
has been made possible by developments in condensed-
matter physics (fig. 1.6). Particle physicists use particle
accelerators (fig. 1.7) to study the interactions of subatomic
particles in high-energy collisions.

6 Chapter 1 Physics, the Fundamental Science

figure 1.4 An optics experiment
using a laser.

figure 1.5 An infrared photograph showing patterns of
heat loss from a house is an application of thermodynamics.

Mechanics. The study of forces and motion.

Thermodynamics. The study of temperature, heat, and energy.

Electricity and Magnetism. The study of electric and
magnetic forces and electric current.

Optics. The study of light.

Atomic Physics. The study of the structure and behavior of
atoms.

Nuclear Physics. The study of the nucleus of the atom.

Particle Physics. The study of subatomic particles (quarks, etc.).

Condensed-Matter Physics. The study of the properties of
matter in the solid and liquid states.

table 1.2

The Major Subfields of Physics
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Science and technology depend on each other for prog-
ress. Physics plays an important role in the education and
work of engineers, whether they specialize in electrical, me-
chanical, nuclear, or other engineering fields. In fact, peo-
ple with physics degrees often work as engineers when they
are employed in industry. The lines between physics and en-
gineering, or research and development, often blur. Physi-
cists are generally concerned with developing a fundamental
understanding of phenomena, and engineers with applying
that understanding to practical tasks or products, but these
functions often overlap.

One final point: physics is fun. Understanding how a
bicycle works or how a rainbow is formed has an appeal that
anyone can appreciate. The thrill of gaining insight into the
workings of the universe can be experienced at any level.
In this sense, we can all be physicists.

Physics is the study of the basic characteristics of matter
and its interactions. It is the most fundamental of the
sciences; many other sciences build on ideas from physics.
The major subfields of physics are mechanics, electricity
and magnetism, optics, thermodynamics, atomic and
nuclear physics, particle physics, and condensed-matter
physics. Physics plays an important role in engineering and
technology, but the real fun of physics comes from under-
standing how the universe works.

1.3 The Role of Measurement
and Mathematics in Physics
If you go into your college library, find a volume of Physi-
cal Review or some other major physics journal, and open
it at random, you are likely to find a page with many math-
ematical symbols and formulas. It would probably be in-
comprehensible to you. In fact, even many physicists who
are not specialists in the particular subfield covered by the
article might have difficulty making sense of that page,
because they would not be familiar with the particular sym-
bols and definitions.

Why do physicists make such extensive use of mathe-
matics in their work? Is knowledge of mathematics essential
to understanding the ideas being discussed? Mathematics is
a compact language for representing the ideas of physics
that makes it easier to precisely state and manipulate the
relationships between the quantities that we measure in
physics. Once you are familiar with the language, its mys-
tery disappears and its usefulness becomes more obvious.
Still, this book uses mathematics in a very limited manner,
because most ideas of physics can be discussed without
extensive use of mathematics.

Why are measurements so important?
How do we test theories in physics? Without careful mea-
surements, vague predictions and explanations may seem rea-
sonable, and making choices between competing explana-
tions may not be possible. A quantitative prediction, on the
other hand, can be tested against reality, and an explanation
or theory can be accepted or rejected based on the results of
measurements. If, for example, one hypothesis predicts that a
cannonball will land 100 meters from us and another predicts
a distance of 200 meters under the same conditions, firing the
cannon and measuring the actual distance provides persuasive
evidence for one hypothesis or the other (fig. 1.8). The rapid
growth and successes of physics began when the idea of mak-
ing precise measurements as a test was accepted.

Everyday life is full of situations in which measure-
ments, as well as the ability to express relationships be-
tween measurements, are important. Suppose, for example,
that you normally prepare pancakes on Sunday morning
for three people, but on a particular Sunday there is an

1.3 The Role of Measurement and Mathematics in Physics 7

figure 1.6 An integrated circuit employing semiconductor
devices developed from knowledge of condensed-matter physics.
Magnification: �50.

figure 1.7 A Super–Proton–Synchrotron (SPS) particle
accelerator used to study interactions of subatomic particles at
high energies. It is located at CERN, the European particle-physics
laboratory in Switzerland.
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extra mouth to feed. What will you do—double the recipe
and feed the rest to the dog? Or will you figure out just
how much the quantities in the recipe should be increased
to come out right?

Let’s say that the normal recipe calls for 1 cup of milk.
How much milk will you use if you are increasing the recipe
to feed four people instead of three? Perhaps you can solve
this problem in your head, but some might find that process
dangerous. (Let’s see, 1 cup is enough for three people, so 1⁄3
cup is needed for each person, and 4 times 1⁄3 equals 4⁄3 or
11⁄3 cups. See figure 1.9.) If you had to describe this opera-
tion to someone else, for the milk and all the other ingredi-
ents, you might find yourself using a lot of words. If you
looked closely at the person you were talking to, you might
also notice his eyes glazing over and confusion setting in.

How can mathematics help?
You can reduce the confusion by creating a statement that
works for all of the ingredients in the recipe, thus avoiding
the need to repeat yourself. You could say, “The quantity
of each ingredient needed for four people is related to the
quantity needed for three people as 4 is to 3.” That still
takes quite a few words and might not be clear unless the
person you were talking to was familiar with this way of
stating a proportion. If a piece of paper was handy, you
might communicate this statement in writing as:

Quantity for four : Quantity for three � 4 : 3.

To make the statement even briefer, you could use the
symbol Q4 to represent the quantity of any given ingredient
needed to feed four people, and the symbol Q3 to represent

the quantity needed for three people. Then the statement
can be expressed as a mathematical equation,

Using symbols is simply a compact way of saying the
same thing that we expressed in words earlier. This compact
statement also has the advantage of making manipulations
of the relationship easier. For example, if you multiply both
sides of this equation by Q3, it takes the form

which in words says that the quantity needed for four peo-
ple is 4⁄3 times what is needed for three people. If you are
comfortable with fractions, you could use this relationship
to find the proper amount for any ingredient quickly.

There are two points to this example. The first is that
making measurements is both a routine and important part
of everyday experience. The second is that using symbols
to represent quantities in a mathematical statement is a
shorter way of expressing an idea involving numbers than
the same statement in words would be. Using mathematics
also makes it easier to manipulate relationships to construct
concise arguments. These are the reasons that physicists (and
many other people) find mathematical statements useful.

Despite the brevity and apparent clarity of mathematical
statements, many people are still more comfortable with
words. This is a matter of personal choice and experience,
although some fear of mathematics may also be involved.
For this reason, word statements are provided in this book
with most of the simple mathematical expressions that we
will use. Together with the mathematical statement and the
drawings, these word statements will help you to under-
stand the concepts we will be discussing.

Why are metric units used?
Units of measurement are an essential part of any measure-
ment. We do not communicate clearly if we just state a
number. If you just talked about adding 11⁄3 of milk, for
example, your statement would be incomplete. You need
to indicate whether you are talking about cups, pints, or
milliliters.

Q4 �
4

3
 Q3,

Q4

Q3

�
4

3
.
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figure 1.8 Cannonballs and a measuring tape: the proof lies in the measurement.

2 cups 2 cups 

1 cup1 cup

2 cups 2 cups 

1 cup1 cup

figure 1.9 Two measuring cups, one containing enough
milk to make pancakes to feed three people and the other
enough for four people.
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Meaning

in scientific
Prefix in figures notation in words

tera 1 000 000 000 000 � 1012 � 1 trillion

giga 1 000 000 000 � 109 � 1 billion

mega 1 000 000 � 106 � 1 million

kilo 1000 � 103 � 1 thousand

centi 1⁄100 � 0.01 � 10�2 � 1 hundredth

milli 1⁄1000 � 0.001 � 10�3 � 1 thousandth

micro 1⁄1 000 000 � 1⁄106 � 10�6 � 1 millionth

nano 1⁄1 000 000 000 � 1⁄109 � 10�9 � 1 billionth

pico � 1⁄1012 � 10�12 � 1 trillionth

table 1.3

Commonly Used Metric Prefixes

The liter and milliliter are metric units of volume. Cups,
pints, quarts, and gallons are holdovers from the older Eng-
lish system of units. Most countries have now adopted the
metric system, which has several advantages over the Eng-
lish system still used in the United States. The main advan-
tage of the metric system is its use of standard prefixes to
represent multiples of 10, making unit conversion within
the system quite easy. The fact that a kilometer (km) is
1000 meters and a centimeter (cm) is 1⁄100 of a meter, and
that the prefixes kilo and centi always mean 1000 and 1⁄100,
makes these conversions easy to remember (see table 1.3).
To convert 30 centimeters to meters, all we have to do is
move the decimal point two places to the left to get 0.30
meter. Moving the decimal point two places to the left is
equivalent to dividing by 100.

Table 1.3 is a list of the common prefixes used in the
metric system. (See appendix B for a discussion of the
powers of 10 or scientific notation used for describing
very large and very small numbers.) The basic unit of vol-
ume in the metric system is the liter (L), which is slightly
larger than a quart (1 liter � 1.057 quarts). A milliliter (mL)
is 1⁄1000 of a liter, a convenient size for quantities in recipes.
One milliliter is also equal to 1 cm3, or 1 cubic centimeter,
so there is a simple relationship between the length and vol-
ume measurements in the metric system. Such simple rela-
tionships are hard to find in the English system, where 1
cup is 1⁄4 of quart, and a quart is 67.2 cubic inches.

The metric system predominates in this book. English
units will be used occasionally because they are familiar
and can help in learning new concepts. Most of us still
relate more readily to distances in miles than in kilome-
ters, for example. That there are 5280 feet in a mile is a
nuisance, however, compared to the tidy 1000 meters in
1 kilometer. Becoming familiar with the metric system is
a worthy objective. Your ability to participate in interna-
tional trade (for business or pleasure) will be enhanced
if you are familiar with the system of units used in most

of the world. Example boxes 1.2 and 1.3 provide unit
conversion exercises involving metric units.

Stating a result or prediction in numbers lends precision
to otherwise vague claims. Measurement is an essential
part of science and of everyday life. Using mathematical
symbols and statements is an efficient way of stating
the results of measurements and eases manipulating the
relationships between quantities. Units of measurement
are an essential part of any measurement, and the metric
system of units used in most of the world has a number
of advantages over the older English system.

1.3 The Role of Measurement and Mathematics in Physics 9

example box 1.2

Sample Exercise: Length Conversions

If you are told that there are 2.54 cm in 1 inch,
a. How many centimeters are there in 1 foot (12 inches)?
b. How many meters does 1 foot represent?

a. 1 inch � 2.54 cm
1 foot � 12 inches
1 foot � ? (in cm)

b. 1 foot � 30.5 cm
1 m � 100 cm
1 foot � ? (in m)

1 foot � 0.305m

Lines drawn through the units indicate cancellation.

(1 ft) a 30.5 cm

1 ft
b a 1 m

100 cm
b � 0.305 cm

(1 ft) a 12 in

1 ft
b a 2.54 cm

1 in
b � 30.5 cm  1 foot � 30.5 cm

example box 1.3

Sample Exercise: Rate Conversions

If the rate of flow in an automatic watering system is 2
gallons/hour, how many milliliters per minute is this?
1 gallon � 3.786 liters
1 liter � 1000 ml
2 gal/hr � ? (in ml/min)

� 126.2 ml/min

2 gallons/hour � 126.2 ml/min
Lines drawn through the units indicate cancellation.

a 2 gallons

hour
b a 3.786 liter

1 gallon
b a 1000 ml

1 liter
b a 1 hour

60 min
b
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1.4 Physics and Everyday Phenomena
Studying physics can and will lead us to ideas as earth-
shaking as the fundamental nature of matter and the struc-
ture of the universe. With ideas like these available, why
spend time on more mundane matters like explaining how a
bicycle stays upright or how a flashlight works? Why not
just plunge into far-reaching discussions of the fundamen-
tal nature of reality?

Why study everyday phenomena?
Our understanding of the fundamental nature of the uni-
verse is based on concepts such as mass, energy, and elec-
tric charge that are abstract and not directly accessible to
our senses. It is possible to learn some of the words asso-
ciated with these concepts and to read and discuss ideas
involving them without ever acquiring a good understand-
ing of their meaning. This is one risk of playing with the
grand ideas without laying the proper foundation.

Using everyday experience to raise questions, introduce
concepts, and practice devising physical explanations has
the advantage of dealing with examples that are familiar
and concrete. These examples also appeal to your natural
curiosity about how things work, which, in turn, can moti-
vate you to understand the underlying concepts. If you can
clearly describe and explain common events, you gain con-
fidence in dealing with more abstract concepts. With famil-
iar examples, the concepts are set on firmer ground, and
their meaning becomes more real.

For example, why a bicycle (or a top) stays upright
while moving but falls over when at rest involves the con-
cept of angular momentum, which is discussed in chapter
8. Angular momentum also plays a role in our understand-
ing of atoms and the atomic nucleus—both in the realm of
the very small—and the structure of galaxies at the opposite
end of the scale (fig. 1.10). You are more likely to under-

stand angular momentum, though, by discussing it first in
the context of bicycle wheels or tops.

The principles explaining falling bodies, such as the
acorn mentioned in the chapter introduction, involve the
concepts of velocity, acceleration, force, and mass, which
are discussed in chapters 2, 3, and 4. Like angular momen-
tum, these concepts are also important to our understanding
of atoms and the universe. Understanding how rainbows
are formed involves the behavior of light, discussed in
chapter 17. The behavior of light also plays a major role in
how we think about atoms and the universe.

Our “common sense” sometimes misleads us in our
understanding of everyday phenomena. Adjusting common
sense to incorporate well-established physical principles
is one of the challenges we face in dealing with everyday
experience. By performing simple experiments, either at
home (as is often suggested in this book) or in laboratories
and demonstrations associated with your course in physics,
you can take an active part in building your own scientific
worldview.

Although it may seem like an oxymoron, everyday ex-
perience is extraordinary. A bright rainbow is an incredi-
ble sight. Understanding how rainbows originate does not
detract from the experience. It adds excitement to explain
such a beautiful display with just a few elegant concepts.
In fact, people who understand these ideas see more rain-
bows because they know where to look. This excitement,
and the added appreciation of nature that is a part of it, is
accessible to all of us.

Studying everyday phenomena can make abstract ideas more
accessible. These ideas are needed to understand the funda-
mental nature of matter and the universe, but they are best
encountered first in familiar examples. Being able to explain
common phenomena builds confidence in using the ideas
and enhances our appreciation of what happens around us..

10 Chapter 1 Physics, the Fundamental Science

+�

figure 1.10 A bicycle wheel, a model of an atom, and a galaxy all involve the concept of angular momentum.
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1.4 Physics and Everyday Phenomena 11

The chapter outline and chapter summary provide related frameworks for organizing concepts.

1

chapter

Physics, the 
Fundamental Science 1

chapter overview
The main objective of this chapter is to help you understand what
physics is and where it fits in the broader scheme of the sciences.
A secondary purpose is to acquaint you with the metric system of units
and the advantages of the use of simple mathematics.

chapter outline
1 The scientific enterprise. What is the scientific method? How do

scientific explanations differ from other types of explanation?

2 The scope of physics. What is physics? How is it related to the other
sciences and to technology? What are the major subfields of physics?

3 The role of measurement and mathematics in physics. Why are
measurements so important? Why is mathematics so extensively used
in science? What are the advantages of the metric system of units?

4 Physics and everyday phenomena. How is physics related to everyday
experience and common sense? What are the advantages of using
physics to understand common experience?

Key Terms vvvvvvvvv

summary

This first chapter introduces the scientific enterprise and its methods,
the scope of physics, and the use of mathematics and measure-
ment in physics. It also gives pointers on how to use the features
of this book most effectively. The key points include:

1 The scientific enterprise. Scientific explanations are
developed by generalizing from observations of nature, forming
hypotheses or theories, and then testing these theories by further
experiments or observations. This process is often called the sci-
entific method, but actual practice may depart in various ways
from this model.

2 The scope of physics. Physics is the most fundamen-
tal of the natural sciences because physical theories often underlie
explanations in the other sciences. Its major subfields include
mechanics, thermodynamics, electricity and magnetism, optics,
atomic physics, nuclear physics, condensed-matter physics, and
particle physics.

3 The role of measurement and mathematics in
physics. Much of the progress in physics can be attributed to
its use of quantitative models, which yield precise predictions that

can be tested by making physical measurements. Mathematics is a
compact language for describing and manipulating these results.
The basic concepts of physics can often be described and under-
stood with a minimum of mathematics.

4 Physics and everyday phenomena. Many of the
basic concepts of physics become clearer if applied to everyday
phenomena. Being able to understand and explain familiar phe-
nomena makes the concepts more vivid. This adds to the enjoy-
ment of studying physics.

key terms

Hypothesis
or

theory
Generalization

Observation
or

experiments
10

20

30

40

50

60

70

80

90

Hypothesis, 3
Theory, 3
Scientific method, 3
Empirical law, 3
Classical physics, 6
Modern physics, 6

Mechanics, 6
Thermodynamics, 6
Electricity and magnetism, 6
Optics, 6
Atomic physics, 6
Nuclear physics, 6

Particle physics, 6
Condensed-matter physics, 6
Proportion, 8
Metric system, 9
Powers of 10, 9
Scientific notation, 9

How to Use the Features
of This Book
This book has a number of features designed to make it
easier for you to organize and grasp the concepts that we
will explore. These features include the chapter overview
and outline at the beginning of each chapter and the sum-
mary at the end of each chapter, as well as the structure
of individual sections of the chapters. The questions, exer-
cises, and synthesis problems at the end of each chapter
also play an important role. How can these features be
used to the best advantage?

Chapter outlines and summaries
Knowing where you are heading before you set out on a
journey can be the key to the success of your mission. Stu-
dents get a better grasp of concepts if they have some struc-
ture or framework to help them to organize the ideas. Both
the chapter overview and outline at the beginning of each
chapter and the summary at the end are designed to provide
such a framework. Having a clear idea of what you are trying

to accomplish before you invest time in reading a chapter will
make your reading more effective and enjoyable.

The list of topics and questions in the chapter outline
can be used as a checklist for measuring your progress as
you read. Each numbered topic in the outline, with its
associated questions, pertains to a section of the chapter.
The outline is designed to stimulate your curiosity by pro-
viding some blanks (unanswered questions) to be filled in
by your reading. Without the blanks, your mind has no
organizational structure to store the information. Without
structure, recall is more difficult. You can use the questions
in the outline to check the effectiveness of your reading.
Can you answer all of the questions when you are done?
Each section of a chapter also begins with questions, and
the section subheadings are likewise often cast as ques-
tions. At the end of each section there is also an indented
summary paragraph designed to help you tie the ideas in
that section together.

The end-of-chapter summary gives a short description of
the key ideas in each section, often cast in the form of
answers to the questions raised in the outline (see diagram).
Summaries provide a quick review, but they are no substi-
tute for a careful reading of the main text. By following

study hint:
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the same organizational structure as the outline, the sum-
mary reminds you where to find a more complete discussion
of these ideas. The purpose of both the outlines and the
summaries is to make your reading more organized and
effective.

Studying any new discipline requires forming new pat-
terns of thought that can take time to gel. The summaries
at the end of each section, as well as at the end of the
chapter, can help this gelling to take place. A structure is
often built layer by layer, and the later layers will be shaky
if the base is unstable.

How should the questions
and exercises be used?
At the end of each chapter you will find a group of ques-
tions, followed by a group of exercises, and, finally, by a
small number of synthesis problems. Your grasp of the chap-
ter will improve if you write out answers to the questions
and exercises, either as assigned by your instructor
or in independent study. The ideas contained in each chapter
cannot be thoroughly mastered without this kind of practice.

The questions are crucial to helping you fix the impor-
tant concepts and distinctions in your mind. Most of the
questions call for a short answer as well as an explana-
tion. A few of the questions, marked with asterisks, are
more open-ended and call for lengthier responses. It is a
good idea to write out the explanations in clear sentences
when you answer these questions, because it is only
through reinforcement that ideas become a part of you.
Also, if you can explain something clearly to someone else,
you understand it. A sample question and answer appears
in example box 1.1.

The exercises are designed to give you practice in using
the ideas and the related formulas to do simple computa-
tions. The exercises also help to solidify your understanding
of concepts by giving you a sense of the units and the sizes
of the quantities involved. Even though many of the exer-
cises are straightforward enough to work in your head 
without writing much down, we recommend writing out the
information given, the information sought, and the solution
in the manner shown in example boxes 1.2 and 1.3 in sec-
tion 1.3. This develops careful work habits that will help you

avoid careless mistakes. Most students find the exercises
easier than the questions. The sample exercises scattered
through each chapter can help you get started.

The synthesis problems are more wide-ranging than the
questions or exercises. They often involve features of both.
Although not necessarily harder than the questions or exer-
cises, they do take more time and are sometimes used to
extend ideas beyond what was discussed in the chapter.
Doing one or two of these in each chapter should build
your confidence. They are particularly recommended for
those students who have worked the exercises and want to
explore the topic in more depth.

Answers to the odd-numbered exercises, odd-numbered
synthesis problems, and selected questions are found in
the back of the book in appendix D. Looking up the
answer before attempting the problem is self-defeating. It
deprives you of practice in thinking things through on your
own. Checking answers after you have worked an exercise
can be a confidence builder. Answers should be used only
to confirm or improve your own thinking.

Home experiments and everyday
phenomenon boxes
Reading or talking about physical ideas is useful, but there
is no substitute for hands-on experience with the phenom-
ena. You already have a wealth of experience with many of
these phenomena, but you probably have not related it to
the physical concepts you will be learning. Seeing things in
new ways will make you a more astute observer.

In addition to the home experiments at the end of each
chapter, we often suggest some simple experiments in the
main text or in the study hints. We strongly recommend
making these observations and doing the experiments. Lec-
ture demonstrations can help, but doing something yourself
imprints it vividly on your mind. There is excitement in dis-
covering things yourself and seeing them in a new light.

The boxes that discuss everyday phenomena also give
you practice in applying physical concepts. Most of the
phenomena discussed in these boxes are familiar. The boxes
allow us to explore these examples more thoroughly. Par-
ticipating in these investigations of everyday phenomena
can help bring the ideas home.
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summary

This first chapter introduces the scientific enterprise and its methods,
the scope of physics, and the use of mathematics and measure-
ment in physics. It also gives pointers on how to use the features
of this book most effectively. The key points include:

1 The scientific enterprise. Scientific explanations are
developed by generalizing from observations of nature, forming
hypotheses or theories, and then testing these theories by further
experiments or observations. This process is often called the sci-
entific method, but actual practice may depart in various ways
from this model.

2 The scope of physics. Physics is the most fundamen-
tal of the natural sciences because physical theories often underlie
explanations in the other sciences. Its major subfields include
mechanics, thermodynamics, electricity and magnetism, optics,
atomic physics, nuclear physics, condensed-matter physics, and
particle physics.

3 The role of measurement and mathematics in
physics. Much of the progress in physics can be attributed to
its use of quantitative models, which yield precise predictions that

can be tested by making physical measurements. Mathematics is a
compact language for describing and manipulating these results.
The basic concepts of physics can often be described and under-
stood with a minimum of mathematics.

4 Physics and everyday phenomena. Many of the
basic concepts of physics become clearer if applied to everyday
phenomena. Being able to understand and explain familiar phe-
nomena makes the concepts more vivid. This adds to the enjoy-
ment of studying physics.

key terms

Hypothesis
or

theory
Generalization

Observation
or

experiments
10

20

30

40

50

60

70

80

90

Hypothesis, 3
Theory, 3
Scientific method, 3
Empirical law, 3
Classical physics, 6
Modern physics, 6

Mechanics, 6
Thermodynamics, 6
Electricity and magnetism, 6
Optics, 6
Atomic physics, 6
Nuclear physics, 6

Particle physics, 6
Condensed-matter physics, 6
Proportion, 8
Metric system, 9
Powers of 10, 9
Scientific notation, 9
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exercises

E1. Suppose that a pancake recipe designed to feed three peo-
ple calls for 600 mL of flour. How many milliliters of flour
would you use if you wanted to extend the recipe to feed
five people?

E2. Suppose that a cupcake recipe designed to produce twelve
cupcakes calls for 900 mL of flour. How many milliliters
of flour would you use if you wanted to make only eight
cupcakes?

E3. It is estimated that six large pizzas are about right to serve
a physics club meeting of 30 students. How many pizzas
would be required if the group grows to 50 students?

E4. A man uses his hand to measure the width of a tabletop. If
his hand has a width of 12 cm at its widest point, and he
finds the tabletop to be 10.5 hands wide, what is the width
of the tabletop in cm? In meters?

questions

* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

*Q1. Which of these criteria best distinguish between explana-
tions provided by science and those provided by religion:
truth, testability, or appeal to authority? How do religious
explanations differ from scientific explanations?

Q2. A person claiming to have paranormal powers states that
she can predict which card will come up next in a shuffled
deck of cards simply by exercising her mental powers. Is
this a testable claim? Explain.

Q3. Historians sometimes develop theories to explain observed
patterns in the history of different countries. Are these theo-
ries testable in the same sense as a theory in physics?
Explain.

*Q4. Over the years, there have been several credible claims by
experienced observers of sightings of Unidentified Flying
Objects (UFOs). Despite this, scientists have shied away
from taking up serious study of UFOs, although there are
ongoing searches for signals from extraterrestrial intelligent
beings. Can you think of reasons why scientists have not
taken UFOs seriously? What problems can you see in try-
ing to study UFOs?

Q5. Suppose that your car will not start and you form the hy-
pothesis that the battery is dead. How would you test this
hypothesis? Explain.

Q6. Suppose that your phone has not rung in several days, but a
friend tells you he has tried to call. Develop two hypothe-
ses that could explain why the phone has not rung and state
how you would test these hypotheses.

*Q7. Suppose that a friend states the hypothesis that the color of
socks that he wears on a given day, brown or black, will
determine whether the stock market will go up or down. He
can cite several instances in which this hypothesis has been
apparently verified. How would you go about evaluating
this hypothesis?

Q8. Which of the three science fields: biology, chemistry, or
physics, would you say is the most fundamental? Explain
by describing in what sense one of these fields may be
more fundamental than the others.

Q9. Based upon the brief descriptions provided in table 1.2,
which subfield of physics would you say is involved in the
explanation of rainbows? Which subfield is involved in
describing how an acorn falls? Explain.

Q10. Based upon the descriptions provided in table 1.2, which
subfields of physics are involved in explaining why an ice
cube melts? Which subfields are involved in explaining
how an airplane flies? Explain.

Q11. Suppose that you are told that speed is defined by the rela-
tionship s � d/t, where s represents speed, d represents dis-
tance, and t represents time. State this relationship in
words, using no mathematical symbols.

Q12. Impulse is defined as the average force acting on an object
multiplied by the time the force acts. If we let I represent
impulse, F the average force, and t the time, is I � F/t a
correct way of expressing this definition? Explain.

Q13. The distance that an object travels when it starts from rest
and undergoes constant acceleration is one-half the acceler-
ation multiplied by the square of the time. Invent your own
symbols and express this statement in symbolic form.

Q14. What are the primary advantages of the metric system of
units over the older English system of units? Explain.

Q15. What are the advantages, if any, of continuing to use the
English system of units in industry and commerce rather
than converting to the metric system? Explain.

Q16. Which system of units, the metric system or English sys-
tem, is used more widely throughout the world? Explain.

Q17. The width of a man’s hand was used as a common unit of
length several hundred years ago. What are the advantages
and disadvantages of using such a unit? Explain.

Q18. A pirate map indicates that a treasure is buried 50 paces
due east and 120 paces due north of a big rock. Will you
know where to dig? Explain.

Q19. List the following volumes in descending order: gallon, quart,
liter, milliliter. The conversion factors given on the inside
front cover may be useful.

Q20. List the following lengths in descending order: kilometer,
feet, mile, centimeter, inch. The conversion factors given on
the inside front cover may be useful.
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synthesis problems

SP1. Astrologers claim that they can predict important events in
your life by the configuration of the planets and the astro-
logical sign under which you were born. Astrological pre-
dictions, called horoscopes, can be found in most daily
newspapers. Find these predictions in a newspaper and ad-
dress the questions:

a. Are the astrological predictions testable?
b. Choosing the prediction for your own sign, how would

you go about testing its accuracy over the next month
or so?

c. Why do newspapers print these readings? What is their
appeal?

SP2. In the United States a common quantity of hard liquor was
historically a fifth, which represents a fifth of a US gallon.
However, since the US wants to market its alcohol globally,
and everyone else uses the metric system, it has retooled its
packaging, so a common quantity is now 750 ml.

a. How many liters are in a fifth?
b. How many milliliters are in a fifth?
c. Which is larger, 750 ml or a fifth of a gallon?

SP3. An energy-efficient bulb claims to have the brightness of a
75W bulb but only uses 15W of electrical power.

a. If you have this light bulb on for 5 hours a day, for 350
days during a year, how many hours is it on?

b. A kilowatt is 1000 watts. The kilowatt-hour is a com-
mon unit for energy, obtained by multiplying the power
in kilowatts by the time used in hours. How many kilo-
watt-hours (kWh) will you use when burning the 75W
bulb for the year?

c. How many kilowatt-hours (kWh) will you use when
burning the 15W bulb for the year?

d. Assuming that the cost of electricity is 15¢ per kWh,
what is the cost of using the 75W bulb for the year?

e. Assuming this same cost, what is the cost of using the
15W bulb for the year?

f. How much do you save by using the 15W bulb?
g. How much would you save if you replaced 20 of the 

75W bulbs with the 15W bulbs?

home experiments and observations

HE1. Look around your house, car, or dormitory room to see what
measuring tools (rulers, measuring cups, speedometers, etc.)
you have handy. Which of these tools, if any, provides both
English and metric units? For those that do, determine the
conversion factor needed to convert the English units to
metric units.

E5. A woman’s foot is 9 inches long. If she steps off the length
of a room by placing one foot directly in front of the other,
and finds the room to be 15 foot-lengths long, what is the
length of the room in inches? In feet?

E6. A book is 220 mm in width. What is this width in centime-
ters? In meters?

E7. A crate has a mass of 8.60 kg (kilograms). What is this
mass in grams? In milligrams?

E8. A tank holds 2.18 kL (kiloliters) of water. How many liters
is this? How many milliliters?

E9. A mile is 5280 ft long. The sample exercise in example 
box 1.2 shows that 1 foot is approximately 0.305 m. How
many meters are there in a mile? How many kilometers
(km) are there in a mile?

E10. If a mile is 5280 ft long and a yard contains 3 ft, how many
yards are there in a mile?

E11. Area is found by multiplying the length of a surface times
the width. If a floor measures 6.25 m2, how many square
centimeters does this represent? How many square cen-
timeters are there in 1 m2?

E12. A common speed limit in Vancouver, British Columbia, is
80 km/hr. If you are going 55 MPH, are you speeding?
Show by converting 55 MPH to km/hr using the conversion
factors on the inside front cover.

E13. If gas costs 80¢ a liter, how much does a gallon of gas
cost? Show by converting gallons to liters using the conver-
sion factors on the inside front cover.
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In 1687, Isaac Newton published his Philosophiae
Naturalis Principia Mathematica or Mathematical Prin-
ciples of Natural Philosophy. This treatise, often called
simply Newton’s Principia, presented his theory of
motion, which included his three laws of motion and
his law of universal gravitation. Together these laws
explain most of what was then known about the mo-
tion of ordinary objects near Earth’s surface (terres-
trial mechanics) as well as the motion of the planets
around the sun (celestial mechanics). Along the way,
Newton had to invent the mathematical techniques
that we call calculus.

Newton’s theory of mechanics described in the Prin-
cipia was an incredible intellectual achievement that
revolutionized both science and philosophy. The revo-
lution did not begin with Newton, though. The true
rebel was the Italian scientist, Galileo Galilei, who died
just a few months after Newton was born in 1642.
Galileo championed the sun-centered view of the
solar system proposed a hundred years earlier by
Nicolaus Copernicus and stood trial under the Inquisi-
tion for his pains. Galileo also challenged the conven-
tional wisdom, based on Aristotle’s teachings, about the
motion of ordinary objects. In the process, he devel-
oped many of the principles of terrestrial mechanics
that Newton later incorporated into his theory.

Although Newton’s theory of motion does not
accurately describe the motion of very fast objects
(which are now described using Einstein’s theory of
relativity) and very small objects (where quantum
mechanics must be used), it is still used extensively in
physics and engineering to explain motion and to ana-
lyze structures. Newton’s theory has had enormous
influence over the last three hundred years in realms
of thought that extend well beyond the natural sci-
ences and deserves to be understood by anyone claim-
ing to be well educated.

Central to Newton’s theory is his second law of mo-
tion. It states that the acceleration of an object is pro-
portional to the net force acting on the object and
inversely proportional to the mass of the object. Push
an object and that object accelerates in the direction
of the applied force. Contrary to intuition and to
Aristotle’s teachings, acceleration, not velocity, is pro-
portional to the applied force. To understand this idea,
we will thoroughly examine acceleration, which in-
volves a change in the motion of an object.

Rather than plunging into Newton’s theory, we
begin this unit by studying Galileo’s insights into
motion and free fall. This provides the necessary foun-
dation to tackle Newton’s ideas. To see well, we need
to stand on the shoulders of these giants.

The Newtonian
Revolution

u n i t

One
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chapter overview
The main purpose of this chapter is to provide clear definitions and
illustrations of the terms used in physics to describe motion, such as the
motion of the car described in this chapter’s opening example. Speed,
velocity, and acceleration are crucial concepts for the analysis of motion
in later chapters. Precise description is the first step to understanding.
Without it, we remain awash in vague ideas that are not defined well
enough to test our explanations.

Each numbered topic in this chapter builds on the previous section, 
so it is important to obtain a clear understanding of each topic before
going on. The distinctions between speed and velocity and velocity and
acceleration are particularly important.

chapter outline
1 Average and instantaneous speed. How do we describe how fast an

object is moving? How does instantaneous speed differ from average
speed?

2 Velocity. How do we introduce direction into descriptions of motion?
What is the distinction between speed and velocity?

3 Acceleration. How do we describe changes in motion? What is the
relationship between velocity and acceleration?

4 Graphing motion. How can graphs be used to describe motion? How
can the use of graphs help us gain a clearer understanding of speed,
velocity, and acceleration?

5 Uniform acceleration. What happens when an object accelerates at a
steady rate? How do the velocity and distance traveled vary with time
when an object is uniformly accelerating?

18

un
it

 o
ne

Describing Motion

c h a p t e r

2
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are sometimes different from those in everyday use. The
term acceleration, for example, is used by physicists to
describe any situation in which velocity is changing,
even when the speed may be decreasing or the direc-
tion of the motion may be changing.

How would you define the term speed if you were
explaining the idea to a younger brother or sister? Does
velocity mean the same thing? What about acceleration—
is the notion vague or does it have a precise meaning?
Is it the same thing as velocity? Clear definitions are
essential to developing clear explanations. The language
used by physicists differs from our everyday language,
even though the ideas are related and the same words
are used. What are the exact meanings that physicists
attach to these concepts, and how can they help us to
understand motion?

2.1 Average and Instantaneous Speed 19

2.1 Average and Instantaneous Speed
Since driving or riding in cars is a common activity in our
daily lives, we are familiar with the concept of speed. Most
of us have had experience in reading a speedometer (or per-
haps failing to read it carefully enough to avoid the attention
of law enforcement). If you describe how fast something is
moving, as we did in our example in the introduction, you
are talking about speed.

How is average speed defined?
What does it mean to say that we are traveling at a speed
of 55 MPH? It means that we would cover a distance of
55 miles in a time of 1 hour if we traveled steadily at that
speed. Carefully note the structure of this description: there
is a number, 55, and some units or dimensions, miles per
hour. Numbers and units are both essential parts of a de-
scription of speed.

The term miles per hour implies that miles are divided
by hours in arriving at the speed. This is exactly how we
would compute the average speed for a trip: suppose, for

figure 2.1 As the car brakes for the dog, there is a sudden change in speed.

example, that we travel a distance of 260 miles in a time of
5 hours, as shown on the road map of figure 2.2. The aver-
age speed is then 260 miles divided by 5 hours, which is
equal to 52 MPH. This type of computation is familiar to
most of us.

We can also express the definition of average speed in a
word equation as

Average speed equals the distance traveled divided by the
time of travel.

or

We can represent this same definition with symbols by
writing

s �
d

t
 ,

Average speed �
distance traveled

time of travel
.

Imagine that you are in your car stopped at an inter-
section. After waiting for cross traffic, you pull away from
the stop sign, accelerating eventually to a speed of 56
kilometers per hour (35 miles per hour). You maintain
that speed until a dog runs in front of your car and you
hit the brakes, reducing your speed rapidly to 10 km/h
(fig. 2.1). Having missed the dog, you speed up again to
56 km/h. After another block, you come to another stop
sign and reduce your speed gradually to zero.

We can all relate to this description. Measuring speed
in miles per hour (MPH) may be more familiar than the
use of kilometers per hour (km/h), but speedometers in
cars now show both. The use of the term acceleration to
describe an increase in speed is also common. In physics,
however, these concepts take on more precise and spe-
cialized meanings that make them even more useful in
describing exactly what is happening. These meanings
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where the letter s represents the speed, d represents dis-
tance, and t represents the time. As noted in chapter 1, let-
ters or symbols are a compact way of saying what could be
said with a little more effort and space with words. Judge
for yourself which is the more efficient way of expressing
this definition of average speed. Most people find the sym-
bolic expression easier to remember and use.

The average speed that we have just defined is the rate
at which distance is covered over time. Rates always repre-
sent one quantity divided by another. Gallons per minute,
pesos per dollar, and points per game are all examples of
rates. If we are considering time rates, the quantity that we
divide by is time, which is the case with average speed.
Many other quantities that we will be considering involve
time rates.

What are the units of speed?
Units are an essential part of the description of speed. Sup-
pose you say that you were doing 70—without stating the
units. In the United States, that would probably be under-
stood as 70 MPH, since that is the unit most frequently
used. In Europe, on the other hand, people would probably
assume that you are talking about the considerably slower
speed of 70 km/h. If you do not state the units, you will
not communicate effectively.

It is easy to convert from one unit to another if the con-
version factors are known. For example, if we want to con-
vert kilometers per hour to miles per hour, we need to know
the relationship between miles and kilometers. A kilometer
is roughly 6⁄10 of a mile (0.6214, to be more precise). As
shown in example box 2.1, 70 km/h is equal to 43.5 MPH.
The process involves multiplication or division by the ap-
propriate conversion factor.

20 Chapter 2 Describing Motion

figure 2.2 A road map showing a trip of 260 miles, with
driving times for the two legs of the trip.

Kingman

Flagstaff

Phoenix

2.4 h

120 mi

14
0 

m
i
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h

20 MPH � 32 km/h � 9 m/s

40 MPH � 64 km/h � 18 m/s

60 MPH � 97 km/h � 27 m/s

80 MPH � 130 km/h � 36 m/s

100 MPH � 160 km/h � 45 m/s

table 2.1

Familiar Speeds in Different Units

example box 2.1

Sample Exercise: Speed Conversions

Convert 90 kilometers per hour to (a) miles per hour and
(b) meters per second.

a. 1 km � 0.6214 miles
90 km/hr � ? (in MPH)

90 km/hr � 55.9 MPH

b. 1 km � 1000 m

However (1 hr)

90 km/hr � 25.0 m/sec

Part b can also be done using the conversion factors for
speed on the inside front cover:

1 km/hr � 0.278 m/sec

90 km/hr � 25.0 m/sec

Lines drawn through the units indicate cancellation.

(90 km/hr) a0.278 m/sec

 1 km/hr
b � 25.0 m/sec

a90,000 m

hr
b a 1 hr

3600 sec
b � 25.0m/sec

a60 min

hr
b a60 sec

min
b � 3600 sec

a 90 km

hr
b a 1000 m

km
b � 90,000 m/hr

a90 km

hr
b a 0.6214 miles

km
b � 55.9 MPH

Units of speed will always be a distance divided by a
time. In the metric system, the fundamental unit of speed
is meters per second (m/s). Example box 2.1 also shows the
conversion of kilometers per hour to meters per second,
done as a two-step process. As you can see, 70 km/h can
also be expressed as 19.4 m/s or roughly 20 m/s. This is a
convenient size for discussing the speeds of ordinary
objects. (As shown in example box 2.2, the convenient unit
for measuring the growth of grass has a very different size.)
Table 2.1 shows some familiar speeds expressed in miles
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per hour, kilometers per hour, and meters per second to
give you a sense of their relationships.

What is instantaneous speed?
If we travel a distance of 260 miles in 5 hours, as in our ear-
lier example, is it likely that the entire trip takes place at a
speed of 52 MPH? Of course not; the speed goes up and
down as the road goes up and down, when we overtake slower
vehicles, when rest breaks occur, or when the highway patrol
looms on the horizon. If we want to know how fast we are
going at a given instant in time, we read the speedometer,
which displays the instantaneous speed (fig. 2.3).

How does instantaneous speed differ from average speed?
The instantaneous speed tells us how fast we are going at a
given instant but tells us little about how long it will take
to travel several miles, unless the speed is held constant.
The average speed, on the other hand, allows us to com-
pute how long a trip might take but says little about the vari-
ation in speed during the trip. A more complete description of

how the speed of a car varies during a portion of a trip could
be provided by a graph such as that shown in figure 2.4. Each
point on this graph represents the instantaneous speed at the
time indicated on the horizontal axis.

Even though we all have some intuitive sense of what
instantaneous speed means from our experience in reading
speedometers, computing this quantity presents some prob-
lems that we did not encounter in defining average speed.
We could say that instantaneous speed is the rate that dis-
tance is being covered at a given instant in time, but how
do we compute this rate? What time interval should we
use? What is an instant in time?

Our solution to this problem is simply to choose a very
short interval of time during which a very short distance
is covered and the speed does not change drastically. If
we know, for example, that in 1 second a distance of
20 meters was covered, dividing 20 meters by 1 second to
obtain a speed of 20 m/s would give us a good estimate of
the instantaneous speed, provided that the speed did not
change much during that single second. If the speed was
changing rapidly, we would have to choose an even shorter
interval of time. In principle, we can choose time intervals
as small as we wish, but in practice, it can be hard to
measure such small quantities.

If we put these ideas into a word definition of instanta-
neous speed, we could state it as

Instantaneous speed is the rate at which distance is being cov-
ered at a given instant in time. It is found by computing the
average speed for a very short time interval in which the speed
does not change appreciably.

2.1 Average and Instantaneous Speed 21

figure 2.3 A speedometer with two scales for measuring
instantaneous speed, MPH and km/h.

figure 2.4 Variations in instantaneous speed for a portion
of a trip on a local highway.
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example box 2.2

Sample Question: Watching Grass Grow

Question: The units km/h or m/s have an appropriate 
size for moving cars or people. Many other processes
move much more slowly, though. What units would have
an appropriate size for measuring the average speed with
which a blade of grass grows?

Answer: When grass is well fertilized and watered, it is
not unusual for it to grow 3 to 6 centimeters in the course
of a week. This can be seen by measuring the length of
the clippings after mowing. If we measured the speed in
m/s, we would obtain an extremely small number that
would not provide a good intuitive sense of the rate of
growth. The units of cm/week or mm/day would provide
a better indication of this speed.
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Instantaneous speed is closely related to the concept of
average speed but involves very short time intervals. When
discussing traffic flow, average speed is the critical issue,
as shown in everyday phenomenon box 2.1.

We find an average speed by dividing the distance traveled
by the time required to cover that distance. Average speed
is therefore the average rate at which distance is being
covered. Instantaneous speed is the rate that distance 
is being covered at a given instant in time and is found 
by considering very small time intervals or by reading a
speedometer. Average speed is useful for estimating how
long a trip will take, but instantaneous speed is of more
interest to the highway patrol.

2.2 Velocity
Do the words speed and velocity mean the same thing?
They are often used interchangeably in everyday language,

but physicists make an important distinction between the
two terms. The distinction has to do with direction: which
way is the object moving? This distinction turns out to
be essential to understanding Newton’s theory of motion
(introduced in chapter 4), so it is not just a matter of whim
or jargon.

What is the difference between
speed and velocity?
Imagine that you are driving a car around a curve (as illus-
trated in figure 2.5) and that you maintain a constant speed
of 60 km/h. Is your velocity also constant in this case? 
The answer is no, because velocity involves the direction
of motion as well as how fast the object is going. The
direction of motion is changing as the car goes around the
curve.

To simply state this distinction, speed as we have de-
fined it tells us how fast an object is moving but says noth-
ing about the direction of the motion. Velocity includes the

22 Chapter 2 Describing Motion

Transitions in Traffic Flow

The Situation. Jennifer commutes into the city on a freeway
every day for work. As she approaches the city, the same pat-
terns in traffic flow seem to show up in the same places each
day. She will be moving with the flow of traffic at a speed of
approximately 60 MPH when suddenly things will come to a
screeching halt. The traffic will be stop-and-go briefly and
then will settle into a wavelike mode with speeds varying
between 10 and 30 MPH. Unless there is an accident, this
will continue for the rest of the way into the city.

What causes these patterns? Why does the traffic stop
when there is no apparent reason such as an accident?
Why do ramp traffic lights seem to help the situation?
Questions like these are the concern of the growing field
of traffic engineering.

The Analysis. Although a full analysis of traffic flow is com-
plex, there are some simple ideas that can explain many of the
patterns that Jennifer observes. The density of vehicles, meas-
ured in vehicles per mile, is a key factor. Adding vehicles at
entrance ramps increases this vehicle density.

When Jennifer and other commuters are traveling at
60 MPH, they need to keep a spacing of several car lengths
between vehicles. Most drivers do this without thinking about
it, although there are always some who follow too closely or
tailgate. Tailgating runs the risk of rear-end collisions when
the traffic suddenly slows.

When more vehicles are added at an entrance ramp, the
density of vehicles increases, reducing the distance between
vehicles. As the distance between vehicles decreases, drivers
should reduce their speed to maintain a safe stopping dis-
tance. If this occurred uniformly, there would be a gradual
decrease in the average speed of the traffic to accommodate
the greater density. This is not what usually happens,
however.

everyday phenomenon
box 2.1

The traffic in the upper lanes is flowing freely with adequate spacing
to allow higher speeds. The higher-density traffic in the lower lanes
moves much more slowly.

(continued)
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idea of direction. To specify a velocity, we must give both
its size or magnitude (how fast) and its direction (north,
south, east, up, down, or somewhere in between). If you
tell me that an object is moving 15 m/s, you have told me
its speed. If you tell me that it is moving due west at 15 m/s,
you have told me its velocity.

At point A on the diagram in figure 2.5, the car is trav-
eling due north at 60 km/h. At point B, because the road
curves, the car is traveling northwest at 60 km/h. Its veloc-
ity at point B is different from its velocity at point A
(because the directions are different). The speeds at points
A and B are the same. Direction is irrelevant in specifying
the speed of the object. It has no effect on the reading on
your speedometer.

Changes in velocity are produced by forces acting upon
the car, as we will discuss further in chapter 4. The most
important force involved in changing the velocity of a car
is the frictional force exerted on the tires of the car by the
road surface. A force is required to change either the size
or the direction of the velocity. If no net force were acting
on the car, it would continue to move at constant speed in
a straight line. This happens sometimes when there is ice
or oil on the road surface, which can reduce the frictional
force to almost zero.

2.2 Velocity 23

A significant proportion of drivers will attempt to main-
tain their speed at 50 to 60 MPH even when densities have
increased beyond the point where this is advisable. This
creates an unstable situation. At some point, usually near
an entrance ramp, the vehicle density becomes too large to
sustain these speeds. At this point there is a sudden drop in
average speed and a large increase in the local density. As
shown in the drawing, cars can be separated by less than a
car length when they are stopped or moving very slowly.

Once the average speed of a few vehicles has slowed to
less than 10 MPH, vehicles moving at 50 to 60 MPH begin to
pile up behind this slower moving jam. Because this does not
happen smoothly, some vehicles must come to a complete
stop, further slowing the flow. At the front end of the jam, on
the other hand, the density is reduced due to the slower flow
behind. Cars can then start moving at a speed consistent with
the new density, perhaps around 30 MPH. If every vehicle
moved with the appropriate speed, flow would be smooth
and the increased density could be safely accommodated.
More often, however, overanxious drivers exceed the appro-
priate speed, causing fluctuations in the average speed as
vehicles begin to pile up again.

Notice that we are using average speed with two different
meanings in this discussion. One is the average speed of an
individual vehicle as its instantaneous speed increases and

decreases. The other is the average speed of the overall
traffic flow involving many vehicles. When the traffic is flow-
ing freely, the average speed of different vehicles may differ.
When the traffic is in a slowly moving jam, the average
speeds of different vehicles are essentially the same, at least
within a given lane.

Traffic lights at entrance ramps that permit vehicles to
enter one-at-a-time at appropriate intervals can help to
smoothly integrate the added vehicles to the existing flow.
This reduces the sudden changes in speed caused by a rapid
increase in density. Once the density increases beyond the
certain level, however, a slowing of traffic is inevitable. The
abrupt change from low-density, high-speed flow to higher-
density, slow flow is analogous to a phase transition from a
gas to a liquid. (Phase transitions are discussed in chapter 10.)
Traffic engineers have used this analogy to better understand
the process.

If we could automatically control and coordinate the
speeds of all the vehicles on the highway, the highway might
carry a much greater volume of traffic at a smooth rate of
flow. Speeds could be adjusted to accommodate changes in
density and smaller vehicle separations could be maintained
at higher speeds because the vehicles would all be moving
in a synchronized fashion. Better technology may someday
achieve this dream.

v1

v2

N

E

A

B

figure 2.5 The direction of the velocity changes as the car
moves around the curve, so that the velocity v2 is not the same
as the velocity v1 even though the speed has not changed.
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What is a vector?
Velocity is a quantity for which both the size and direction
are important. We call such quantities vectors. To describe
these quantities fully, we need to state both the size and
the direction. Velocity is a vector that describes how fast
an object is moving and in what direction it is moving.
Many of the quantities used in describing motion (and in
physics more generally) are vector quantities. These
include velocity, acceleration, force, and momentum, to
name a few.

Think about what happens when you throw a rubber ball
against a wall, as shown in figure 2.6. The speed of the ball
may be about the same after the collision with the wall as it
was before the ball hit the wall. The velocity has clearly
changed in the process, though, because the ball is moving
in a different direction after the collision. Something has
happened to the motion of the ball. A strong force had to
be exerted on the ball by the wall to produce this change in
velocity.

The velocity vectors in figures 2.5 and 2.6 are repre-
sented by arrows. This is a natural choice for depicting
vectors, since the direction of the arrow clearly shows the

direction of the vector, and the length can be drawn pro-
portional to the size. In other words, the larger the velocity,
the longer the arrow (fig. 2.7). In the text, we will represent
vectors by printing their symbols in boldface and larger
than other symbols: v is thus the symbol for velocity. A
fuller description of vectors can be found in appendix C.

How do we define instantaneous velocity?
In considering automobile trips, average speed is the most
useful quantity. We do not really care about the direction of
motion in this case. Instantaneous speed is the quantity of
interest to the highway patrol. Instantaneous velocity,
however, is most useful in considering physical theories of
motion. We can define instantaneous velocity by drawing
on our earlier definition of instantaneous speed.

Instantaneous velocity is a vector quantity having a size equal
to the instantaneous speed at a given instant in time and hav-
ing a direction corresponding to that of the object’s motion at
that instant.

Instantaneous velocity and instantaneous speed are
closely related, but velocity includes direction as well as
size. It is changes in instantaneous velocity that require the
intervention of forces. These changes will be emphasized
when we explore Newton’s theory of mechanics in chapter
4. We can also define the concept of average velocity, but
that is a much less useful quantity for our purposes than
either instantaneous velocity or average speed.*

To specify the velocity of an object, we need to state
both how fast and in what direction the object is moving;
velocity is a vector quantity. Instantaneous velocity has a
magnitude equal to the instantaneous speed and points in
the direction that the object is moving. Changes in instan-
taneous velocity are where the action is, so to speak, and
we will consider these in more detail when we discuss
acceleration in section 2.3.

24 Chapter 2 Describing Motion

figure 2.6 The direction of the velocity changes when a
ball bounces from a wall. The wall exerts a force on the ball in
order to produce this change.

vinitial

vfinal

figure 2.7 The length of the arrow shows the size of the
velocity vector.

20 m/s

10 m/s

*Strictly speaking, velocity is the change in displacement divided by time,
where displacement is a vector representing the change in position of an
object. See Appendix C and figure C.2 for a discussion of displacement
vectors. In one-dimensional motion when an object does not change direc-
tion, the distance traveled is equal to the magnitude of the displacement.

Science has always relied on pictures and charts to get
points across. Throughout the book, a number of concepts
will be introduced and illustrated. In the illustrations, the
same color will be used for certain phenomena.

Blue arrows are velocity vectors.

Green arrows depict acceleration vectors.

Red arrows depict force vectors.

Purple arrows show momentum, a
concept we will explore in chapter 7.

study hint
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2.3 Acceleration
Acceleration is a familiar idea. We use the term in speak-
ing of the acceleration of a car away from a stop sign or
the acceleration of a running back in football. We feel the
effects of acceleration on our bodies when a car’s velocity
changes rapidly and even more strikingly when an elevator
lurches downward, leaving our stomachs slightly behind
(fig. 2.8). These are all accelerations. You can think of your
stomach as an acceleration detector—a roller-coaster gives
it a real workout!

Understanding acceleration is crucial to our study of
motion. Acceleration is the rate at which velocity changes.
(Note that we said velocity, not speed.) It plays a central
role in Newton’s theory of motion. How do we go about
finding a value of an acceleration, though? As with speed,
it is convenient to start with a definition of average accel-
eration and then extend it to the idea of instantaneous
acceleration.

How is average acceleration defined?
How would we go about providing a quantitative descrip-
tion of an acceleration? Suppose that your car, pointing due
east, starts from a full stop at a stop sign, and its velocity
increases from zero to 20 m/s as shown in figure 2.9. The
change in velocity is found simply by subtracting the initial
velocity from the final velocity (20 m/s � 0 m/s � 20 m/s).

To find its rate of change, however, we also need to
know the time needed to produce this change. If it took
just 5 seconds for the velocity to change, the rate of change
would be larger than if it took 30 seconds.

Suppose that a time of 5 seconds was required to pro-
duce this change in velocity. The rate of change in velocity
could then be found by dividing the size of the change
in velocity by the time required to produce that change.
Thus the size of the average acceleration, a, is found by
dividing the change in velocity of 20 m/s by the time of
5 seconds,

The unit m/s/s is usually written m/s2 and is read as
meters per second squared. It is easier to understand it,
however, as meters per second per second. The car’s veloc-
ity (measured in m/s) is changing at a rate of 4 m/s every
second. Other units could be used for acceleration, but they
will all have this same form: distance per unit of time
per unit of time. In discussing the acceleration of a car on
a drag strip, for example, the unit miles per hour per sec-
ond is sometimes used.

The quantity that we have just computed is the size of the
average acceleration of the car. The average acceleration
is found by dividing the total change in velocity for some
time interval by that time interval, ignoring possible differ-
ences in the rate of change of velocity that might be occur-
ring within the time interval. Its definition can be stated in
words as

Average acceleration is the change in velocity divided by the
time required to produce that change.

We can restate it in symbols as

or

a �
¢v
t

.

Acceleration �
change in velocity

elapsed time

a �
20 m/s

5 s
� 4 m/s/s.
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figure 2.8 Your acceleration detector senses the downward
acceleration of the elevator.

Acceleration 
detector

a

figure 2.9 A car, starting from rest, accelerates to a velocity
of 20 m/s due east in a time of 5 s.

v = 0 v = 20 m/s

t = 0 t = 5 s

gri12117_ch02_017-037.qxd  7/7/08  7:09 PM  Page 25



Confirming Pages

Because change is so important in this definition, we
have used the special symbol � (the Greek letter delta) to
mean a change in a quantity. Thus �v is a compact way of
writing the change in velocity, which otherwise could be
expressed as vf � vi, where vf is the final velocity and vi is
the initial velocity. Because the concept of change is criti-
cal, this delta (�) notation will appear often.

The idea of change is all-important. Acceleration is not
velocity over time. It is the change in velocity divided by
time. It is common for people to associate large accelera-
tions with large velocities, when in fact the opposite is
often true. The acceleration of a car may be largest, for
example, when it is just starting up and its velocity is near
zero. The rate of change of velocity is greatest then. On the
other hand, a car can be traveling at 100 MPH but still
have a zero acceleration if its velocity is not changing.

What is instantaneous acceleration?
Instantaneous acceleration is similar to average acceler-
ation with an important exception. Just as with instanta-
neous speed or velocity, we are now concerned with the
rate of change at a given instant in time. It is instanta-
neous acceleration that our stomachs respond to. It can be
defined as

Instantaneous acceleration is the rate at which velocity is
changing at a given instant in time. It is computed by finding
the average acceleration for a very short time interval during
which the acceleration does not change appreciably.

If the acceleration is changing with time, choosing a very
short time interval guarantees that the acceleration com-
puted for that time interval will not differ too much from
the instantaneous acceleration at any time within the inter-
val. This is the same idea used in finding an instantaneous
speed or instantaneous velocity.

What is the direction of an acceleration?
Like velocity, acceleration is a vector quantity. Its direction
is important. The direction of the acceleration vector is that
of the change in velocity �v. If, for example, a car is mov-
ing in a straight line and its velocity is increasing, the
change in velocity is in the same direction as the velocity
itself, as shown in figure 2.10. The change in velocity �v
must be added to the initial velocity vi to obtain the final
velocity vf. All three vectors point forward. The process of
adding vectors can be readily seen when we represent the
vectors as arrows on a graph. (More information on vector
addition can be found in appendix C.)

If the velocity is decreasing, however, the change in ve-
locity �v points in the opposite direction to the two velocity

vectors, as shown in figure 2.11. Because the initial veloc-
ity vi is larger than the final velocity vf, the change in
velocity must point in the opposite direction to produce a
shorter vf arrow. The acceleration is also in the opposite
direction to the velocity, since it is in the direction of the
change in velocity. In Newton’s theory of motion, the force
required to produce this acceleration would also be oppo-
site in direction to the velocity. It must push backward on
the car to slow it down.

The term acceleration describes the rate of any change
in an object’s velocity. The change could be an increase (as
in our initial example), a decrease, or a change in direction.
The term applies even to decreases in velocity (decelera-
tions). To a physicist these are simply accelerations with a
direction opposite that of the velocity. If a car is braking
while traveling in a straight line, its velocity is decreasing
and its acceleration is negative if the velocity is positive.
This situation is illustrated in the sample exercise in exam-
ple box 2.3.

The minus sign is an important part of the result in
the example in example box 2.3 because it indicates that
the change in velocity is negative. The velocity is getting
smaller. We can call it a deceleration if we like, but it is
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figure 2.10 The acceleration vector is in the same direction
as the velocity vectors when the velocity is increasing.

vf

∆vvi

vi

+ =

a

vf

vf = 8 m/s∆v  = –12 m/svi = 20 m/s 

vfvi

vi = 8 m/s 

∆v

∆v = 12 m/s

vi + =

a

vf

vf = 20 m/s

figure 2.11 The velocity and acceleration vectors for
decreasing velocity: �v and a are now opposite in direction to
the velocity. The acceleration a is proportional to �v.
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vf

vi

∆v

vi

vf

a 

the same thing as a negative acceleration. One word,
acceleration, covers all situations in which the velocity is
changing.

Can a car be accelerating when
its speed is constant?
What happens when a car goes around a curve at constant
speed? Is it accelerating? The answer is yes, because the di-
rection of its velocity is changing. If the direction of the
velocity vector is changing, the velocity is changing. This
means that there must be an acceleration.

This situation is illustrated in figure 2.12. The arrows
in this drawing show the direction of the velocity vector
at different points in the motion. The change in velocity
�v is the vector that must be added to the initial velocity
vi to obtain the final velocity vf. The vector representing
the change in velocity points toward the center of the
curve, and therefore, the acceleration vector also points
in that direction. The size of the change is represented by
the length of the arrow �v. From this we can find the
acceleration.

Acceleration is involved whenever there is a change in
velocity, regardless of the nature of that change. Cases like
figure 2.12 will be considered more fully in chapter 5
where circular motion is discussed.

Acceleration is the rate of change of velocity and is found
by dividing the change in the velocity by the time required
to produce that change. Any change in velocity involves an
acceleration, whether an increase or a decrease in speed,
or a change in direction. Acceleration is a vector having a
direction corresponding to the direction of the change in
velocity, which is not necessarily the same direction as
the instantaneous velocity itself. The concept of change is
crucial. The graphical representations in section 2.4 will
help you visualize changes in velocity as well as in other
quantities.

2.4 Graphing Motion
It is often said that a picture is worth a thousand words,
and the same can be said of graphs. Imagine trying to
describe the motion depicted in figure 2.4 precisely in
words and numbers. The graph provides a quick overview
of what took place. A description in words would be much
less efficient. In this section, we will show how graphs can
also help us to understand velocity and acceleration.

What can a graph tell us?
How can we produce and use graphs to help us describe
motion? Imagine that you are watching a battery-powered
toy car moving along a meter stick (fig. 2.13). If the car is
moving slowly enough, you could record the car’s position
while also recording the elapsed time using a digital
watch. At regular time intervals (say, every 5 seconds), you
would note the value of the position of the front of the car
on the meter stick and write these values down. The results
might be something like those shown in table 2.2.
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figure 2.12 A change in the direction of the velocity vector
also involves an acceleration, even though the speed may be
constant.

example box 2.3

Sample Exercise: Negative Accelerations

The driver of a car steps on the brakes, and the velocity
drops from 20 m/s due east to 10 m/s due east in a time
of 2.0 seconds. What is the acceleration?

vi � 20 m/s due east
vf � 10 m/s due east
t � 2.0 s
a � ?

a � 5.0 m/s2 due west

Notice that when we are dealing just with the magnitude
of a vector quantity, we do not use the boldface notation.
The sign can indicate direction, however, in a problem
involving straight-line motion.

a �
¢v

t
�

vf � vi

t

 � �5 m/s2

 �
�10 m/s

2.0 s

 �
10 m/s � 20 m/s

2.0 s
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glance. The graph also contains information on the velocity
and acceleration of the car, although that is less obvious.
For example, what can we say about the average velocity
of the car between 20 and 30 seconds? Is the car moving
during this time? A glance at the graph shows us that the
distance is not changing during that time interval, so the
car is not moving. The velocity is zero during that time,
which is represented by a horizontal line on our graph of
distance versus time.

What about the velocity at other points in the motion?
The car is moving more rapidly between 0 and 20 seconds
than it is between 30 and 50 seconds. The distance curve is
rising more rapidly between 0 and 20 seconds than be-
tween 30 and 50 seconds. Since more distance is covered
in the same time, the car must be moving faster there. A
steeper slope to the curve is associated with a larger speed.

In fact, the slope of the distance-versus-time curve at
any point on the graph is equal to the instantaneous veloc-
ity of the car.* The slope indicates how rapidly the dis-
tance is changing with time at any instant in time. The rate
of change of distance with time is the instantaneous speed
according to the definition given in section 2.1. Since the
motion takes place along a straight line, we can then repre-
sent the direction of the velocity with plus or minus signs.
There are only two possibilities, forward or backward. We
then have the instantaneous velocity, which includes both
the size (speed) and direction of the motion.

When the car travels backward, its distance from the
starting point decreases. The curve goes down, as it does
between 50 and 60 seconds. We refer to this downward-
sloping portion of the curve as having a negative slope and
also say that the velocity is negative during this portion of
the motion. A large upward slope represents a large instan-
taneous velocity, a zero slope (horizontal line) a zero veloc-
ity, and a downward slope a negative (backward) velocity.
Looking at the slope of the graph tells us all we need to
know about the velocity of the car.

Velocity and acceleration graphs
These ideas about velocity can be best summarized by plot-
ting a graph of velocity against time for the car (fig. 2.15).
The velocity is constant wherever the slope of the distance-
versus-time graph of figure 2.14 is constant. Any straight-
line segment of a graph has a constant slope, so the velocity
changes only where the slope of the graph in figure 2.14
changes. If you compare the graph in figure 2.15 to the
graph in figure 2.14 carefully, these ideas should become
clear.

28 Chapter 2 Describing Motion

*Since the mathematical definition of slope is the change in the vertical
coordinate �d divided by the change in the horizontal coordinate �t, the
slope, �d/�t, is equal to the instantaneous velocity, provided that �t is
sufficiently small. It is possible to grasp the concept of slope, however,
without appealing to the mathematical definition.

figure 2.13 A toy car moving along a meter stick. Its
position can be recorded at different times.

How do we graph these data? First, we create evenly
spaced intervals on each of two perpendicular axes, one for
distance traveled (or position) and the other for time. To
show how distance varies with time, we usually put time
on the horizontal axis and distance on the vertical axis.
Such a graph is shown in figure 2.14, where each data
point from table 2.2 is plotted and a line is drawn through
the points. To make sure that you understand this process,
choose different points from table 2.2 and find where they
are located on the graph. Where would the point go if the
car was at 21 centimeters at 25 seconds?

The graph summarizes the information presented in the
table in a visual format that makes it easier to grasp at a

Time Position

0 s 0 cm

5 s 4.1 cm

10 s 7.9 cm

15 s 12.1 cm

20 s 16.0 cm

25 s 16.0 cm

30 s 16.0 cm

35 s 18.0 cm

40 s 20.1 cm

45 s 21.9 cm

50 s 24.0 cm

55 s 22.1 cm

60 s 20.0 cm

table 2.2

Position of the Toy Car along the Meter Stick
at Different Times
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What can we say about the acceleration from these
graphs? Since acceleration is the rate of change of velocity
with time, the velocity graph (fig. 2.15) also provides in-
formation about the acceleration. In fact, the instantaneous
acceleration is equal to the slope of the velocity-versus-
time graph. A steep slope represents a rapid change in
velocity and thus a large acceleration. A horizontal line has
zero slope and represents zero acceleration. The accelera-
tion turns out to be zero for most of the motion described
by our data. The velocity changes at only a few points in
the motion. The acceleration would be large at these points
and zero everywhere else.

Since our data do not indicate how rapidly the changes
in velocity actually occur, we do not have enough informa-
tion to say just how large the acceleration is at those few
points where it is not zero. We would need measurements
of distance or velocity every tenth of a second or so to get
a clear idea of how rapid these changes are. As we will see
in chapter 4, we know that these changes in velocity cannot
occur instantly. Some time is required. So we can sketch an
approximate graph of acceleration versus time, as shown in
figure 2.16.

The spikes in figure 2.16 occur when the velocity is
changing. At 20 seconds, there is a rapid decrease in the
velocity represented by a downward spike or negative
acceleration. At 30 seconds, the velocity increases rapidly
from zero to a constant value, and this is represented by an
upward spike or positive acceleration. At 50 seconds, there
is another negative acceleration as the velocity changes
from a positive to a negative value. If you could put your-
self inside the toy car, you would definitely feel these
accelerations. (Everyday phenomenon box 2.2 provides
another example of how a graph is useful for analyzing
motion.)

Can we find the distance traveled
from the velocity graph?
What other information can be gleaned from the velocity-
versus-time graph of figure 2.15? Think for a moment about
how you would go about finding the distance traveled if
you knew the velocity. For a constant velocity, you can get
the distance simply by multiplying the velocity by the time,
d � vt. In the first 20 seconds of the motion, for example,
the velocity is 0.8 cm/s and the distance traveled is 0.8 cm/s
times 20 seconds, which is 16 cm. This is just the reverse
of what we used in determining the velocity in the first
place. We found the velocity by dividing the distance traveled
by the time.

How would this distance be represented on the velocity
graph? If you recall formulas for computing areas, you may
recognize that the distance d is the area of the shaded rec-
tangle on figure 2.15. The area of a rectangle is found by
multiplying the height times the width, just what we have
done here. The velocity, 0.8 cm/s, is the height and the
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figure 2.14 Distance plotted against time for the motion
of the toy car. The data points are those listed in table 2.2.

figure 2.15 Instantaneous velocity plotted against time for
the motion of the toy car. The velocity is greatest when distance
traveled is changing most rapidly.

figure 2.16 An approximate sketch of acceleration plotted
against time for the toy-car data. The acceleration is non-zero
only when the velocity is changing.
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The 100-m Dash

The Situation. A world-class sprinter can run 100 m in a
time of a little under 10 s. The race begins with the runners in
a crouched position in the starting blocks, waiting for the
sound of the starter’s pistol. The race ends with the runners
lunging across the finish line, where their times are recorded
by stopwatches or automatic timers.

What happens between the start and finish of the race?
How do the velocity and acceleration of the runners vary dur-
ing the race? Can we make reasonable assumptions about
what the velocity-versus-time graph looks like for a typical
runner? Can we estimate the maximum velocity of a good
sprinter? Most importantly for improving performance, what
factors affect the success of a runner in the dash?

The Analysis. Let’s assume that the runner covers the 100-m
distance in a time of exactly 10 s. We can compute the aver-
age speed of the runner from the definition s � d/t:

Clearly, this is not the runner’s instantaneous speed through-
out the course of the race, since the runner’s speed at the
beginning of the race is zero and it takes some time to accel-
erate to the maximum speed.

The objective in the race is to reach a maximum speed 
as quickly as possible and to sustain that speed for the rest 
of the race. Success is determined by two things: how quickly
the runner can accelerate to this maximum speed and the
value of this maximum speed. A smaller runner often has bet-
ter acceleration but a smaller maximum speed, while a larger
runner sometimes takes longer to reach top speed but has a
larger maximum speed.

The typical runner does not reach top speed before travel-
ing at least 10 to 20 m. If the average speed is 10 m/s, the 

runner’s maximum speed must be somewhat larger than this 
value, since we know that the instantaneous speed will be
less than 10 m/s while the runner is accelerating. These ideas
are easiest to visualize by sketching a graph of speed plot-
ted against time, as shown. Since the runner travels in a
straight line, the magnitude of the instantaneous velocity is
equal to the instantaneous speed. The runner reaches top
speed at approximately 2 to 3 s into the race.

The average speed (or velocity) during the time that the run-
ner is accelerating is approximately half of its maximum value if
the runner’s acceleration is more or less constant during the first
2 s. If we assume that the runner’s average speed during this
time is about 5.5 m/s (half of 11 m/s), then the speed through
the remainder of the race would have to be about 11.1 m/s to
give an average speed of 10 m/s for the entire race. This can be
seen by computing the distance from these values:

d � (5.5 m/s)(2 s) � (11.1 m/s)(8 s)

� 11 m � 89 m � 100 m.

What we have done here is to make some reasonable
guesses for these values that will make the average speed
come out to 10 m/s; we then checked these guesses by com-
puting the total distance. This suggests that the maximum
speed of a good sprinter must be about 11 m/s (25 MPH). For
sake of comparison, a distance runner who can run a 4-min
mile has an average speed of about 15 MPH, or 6.7 m/s.

The runner’s strategy should be to get a good jump out of
the blocks, keeping the body low initially and leaning forward
to minimize air resistance and maximize leg drive. To maintain
top speed during the remainder of the race, the runner needs
good endurance. A runner who fades near the end needs more
conditioning drills. For a given runner with a fixed maximum
speed, the average speed depends on how quickly the runner
can reach top speed. This ability to accelerate rapidly depends
upon leg strength (which can be improved by working with
weights and other training exercises) and natural quickness.

s �
100 m

10 s
� 10 m/s.

everyday phenomenon
box 2.2

Runners in the starting blocks, waiting for the starter’s pistol to fire.
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A graph of speed versus time for a hypothetical runner in the
100-m dash.
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time, 20 seconds, is the width of this rectangle on the
graph.

It turns out that we can find the distance this way even
when the areas involved on the graph are not rectangles,
although the process is more difficult when the curves are
more complicated. The general rule is that the distance trav-
eled is equal to the area under the velocity-versus-time
curve. When the velocity is negative (below the time axis
on the graph), the object is traveling backward and its dis-
tance from the starting point is decreasing.

Even without computing the area precisely, it is possible
to get a rough idea of the distance traveled by studying the
velocity graph. A large area represents a large distance.
Quick visual comparisons give a good picture of what is
happening without the need for lengthy calculations. This
is the beauty of a graph.

A good graph can present a picture of motion that is rich
in insight. Distance traveled plotted against time tells us
not only where the object is at any time, but its slope also
indicates how fast it was moving. The graph of velocity
plotted against time also contains information on accelera-
tion and on the distance traveled. Producing and studying
such graphs can give us a more general picture of the
motion and the relationships between distance, velocity,
and acceleration.

2.5 Uniform Acceleration
If you drop a rock, it falls toward the ground with a con-
stant acceleration, as we will see in chapter 3. An unchang-
ing or uniform acceleration is the simplest form of accel-
erated motion. It occurs whenever there is a constant force
acting on an object, which is the case for a falling rock as
well as for many other situations.

How do we describe the resulting motion? The impor-
tance of this question was first recognized by Galileo, who
studied the motion of balls rolling down inclined planes as
well as objects in free fall. In his famous work, Dialogues
Concerning Two New Sciences, published in 1638 near the
end of his life, Galileo developed the graphs and formulas
that are introduced in this section and that have been stud-
ied by students of physics ever since. His work provided
the foundation for much of Newton’s thinking a few
decades later.

How does velocity vary in uniform
acceleration?
Suppose a car is moving along a straight road and acceler-
ating at a constant rate. We have plotted the acceleration
against time for this situation in figure 2.17. The graph is
very simple, but it illustrates what we mean by uniform
acceleration. A uniform acceleration is one that does not

change as the motion proceeds. It has the same value at any
time, which produces a horizontal-line graph.

The graph of velocity plotted against time for this same
situation tells a more interesting story. From our discussion
in section 2.4, we know that the slope of a velocity-versus-
time graph is equal to the acceleration. For a uniform posi-
tive acceleration, the velocity graph should have a constant
upward slope; the velocity increases at a steady rate. A
constant slope produces a straight line, which slopes up-
ward if the acceleration is positive as shown in figure 2.18.
In plotting this graph, we assumed that the initial velocity
is zero.

This graph can also be represented by a formula. The
velocity at any time t is equal to the original velocity plus
the velocity that has been gained because the car is acceler-
ating. The change in velocity �v is equal to the acceleration
times the time, �v � at since acceleration is defined as
�v/t. These ideas result in the relationship

v � v0 � at.

The first term on the right, v0, is the original velocity
(assumed to be zero in figure 2.18), and the second term,
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figure 2.17 The acceleration graph for uniform acceleration
is a horizontal line. The acceleration does not change with time.

figure 2.18 Velocity plotted against time for uniform
acceleration, starting from rest. For this special case, the average
velocity is equal to one-half the final velocity.

t

a

t

v

v

v =   v– 1–
2
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at, represents the change in velocity due to the acceleration.
Adding these two terms together yields the velocity at
any later time t.

A numerical example applying these ideas to an acceler-
ating car is found in part a of example box 2.4. The car
could not keep on accelerating indefinitely at a constant
rate because the velocity would soon reach incredible val-
ues. Not only is this dangerous, but physical limits imposed
by air resistance and other factors prevent this from
happening.

What happens if the acceleration is negative? Velocity
would decrease rather than increase, and the slope of the
velocity graph would slope downward rather than upward.
Because the acceleration is then negative, the second term
in the formula for v would subtract from the first term,
causing the velocity to decrease from its initial value. The
velocity then decreases at a steady rate.

How does distance traveled vary with time?
If the velocity is increasing at a steady rate, what effect
does this have on the distance traveled? As the car moves
faster and faster, the distance covered grows more and
more rapidly. Galileo showed how to find the distance for
this situation.

We find distance by multiplying velocity by time, but in
this case we must use an average velocity since the velocity
is changing. By appealing to the graph in figure 2.18, we
can see that the average velocity should be just half the
final velocity, v. If the initial velocity is zero, the final

velocity is at, so multiplying the average velocity by the
time yields

The time t enters twice, once in finding the average
velocity and then again when we multiply the velocity by
time to find the distance.*

The graph in figure 2.19 illustrates this relationship; the
distance curve slopes upward at an ever-increasing rate as
the velocity increases. This formula and graph are only
valid if the object starts from rest as shown in figure 2.18.
Since distance traveled is equal to the area under the
velocity-versus-time curve (as discussed in section 2.4), this
expression for distance can also be thought of as the area
under the triangle in figure 2.18. The area of a triangle is
equal to one-half its base times its height, which produces
the same result.

If the car is already moving before it begins to acceler-
ate, the velocity graph can be redrawn as pictured in figure
2.20. The total area under the velocity curve can then be
split in two pieces, a triangle and a rectangle, as shown.
The total distance traveled is the sum of these two areas,

d � v0t � at2.

The first term in this formula represents the distance the
object would travel if it moved with constant velocity v0,
and the second term is the additional distance traveled
because the object is accelerating (the area of the triangle
in figure 2.20). If the acceleration is negative, meaning that
the object is slowing down, this second term will subtract
from the first.

1
2

d � 1
2 at2.
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*Expressing this argument in symbolic form, it becomes

The average velocity 

d � vt � 112 at2t �
1
2 at2.

v �
1
2 v �

1
2 at

figure 2.19 As the car accelerates uniformly, the distance
covered grows more and more rapidly with time because the
velocity is increasing.

t

d

example box 2.4

Sample Exercise: Uniform Acceleration

A car traveling due east with an initial velocity of 10 m/s
accelerates for 6 seconds at a constant rate of 4 m/s2.

a. What is its velocity at the end of this time?
b. How far does it travel during this time?

a. v0 � 10 m/s v � v0 � at

a � 4 m/s2 � 10 m/s � (4 m/s2)(6 s)

t � 6 s � 10 m/s � 24 m/s

v � ? � 34 m/s

v � 34 m/s due east

b.

� 60 m � (2 m/s2)(36 s2)

� 60 m � 72 m � 132 m

� (10 m/s)(6 s) �
1
2 (4 m/s2)(6 s)2

d � v0t �
1
2 at2
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This more general expression for distance may seem
complex, but the trick to understanding it is to break it down
into its parts, as just suggested. We are merely adding two
terms representing different contributions to the total
distance. Each one can be computed in a straightforward

manner, and it is not difficult to add them together. The two
portions of the graph in figure 2.20 represent these two
contributions.

The sample exercise in example box 2.4 provides a
numerical example of these ideas. The car in this example
accelerates uniformly from an initial velocity of 10 m/s due
east to a final velocity of 34 m/s due east and covers a dis-
tance of 132 meters while this acceleration is taking place.
Had it not been accelerating, it would have gone only
60 meters in the same time. The additional 72 meters
comes from the acceleration of the car.

Acceleration involves change, and uniform acceleration
involves a steady rate of change. It therefore represents the
simplest kind of accelerated motion that we can imagine.
Uniform acceleration is essential to an understanding of
free fall, discussed in chapter 3, as well as to many other
phenomena. Such motion can be represented by either the
graphs or the formulas introduced in this section. Looking
at both and seeing how they are related will reinforce
these ideas.

Summary 33

figure 2.20 The velocity-versus-time graph redrawn for an
initial velocity different from zero. The area under the curve is
divided into two portions, a rectangle and a triangle.

2 Velocity. The instantaneous velocity of an object is a
vector quantity that includes both direction and size. The size of
the velocity vector is equal to the instantaneous speed, and the
direction is that of the object’s motion.

3 Acceleration. Acceleration is defined as the time rate of
change of velocity and is found by dividing the change in velocity
by the time. Acceleration is also a vector quantity. It can be com-
puted as either an average or an instantaneous value. A change
in the direction of the velocity can be as important as a change in
magnitude. Both involve acceleration.

v

v0

v0

v – v0 = ∆v

t

d = v0t

d =   at 21–
2

The main purpose of this chapter is to introduce concepts that are
crucial to a precise description of motion. To understand accelera-
tion, you must first grasp the concept of velocity, which in turn
builds on the idea of speed. The distinctions between speed and
velocity, and between velocity and acceleration, are particularly
important.

1 Average and instantaneous speed. Average speed
is defined as the distance traveled divided by the time. It is the
average rate at which distance is covered. Instantaneous speed is
the rate at which distance is being covered at a given instant in time
and requires that we use very short time intervals for computation.

summary

s 
d–
t

=

v = speed and direction 

v

a 

∆vvi

∆v
t
_=

vf+ =
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* = more open-ended questions, requiring lengthier responses,
suitable for group discussion
Q = sample responses are available in appendix D
Q = sample responses are available on the website

Q1. Suppose that critters are discovered on Mars who measure
distance in boogles and time in bops.
a. What would the units of speed be in this system?

Explain.
b. What would the units of velocity be? Explain.
c. What would the units of acceleration be? Explain.

Q2. Suppose that we choose inches as our basic unit of dis-
tance and days as our basic unit of time.
a. What would the units of velocity and acceleration be in

this system? Explain.
b. Would this be a good choice of units for measuring the

acceleration of an automobile? Explain.

Q3. What units would have an appropriate size for measuring
the rate at which fingernails grow? Explain.

Q4. A tortoise and a hare cover the same distance in a race. The
hare goes very fast for brief intervals, but stops frequently,

whereas the tortoise plods along steadily and finishes the
race ahead of the hare.
a. Which of the two racers has the greater average speed

over the duration of the race? Explain.
b. Which of the two racers is likely to reach the greatest

instantaneous speed during the race? Explain.

Q5. A driver states that she was doing 80 when stopped by the
police. Is that a clear statement? Would this be interpreted
differently in England than it would be in the United
States? Explain.

Q6. Does the speedometer on a car measure average speed or
instantaneous speed? Explain.

Q7. Is the average speed over several minutes more likely to
be close to the instantaneous speed at anytime for a car
traveling in freely flowing, low-density traffic or for one
traveling in high-density traffic? Explain.

*Q8. The highway patrol sometimes uses radar guns to identify
possible speeders and at other times uses associates in air-
planes who note the time taken for a car to pass between
two marks some distance apart on the highway. What do each
of these methods measure, average speed or instantaneous

34 Chapter 2 Describing Motion

4 Graphing motion. Graphs of distance, speed, velocity,
and acceleration plotted against time can illustrate relationships
between these quantities. Instantaneous velocity is equal to the
slope of the distance-time graph. Instantaneous acceleration is
equal to the slope of the velocity-time graph. The distance trav-
eled is equal to the area under the velocity-time graph.

5 Uniform acceleration. When an object accelerates at
a constant rate producing a constant-slope graph of velocity versus
time, we say that it is uniformly accelerated. Graphs help us to
understand the two formulas describing how velocity and distance
traveled vary with time for this important special case.

key terms

Speed, 19
Average speed, 19
Rate, 20
Instantaneous speed, 21
Velocity, 22

Magnitude, 23
Vector, 24
Vector quantity, 24
Instantaneous velocity, 24
Acceleration, 25

Average acceleration, 25
Instantaneous acceleration, 26
Slope, 28
Uniform acceleration, 31

questions

d

t

v

t

v

v0

v = v0 + at 

t

d = v0t + 1–
2 at 2 
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speed? Can you think of situations in which either one
of these methods might unfairly penalize a driver? Explain.

Q9. A ball is thrown against a wall and bounces back toward
the thrower with the same speed as it had before hitting the
wall. Does the velocity of the ball change in this process?
Explain.

Q10. A ball attached to a string is whirled in a horizontal circle
such that it moves with constant speed.
a. Does the velocity of the ball change in this process?

Explain.
b. Is the acceleration of the ball equal to zero? Explain.

*Q11. A ball tied to a string fastened at the other end to a rigid
support forms a pendulum. If we pull the ball to one side
and release it, the ball moves back and forth along an arc
determined by the string length.
a. Is the velocity constant in this process? Explain.
b. Is the speed likely to be constant in this process? What

happens to the speed when the ball reverses direction?

Q12. A dropped ball gains speed as it falls. Can the velocity of
the ball be constant in this process? Explain.

Q13. A driver of a car steps on the brakes, causing the velocity
of the car to decrease. According to the definition of accel-
eration provided in this chapter, does the car accelerate in
this process? Explain.

Q14. At a given instant in time, two cars are traveling at different
velocities, one twice as large as the other. Based upon this
information is it possible to say which of these two cars
has the larger acceleration at this instant in time? Explain.

Q15. A car just starting up from a stop sign has zero velocity at
the instant that it starts. Must the acceleration of the car
also be zero at this instant? Explain.

Q16. A car traveling with constant speed rounds a curve in the
highway. Is the acceleration of the car equal to zero in this
situation? Explain.

Q17. A racing sports car traveling with a constant velocity of
100 MPH due west startles a turtle by the side of the road
who begins to move out of the way. Which of these two
objects is likely to have the larger acceleration at that
instant? Explain.

Q18. In the graph shown here, velocity is plotted as a function
of time for an object traveling in a straight line.
a. Is the velocity constant for any time interval shown?

Explain.
b. During which time interval shown does the object have

the greatest acceleration? Explain.

Q19. A car moves along a straight line so that its position (dis-
tance from some starting point) varies with time as de-
scribed by the graph shown here.
a. Does the car ever go backward? Explain.
b. Is the instantaneous velocity at point A greater or less

than that at point B? Explain.

Q20. For the car whose distance is plotted against time in ques-
tion 19, is the velocity constant during any time interval
shown in the graph? Explain.

Q21. A car moves along a straight section of road so that its
velocity varies with time as shown in the graph.
a. Does the car ever go backward? Explain.
b. At which of the labeled points on the graph, A, B, or

C, is the magnitude of the acceleration the greatest?
Explain.

Q22. For the car whose velocity is plotted in question 21, in
which of the equal time segments 0–2 seconds, 2–4 sec-
onds, or 4–6 seconds, is the distance traveled by the car
the greatest? Explain.

Q23. Look again at the velocity-versus-time graph for the toy
car shown in figure 2.15.
a. Is the instantaneous speed greater at any time during

this motion than the average speed for the entire trip?
Explain.

b. Is the car accelerated when the direction of the car is
reversed at t � 50 s? Explain.

Q24. Suppose that the acceleration of a car increases with time.
Could we use the relationship v � v0 � at in this situation?
Explain.

Q25. When a car accelerates uniformly from rest, which of these
quantities increases with time: acceleration, velocity, and/or
distance traveled? Explain.

Questions 35
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Q18 Diagram

Q19 Diagram

Q21 Diagram
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Q26. The velocity-versus-time graph of an object curves as
shown in the diagram. Is the acceleration of the object
constant? Explain.

Q27. For a uniformly accelerated car, is the average acceleration
equal to the instantaneous acceleration? Explain.

Q28. A car traveling in the forward direction experiences a neg-
ative uniform acceleration for 10 seconds. Is the distance
covered during the first 5 seconds equal to, greater than, or

less than the distance covered during the second 5 sec-
onds? Explain.

Q29. A car starts from rest, accelerates uniformly for 5 seconds,
travels at constant velocity for 5 seconds, and finally decel-
erates uniformly for 5 seconds. Sketch graphs of velocity
versus time and acceleration versus time for this situation.

Q30. Suppose that two runners run a 100-meter dash, but the
first runner reaches maximum speed more quickly than the
second runner. Both runners maintain constant speed once
they have reached their maximum speed and cross the fin-
ish line at the same time. Which runner has the larger
maximum speed? Explain.

Q31. Sketch a graph showing velocity-versus-time curves for the
two runners described in question 30. (Sketch both curves
on the same graph, so that the differences are apparent.)

*Q32. A physics instructor walks with increasing speed across
the front of the room then suddenly reverses direction and
walks backward with constant speed. Sketch graphs of
velocity and acceleration consistent with this description.

36 Chapter 2 Describing Motion

exercises

E1. A traveler covers a distance of 460 miles in a time of 8 hours.
What is the average speed for this trip?

E2. A walker covers a distance of 1.8 km in a time of 30 min-
utes. What is the average speed of the walker for this dis-
tance in km/h?

E3. Grass clippings are found to have an average length of
4.8 cm when a lawn is mowed 12 days after the previous
mowing. What is the average speed of growth of this grass
in cm/day?

E4. A driver drives for 2.5 hours at an average speed of 54 MPH.
What distance does she travel in this time?

E5. A woman walks a distance of 240 m with an average speed
of 1.2 m/s. What time was required to walk this distance?

E6. A person in a hurry averages 62 MPH on a trip covering
a distance of 300 miles. What time was required to travel
that distance?

E7. A hiker walks with an average speed of 1.2 m/s. What
distance in kilometers does the hiker travel in a time of
1 hour?

E8. A car travels with an average speed of 22 m/s.
a. What is this speed in km/s?
b. What is this speed in km/h?

E9. A car travels with an average speed of 58 MPH. What is
this speed in km/h? (See example box 2.1.)

E10. Starting from rest and moving in a straight line, a runner
achieves a velocity of 7 m/s in a time of 2 s. What is the
average acceleration of the runner?

E11. Starting from rest, a car accelerates at a rate of 4.2 m/s2 for
a time of 5 seconds. What is its velocity at the end of this
time?

E12. The velocity of a car decreases from 30 m/s to 18 m/s in a
time of 4 seconds. What is the average acceleration of the
car in this process?

E13. A car traveling with an initial velocity of 12 m/s acceler-
ates at a constant rate of 2.5 m/s2 for a time of 2 seconds.
a. What is its velocity at the end of this time?
b. What distance does the car travel during this process?

E14. A runner traveling with an initial velocity of 2.0 m/s accel-
erates at a constant rate of 1.2 m/s2 for a time of 2 seconds.
a. What is his velocity at the end of this time?
b. What distance does the runner cover during this process?

E15. A car moving with an initial velocity of 30 m/s slows down
at a constant rate of �3 m/s2.
a. What is its velocity after 3 seconds of deceleration?
b. What distance does the car cover in this time?

E16. A runner moving with an initial velocity of 4.0 m/s slows
down at a constant rate of �1.5 m/s2 over a period of
2 seconds.
a. What is her velocity at the end of this time?
b. What distance does she travel during this process?

E17. If a world-class sprinter ran a distance of 100 meters start-
ing at his top speed of 11 m/s and running with constant
speed throughout, how long would it take him to cover the
distance?

E18. Starting from rest, a car accelerates at a constant rate of
3.0 m/s2 for a time of 5 seconds.
a. Compute the velocity of the car at 1 s, 2 s, 3 s, 4 s, and

5 s and plot these velocity values against time.
b. Compute the distance traveled by the car for these same

times and plot the distance values against time.

v

t
Q26 Diagram
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HE1. How fast do you normally walk? Using a meter stick or a
string of known length, lay out a straight course of 40 or
50 meters. Then use a watch with a second hand or a stop-
watch to determine:
a. Your normal walking speed in m/s.
b. Your walking speed for a brisk walk.
c. Your jogging speed for this same distance.
d. Your sprinting speed for this distance.

Record and compare the results for these different cases. Is
your sprinting speed more than twice your speed for a brisk
walk?

HE2. The speed with which hair or fingernails grow provides
some interesting measurement challenges. Using a millimeter

rule, estimate the speed of growth for one or more of:
fingernails, toenails, facial hair if you shave regularly, or
hair near your face (such as sideburns) that will provide
an easy reference point. Measure the average size of clip-
pings or of growth at regular time intervals.

a. What is the average speed of growth? What units are
most appropriate for describing this speed?

b. Does the speed appear to be constant with time? Does
the speed appear to be the same for different nails
(thumb versus fingers, fingernails versus toenails), or in
the case of hair, for different positions on your face?

Home Experiments and Observations 37

synthesis problems

SP1. A railroad engine moves forward along a straight section of
track for a distance of 80 m due west at a constant speed
of 5 m/s. It then reverses its direction and travels 20 m due
east at a constant speed of 4 m/s. The time required for this
deceleration and reversal is very short due to the small
speeds involved.
a. What is the time required for the entire process?
b. Sketch a graph of average speed versus time for this

process. Show the deceleration and reacceleration upon
reversal as occurring over a very short time interval.

c. Using negative values of velocity to represent reversed
motion, sketch a graph of velocity versus time for the
engine.

d. Sketch a graph of acceleration versus time for the
engine.

SP2. The velocity of a car increases with time as shown in the
graph.
a. What is the average acceleration between 0 seconds and

4 seconds?
b. What is the average acceleration between 4 seconds and

8 seconds?
c. What is the average acceleration between 0 seconds and

8 seconds?
d. Is the result in part c equal to the average of the two val-

ues in parts a and b? Compare and explain.

SP3. A car traveling due west on a straight road accelerates at
a constant rate for 10 seconds increasing its velocity from
0 to 24 m/s. It then travels at constant speed for 10 sec-
onds and then decelerates at a steady rate for the next
5 seconds to a velocity of 10 m/s. It travels at this velocity
for 5 seconds and then decelerates rapidly to a stop in a
time of 2 seconds.
a. Sketch a graph of the car’s velocity versus time for the

entire motion just described. Label the axes of your
graph with the appropriate velocities and times.

b. Sketch a graph of acceleration versus time for the car.
c. Does the distance traveled by the car continually

increase in the motion described? Explain.

SP4. A car traveling in a straight line with an initial velocity
of 14 m/s accelerates at a rate of 2.0 m/s2 to a velocity of
24 m/s.
a. How much time does it take for the car to reach the

velocity of 24 m/s?
b. What is the distance covered by the car in this process?
c. Compute values of the distance traveled at 1-second

intervals and carefully draw a graph of distance plotted
against time for this motion.

SP5. Just as car A is starting up, it is passed by car B. Car B
travels with a constant velocity of 10 m/s, while car A
accelerates with a constant acceleration of 4.5 m/s2, starting
from rest.
a. Compute the distance traveled by each car for times of

1 s, 2 s, 3 s, and 4 s.
b. At what time, approximately, does car A overtake car B?
c. How might you go about finding this time exactly?

Explain.

home experiments and observations
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chapter overview
Our main purpose in this chapter is to explore how objects move under
the influence of the gravitational acceleration near the Earth’s surface.
Uniform acceleration, introduced in chapter 2, plays a prominent role.
We begin by considering carefully the acceleration of a dropped object,
and then we will extend these ideas to thrown objects or objects
projected at an angle to the ground.

chapter outline
1 Acceleration due to gravity. How does a dropped object move under

the influence of the Earth’s gravitational pull? How is its acceleration
measured, and in what sense is it constant?

2 Tracking a falling object. How do velocity and distance traveled vary
with time for a falling object? How can we quickly estimate these
values knowing the gravitational acceleration?

3 Beyond free fall: Throwing a ball upward. What changes when a ball
is thrown upward rather than being dropped? Why does the ball
appear to hover near the top of its flight?

4 Projectile motion. What determines the motion of an object that is
fired horizontally? How do the velocity and position of the object
change with time in this case?

5 Hitting a target. What factors determine the trajectory of a rifle
bullet or football that has been launched at some angle to the
horizontal to hit a target?

38
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Have you ever watched a leaf or a ball fall to the
ground? At times during your first few years of life, you
probably amused yourself by dropping an object repeat-
edly and watching it fall. As we grow older, that experi-
ence becomes so common that we usually do not stop
to think about it or to ask why objects fall as they do.
Yet this question has intrigued scientists and philoso-
phers for centuries.

To understand nature, we must first carefully observe it.
If we control the conditions under which we make our
observations, we are doing an experiment. The observa-
tions of falling objects that you performed as a young
child were a simple form of experiment, and we would
like to rekindle that interest in experimentation here.
Progress in science has depended on carefully controlled
experiments, and your own progress in understanding
nature will depend on your active testing of ideas through
experiments. You may be amazed at what you discover.

Look around for some small, compact objects. A short
pencil, a rubber eraser, a paper clip, or a small ball will
all do nicely. Holding two objects at arm’s length,
release them simultaneously and watch them fall to the
floor (fig. 3.1). Be careful to release them from the same
height above the floor without giving either one an
upward or downward push.

How would you describe the motion of these falling
objects? Is their motion accelerated? Do they reach the
floor at the same time? Does the motion depend on
the shape and composition of the object? To explore
this last question, you might take a small piece of paper

and drop it at the same time as an eraser or a ball. First,
drop the paper unfolded. Then, try folding it or crum-
pling it into a ball. What difference does this make?

From these simple experiments, we can draw some
general conclusions about the motion of falling objects.
We can also try throwing or projecting objects at differ-
ent angles to study the motion of a projectile. We will
find that a constant downward gravitational accelera-
tion is involved in all of these cases. This acceleration
affects virtually everything that we do when we move
or play on the surface of this Earth.

figure 3.1 An experimenter dropping objects of different
mass. Do they reach the ground at the same time?

3.1 Acceleration Due to Gravity
If you dropped a few objects as suggested in the introduc-
tion, you already know the answer to one of the questions
posed there. Are the falling objects accelerated? Think for
a moment about whether the velocity is changing. Before
you release an object, its velocity is zero, but an instant
after the object is released, the velocity has some value dif-
ferent from zero. There has been a change in velocity. If
the velocity is changing, there is an acceleration.

Things happen so rapidly that it is difficult, just from
watching the fall, to say much about the acceleration. It
does appear to be large, because the velocity increases rap-
idly. Does the object reach a large velocity instantly, or does
the acceleration occur more uniformly? To answer this
question, we must slow the motion down somehow so that
our eyes and brains can keep up with what is happening.

How can we measure the gravitational
acceleration?
There are several ways to slow down the action. One was pio-
neered by the Italian scientist, Galileo Galilei (1564–1642), who
was the first to accurately describe the acceleration due to grav-
ity. Galileo’s method was to roll or slide objects down a slightly

inclined plane. This allows only a small portion of the gravita-
tional acceleration to come into play, just that part in the direc-
tion of motion along the plane. Thus a smaller acceleration
results. Other methods (not available to Galileo) use time-lapse
photography, ultrasonic motion detectors, or video recording to
locate the position of the falling object at different times.

If you happen to have a grooved ruler and a small ball
or marble handy, you can make an inclined plane yourself.
Lift one end of the ruler slightly by placing a pencil under
one end, and let the ball or marble roll down the ruler under
the influence of gravity (fig. 3.2). Can you see it gradually
pick up speed as it rolls? Is it clearly moving faster at the
bottom of the incline than it was halfway down?

Galileo was handicapped by a lack of accurate timing
devices. He often had to use his own pulse as a timer.
Despite this limitation, he was able to establish that the
acceleration was uniform, or constant, with time and to
estimate its value using inclined planes. We are more for-
tunate. We have devices that allow us to study the motion
of a falling object more directly. One such device is a
stroboscope, a rapidly blinking light whose flashes occur
at regular intervals in time. Figure 3.3 is a photograph
taken using a stroboscope to illuminate an object as it
falls. The position of the object is pinpointed every time
the light flashes.

3.1 Acceleration Due to Gravity 39
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Time Distance Velocity

0 0
24 cm/s

0.05 s 1.2 cm
72 cm/s

0.10 s 4.8 cm
124 cm/s

0.15 s 11.0 cm
174 cm/s

0.20 s 19.7 cm
218 cm/s

0.25 s 30.6 cm
268 cm/s

0.30 s 44.0 cm
320 cm/s

0.35 s 60.0 cm
368 cm/s

0.40 s 78.4 cm
416 cm/s

0.45 s 99.2 cm
464 cm/s

0.50 s 122.4 cm

If you look closely at figure 3.3, you will notice that the
distance covered in successive time intervals increases reg-
ularly. The time intervals between successive positions of
the ball are all equal. (If the stroboscope light flashes every
1⁄ 20 of a second, you are seeing the position of the ball
every 1⁄ 20 of a second.) Since the distance covered by the
ball in equal time intervals is increasing, the velocity must
be increasing. Figure 3.3 shows a ball whose velocity is
steadily increasing in the downward direction.

Computing values of the average velocity for each time
interval will make this even clearer. The computation can
be done if we know the time interval between flashes and
can measure the position of the ball from the photograph,
knowing the distance between the grid marks. Table 3.1
displays data obtained in this manner. It shows the position
of a ball at intervals of 1⁄ 20 of a second (0.05 second).

To see that the velocity is indeed increasing, we com-
pute the average velocity for each successive time interval.
For example, between the second and third flashes, the ball
traveled a distance of 3.6 centimeters, which is found by
subtracting 1.2 centimeters from 4.8 centimeters. Dividing
this distance by the time interval of 0.05 second yields the
average size of the velocity:

You could verify the other values shown in the third col-
umn of table 3.1 by doing similar computations.

It is clear in table 3.1 that the velocity values steadily in-
crease. To see that velocity is increasing at a constant rate,
we can plot velocity against time (fig. 3.4). Notice that each
velocity data point is plotted at the midpoint between the
two times (or flashes) from which it was computed. This is
because these values represent the average velocity for the
short time intervals between flashes. For constant accelera-
tion, the average velocity for any time interval is equal to
the instantaneous velocity at the midpoint of that interval.

Did you notice that the slope of the line is constant in
figure 3.4? The velocity values all fall approximately on a
constant-slope straight line. Since acceleration is the slope

v �
3.6 cm

0.05 s
� 72 cm/s.

figure 3.2 A marble rolling down a ruler serving as an
inclined plane. Does the velocity of the marble increase as it rolls
down the incline?

figure 3.3 A falling ball
is illuminated by a rapidly
blinking stroboscope. The
stroboscope blinks at regular
time intervals.

40 Chapter 3 Falling Objects and Projectile Motion

table 3.1

Distance and Velocity Values for a Falling Ball
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gravitational acceleration does not depend on the weight
of the object.

Galileo used similar experiments to prove this point.
His experiments contradicted Aristotle’s view that heavier
objects fall more rapidly. How could Aristotle’s idea have
been accepted for so long when simple experiments can
disprove it? Experimentation was not part of the intellec-
tual outlook of Aristotle and his followers; they valued
pure thought and logic more highly. Galileo and other sci-
entists of his time broke new ground by using experiments
as an aid to thinking. A new tradition was emerging.

On the other hand, Aristotle’s view agrees with our intui-
tion that heavy objects do fall more rapidly than some lighter
objects. If, for example, we drop a brick together with a
feather or unfolded piece of paper (fig. 3.5), the brick will
reach the floor first. The paper or feather will not fall in
a straight line but instead will flutter to the floor much as a
leaf falls from a tree. What is happening here?

You will probably recognize that the effects of air resis-
tance impede the fall of the feather or paper much more
than the fall of the brick, a steel ball, or a paper clip. When
we crumple the piece of paper into a ball and drop it
simultaneously with a brick or other heavy object, the two
objects reach the floor at approximately the same time. We
live at the bottom of a sea of air, and the effects of air
resistance can be substantial for objects like leaves, feath-
ers, or pieces of paper. These effects produce a slower and
less regular flight for light objects that have a large surface
area.

If we drop a feather and a brick simultaneously in a vac-
uum or in the very thin atmosphere of the moon, they do
reach the ground at the same time. Moonlike conditions are
not part of our everyday experience, however, so we are used
to seeing feathers fall more slowly than rocks or bricks.
Galileo’s insight was that the gravitational acceleration is
the same for all objects, regardless of their weight, provided
that the effects of air resistance are not significant. Aristotle
did not separate the effect of air resistance from that of
gravity in his observations.
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figure 3.4 Velocity plotted against time for the falling ball.
The velocity values are those shown in table 3.1.

figure 3.5 The brick reaches the floor first when a brick
and a feather are dropped at the same time.
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of the velocity-versus-time graph, the acceleration must also
be constant. The velocity increases uniformly with time.

To find the value of the acceleration, we choose two
velocity values that lie on the straight line and calculate
how rapidly the velocity is changing. For example, the last
velocity value, 464 cm/s, and the second value, 72 cm/s,
are separated by a time interval corresponding to 8 flashes
or 0.40 second. The increase in velocity �v is found by
subtracting 72 cm/s from 464 cm/s, obtaining 392 cm/s. To
find the acceleration, we divide this change in velocity by
the time interval (a � �v/t),

This result gives us the acceleration due to gravity for
objects falling near the Earth’s surface. Its value actually
varies slightly from point to point on the Earth’s surface
because of differences in altitude and other effects. This
acceleration is used so often that it is given its own symbol
g where

Called the gravitational acceleration or acceleration due to
gravity, it is valid only near the Earth’s surface and thus is
not a fundamental constant.

How did Galileo’s ideas on falling objects
differ from Aristotle’s?
There is another sense in which the gravitational accelera-
tion is constant, which takes us back to the experiments
suggested in the chapter opener, p. 39. When you drop ob-
jects of different sizes and weights, do they reach the floor
at the same time? Except for an unfolded piece of paper, it
is likely that all of the objects that you test, regardless of
their weight, reach the floor at the same time when 
released simultaneously. This finding suggests that the

g � 9.8 m/s2.

a �
392 cm/s

0.4 s
� 980 cm/s2 � 9.8 m/s2.
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acceleration, the distance increases at an ever-increasing
rate.

During the first second of motion, the velocity of the
ball increases from zero to 10 m/s. Its average velocity
during that first second is 5 m/s, and it travels a distance of
5 meters in that second. This can also be found by using
the relationship between distance, acceleration, and time in
section 2.5. If the starting velocity is zero, we found that

After 1 second, the ball has fallen a distance

Since the height of a typical story of a multistory building
is less than 4 meters, the ball falls more than one story in
just a second.

d �
1
2 (10 m/s2)(1 s)2 � 5 m.

d �
1
2 at2.

figure 3.6 A ball is dropped from a sixth-story window.
How long does it take to reach the ground?

*In section 2.5, we noted that the velocity of an object moving with uni-
form acceleration is v � v0 � at, where v0 is the original velocity and the
second term is the change in velocity, �v � at. When a ball is dropped,
v0 � 0, so v is just at, the change in velocity.

42 Chapter 3 Falling Objects and Projectile Motion

The gravitational acceleration for objects near the Earth’s
surface is uniform and has the value of 9.8 m/s2. It can be
measured by using stroboscopes or similar techniques to
record the position of a falling object at regular, very small
time intervals. This acceleration is constant in time. Contrary
to Aristotle’s belief, it also has the same value for objects
of different weight.

3.2 Tracking a Falling Object
Imagine yourself dropping a ball from a sixth-story win-
dow, as in figure 3.6. How long does it take for the ball to
reach the ground below? How fast is it traveling when it
gets there? Things happen quickly, so the answers to these
questions are not obvious.

If we assume that air-resistance effects are small for the
object we are tracking, we know that it accelerates toward
the ground at the constant rate of 9.8 m/s2. Let’s make
some quick estimates of how these values change with time
without doing detailed computations.

How does the velocity vary with time?
In making estimates of velocity and distance for a falling ob-
ject, we often take advantage of the fact that the gravitational-
acceleration value of 9.8 m/s2 is almost 10 m/s2 and round
it up. (Here we are choosing the downward direction as
positive.) This makes the numerical values easier to calcu-
late without sacrificing much in accuracy. Multiplying by
10 is quicker than multiplying by 9.8.

How fast is our dropped ball moving after 1 second? An
acceleration of 10 m/s2 means that the velocity is increas-
ing by 10 m/s each second. If its original velocity is zero,
then after 1 second its velocity has increased to 10 m/s, in
2 seconds to 20 m/s, and in 3 seconds to 30 m/s. For each
additional second, the ball gains 10 m/s in velocity.*

To help you appreciate these values, look back at table
2.1, which shows unit comparisons for familiar speeds. A
velocity of 30 m/s is roughly 70 MPH, so after 3 seconds
the ball is moving quickly. After just 1 second, it is moving
with a downward velocity of 10 m/s, which is over 20 MPH.
The ball gains velocity at a faster rate than is possible for a
high-powered automobile on a level surface.

How far does the ball fall in different times?
The high velocities are more meaningful if we examine how
far the ball falls during these times. As the ball falls, it gains
speed, so it travels farther in each successive time inter-
val, as in the photograph in figure 3.3. Because of uniform
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During the next second of motion, the velocity increases
from 10 m/s to 20 m/s, yielding an average velocity of
15 m/s for that interval. The ball travels 15 meters in that
second, which, when added to the 5 meters covered in the
first second, yields a total of 20 meters. After 2 seconds,
the distance fallen is four times as large as the 5 meters
traveled after 1 second.* Since 20 meters is roughly five
stories in height, the ball dropped from the sixth story will
be near the ground after 2 seconds.

Figure 3.7 gives the velocity and distance fallen at half-
second time intervals for a ball dropped from a six-story
building. Notice that in just half a second, the ball falls
1.25 meters. An object dropped to the floor from an out-
stretched arm therefore hits the floor in roughly half a sec-
ond. This makes it difficult to time with a stopwatch. (See
example box 3.1.)

The change in velocity is proportional to the size of the
time interval selected. In 1 second the change in velocity is
10 m/s, so in half a second the change in velocity is 5 m/s.
In each half-second the ball gains approximately 5 m/s in
velocity, illustrated in figure 3.7. As the velocity gets larger,
the arrows representing the velocity vectors grow. If we
plotted these velocity values against time, we would get a
simple upward-sloping straight-line graph as in figure 3.4.

What does the graph of the distance values look like?
The distance values increase in proportion to the square of
the time, which means that they increase more and more
rapidly as time elapses. Instead of being a straight-line
graph, the graph of the distance values curves upward as in
figure 3.8. The rate of change of distance with time is itself
increasing with time.

Throwing a ball downward
Suppose that instead of just dropping the ball, we throw it
straight down, giving it a starting velocity v0 different from
zero. How does this affect the results? Will the ball reach
the ground more rapidly and with a larger velocity? You
would probably guess correctly that the answer is yes.

In the case of the velocity values, the effect of the start-
ing velocity is not difficult to see. The ball is still being
accelerated by gravity so that the change in velocity for
each second of motion is still �v � 10 m/s, or for a half-
second, 5 m/s. If the initial downward velocity is 20 m/s,
after half a second, the velocity is 25 m/s, and after 1 sec-
ond, it is 30 m/s. We simply add the change in velocity to
the initial velocity as indicated by the formula v � v0 � at.

In the case of distance, however, the values increase
more rapidly. The full expression for distance traveled by a
uniformly accelerated object (introduced in section 2.5) is

d � v0t �
1
2 at2.

figure 3.7 Velocity and distance values for the dropped
ball shown at half-second time intervals.
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example box 3.1

Sample Question: Using a Pulse Rate to Time
a Falling Object

Question: Suppose that Galileo’s resting pulse rate was
60 beats per minute. Would his pulse be a useful timer for
getting position-versus-time data for an object dropped
from the height of 2 to 3 meters?

Answer: A pulse rate of 60 beats per minute corresponds
to 1 beat per second. In the time of 1 second, a dropped
object falls a distance of approximately 5 m. (It falls 1.22 m
in just half a second as seen in table 3.1.) Thus this pulse
rate (or most pulse rates) would not be an adequate timer
for an object dropped from a height of a few meters. It
could be slightly more effective for an object dropped
from a tower several stories in height.

*This is a result of the time being squared in the formula for distance.
Putting 2 s in place of 1 s in the formula at2 multiplies the result by
a factor of 4 (22 � 4), yielding a distance of 20 m.

d �
1
2

t  = 0.5 s
v = 5 m/s

d = 1.25 m
a = 10 m/s2

t  = 1.0 s
v = 10 m/s

d = 5.0 m
a = 10 m/s2

t  = 1.5 s
v = 15 m/s

d = 11.3 m
a = 10 m/s2

t  = 2.0 s
v = 20 m/s

d = 20 m
a = 10 m/s2
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The first term is the distance that the ball would travel if it
continued to move with just its original velocity. This dis-
tance also increases with time. The second term is due to
the acceleration and has the same values as shown in fig-
ures 3.7 and 3.8.

In the sample exercise in example box 3.2, we calculate
velocity and distance traveled during the first 2 seconds of
motion for a ball thrown downward. Notice that after 2 sec-
onds the ball has traveled a distance of 60 meters, much
larger than the 20 meters when the ball is simply dropped.

After just 1 second the ball has already traveled 25 meters,
which means that it would be near the ground if thrown
from our sixth-story window.

Keep in mind, though, that we have ignored the effects
of air resistance in arriving at these results. For a compact
object falling just a few meters, the effects of air resistance
are very small. These effects increase as the velocity
increases, however, so that the farther the object falls, the
greater the effects of air resistance. In chapter 4, we will
discuss the role of air resistance in more depth in the con-
text of sky diving.

When an object is dropped, its velocity increases by
approximately 10 m/s every second due to the gravita-
tional acceleration. The distance traveled increases at an
ever-increasing rate because the velocity is increasing. In
just a few seconds, the object is moving very rapidly and
has fallen a large distance. In section 3.3, we will explore
the effects of gravitational acceleration on an object
thrown upward.

3.3 Beyond Free Fall: Throwing
a Ball Upward
In section 3.2, we discussed what happens when a ball is
dropped or thrown downward. In both of these cases, the
ball gains velocity as it falls due to the gravitation accelera-
tion. What if the ball is thrown upward instead, as in figure
3.9? How does gravitational acceleration affect the ball’s
motion? What goes up must come down—but when and how
fast are interesting questions with everyday applications.
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figure 3.8 A plot of distance versus time for the dropped
ball.

figure 3.9 A ball thrown upward returns to the ground.
What are the magnitude and direction of the velocity at different
points in the flight?
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example box 3.2

Sample Exercise: Throwing a Ball Downward

A ball is thrown downward with an initial velocity of
20 m/s. Using the value 10 m/s2 for the gravitational
acceleration, find (a) the velocity and (b) the distance
traveled at 1-s time intervals for the first 2 s of motion.

a. v0 � 20 m/s v � v0 � at
a � 10 m/s2 for t � 1 s
v � ? v � 20 m/s � (10 m/s2)(1 s)

� 20 m/s � 10 m/s
� 30 m/s

t � 2 s v � 20 m/s � (10 m/s2)(2 s)
� 20 m/s � 20 m/s � 40 m/s

b. d � ? d � v0t � at2

t � 1 s d � (20 m/s)(1 s) � (10 m/s2)(1 s)2

� 20 m � 5 m � 25 m

t � 2 s d � (20 m/s)(2 s) � (10 m/s2)(2 s)2

� 40 m � 20 m � 60 m

1
2

1
2

1
2
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The directions of the acceleration and velocity vectors
merit our close attention. The gravitational acceleration is
always directed downward toward the center of the Earth,
because that is the direction of the gravitational force that
produces this acceleration. This means that the acceleration
is in the opposite direction to the original upward velocity.

How does the ball’s velocity change?
Suppose that we throw a ball straight up with an original
velocity of 20 m/s. Many of us can throw a ball at this ve-
locity: it is approximately 45 MPH. This is a lot less than
a 90-MPH fastball, but throwing a ball upward with good
velocity is harder than throwing it horizontally.

Once the ball leaves our hand, the primary force acting
on it is gravity, which produces a downward acceleration
of 9.8 m/s2 or approximately 10 m/s2. (If we now choose
the upward direction as positive, this acceleration is nega-
tive because it is downward.) Every second, there is a
change in velocity of 10 m/s. This change in velocity is
directed downward, however, opposite to the direction of
the original velocity. It subtracts from the original velocity
rather than adding to it.

Once you are aware of how important direction is in ob-
serving the ball thrown upward, finding the velocity at dif-
ferent times is not hard. After 1 second, the velocity of the
ball has decreased by 10 m/s, so if it started at �20 m/s
(choosing the positive direction to be upward in this case),
it is now moving upward with a velocity of just �10 m/s.
After 2 seconds, it loses another 10 m/s, so its velocity is
then zero. It does not stop there, of course. In another second
(3 seconds from the start), its velocity decreases by another
10 m/s, and it is then moving downward at �10 m/s. The
sign of the velocity indicates its direction. All of these val-
ues can be found from the relationship v � v0 � at, where
v0 � �20 m/s and a � �10 m/s2.

Clearly, the ball has changed direction, as you might
expect. Just as before, the velocity changes steadily at 
�10 m/s each second, due to the constant downward accel-
eration. After 4 seconds, the ball is moving downward with
a velocity of �20 m/s and is back at its starting position.
These results are illustrated in figure 3.10. The high point
in the motion occurs at a time 2 seconds after the ball is
thrown, where the velocity is zero. If the velocity is zero,
the ball is moving neither upward nor downward, so this is
the turnaround point.

An interesting question, a favorite on physics tests (and
often missed by students), asks for the value of accelera-
tion at the high point in the motion. If the velocity is zero
at this point, what is the value of the acceleration? The
quick, but incorrect, response given by many people is that
the acceleration must also be zero at that point. The correct
answer is that the acceleration is still �10 m/s2. The grav-
itational acceleration is constant and does not change. The
velocity of the ball is still changing at that instant, from a
positive to a negative value, even though the instantaneous

velocity is zero. Acceleration is the rate of change of ve-
locity and is unrelated to the size of the velocity.

What would a graph of velocity plotted against time
look like for the motion just described? If we make the up-
ward direction of motion positive, the velocity starts with
a value of �20 m/s and changes at a steady rate, decreas-
ing by �10 m/s each second. This is a straight-line graph,
sloping downward as in figure 3.11. The positive values
of velocity represent upward motion, where the size of the
velocity is decreasing, and the negative values of velocity
represent downward motion. If the ball did not hit the
ground, but was thrown from the edge of a cliff, it would
continue to gain negative velocity as it moved downward.

How high does the ball go?
The position or height of the ball at different times can be
computed using the methods in section 3.2. These distance
computations involve the formula for uniform acceleration
developed in section 2.5. In the sample exercise in example
box 3.3, we compute the height or distance traveled at
1-second intervals for the ball thrown upward at �20 m/s,
using �10 m/s2 for the gravitational acceleration.

t  =  4 s
d =  0
v  =  –20 m/s
a =  –10 m/s2

t  =  0
d =  0
v =  +20 m/s

t  =  1 s
d =  15 m
v =  +10 m/s
a =  –10 m/s2

t  =  3 s
d =  15 m
v =  –10 m/s
a =  –10 m/s2

t  =  2 s
d =  20 m
v =  0
a =  –10 m/s2

figure 3.10 The changing velocity is indicated by the blue
velocity vectors at different points in the flight of a ball thrown
upward with a starting velocity of �20 m/s. The constant downward
acceleration is shown as a green vector at each point.

3.3 Beyond Free Fall: Throwing a Ball Upward 45
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What should you notice about these results? First, the
high point of the motion is 20 meters above the starting
point. The high point is reached when the velocity is zero,
and we determined earlier that this occurs at a time of 
2 seconds. This time depends on how fast the ball is thrown
initially. The larger the original velocity, the greater the
time to reach the high point. Knowing this time, we can
use the distance formula to find the height.

You should also notice that after just 1 second, the ball
has reached a height of 15 meters. It covers just five addi-
tional meters in the next second of motion, and then falls
back to 15 meters in the following second. The ball spends
a full 2 seconds above the height of 15 meters, even
though it only reaches a height of 20 meters. The ball is
moving more slowly near the top of its flight than it is at
lower points—this is why the ball appears to “hang” near
the top of its flight.

Finally, the time taken for the ball to fall back to its
starting point from the high point is equal to the time taken
for the ball to reach the high point in the first place. It
takes 2 seconds to reach the high point and another 2 sec-
onds for it to return to the starting point. The total time of
flight is just twice the time needed to reach the high point,
in this case, 4 seconds. A larger starting velocity would
produce a higher turnaround point and a greater “hang
time” for the ball.

A ball thrown upward is slowed by the downward gravita-
tional acceleration until its velocity is reduced to zero at
the high point. The ball then falls from that high point
accelerating downward at the same constant rate as when
it was rising. The ball travels more slowly near the top of
its flight, so it appears to “hang” there. It spends more
time in the top few meters than it does in the rest of the
flight. We will find that these features are also present
when a ball is projected at an angle to the horizontal, as
discussed in section 3.5.

3.4 Projectile Motion
Suppose that instead of throwing a ball straight up or down,
you throw it horizontally from some distance above the
ground. What happens? Does the ball go straight out until
it loses all of its horizontal velocity and then starts to fall
like the perplexed coyote in the Roadrunner cartoons (fig.
3.12)? What does the real path, or trajectory, look like?

Cartoons give us a misleading impression. In fact, two
different things are happening at the same time: (1) the ball
is accelerating downward under the influence of gravity,
and (2) the ball is also moving sideways with an approxi-
mately constant horizontal velocity. Combining these two
motions gives the overall trajectory or path.

t (s)

–20

0

+20

+10

–10

21 43v 
(m

/s
)

figure 3.11 A plot of the velocity versus time for a ball
thrown upward with an initial velocity of �20 m/s. The negative
values of velocity represent downward motion.

figure 3.12 A cartoon coyote falling off a cliff. Is this a
realistic picture of what happens?
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example box 3.3

Sample Exercise: Throwing a Ball Upward

A ball is thrown upward with an initial velocity of 20 m/s.
Find its height at 1-s intervals for the first 4 s of its flight.

d � ? d � v0t � at2

t � 1 s � (20 m/s)(1 s) � (�10 m/s2)(1 s)2

� 20 m � 5 m � 15 m

t � 2 s d � (20 m/s)(2 s) � (�10 m/s2)(2 s)2

� 40 m � 20 m � 20 m

t � 3 s d � (20 m/s)(3 s) � (�10 m/s2)(3 s)2

� 60 m � 45 m � 15 m

t � 4 s d � (20 m/s)(4 s) � (�10 m/s2)(4 s)2

� 80 m � 80 m � 0 m

1
2

1
2

1
2

1
2

1
2
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What does the trajectory look like?
You can perform a simple experiment to help you visualize
the path that the projectile follows. Take a marble or small
ball, roll it along the top of a desk or table, and let it roll
off the edge. What does the path of the ball look like as it
travels through the air to the floor? Is it like the coyote in
figure 3.12? Roll the ball at different velocities and see
how the path changes. Try to sketch the path after making
these observations.

How do we go about analyzing this motion? The key
lies in thinking about the horizontal and vertical compo-
nents of the motion separately and then combining them to
get the actual path (fig. 3.13).

The acceleration of the horizontal motion is zero, pro-
vided that air resistance is small enough to be ignored.
This implies that the ball moves with a constant horizontal
velocity once it has rolled off the table or has left the hand.
The ball travels equal horizontal distances in equal time
intervals, as shown across the top of figure 3.13. In con-
structing this diagram, we assumed an initial horizontal
velocity of 2 m/s for the ball. Every tenth of a second,
then, the ball travels a horizontal distance of 0.2 meter.

At the same time that the ball travels with constant hor-
izontal velocity, it accelerates downward with the constant
gravitational acceleration g. Its vertical velocity increases
exactly like that of the falling ball photographed for fig-
ure 3.3. This motion is depicted along the left side of
figure 3.13. In each successive time interval, the ball falls
a greater distance than in the time interval before, because
the vertical velocity increases with time.

Combining the horizontal and vertical motions, we get
the path shown curving downward in figure 3.13. For each
time shown, we draw a horizontal dashed line locating the
vertical position of the ball, and a vertical dashed line for
the horizontal position. The position of the ball at any
time is the point where these lines intersect. The resulting

trajectory (the solid curve) should look familiar if you have
performed the simple experiments suggested in the first
paragraph on this page.

If you understand how we obtained the path of the ball,
you are well on your way to understanding projectile
motion. The total velocity of the ball at each position pic-
tured is in the direction of the path at that point, since this is
the actual direction of the ball’s motion. This total veloc-
ity is a vector sum of the horizontal and vertical compo-
nents of the velocity (fig. 3.14). (See appendix C for a
discussion of vector components.) The horizontal velocity
remains constant, because there is no acceleration in that
direction. The downward (vertical) velocity gets larger and
larger.

figure 3.13 The horizontal and vertical motions combine
to produce the trajectory of the projected ball. The vertical and
horizontal positions are shown at regular time intervals.

figure 3.14 The total velocity at any point is found by
adding the vertical component of the velocity to the horizontal
component.

vhorizontal

vvertical
vtotal

If you are not familiar with vectors, you should take the
time to read and work the exercises in appendix C.
Appendix C describes what vectors are, how they are
added using simple graphical procedures, and how vector
components are defined. In this section, we use the ideas
that a vector quantity such as velocity can have both
horizontal and vertical components and that these
components add to give the total velocity. These concepts
are critical to your understanding of projectile motion.
Vector addition and vector components are also used in
many other situations that we will encounter in later
chapters.

study hint

The actual shape of the path followed by the ball de-
pends on the original horizontal velocity given the ball by
throwing it or rolling it from the tabletop. If this initial hor-
izontal velocity is small, the ball does not travel very far
horizontally. Its trajectory will then be like the smallest
starting velocity v1 in figure 3.15.

The three trajectories shown in figure 3.15 have three
different starting velocities. As you would expect, the ball

3.4 Projectile Motion 47

t = 0.1 s

y

x

t = 0.4 s

t = 0.3 s

t = 0.2 s
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travels greater horizontal distances when projected with a
larger initial horizontal velocity.

What determines the time of flight?
Which of the three balls in figure 3.15 would hit the floor
first if all three left the tabletop at the same time? Does the
time taken for the ball to hit the floor depend on its hori-
zontal velocity? There is a natural tendency to think that
the ball that travels farther takes a longer time to reach the
floor.

In fact, the three balls should all reach the floor at the
same time. The reason is that they are all accelerating
downward at the same rate of 9.8 m/s2. This downward
acceleration is not affected by how fast the ball travels hor-
izontally. The time taken to reach the floor for the three
balls in figure 3.15 is determined strictly by how high
above the floor the tabletop is. The vertical motion is inde-
pendent of the horizontal velocity.

This fact often surprises people. It contradicts our intu-
itive sense of what is going on but can be confirmed by
doing simple experiments using two similar balls (fig.
3.16). If you throw one ball horizontally at the same time
that you simply drop the second ball from the same height,
the two balls should reach the floor at roughly the same
time. They may fail to hit at the same time, most likely
because it is hard to throw the first ball completely hori-
zontally and to release both balls at the same time. A spe-
cial spring gun, often used in demonstrations, will do this
more precisely.

If we know how far the ball falls, we can compute the
time of flight. This can then be used to determine the hori-
zontal distance that the ball will travel, if we know the ini-
tial horizontal velocity. The sample exercise in example
box 3.4 shows this type of analysis. Notice that the hori-
zontal distance traveled is determined by two factors: the
time of flight and the initial velocity.
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figure 3.16 A ball is dropped at the same time that a
second ball is projected horizontally from the same height.
Which ball reaches the floor first?

figure 3.15 Trajectories for different initial velocities of a
ball rolling off a table: v3 is larger than v2, which in turn is larger
than v1. The positions are shown at equal time intervals.

v2 v3v1

example box 3.4

Sample Exercise: Projectile Motion

A ball rolls off a tabletop with an initial velocity of 3 m/s.
If the tabletop is 1.25 m above the floor,

a. How long does it take for the ball to hit the floor?
b. How far does the ball travel horizontally?

a. In figure 3.7, we saw that a ball will fall a distance of
1.25 m in approximately half a second. This could be
found directly from

dvertical � 1.25 m dvertical � at2

a � g � 10 m/s2 Solving for t2:

t � ?

� 0.25 s2

Taking the square root to get t:

t � 0.5 s

b. Knowing the time of flight t, we can now compute the
horizontal distance traveled:

v0 � 3 m/s dhorizontal � v0t
t � 0.5 s � (3.0 m/s)(0.50 s)
dhorizontal � ? � 1.5 m

�
1.25 m

5 m/s2

t2 �
d

1
2 a

1
2
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Treating the vertical motion independently of the horizon-
tal motion and then combining them to find the trajectory
is the secret to understanding projectile motion. A horizon-
tal glide combines with a vertical plunge to produce a
graceful curve. The downward gravitational acceleration
behaves the same as for any falling object, but there is
no acceleration in the horizontal direction if air resistance
can be ignored. The projectile moves with constant hori-
zontal velocity while it is accelerating downward.

3.5 Hitting a Target
As long as humans have been hunters or warriors, they
have wanted to predict where a projectile such as a cannon-
ball will land after it is fired. Being able to hit a target such
as a bird in a tree or a ship at sea has obvious implications
for survival. Being able to hit a catcher’s mitt with a base-
ball thrown from center field is also a highly valued skill.

Does the bullet fall when a rifle is fired?
Imagine that you are firing a rifle at a small target some
distance away, with the rifle and target at exactly the same
distance above the ground (fig. 3.17). If the rifle is fired
directly at the target in a horizontal direction, will the bul-
let hit the center of the target? If you think of the ball
rolling off the table in section 3.4, you should conclude
that the bullet will strike the target slightly below the cen-
ter. Why? The bullet will be accelerated downward by
Earth’s gravitational pull and will fall slightly as it travels
to the target.

Since the time of flight is small, the bullet does not fall
very far, but it falls far enough to miss the center of the target.
How do you compensate for the fall of the bullet? You aim a
little high. You correct your aim either through trial and error
or by adjusting your rifle sight so that your aim is automati-
cally a little above center. Rifle sights are often adjusted for
some average distance to the target. For longer distances you
must aim high, for shorter distances a little low.

If you aim a little high, the bullet no longer starts out in
a completely horizontal direction. The bullet travels up
slightly during the first part of its flight and then comes
down to meet the target. This also happens when you fire a
cannon or throw a ball at a distant target.

A frequent demonstration to illustrate the independence
of the vertical and horizontal motions of projectiles is

often referred to as “Shoot the Monkey” or “Monkey in a
Tree.” A projectile is aimed directly at a toy monkey (or
other suitable target) hanging from the ceiling. An elec-
tronic trigger allows the target to drop at the same time the
projectile is launched. The target falls straight down at a
rate governed by the acceleration of gravity. The projectile
starts to move toward the initial position of the target, but
also starts to fall at a rate governed by the acceleration of
gravity.

Due to the fact that both the projectile and target begin
falling in the vertical direction at the exact same time and
with the same downward acceleration, the projectile will
always hit the target (fig. 3.18). It is crucial to recognize
that the projectile hits below where it was aimed by an
amount equal to the vertical distance the target drops since
the acceleration of gravity has the same effect on both the
projectile and the target. It is also important that the target
is released and the projectile is fired at the exact same
time. If the target was stationary, the projectile would have
to be aimed above the target to compensate for the vertical
drop due to the acceleration of gravity.

The flight of a football
Whenever you throw a ball such as a football at a somewhat
distant target, the ball must be launched at an angle above the
horizontal so that the ball does not fall to the ground too
soon. A good athlete does this automatically as a result of

figure 3.17 A target shooter fires at a distant target. The bullet falls as it travels to the target.

figure 3.18 If the projectile is launched at the same time
the target is dropped, will it hit the target?

line of sight to target 

trajectory of projectile

3.5 Hitting a Target 49
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practice. The harder you throw, the less you need to direct the
ball upward, because a larger initial velocity causes the ball to
reach the target more quickly, giving it less time to fall.

Figure 3.19 shows the flight of a football thrown at an
angle of 30° above the horizontal. The vertical position of
the ball is plotted on the left side of the diagram, as in fig-
ure 3.13 for the horizontally projected ball. The horizontal
position of the ball is shown across the bottom of the dia-
gram. We have assumed that air resistance is small, so the
ball travels with a constant horizontal velocity. Combining
these two motions yields the overall path.

As the football climbs, the vertical component of its
velocity decreases because of the constant downward grav-
itational acceleration. At the high point, this vertical com-
ponent of the velocity is zero, just as it is for a ball thrown
straight upward. The velocity of the ball is completely hor-
izontal at this high point. The ball then begins to fall, gain-
ing downward velocity as it accelerates. Unlike the ball
thrown straight upward, however, there is a constant hori-
zontal component to the velocity throughout the flight. We
need to add this horizontal motion to the up-and-down
motion that we described in section 3.3.

In throwing a ball, you can vary two quantities to help
you hit your target. One is the initial velocity, which is
determined by how hard you throw the ball. The other is the
launch angle, which can be varied to fit the circumstances.
A ball thrown with a large initial velocity does not have to
be aimed as high and will reach the target more quickly. It
may not clear the onrushing linemen, however, and it might
be difficult to catch because of its large velocity.

There is no time like the present to test these ideas. Take
a page of scrap paper and crumple it into a compact ball.
Then take your wastebasket and put it on your chair or desk.
Throwing underhand, experiment with different throwing
speeds and launch angles to see which is most effective in
making a basket. Try to get a sense of how the launch angle
and throwing speed interact to produce a successful shot. A
low, flat-trajectory shot should require a greater throwing
speed than a higher, arching shot. The flatter shot must also
be aimed more accurately, since the effective area of the
opening in the basket is smaller when the ball approaches at
a flat angle. The ball “sees” a smaller opening. (This effect
is discussed in everyday phenomenon box 3.1.)

50 Chapter 3 Falling Objects and Projectile Motion

figure 3.19 The flight of a football launched at an angle of 30° to the horizontal. The vertical and horizontal positions
of the ball are shown at regular time intervals.

30°

Shooting a Basketball

The Situation. Whenever you shoot a basketball, you
unconsciously select a trajectory for the ball that you believe
will have the greatest likelihood of getting the ball to pass
through the basket. Your target is above the launch point
(with the exception of dunk shots and sky hooks), but the
ball must be on the way down for the basket to count.

What factors determine the best trajectory? When is a
high, arching shot desirable, and when might a flatter trajec-
tory be more effective? Will these factors be different for a
free throw than for a shot taken when you are guarded by
another player? How can our understanding of projectile
motion help us to answer these questions?

The Analysis. The diameter of the basketball and the
diameter of the basket opening limit the angle at which
the basketball can pass cleanly through the hoop. The second
drawing shows the range of possible paths for a ball coming
straight down and for one coming in at a 45° angle to the
basket. The shaded area in each case shows how much the
center of the ball can vary from the center line if the ball is
to pass through the hoop. As you can see, a wider range of
paths is available when the ball is coming straight down.
The diameter of the basketball is a little more than half the
diameter of the basket.

everyday phenomenon
box 3.1

(continued)
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This second drawing illustrates the advantage of an
arched shot. There is a larger margin of error in the path that
the ball can take and still pass through the hoop cleanly.
For the dimensions of a regulation basketball and basket,
the angle must be at least 32° for a clean shot. As the angle
gets larger, the range of possible paths increases. At smaller 

angles, appropriate spin on the basketball will sometimes
cause the ball to rattle through, but the smaller the angle, the
less the likelihood of that happening.

The disadvantage of the arched shot is less obvious.
As you get farther away from the basket, launching condi-
tions for an arched shot must be more precise for the ball to
travel the horizontal distance to the basket. If an arched shot
is launched from 30 ft, it must travel a much higher path than
a shot launched at the same angle closer to the basket, as
shown in the third drawing. Since the ball stays in the air for
a longer time, small variations in either the release speed or
angle can cause large errors in the distance traveled. This 
distance depends on both the time of flight and the hori-
zontal component of the velocity.

A highly arched shot is more effective when you are
close to the basket. You can then take advantage of the
greater range of paths available to the arched shot without
suffering much from the uncertainty in the horizontal dis-
tance. Away from the basket, the desirable trajectories gradu-
ally become flatter, permitting more accurate control of the
shot. An arched shot is sometimes necessary from anywhere
on the court, however, to avoid having the shot blocked.

The spin of the basketball, the height of the release, and
other factors all play a role in the success of a shot. A fuller
analysis can be found in an article by Peter J. Brancazio in the
American Journal of Physics (April 1981) entitled “Physics of
Basketball.” A good understanding of projectile motion might
improve the game of even an experienced player.

3.5 Hitting a Target 51

Different possible trajectories for a basketball free throw. Which
has the greatest chance of success?

An arched shot launched from a large distance stays in the air
longer than one launched at the same angle from much closer to
the basket.

Possible paths for a basketball coming straight down and for one
coming in at a 45° angle. The ball coming straight down has a
wider range of possible paths.

45°
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How can we achieve maximum distance?
In firing a rifle or cannon, the initial velocity of the projec-
tile is usually set by the amount of gunpowder in the shell.
The launch angle is then the only variable we can change
in attempting to hit a target. Figure 3.20 shows three possi-
ble paths, or trajectories, for a cannonball fired at different
launch angles for the same initial speed. For different launch
angles, we tilt the cannon barrel by different amounts from
the position shown.

Note that the greatest distance is achieved using an inter-
mediate angle, an angle of 45° if the effects of air resist-
ance are negligible. The same considerations are involved
in the shot put in track-and-field events. The launch angle
is very important and, for the greatest distance, will be near
45°. Air resistance and the fact that the shot hits the ground
below the launch point are also factors, so the most effec-
tive angle is somewhat less than 45° in the shot put.

Thinking about what happens to the horizontal and ver-
tical components of the initial velocity at different launch
angles will show us why the angle for maximum distance is
approximately 45°. (See figure 3.21.) Velocity is a vector,
and its horizontal and vertical components can be found by
drawing the vector to scale and adding dashed lines to the
horizontal and vertical directions (fig. 3.21). This process
is described more fully in appendix C.

For the lowest launch angle 20°, we see that the hori-
zontal component of the velocity is much larger than the
vertical. Since the initial upward velocity is small, the ball
does not go very high. Its time of flight is short, and it hits
the ground sooner than in the other two cases shown. The
ball gets there quickly because of its large horizontal veloc-
ity and short travel time, but it does not travel very far
before hitting the ground.

The high launch angle of 70° produces a vertical com-
ponent much larger than the horizontal component. The
ball thus travels much higher and stays in the air for a
longer time than at 20°. It does not travel very far horizon-
tally, however, because of its small horizontal velocity. The
ball travels the same horizontal distance as for the 20°

launch, but it takes longer getting there.* (If we shot it
straight up, the horizontal distance covered would be zero,
of course.)

The intermediate angle of 45° splits the initial velocity
into equal-sized horizontal and vertical components. The
ball therefore stays in the air longer than in the low-angle
launch but also travels with a greater horizontal velocity
than in the high-angle launch. In other words, with relatively
large values for both the vertical and horizontal com-
ponents of velocity, the vertical motion keeps the ball in the
air long enough for the horizontal velocity to be effective.
This produces the greatest distance of travel.

The time of flight and the horizontal distance traveled
can be found if the launch angle and the size of the initial
velocity are known. It is first necessary to find the hori-
zontal and vertical components of the velocity to do these
computations, however, and this makes the problem more
complex than those discussed earlier. The ideas can be
understood without doing the computations. The key is to
think about the vertical and horizontal motions separately
and then combine them.

For a projectile launched at an angle, the initial velocity
can be broken down into vertical and horizontal compo-
nents. The vertical component determines how high the
object will go and how long it stays in the air, while the
horizontal component determines how far it will go in
that time. The launch angle and the initial speed interact
to dictate where the object will land. Through the entire
flight, the constant downward gravitational acceleration
is at work, but it changes only the vertical component of
the velocity. Producing or viewing such trajectories is a
common part of our everyday experience.

20° 45° 70°

v0

v 0

v 0

figure 3.21 Vector diagrams showing the horizontal and
vertical components of the initial velocity for the three cases
illustrated in figure 3.20.

*The angles 20° and 70° are complementary because their sum is 90°. Any
pair of complementary launch angles (30° and 60°, for example) yield
the same horizontal range as one another.
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20°
45°

70°

figure 3.20 Cannonball paths for different launch angles
but the same initial launch speed.
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summary

5 Hitting a target. There are two factors, the launch
speed and the launch angle, that can be varied to determine the
path of an object launched at an angle to the horizontal. Once
again, the horizontal and vertical motions combine to produce the
overall motion as the projectile moves toward a target.

t

v

key terms

Acceleration due to gravity, 41
Air resistance, 41

Trajectory, 46
Projectile motion, 47

t

v

v = v0 + at
t

d

d =   at 21–
2

The primary aim in this chapter has been to introduce you to the
gravitational acceleration for objects near the Earth’s surface and
to show how that acceleration affects the motion of objects
dropped or launched in various ways.

1 Acceleration due to gravity. To find the accelera-
tion due to gravity, we use measurements of the position of a
dropped object at different times. The gravitational acceleration is
9.8 m/s2. It does not vary with time as the object falls, and it has
the same value for different objects regardless of their weight.

2 Tracking a falling object. The velocity of a falling
object increases by approximately 10 m/s every second of its
fall. Distance traveled increases in proportion to the square of the
time, so that it increases at an ever-increasing rate. In just 1 sec-
ond, a dropped ball is moving with a velocity of 10 m/s and has
traveled 5 meters.

key terms 53

3 Beyond free fall: Throwing a ball upward. The
speed of an object thrown upward first decreases due to the down-
ward gravitational acceleration, passes through zero at the high

4 Projectile motion. If an object is launched horizon-
tally, it moves with a constant horizontal velocity at the same
time that it accelerates downward due to gravity. These two
motions combine to produce the object’s curved trajectory.

point, and then increases as the object falls. The object spends
more time near the top of its flight because it is moving more
slowly there.

gri12117_ch03_038-057.qxd  7/7/08  7:14 PM  Page 53



Confirming Pages

Q10. A ball is thrown downward with a large starting velocity.
a. Will this ball reach the ground sooner than one that is

just dropped at the same time from the same height?
Explain.

b. Will this ball accelerate more rapidly than one that is
dropped with no initial velocity? Explain.

Q11. A ball thrown straight upward moves initially with a de-
creasing upward velocity. What are the directions of the
velocity and acceleration vectors during this part of the
motion? Does the acceleration decrease also? Explain.

Q12. A rock is thrown straight upward reaching a height of
20 meters. On its way up, does the rock spend more time in
the top 5 meters of its flight than in its first 5 meters of its
flight? Explain.

Q13. A ball is thrown straight upward and then returns to the
Earth. Choosing the positive direction to be upward,
sketch a graph of the velocity of this ball against time.
Where does the velocity change direction? Explain.

Q14. A ball is thrown straight upward. At the very top of its
flight, the velocity of the ball is zero. Is its acceleration at
this point also zero? Explain.

Q15. A ball is thrown straight upward and then returns to the
Earth. Does the acceleration change direction during this
motion? Explain.

*Q16. A ball rolls up an inclined plane, slows to a stop, and then
rolls back down. Do you expect the acceleration to be
constant during this process? Is the velocity constant? Is
the acceleration equal to zero at any point during this
motion? Explain.

Q17. A ball rolling rapidly along a tabletop rolls off the edge
and falls to the floor. At the exact instant that the first ball
rolls off the edge, a second ball is dropped from the same
height. Which ball, if either, reaches the floor first?
Explain.

Q18. For the two balls in question 17, which, if either, has the
larger total velocity when it hits the floor? Explain.

Q19. Is it possible for an object to have a horizontal component
of velocity that is constant at the same time that the object
is accelerating in the vertical direction? Explain by giving
an example, if possible.

54 Chapter 3 Falling Objects and Projectile Motion

B

A 

Q3. The diagram shows the positions at intervals of 0.05 sec-
onds of two balls moving from left to right. Are either or
both of these balls accelerated? Explain.

Q2 Diagram

Q3 Diagram

Q4. A lead ball and an aluminum ball, each 1 in. in diameter,
are released simultaneously and allowed to fall to the
ground. Due to its greater density, the lead ball has a sub-
stantially larger mass than the aluminum ball. Which of
these balls, if either, has the greater acceleration due to
gravity? Explain.

Q5. Two identical pieces of paper, one crumpled into a ball
and the other left uncrumpled, are released simultaneously
from the same height above the floor. Which one, if either,
do you expect to reach the floor first? Explain.

Q6. Two identical pieces of paper, one crumpled into a ball
and the other left uncrumpled, are released simultaneously
from inside the top of a large evacuated tube. Which one,
if either, do you expect will reach the bottom of the tube
first? Explain.

*Q7. Aristotle stated that heavier objects fall faster than lighter
objects. WasAristotle wrong? In what sense could Aristotle’s
view be considered correct?

Q8. A rock is dropped from the top of a diving platform into
the swimming pool below. Will the distance traveled by the
rock in a 0.1-second interval near the top of its flight be
the same as the distance covered in a 0.1-second interval
just before it hits the water? Explain.

Q9. The graph shows the velocity plotted against time for a
certain falling object. Is the acceleration of this object
constant? Explain.

questions

* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. A small piece of paper is dropped and flutters to the floor.
Is the piece of paper accelerating at any time during this
motion? Explain.

Q2. The diagram shows the positions at intervals of 0.10 sec-
onds of a ball moving from left to right (as in a photograph
taken with a stroboscope that flashes every tenth of a sec-
ond). Is the ball accelerated? Explain.

ve
lo

ci
ty

time

Q9 Diagram
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Q24. For either of the trajectories shown in the diagram for
question 23, is the velocity of the ball equal to zero at the
high point in the trajectory? Explain.

Q25. Assuming that the two trajectories in the diagram for
question 23 represent throws by two different center
fielders, which of the two is likely to have been thrown
by the player with the stronger arm? Explain.

Q26. A cannonball fired at an angle of 70° to the horizontal
stays in the air longer than one fired at 45° from the same

cannon. Will the 70° shot travel a greater horizontal dis-
tance than the 45° shot? Explain.

Q27. Will a shot fired from a cannon at a 20° launch angle travel
a longer horizontal distance than a 45° shot? Explain.

Q28. The diagram shows a wastebasket placed behind a chair.
Three different directions are indicated for the velocity of
a ball thrown by the kneeling woman. Which of the three
directions—A, B, or C—is most likely to result in the ball
landing in the basket? Explain.

Exercises 55

A
B

C

exercises

E1. A steel ball is dropped from a diving platform (with an
initial velocity of zero). Using the approximate value of
g � 10 m/s2,
a. What is the velocity of the ball 0.8 seconds after its

release?
b. What is its velocity 1.6 seconds after its release?

E2. For the ball in exercise 1:
a. Through what distance does the ball fall in the first

0.8 seconds of its flight? (Assume g � 10 m/s2.)
b. How far does it fall in the first 1.6 seconds of its flight?

E3. A large rock is dropped from the top of a high cliff. Assum-
ing that air resistance can be ignored and that the acceleration
has the constant value of 10 m/s2, how fast would the rock be
traveling 5 seconds after it is dropped? What is this speed in
MPH? (See inside front cover for conversion factors.)

E4. Suppose Galileo’s pulse rate was 80 beats per minute.
a. What is the time in seconds between consecutive pulse

beats?

b. How far does an object fall in this time when dropped
from rest?

E5. A ball is thrown downward with an initial velocity of
12 m/s. Using the approximate value of g � 10 m/s2, what
is the velocity of the ball 1.0 seconds after it is released?

E6. A ball is dropped from a high building. Using the approxi-
mate value of g � 10 m/s2, find the change in velocity
between the first and fourth second of its flight.

E7. A ball is thrown upward with an initial velocity of 15 m/s.
Using the approximate value of g � 10 m/s2, what are the
magnitude and direction of the ball’s velocity:
a. 1 second after it is thrown?
b. 2 seconds after it is thrown?

E8. How high above the ground is the ball in exercise 7:
a. 1 second after it is thrown?
b. 2 seconds after it is thrown?

Q20. A ball rolls off a table with a large horizontal velocity.
Does the direction of the velocity vector change as the
ball moves through the air? Explain.

Q21. A ball rolls off a table with a horizontal velocity of 5 m/s.
Is this velocity an important factor in determining the
time that it takes for the ball to hit the floor? Explain.

Q22. An expert marksman aims a high-speed rifle directly at
the center of a nearby target. Assuming that the rifle sight
has been accurately adjusted for more distant targets, will
the bullet hit the near target above or below the center?
Explain.

Q23. In the diagram, two different trajectories are shown for a
ball thrown by a center fielder to home plate in a baseball
game. Which of the two trajectories (if either), the higher
one or the lower one, will result in a longer time for the
ball to reach home plate? Explain.

Q23 Diagram

Q28 Diagram

Q29. In the situation pictured in question 28, is the magnitude
of the velocity important to the success of the shot?
Explain.

Q30. In shooting a free throw in basketball, what is the primary
advantage that a high, arching shot has over one with a
flatter trajectory? Explain.

Q31. In shooting a basketball from greater than free-throw
range, what is the primary disadvantage of a high, arching
shot? Explain.

*Q32. A football quarterback must hit a moving target while
eluding onrushing linemen. Discuss the advantages and
disadvantages of a hard low-trajectory throw to a higher-
lofted throw.
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synthesis problems

SP1. A ball is thrown straight upward with an initial velocity of
16 m/s. Use g � 10 m/s2 for computations listed here.
a. What is its velocity at the high point in its motion?
b. How much time is required to reach the high point?
c. How high above its starting point is the ball at its high

point?
d. How high above its starting point is the ball 2 seconds

after it is released?
e. Is the ball moving up or down 2 seconds after it is

released?

SP2. Two balls are released simultaneously from the top of a tall
building. Ball A is simply dropped with no initial velocity,
and ball B is thrown downward with an initial velocity of
12 m/s.
a. What are the velocities of the two balls 1.5 seconds

after they are released?
b. How far has each ball dropped in 1.5 seconds?
c. Does the difference in the velocities of the two balls

change at any time after their release? Explain.

SP3. Two balls are rolled off a tabletop that is 0.8 m above the
floor. Ball A has a horizontal velocity of 3 m/s and that of
ball B is 5 m/s.
a. Assuming g � 10 m/s2, how long does it take each ball

to reach the floor after it rolls off the edge?
b. How far does each ball travel horizontally before hitting

the floor?
c. If the two balls started rolling at the same time at a

point 1.2 m behind the edge of the table, will they reach
the floor at the same time? Explain.

SP4. A cannon is fired over level ground at an angle of 30° to the
horizontal. The initial velocity of the cannonball is 400 m/s,

but because the cannon is fired at an angle, the vertical
component of the velocity is 200 m/s and the horizontal
component is 346 m/s.
a. How long is the cannonball in the air? (Use g � 10 m/s2

and the fact that the total time of flight is twice the time
required to reach the high point.)

b. How far does the cannonball travel horizontally?
c. Repeat these calculations, assuming that the cannon

was fired at a 60° angle to the horizontal, resulting in a
vertical component of velocity of 346 m/s and a hori-
zontal component of 200 m/s. How does the distance
traveled compare to the earlier result?

SP5. A good pitcher can throw a baseball at a speed of 90 MPH.
The pitcher’s mound is approximately 60 ft from home plate.
a. What is the speed in m/s?
b. What is the distance to home plate in meters?
c. How much time is required for the ball to reach home

plate?
d. If the ball is launched horizontally, how far does the

ball drop in this time, ignoring the effects of spin?

SP6. An archeologist is running at 7 m/s with her hands out-
stretched above her head (1.95 m from feet to fingertips)
while being chased by a tiger. She runs exactly horizontally
off of a chasm and attempts to grab onto the opposite side.
a. If the chasm is 4.55 meters wide, how long does she

take to cover this distance?
b. During this time, what distance has she fallen vertically

(use g � 10 m/s2)?
c. How far above or below the edge of the opposite side do

her fingertips fall? (Use � to indicate distances above
the edge and � to indicate distances below the edge.)

E9. At what time does the ball in exercise 7 reach the high point
in its flight? (Use the approximate value of g � 10 m/s2,
and remember that the velocity is equal to zero at the high
point.)

E10. Suppose that the gravitational acceleration on a certain
planet is only 3.0 m/s2. A space explorer standing on this
planet throws a ball straight upward with an initial velocity
of 18 m/s.
a. What is the velocity of the ball 4 seconds after it is

thrown?
b. How much time elapses before the ball reaches the high

point in its flight?

E11. A bullet is fired horizontally with an initial velocity of
900 m/s at a target located 150 m from the rifle.
a. How much time is required for the bullet to reach the

target?
b. Using the approximate value of g � 10 m/s2, how far

does the bullet fall in this time?

E12. A ball rolls off a shelf with a horizontal velocity of 6 m/s.
At what horizontal distance from the shelf does the ball
land if it takes 0.4 s to reach the floor?

E13. A ball rolls off a table with a horizontal velocity of 4 m/s.
If it takes 0.5 seconds for the ball to reach the floor, how
high above the floor is the tabletop? (Use g � 10 m/s2.)

E14. A ball rolls off a table with a horizontal velocity of 5 m/s.
If it takes 0.6 seconds for it to reach the floor:
a. What is the vertical component of the ball’s velocity

just before it hits the floor? (Use g � 10 m/s2.)
b. What is the horizontal component of the ball’s velocity

just before it hits the floor?

E15. A ball rolls off a platform that is 5 meters above the ground.
The ball’s horizontal velocity as it leaves the platform is 
6 m/s.
a. How much time does it take for the ball to hit the

ground? (See example box 3.3, use g � 10 m/s2.)
b. How far from the base of the platform does the ball hit

the ground?

E16. A projectile is fired at an angle such that the vertical com-
ponent of its velocity and the horizontal component of its
velocity are both equal to 30 m/s.
a. Using the approximate value of g � 10 m/s2, how long

does it take for the ball to reach its high point?
b. What horizontal distance does the ball travel in this time?
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HE1. Gather numerous small objects and drop them from equal
heights, two at a time. Record which objects fall signifi-
cantly more slowly than a compact dense object such as a
marble or similar object. Rank order these slower objects
by their time of descent. What factors seem to be important
in determining this time?

HE2. Working with a partner, you can get an estimate of your
reaction time by catching a falling meter stick. Have your
partner hold the meter stick from a point near the top while
you place the finger and thumb of your catching hand about
an inch apart on either side of the 50 cm mark. Without giv-
ing any cues, your partner then drops the meter stick, and
when you see it move, you react to catch it by closing your
finger and thumb. Record the distance that the meter stick
moves between the time that your partner releases it and
you catch it.
a. Repeat this process several times for each partner and

compute the average distance the meter stick traveled
for each partner. Tabulate your results.

b. Since the distance traveled in the time t that it takes for you 

to react is d � 1/2 gt2, the time of travel is Use 

a calculator to compute the reaction time t for each part-
ner from the average distance d (expressed in meters). Use 
g � 10 m/s2. How does your average reaction time
compare to your partner’s?

c. A ‘normal’ reaction time is between 0.2 and 0.25 sec. Is
your reaction time close to this? If not, explain why you
think your reaction time is different.

HE3. Try dropping a ball from one hand at the same time that
you throw a second ball with your other hand. At first, try
to throw the second ball horizontally, with no upward or
downward component to its initial velocity. (It may take
some practice.)
a. Do the balls reach the floor at the same time? (It helps

to enlist a friend for making this judgment.)
b. If the second ball is thrown slightly upward from the

horizontal, which ball reaches the ground first?

t � B2d

g
 .

c. If the second ball is thrown slightly downward from the
horizontal, which ball reaches the ground first?

HE4. Take a ball outside and throw it straight up in the air as hard
as you can. By counting seconds yourself, or by enlisting a
friend with a watch, estimate the time that the ball remains
in the air. From this information, can you find the initial
velocity that you gave to the ball? (The time required for the
ball to reach the high point is just half the total time of
flight.)

HE5. Take a stopwatch to a football game and estimate the hang
time of several punts. Also note how far (in yards) each
punt travels horizontally. Do the highest punts have the
longest hang times? Do they travel the greatest distances
horizontally?

HE6. Using rubber bands and a plastic rule or other suitable sup-
port, design and build a marble launcher. By pulling the rub-
ber band back by the same amount each time, you should
be able to launch the marble with approximately the same
speed each time. (Warning: Leave yourself ample room
free of breakable objects!)
a. Produce a careful drawing of your launcher and note the

design features that you used. (Prizes may be available
for the best design.)

b. Placing your launcher at a number of different angles to
the horizontal, launch marbles over a level surface and
measure the distance that they travel from the point of
launch. Which angle yields the greatest distance?

c. Fire the marbles at different angles from the edge of a
desk or table. Which angle yields the greatest horizontal
distance?

HE7. Try throwing a ball or a wadded piece of paper into a waste-
basket placed a few meters from your launch point.
a. Which is most effective, an overhanded or underhanded

throw? (Five practice shots followed by ten attempts for
each might produce a fair test.)

b. Repeat this process with a barrier such as a chair placed
near the wastebasket.

home experiments and observations
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chapter overview
The primary purpose of this chapter is to explain Newton’s three laws of
motion and how they apply in familiar situations. We begin with a
historical sketch of their development and then proceed to a careful
discussion of each law. The concepts of force, mass, and weight play
critical roles in this discussion. We conclude the chapter by applying
Newton’s theory to several familiar examples.

chapter outline
1 A brief history. Where do our ideas and theories about motion come

from? What roles were played by Aristotle, Galileo, and Newton?

2 Newton’s first and second laws. How do forces affect the motion of
an object? What do Newton’s first and second laws of motion tell us,
and how are they related to one another?

3 Mass and weight. How can we define mass? What is the distinction
between mass and weight?

4 Newton’s third law. Where do forces come from? How does Newton’s
third law of motion help us to define force, and how is the third law
applied?

5 Applications of Newton’s laws. How can Newton’s laws be applied in
different situations such as pushing a chair, sky diving, throwing a ball,
and pulling two connected carts across the floor?

58

un
it

 o
ne

Newton’s Laws:
Explaining Motion

c h a p t e r
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A large person gives you a shove, and you move in
the direction of that push. A child pulls a toy wagon with
a string, and the wagon lurches along. An athlete kicks a
football or a soccer ball, and the ball is launched toward
the goal. These are familiar examples involving forces in
the form of pushes or pulls that cause changes in motion.

To pick a less complex example, imagine yourself push-
ing a chair across a wood or tile floor (fig. 4.1). Why
does the chair move? Will it continue its motion if you
stop pushing? What factors determine the velocity of
the chair? If you push harder, will the chair’s velocity
increase? Up to this point, we have introduced ideas use-
ful in describing motion, but we have not talked much
about what causes changes in motion. Explaining mo-
tion is more challenging than describing it.

You already have some intuitive notions about what
causes the chair to move. Certainly, the push that you
exert on the chair has something to do with it. But is
the strength of that push more directly related to the
velocity of the chair or to its acceleration? At this point,
intuition often serves us poorly.

Over two thousand years ago, the Greek philosopher
Aristotle (384–322 B.C.) attempted to provide answers
to some of these questions. Many of us would find that
his explanations match our intuition for the case of the
moving chair, but they are less satisfactory in the case
of a thrown object where the push is not sustained. 
Aristotle’s ideas were widely accepted until they were
replaced by a theory introduced by Isaac Newton in the
seventeenth century. Newton’s theory of motion has
proved to be a much more complete and satisfactory
explanation of motion, and it permits quantitative pre-
dictions that were largely lacking in Aristotle’s ideas.

Newton’s three laws of motion form the foundation
of his theory. What are these laws and how are they
used in explaining motion? How do Newton’s ideas dif-
fer from those of Aristotle, and why do Aristotle’s ideas
often seem to fit our commonsense notions of what is

4.1 A Brief History 59

4.1 A Brief History
Did some genius, sitting under an apple tree, concoct a
full-blown theory of motion in a sudden, blinding flash of
inspiration? Not quite. The story of how theories are devel-
oped and gain acceptance involves many players over long
periods of time.

Let’s highlight the roles of a few key people whose in-
sights produced major advances. A glimpse of this history
can help you appreciate the physical concepts we will dis-
cuss by showing when and how the theories emerged. It is
important, for example, to know whether a theory was just
proposed yesterday or has been tried and tested over a long
time. Not all theories carry equal weight in their accept-
ance and use by scientists. Aristotle, Galileo, and Newton
were major players in shaping our views of the causes of
motion.

Aristotle’s view of the cause of motion
Questions about the causes of motion and changes in
motion had perplexed philosophers and other observers of
nature for centuries. For over a thousand years, Aristotle’s
views prevailed. Aristotle was a careful and astute philos-
pher of nature. Aristotle investigated an incredible range of
subjects, and he (or perhaps his students) produced exten-
sive writings on topics such as logic, metaphysics, politics,
literary criticism, rhetoric, psychology, biology, and physics.

In his discussions of motion, Aristotle conceived of force
much as we have talked about it to this point: as a push or
pull acting on an object. He believed that a force had to act
for an object to move and that the velocity of the object
was proportional to the strength of the force. A heavy ob-
ject would fall more quickly toward the Earth than a lighter
object, because there was a larger force pulling the object

figure 4.1 Moving a chair. Will the chair continue to move
when the person stops pushing?

happening? A good understanding of Newton’s laws will
permit you to analyze and explain almost any simple
motion. This understanding will provide you with in-
sights useful in driving a car, moving heavy objects, and
many other everyday activities.
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to the Earth. The strength of this force could be appreciated
simply by holding the object in your hand.

Aristotle was also aware of the resistance that a medium
offers the motion of an object. A rock falls more rapidly
through air than through water. Water provides greater re-
sistance to motion than air, as you surely know from trying to
walk through waist-deep water at the beach. Aristotle thus
saw the velocity of the object as being proportional to the
force acting on it and inversely related to the resistance, but he
never defined the concept of resistance quantitatively. He did
not distinguish acceleration from velocity, and he spoke of
velocity by stating the time required to cover a fixed distance.

Aristotle was an observer of nature rather than an ex-
perimenter. He did not make quantitative predictions that
he checked by experiment. Even without such tests, how-
ever, some problems with his basic ideas of motion trou-
bled Aristotle himself, as well as later thinkers. For example,
in the case of a thrown ball or rock, the force that initially
propels the object no longer acts once the ball leaves the
hand. What keeps the ball moving?

Since the ball does keep moving for some time after leav-
ing the hand that throws it, a force was necessary, according
to Aristotle’s theory. He suggested that the force that main-
tains the motion once the ball leaves the hand is provided by
air rushing around to fill the vacuum in the spot where the
ball has just been (fig. 4.2). This flow of air then pushes the
ball from behind. Does this seem reasonable?

Following the decline of the Roman Empire, only frag-
ments of Aristotle’s writings were known to European
thinkers for several centuries. His complete works, which
had been preserved by Arab scholars, did not resurface in
Europe until the twelfth century. Along with the work of
other Greek thinkers, Aristotle’s works were translated into
Latin during the twelfth and thirteenth centuries.

How did Galileo challenge Aristotle’s views?
By the time that the Italian scientist Galileo Galilei (1564–
1642) came on the scene, Aristotle’s ideas were well estab-
lished at European universities, including the universities of

Pisa and Padua where Galileo studied and taught. In fact,
education at the universities was organized around the dis-
ciplines defined by Aristotle, and much of Aristotle’s natu-
ral philosophy had been incorporated into the teaching of
the Roman Catholic Church. The Italian theologian Thomas
Aquinas had carefully interwoven Aristotle’s thinking with
the theology of the church.

To challenge Aristotle was equivalent to challenging the
authority of the church and could carry heavy consequences.
Galileo was not alone in questioning Aristotle’s ideas on
motion; others had noted that dropped objects of similar
form but radically different weights fall at virtually the same
rate, contrary to Aristotle’s theory. Although Galileo may
never have dropped objects from the Leaning Tower of Pisa,
he did perform careful experiments with dropped objects
and actively publicized his results.

Galileo’s primary problems with the church came from
advocating the ideas of Copernicus. Copernicus had pro-
posed a sun-centered (heliocentric) model of the solar sys-
tem (discussed in chapter 5), which opposed the prevailing
Earth-centered models of Aristotle and others. Galileo was
an activist on several fronts in challenging Aristotle and
the traditional thinking. This placed him in conflict with
many of his university colleagues and with members of the
church hierarchy. He was eventually tried by the Inquisition
and found guilty of heresy. He was placed under house
arrest and forced to retract some of his teachings.

In addition to his work on falling objects, Galileo devel-
oped new ideas on motion that contradicted Aristotle’s
theory. Galileo argued that the natural tendency of a mov-
ing object is to continue moving: no force is required to
maintain this motion. (Think about the pushed chair again.
Does this statement make sense in that situation?) Build-
ing on the work of others, Galileo also developed a mathe-
matical description of motion that included acceleration.
The relationship d � at2 for the distance covered by a uni-
formly accelerating object was carefully demonstrated by
Galileo. He published many of these ideas near the end of
his life in his famous Dialogues Concerning Two New
Sciences.

What did Newton accomplish?
Isaac Newton (1642–1727; fig. 4.3) was born in England
within a year of Galileo’s death in Italy. Building on the
work of Galileo, he proposed a theory of the causes of
motion that could explain the motion of any object—the
motion of ordinary objects such as a ball or chair as well as
the motion of heavenly bodies such as the moon and the
planets. In the Greek tradition, celestial motions were thought
of as an entirely different realm from Earthbound motions,
thus requiring different explanations. Newton abolished this
distinction by explaining both terrestrial and celestial mechan-
ics with one theory.

The central ideas in Newton’s theory are his three laws
of motion (discussed in sections 4.2 and 4.4) and his law

60 Chapter 4 Newton’s Laws: Explaining Motion

figure 4.2 Aristotle pictured air rushing around a thrown
object to continue pushing the object forward. Does this picture
seem reasonable?

1

2

v
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of universal gravitation (discussed in chapter 5). Newton’s
theory provided successful explanations of aspects of mo-
tion already known and offered a framework for many new
studies in physics and astronomy. Some of these studies
led to predictions of phenomena not previously observed.
For example, calculations applying Newton’s theory to ir-
regularities in the orbits of the known planets led to the
prediction of the existence of Neptune, which was quickly
confirmed by observation. Confirmed predictions are one
of the marks of a successful theory. Newton’s theory
served as the basic theory of mechanics for over two hun-
dred years and is still used extensively in physics and
engineering.

Newton developed the basic ideas of his theory around
1665, when he was still a young man. To avoid the plague,
he had returned to his family’s farm in the countryside
where he had time to engage in serious thought with little
interruption. The story has it that seeing an apple fall led to
his insight that the moon also falls toward the Earth and
that the force of gravity is involved in both cases. (See
chapter 5.) Flashes of insight or inspiration were surely a
part of the process.

Although Newton developed much of his theory and its
details in 1665, he did not formally publish his ideas until
1687. One reason for this delay was his need to develop
some of the mathematical techniques required to calculate
the effects of the proposed gravitational force on objects
such as planets. (He is generally credited with being the
coinventor of what we now call calculus.) The English title
of Newton’s 1687 treatise is The Mathematical Principles of
Natural Philosophy (Philosophiae Naturalis Principia Math-
ematica in Latin), which is often referred to as Newton’s
Principia.

Scientific theories like Newton’s do not just emerge in
an intellectual vacuum. They are products of their time and

the state of knowledge and worldview current then. They
usually replace earlier and often cruder theories. The ac-
cepted theory of motion in Newton’s day was still that of
Aristotle, although it had come under attack by Galileo and
others. Its shortcomings were generally recognized. Newton
provided the capstone for a revolution in thought that was
already well under way.

Although Aristotle’s ideas on motion are now consid-
ered unsatisfactory and are worthless for making quantita-
tive predictions, they do have an intuitive appeal much like
our own untrained thinking about motion. For this reason,
we often speak of the need to replace Aristotelian ideas
about motion with Newtonian concepts as we learn me-
chanics. Even though our own naive ideas about motion
are not usually as fully developed as those of Aristotle, you
may find that some of your commonsense notions will re-
quire modification.

Newton’s theory, in turn, has been partially superseded
by more sophisticated theories that provide more accurate
descriptions of motion. These include Einstein’s theory of
relativity as well as the theory of quantum mechanics,
both of which arose early in the twentieth century.
Although the predictions of these theories differ substan-
tially from Newton’s theory in the realm of the very fast
(in the case of relativity) and the very small (quantum
mechanics), they differ insignificantly for the motion of
ordinary objects traveling at speeds much less than that of
light. Newton’s theory was a tremendous step forward and
is still used extensively to analyze motion of ordinary
objects.

Aristotle’s ideas on motion, although not capable of
making quantitative predictions, provided explanations
that were widely accepted for many centuries and that
fit well with some of our own commonsense thinking.
Galileo challenged Aristotle’s ideas on free fall as well
as his general assumption that a force was required to
keep an object in motion. Building on Galileo’s work,
Newton developed a more comprehensive theory of
motion that replaced Aristotle’s ideas. Newton’s theory
is still widely used to explain the motion of ordinary
objects.

4.2 Newton’s First and Second Laws
If we push a chair across the floor, what causes the chair to
move or to stop moving? Newton’s first two laws of motion
address these questions and, in the process, provide part of
a definition of force. The first law tells us what happens in
the absence of a force, and the second describes the effects
of applying a force to an object.

We discuss the first and second laws of motion together
because the first law is closely related to the more general
second law. Newton felt the need to state the first law sep-
arately, however, to counter strongly held Aristotelian ideas
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figure 4.3 A portrait of Isaac Newton.
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about motion. In doing so, Newton was following the lead
of Galileo, who had stated a principle similar to Newton’s
first law several years earlier.

Newton’s first law of motion
In language not too different from his own, Newton’s first
law of motion can be stated as

An object remains at rest, or in uniform motion in a straight
line, unless it is compelled to change by an externally imposed
force.

In other words, unless there is a force acting on the object,
its velocity will not change. If it is initially at rest, it will
remain at rest; if it is moving, it will continue to do so with
constant velocity (fig 4.4).

Notice that, in paraphrasing Newton’s first law, we have
used the term velocity rather than the term speed. Constant
velocity implies that neither the direction nor the magnitude
of the velocity changes. When the object is at rest, its veloc-
ity is zero, and that value remains constant in the absence of
a force. If there is no force acting on the object, the acceler-
ation of the object is zero. The velocity does not change.

Although this law seems simple enough, it directly con-
tradicts Aristotle’s ideas (and perhaps your own intuition
as well). Aristotle believed that a force is required to keep
an object moving. His views make intuitive sense if we are
talking about moving a heavy object such as the chair men-
tioned in our introduction. If you stop pushing, the chair
stops moving. This view encounters problems, however, if
we consider the motion of a thrown ball, or even a chair
moving on a slippery surface. These objects continue to
move after the initial push. Newton (and Galileo) made the

strong statement that no force is needed to keep an object
moving.

How can Aristotle’s ideas be so different from those of
Newton and Galileo and yet seem so reasonable in some
situations? The key to answering that question involves the
existence of resistive or frictional forces. The chair does
not move far after you stop pushing because the frictional
forces of the floor acting on the chair cause the velocity to
quickly decrease to zero. A thrown ball would eventually
stop moving, even if it did not fall to the ground, because
the force of air resistance is pushing against it. It is really
quite difficult to find a situation in which there are no
forces acting upon an object. Aristotle recognized the pres-
ence of air resistance and similar effects but did not treat
them as forces in his theory.

How is force related to acceleration?
Newton’s second law of motion is a more complete state-
ment about the effect of an imposed force on the motion of
an object. Stated in terms of acceleration, it says

The acceleration of an object is directly proportional to the
magnitude of the imposed force and inversely proportional to
the mass of the object. The acceleration is in the same direc-
tion as that of the imposed force.

This statement is most easily grasped in symbolic form.
By choosing appropriate units for force, we can state the
proportionality of Newton’s second law as the equation:

where a is the acceleration, Fnet is the total or net force act-
ing on the object, and m is the mass of the object. Since the
acceleration is directly proportional to the imposed force, if
we double the force acting on the object, we double the
acceleration of the object. The same force acting on an
object with a larger mass, however, will produce a smaller
acceleration (fig. 4.5).

Note that the acceleration is directly related to the im-
posed force, not the velocity. Aristotle did not make a clear
distinction between acceleration and velocity. Many of
us also fail to make the distinction when we think infor-
mally about motion. In Newton’s theory, this distinction is
critical.

Newton’s second law is the central idea of his theory of
motion. According to this law, the acceleration of an object
is determined by two quantities: the net force acting on
the object and the mass of the object. In fact, the concepts
of force and mass are, in part, defined by the second law.
The net force acting on the object is the cause of its ac-
celeration, and the magnitude of the force is defined by the
size of the acceleration that it produces. Newton’s third law,
discussed in section 4.4, completes the definition of force by

a �
Fnet

m
.
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figure 4.4 Newton’s first law: In the absence of a force, an
object remains at rest or moves with constant velocity.

v v

v remains equal to 0
(at rest)

v remains constant 
(uniform motion in a straight line)

If F = 0

or
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noting that forces result from interaction of the object with
other objects.

The mass of an object is a quantity that tells us how
much resistance an object has to a change in its motion, as
indicated by the second law. We call this resistance to a
change in motion inertia, following Galileo. (See every-
day phenomenon box 4.1.) We can define mass as

Mass is a measure of an object’s inertia, the property that
causes it to resist a change in its motion.

The standard metric unit for mass is the kilogram (kg). We
will say more about the determination of mass and its rela-
tionship to the weight of an object shortly (section 4.3).

Units of force can also be derived from Newton’s sec-
ond law. If we solve for Fnet by multiplying both sides of
the second-law equation by the mass, it can be expressed as

Fnet � ma.

The appropriate unit for force must therefore be the product
of a unit of mass and a unit of acceleration, or in the metric
system, kilograms times meters per second squared. This
frequently used unit is called the newton (N). Accordingly,

1 newton � 1 N � 1 kg � m/s2.

How do forces add?
Our version of the second law implies that the imposed
force is the total or net force acting on the object. Force is
a vector quantity whose direction is clearly important. If
there is more than one force acting on an object, as there
often is, we must then add these forces as vectors, taking
into account their directions.

This process is illustrated in figure 4.6 and the sample
exercise in example box 4.1. A block is being pulled across a
table by a force of 10 N applied through a string attached to
the block. A frictional force of 2 N acts on the block, a result

of contact with the table. What is the total force acting on the
block?

Is the net force the numerical sum of the two forces, 10 N
plus 2 N or 12 N? Looking at the diagram in figure 4.6
should convince you that this cannot be true. The two forces
oppose one another. Because the forces are in opposite direc-
tions, the net force is found by subtracting the frictional force
from the force applied by the string, resulting in a net force of
8 N. We cannot ignore the directions of the forces involved.

That forces are vectors whose directions must be taken
into account when finding the net force is an important as-
pect of the second law. For forces restricted to one dimen-
sion, as in example box 4.1, finding the net force is not
difficult. In problems involving forces in two or three di-
mensions, addition is more complex but can be accom-
plished using techniques described in appendix C. In this
chapter we will only consider one-dimensional cases.

A final point about Newton’s first and second laws bears
repeating: the first law is contained within the second law, but
it was very important for Newton to state the first law as a sep-
arate law to counter long-standing beliefs about motion. The
relationship between the two laws can be demonstrated by ask-
ing what happens, according to the second law, when the net
force acting on an object is zero. In this case, the acceleration
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figure 4.5 The smaller-mass object experiences a larger
acceleration than the larger-mass object when identical forces
are applied to the two objects.

figure 4.6 A block being pulled across a table. Two
horizontal forces are involved.

m1

m2

F

F

a

a

f = 2 N 5 kg
F = 10 N

example box 4.1

Sample Exercise: Finding the Net Force

A block with a mass of 5 kg is being pulled across a
tabletop by a force of 10 N applied by a string tied to the
front end of the block (fig 4.6). The table exerts a 2-N
frictional force on the block. What is the acceleration of
the block?

Fstring � 10 N (to the right) Fnet � Fstring � ftable

ftable � 2 N (to the left) � 10 N � 2 N � 8 N

m � 5 kg Fnet � 8 N (to the right)

a � ?

� 1.6 m/s2

(a � 1.6 m/s2 to the right)

�
8 N

5 kg

a �
Fnet

m
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must also be zero. If the acceleration is zero, the

velocity must be constant. The first law tells us that if the net
force is zero, the object moves with constant velocity (or
remains at rest). Newton’s first law addresses the special
case of the second law in which the net force acting on an
object is zero.

The central principle in Newton’s theory of motion is his
second law of motion. This law states that the acceleration
of an object is proportional to the net force applied to the
object and inversely proportional to the mass of the object.
The mass of an object is its inertia or resistance to change
in motion. Newton’s first law follows from the second law
when the net force acting on the object is zero. To find the
net force acting on the object, we take into account the
directions of the individual forces and add them as vectors.

a �
Fnet

m
4.3 Mass and Weight
What exactly is weight? Is your weight the same as your
mass, or is there a difference in the meaning of these two
terms? Clearly, mass plays an important role in Newton’s
second law. Weight is a familiar term often used inter-
changeably with mass in everyday language. Here again,
physicists make a distinction between mass and weight that
is important to Newton’s theory.

How can masses be compared?
From the role that mass plays in Newton’s second law, we
can devise experimental methods of comparing masses.
Mass is defined as the property of matter that determines
how much an object resists a change in its motion. The
greater the mass, the greater the inertia or resistance to
change, and the smaller the acceleration provided by a given
force. Imagine, for example, trying to decelerate a bowling
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The Tablecloth Trick

The Situation. When he was a child, Ricky Mendez saw a
magician do the tablecloth trick. A full dinner place setting
including a filled wineglass sat on a tablecloth covering a
small table. The magician, with appropriate fanfare, pulled
the tablecloth from the table without disturbing the dinner-
ware. Ricky ended up in the doghouse, however, when he
tried this at home with disastrous results.

More recently Ricky saw his physics instructor do a
similar trick with a simpler place setting. The students were
told that the demonstration had something to do with
inertia. Why does the trick work, and how is inertia involved?
Why did the trick not work when Ricky tried it at home as
a child?

The Analysis. The magician’s trick, which is frequently used
as a physics demonstration, is indeed an illustration of the
effects of inertia. Since the nature of frictional forces also
plays a role, the choice of a smooth material for the table-
cloth is important. (Butcher paper is sometimes substituted
in physics demonstrations.) Some practice is usually essential
to the successful execution of the trick.

The performer, be it a magician, instructor, or student,
must pull the cloth or paper very quickly, giving it a large
initial acceleration. Pulling slightly downward across the

edge of the table helps to assure that there is no upward
component to the acceleration and that the acceleration is
reasonably uniform across the width of the tablecloth. As the
tablecloth accelerates, it exerts a frictional force upon the
tableware. If we pulled slowly, this frictional force would pull
the dishes and glasses along with the tablecloth.

Inertia is the tendency of an object (related to its mass)
to resist a change in its motion. When an object is at rest, it
remains at rest unless a force is applied. There is a force act-
ing on the plates and glasses, however—the frictional force
exerted by the tablecloth. If the tablecloth is pulled quickly
enough, the frictional force is in effect for only a very short
time so the acceleration of the objects is very brief. The
objects will accelerate slightly, but not nearly as much as
the tablecloth.

There are two aspects of the frictional force that are
important to our understanding of what happens. One is that
the force of static friction (in effect when the surfaces are not
sliding relative to one another) has a maximum value that is
determined by the nature of the contacting surfaces and by
the force pushing the surfaces together. The second is that
once the objects start to slide, kinetic or sliding friction comes
into play. The force of kinetic friction is usually smaller than
that of static friction.

everyday phenomenon
box 4.1

(continued)
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ball and a ping-pong ball that are moving initially with
equal velocities (fig. 4.7). A much greater force is required
to decelerate the bowling ball than the ping-pong ball
because of the difference in mass. According to the second
law, the force required is proportional to the mass.

In effect, we are using Newton’s second law to define
mass. If we used the same force to accelerate different
masses, the different accelerations could be used to com-
pare the masses involved. If we choose one mass as a stan-
dard, any other mass can be measured against the standard
mass by comparing the accelerations produced by equal
forces. We could, in principle, determine the mass of any
object this way.

How do we define weight?
In practice, the method just described is not convenient for
comparing masses because of the difficulty of measuring ac-
celeration. The more common method of comparing masses
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Grasp the paper near the corners and pull slightly downward across
the edge of the table. A quick pull will leave the pencil near its initial
position.

figure 4.7 Stopping a bowling ball and a ping-pong ball.
A much larger force is required to produce the same rate of
change in velocity for the larger mass.

v

m2

F2

m1

a

F1

a

v

When the tablecloth is given a large lateral acceleration,
the force needed to also accelerate the tableware (Fnet � ma)
exceeds the maximum force of static friction between the
dish or glass and the tablecloth. The tablecloth then begins to
slide underneath the dish, reducing the size of the frictional
force. If the surfaces are smooth, the frictional force is never
large enough to produce an acceleration of the dish or glass
that is anywhere near the size of the acceleration of the
tablecloth. In the fraction of a second that this force acts, it
does not have a chance to increase the velocity very much
or to move the object very far. (See synthesis problem 3.)
Once the tablecloth is no longer in contact with the object,
the frictional force exerted by the table quickly decelerates
the object.

You can test these ideas yourself with a pencil, cup, or
similar object (preferably nonbreakable) and a sheet of
smooth tablet paper. Place the paper on a smooth desk or
table surface with the end of the paper extending over the
edge. Grasping the paper with both hands near the corners,
as shown in the drawing, pull it downward across the edge
of the desk or table. Notice that a slow pull brings the object
along with the paper, but a very rapid pull leaves the object
essentially in place. (The objects will usually move slightly in
the direction of the pull.)

Before you graduate to tablecloths and full dinner place
settings, a few cautions are in order. Objects that can tip, like
filled wineglasses, are more difficult to work with. The bottom

may start to move while the top portion (with its greater iner-
tia) remains in place causing the glass to tip and spill the
wine or water. Also, the larger the tablecloth, the more diffi-
cult it is to pull it clear of the table—your hands must move
very rapidly through a large distance in the pull. Practice is
essential, which is the case for most of the tricks that magi-
cians (and physics instructors) perform.
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is to “weigh” the objects on a balance or scale (fig. 4.8).
What we actually do in weighing is to compare the gravita-
tional force acting on the mass we wish to measure with
that acting on some standard mass. The gravitational force
acting on an object is the weight of the object. As a force,
weight has different units (newtons) than mass (kilograms).

How is weight related to mass? From our discussion of
gravitational acceleration in chapter 3, we know that ob-
jects of different mass experience the same gravitational
acceleration near the Earth’s surface (g � 9.8 m/s2). This
acceleration is caused by the gravitational force exerted by
the Earth on the object, which is the weight of the object.
By Newton’s second law, the force (the weight) is equal to
the mass times the acceleration or

W � mg .

The symbol W represents the weight. It is a vector whose
direction is straight down toward the center of the Earth.

If we know the mass of an object, we can then compute
its weight. An example is provided in example box 4.2,
where we show that a woman with a mass of 50 kg has a
weight of 490 N. Since we are more used to expressing
weights in the English system, we also convert her weight
in newtons to pounds (lb), which yields a weight of 110 lb.
The pound is most commonly used as a unit of force, not
mass, in the English system. A mass of 1 kg weighs ap-
proximately 2.2 lb near the Earth’s surface.

Although weight is proportional to mass, it also depends
on the gravitational acceleration g. Since g varies slightly
from place to place on the surface of the Earth—and has a
much smaller value on the moon or the smaller planets—
the weight of an object clearly depends on where that ob-
ject is. On the other hand, the mass of an object is a prop-
erty of the object related to the quantity of matter making
up that object and does not depend on the location of the
object.

The gravitational acceleration on the moon is approxi-
mately one-sixth that on the Earth’s surface. If we trans-
ported the woman whose weight we have just determined
to the moon, her weight would decrease to about 18 lb (or
82 N), one-sixth her weight on Earth. The woman’s mass
would still be 50 kg, provided that the trip did not take too
much out of her. The mass of an object changes only if we
add or subtract matter from it.

Why is the gravitational acceleration
independent of mass?
The distinction between weight and mass can provide
insight into why the gravitational acceleration is indepen-
dent of mass. Let’s turn to the case of a falling object and
consider its motion using Newton’s second law. Reversing
the argument that we used in defining weight, we use the
gravitational force (the weight) to determine the accelera-
tion. By Newton’s second law, the acceleration can be
found by dividing the force (W � mg) by the mass:

Mass cancels out of the equation when we compute the
acceleration for a falling object. The gravitational force is
proportional to the mass, but by Newton’s second law, the
acceleration is inversely proportional to the mass: these
two effects cancel one another. This only holds true for
falling objects. In most other cases, the net force does not
depend directly on the mass.

Force and acceleration are not the same, although they
are closely related by Newton’s second law. A heavy object
experiences a larger gravitational force (its weight) than a

a �
mg
m

� g.
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figure 4.8 Comparing an unknown mass to standard
masses on a balance.

Wstandards Wunknown

example box 4.2

Sample Exercise: Computing Weights

Suppose that a woman has a mass of 50 kg. What is her
weight in

a. newtons?
b. pounds?

a. m � 50 kg W � mg

W � ? � (50 kg)(9.8 m/s2)

� 490 N

b. W � ? in pounds

1 lb � 4.45 N

� 110 lb

W �
490 N

4.45 N/lb
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lighter object, but the two objects will have the same grav-
itational acceleration (fig. 4.9). Because the gravitational
force is proportional to mass, we find the same accelera-
tion for different masses. The gravitational force will be
discussed further in chapter 5 when we take up Newton’s
law of gravitation, a critical piece of his overall theory of
motion.

Weight and mass are not the same. Weight is the gravita-
tional force acting on an object, and mass is an inherent
property related to the amount of matter in the object.
Near the Earth’s surface, weight is equal to the mass mul-
tiplied by the gravitational acceleration (W � mg), but
the weight would change if we took the object to another
planet where g has a different value. The reason that all
objects experience the same gravitational acceleration
near the Earth’s surface is that the gravitational force is
proportional to the mass of the object, but acceleration is
equal to the force divided by the mass.

4.4 Newton’s Third Law
Where do forces come from? If you push on a chair to
move it across the floor, does the chair also push back on
you? If so, how does that push affect your own motion?
Questions like these are important to what we mean by
force. Newton’s third law provides some answers.

Newton’s third law of motion is an important part of
his definition of force. It is an essential tool for analyzing
the motion or lack of motion of real objects, but it is often
misunderstood. For this reason, it is good to take a careful
look at the statement and use of the third law.

How does the third law help us
to define force?
If you push with your hand against a large chair or any
large object, such as the wall of your room, you will feel
the object push back against your hand. A force is acting on
your hand that you can sense as it compresses your hand.
Your hand is interacting with the chair or wall, and that ob-
ject pushes back against your hand as you push against the
object.

Newton’s third law contains the idea that forces are
caused by such interactions of two objects, each exerting a
force on the other. It can be stated as

If object A exerts a force on object B, object B exerts a force
on object A that is equal in magnitude but opposite in direc-
tion to the force exerted on B.

The third law is sometimes referred to as the action/
reaction principle—for every action there is an equal but
opposite reaction. Note that the two forces always act on
two different objects, never on the same object. Newton’s
definition of force includes the idea of an interaction be-
tween objects. The forces represent that interaction.

If you exert a force F1 on the chair with your hand, the
chair pushes back on your hand with a force F2 that is equal
in size, but opposite in direction (fig. 4.10). Using this
notation, Newton’s third law can be stated in symbolic
form as

F2 � �F1.

The minus sign indicates that the two forces have opposite
directions. The force F2 acts on your hand and partly deter-
mines your own motion, but it has nothing to do with the
motion of the chair. Of this pair of forces, the only one that
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figure 4.9 Different gravitational forces (weights) act on
falling objects of different masses, but because acceleration is
inversely proportional to mass, the objects have the same
acceleration.

figure 4.10 The chair pushes back on the hand with a
force F2 that is equal in size but opposite in direction to the force
F1 exerted by the hand on the chair.

m1

m2

F = W
a = g

a = g

F = W

F2 = –F1

F1

F2
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affects the motion of the chair is the one acting on the
chair, F1.

Our definition of force is now complete. Newton’s sec-
ond law tells us how the motion of an object is affected by
a force, and his third law tells where forces come from.
They come from interactions with other objects. With a
suitable definition of mass, which also depends upon the
second law, we know how to measure the size of forces by
determining the acceleration that they produce (F � ma).
Both the second and third laws are necessary to define
what we mean by force.

How can we use the third law
to identify forces?
How do we identify the forces that act on an object to ana-
lyze how that object will move? First, we identify other
objects that interact with the object of interest. Consider a
book lying on a table (fig. 4.11). What objects are interact-
ing with the book? Since it is in direct contact with the
table, the book must be interacting with the table, but it also
interacts with the Earth through the gravitational attraction.

The downward pull of gravity that the Earth exerts on the
book is the book’s weight W. The object interacting with
the book to produce this force is the Earth itself. The book
and the Earth are attracted to one another (through gravity)
with equal and opposite forces that form a third-law pair.
The Earth pulls down on the book with the force W, and
the book pulls upward on the Earth with the force �W.
Because of the Earth’s enormous mass, the effect of this
upward force on the Earth is extremely small.

The second force acting on the book is an upward force
exerted on the book by the table. This force is often called the
normal force, where the word normal means “perpendicular”

rather than “ordinary” or “usual.” The normal force N is
always perpendicular to the surfaces of contact. The book, in
turn, exerts an equal but oppositely directed downward force
�N on the table. These two forces, N and �N, constitute
another third-law pair. They result from the mutual compres-
sion of the book and table as they come into contact with one
another. You could think of the table as a large and very stiff
spring that compresses ever so slightly when the book is
placed on it (fig. 4.12).

The two forces acting on the book, the force of gravity
and the force exerted by the table, also happen to be equal
in size and opposite to one another, but this is not due
to the third law. How do we know that they must be equal?
Since the book’s velocity is not changing, its accelera-
tion must be zero. According to Newton’s second law, the
net force Fnet acting on the book must then be zero, since
Fnet � ma and the acceleration a is zero. The only way that
the net force can be zero is for the two contributing forces,
W and N, to cancel one another. They must be equal in
magnitude and opposite in direction for their sum to be
zero.

Even though equal in size and opposite in direction, these
two forces do not constitute a third-law action/reaction pair.
They both act on the same object, the book, and the third
law always deals with interactions between different objects.
So, W and N are equal in size and opposite in direction in
this case as a consequence of the second law rather than
the third law. If they did not cancel one another, the book
would accelerate away from the tabletop. (Both the second
and third laws are critical to the analysis of the elevator ex-
ample in everyday phenomenon box 4.2.)

Can a mule accelerate a cart?
Consider the story of the stubborn mule who, having had a
brief exposure to physics, argued to his handler that there
was no point in pulling on the cart to which he was con-
nected. According to Newton’s third law, the mule argued,
the harder he pulls on the cart, the harder the cart pulls
back on him (fig. 4.13). The net result is, therefore, noth-
ing. Is he right, or is there a fallacy in his argument?
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figure 4.11 Two forces, N and W, act on a book resting
on a table. The third-law reaction forces �N and �W act on
different objects, the table and the Earth.

figure 4.12 An uncompressed spring and the same spring
supporting a book. The compressed spring exerts an upward
force on the book.

Earth

–W

– N

WN
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4.4 Newton’s Third Law 69

Riding an Elevator

The Situation. We have all had the experience of riding an
elevator and feeling sensations of heaviness or lightness as
the elevator accelerates up or down. The feeling of lightness
as the elevator accelerates downward is generally more
striking, particularly if the acceleration is not smooth.

Do we really weigh more or less than usual in these situa-
tions? If you took a bathroom scale into the elevator, would
it read your true weight when the elevator is accelerating?
How can we apply Newton’s laws of motion to explore these
questions?

The Analysis. The first step in analyzing any situation using
Newton’s laws is to isolate the body of interest and carefully
identify the forces that act on just that body. Different choices
are possible for which objects to isolate, but some choices
will be more productive than others. In this case, it makes
sense to isolate the person standing on the scale, since her
weight is the focus of our questions. The second drawing
shows a free-body diagram of the woman indicating just
those forces that act on her.

In this case, just two other objects interact with the
woman, resulting in two forces. The Earth pulls downward on
the woman through the force of gravity W. The scale pushes
upward on her feet with a force N, the normal force. The
vector sum of these two forces determines her acceleration.
If the elevator is accelerating upward with an acceleration a,
the woman must also be accelerating upward at that rate.
The net force must also be upward, which implies that the
normal force N is larger than the gravitational force W.
Using signs to indicate direction, and letting the positive
direction be upward, Newton’s second law requires that

Fnet � N � W � ma.

What about the scale reading? By Newton’s third law, the
woman exerts a downward force on the scale equal in size to
the normal force N, but opposite in direction. Since this is the
force pushing down on the scale, the scale should read the
value N, the magnitude of the normal force. The woman’s true
weight has not changed, but her apparent weight as mea-
sured by the scale has increased by an amount equal to ma.
(Rearranging the second-law equation yields N � W � ma.)

What happens when the elevator is accelerating down-
ward? In that case, the net force acting upon the woman
must be downward, and the normal force must be less than
her weight. The scale reading N will then be less than the
woman’s true weight by the amount ma, perhaps producing
a smile rather than a scowl.

If the elevator cable breaks, we have a particularly inter-
esting special case. Both the woman and the elevator will
accelerate downward with the gravitational acceleration g.
Since the woman’s weight is all that is required to give her
that acceleration, the normal force acting on her feet must
then be zero. The scale reading will likewise be zero, and the
woman is apparently weightless!

The sensation of our own weight is produced in part by
the pressure on our feet and forces in our leg muscles needed
to maintain our posture. The woman will feel weightless in
this situation even though her true weight (the gravitational
force acting on her) has not changed. In fact, she would be
able to float around in the elevator as the astronauts do in
the orbiting space shuttle. (The space shuttle is also falling
toward the Earth as it moves laterally in its orbit.) This happy
scenario will come to a crashing halt for the woman, how-
ever, when the elevator reaches the bottom of the shaft.

everyday phenomenon
box 4.2

a

A woman standing on a bathroom scale inside an accelerating
elevator. Will she read her true weight on the scale?

N

W
a

A free-body diagram of the woman in the
elevator when accelerating upward. Why 
is the normal force N larger than the
weight W?

gri12117_ch04_058-078.qxd  7/7/08  7:17 PM  Page 69



Confirming Pages

The fallacy is simple but perhaps not obvious. The
motion of the cart is affected by only one of the two forces
that the mule is talking about, namely, the force that acts on
the cart. The other force in this third-law pair acts on the
mule and must be considered in conjunction with other
forces that act on the mule to determine how he will move.
The cart will accelerate if the force exerted by the mule on
the cart is larger than the frictional forces acting on the
cart. Try placing yourself in the role of the handler and
explain the fallacy to the mule.

What force causes a car to accelerate?
As with the mule, the reaction force to a push or pull
exerted by an object is often extremely important in
describing the motion of the object itself. Consider the
acceleration of a car. The engine cannot push the car
because it is part of the car. The engine drives either the
rear or front axle of the car, which causes the tires to
rotate. The tires in turn push against the road surface
through the force of friction f between the tires and the
road (fig. 4.14).

According to Newton’s third law, the road must then
push against the tires with an equal but oppositely directed
force �f. This external force causes the car to accelerate.
Obviously, friction is desirable in this case. Without fric-
tion, the tires would spin, and the car would go nowhere.
The case of the mule is similar. The frictional force exerted
by the ground on his hooves causes him to accelerate for-
ward. This frictional force is the reaction to his pushing
against the ground.

Think about this next time you find yourself walking.
What external force causes you to accelerate as you start
out? What is your role and that of friction in producing
this force? How would you walk on an icy or slippery
surface?

To figure out what forces are acting on any object, we
need first to identify the other objects with which it is in-
teracting. Some of these will be obvious. Any object in
direct contact with the object of interest will presumably
contribute a force. Interactions producing other forces, such
as air resistance or gravity, may be less obvious but still

recognizable with a little thought. The third law is the prin-
ciple we use to identify any of these forces.

Newton’s third law of motion completes his definition
of force. The third law notes that forces arise from inter-
actions between different objects. If object A exerts a force
on object B, object B exerts an equal-size but oppositely
directed force on A. We use the third law to identify the
external forces that act on an object in order to apply
the second law of motion.

4.5 Applications of Newton’s Laws
We have now introduced Newton’s laws of motion and dis-
cussed the definitions of force and mass within these laws.
To appreciate their usefulness, however, we must be able to
apply them to some familiar examples such as pushing a
chair or throwing a ball. How do Newton’s laws help us
make sense of these motions? Do they provide a satisfac-
tory picture of what is going on?

What forces are involved in moving a chair?
We have returned from time to time to the example of a
chair being pushed but have not yet analyzed how and why
it moves. As we indicated in section 4.4, the first step in
any analysis is to identify the forces that act on the chair.
As shown in figure 4.15, four forces act on the chair from
four separate interactions:*

1. The force of gravity (the weight) W due to interaction
with the Earth.

2. The upward (normal) force N exerted by the floor due
to compression of the floor.

3. The force exerted by the hand of the person pushing, P.
4. The frictional force f exerted by the floor.

Two of these forces, the normal force N and the frictional
force f, are actually due to interactions with a single object, the
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figure 4.13 A mule and a cart. Does Newton’s third law
prevent the mule from moving the cart?

figure 4.14 The car pushes against the road, and the road,
in turn, pushes against the car.

–F1

F1

–f

f

*A figure such as figure 4.15, showing all the forces acting on an object, is
often called a free body diagram. See also everyday phenomenon box 4.2
on page 69.
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floor. Since they are due to different effects and are perpen-
dicular to one another, they are usually treated separately.

The effects of the two vertical forces acting on the chair,
the weight W and the normal force N, cancel one another.
Like the book on the table in section 4.4, this results
because there is no acceleration of the chair in the vertical
direction. By Newton’s second law, the sum of the vertical
forces must then be zero, which implies that the weight W
and the normal force N are equal in size but opposite in
direction. They play no direct role in the horizontal motion
of the chair.

The other two forces, the push of the hand P and the
frictional force f, do not necessarily cancel. These two
forces together determine the horizontal acceleration of the
chair. The push P must be larger than the frictional force f
for the chair to accelerate. In the most likely scenario for
moving the chair, you first give a push with your hand that
is larger than the frictional force. This produces a total
force, with magnitude P � f, in the forward direction,
causing the chair to accelerate.

Once you have accelerated the chair to a reasonable ve-
locity, you reduce the strength of your push P so that it is
equal in size to the frictional force. The net horizontal
force becomes equal to zero, and the horizontal accelera-
tion is also zero by Newton’s second law. If you sustain
the push at this level, the chair moves across the floor with
constant velocity.

Finally, you remove your hand and its push P, and the
chair quickly decelerates to zero velocity under the influ-
ence of the frictional force f. If you happen to have a chair
and a smooth floor handy, try to produce the motion that we
have just been describing. See if you can feel differences
in the force that you are exerting with your hand at various
points in the motion. The force should be largest at the be-
ginning of the motion.

The size of the force needed to keep the chair mov-
ing with constant velocity is determined by the strength
of the frictional force, which, in turn, is influenced by the
weight of the chair and the condition of the floor surface.
If you fail to recognize the importance of the frictional
force, you may be led, like Aristotle, to think that a force is
always needed to keep an object moving. Frictional forces
are almost always present, but they are not as obvious as
the forces applied directly.

Does a sky diver continue to accelerate?
In chapter 3, we considered the fact that an object falls
with constant acceleration g if air resistance is not a sig-
nificant factor. What about objects such as sky divers who
fall for large distances? Do they continue to accelerate at
this rate gaining larger and larger downward velocities?
Any person with experience in sky diving knows that this
does not happen. Why not?

If air resistance were not a factor, a falling object would
experience only the gravitational force (its weight) and
would indeed continue to accelerate. In sky diving, air re-
sistance is an important factor, and its effects get larger as
the velocity of the sky diver (or any object) increases. The
sky diver has an initial acceleration of g, but as her veloc-
ity increases, the force of air resistance becomes signifi-
cant. Her acceleration decreases (fig. 4.16).

For small velocities, the air-resistive force R is small,
and the weight is the dominant force. As the velocity in-
creases, the air-resistive force gets larger, causing the total
magnitude of the downward force, W � R, to decrease.
Since the net force is responsible for the acceleration, the
acceleration will also decrease. Ultimately, as the velocity
continues to increase, the air-resistive force reaches a value
equal in size to the gravitational force. The net force is
then zero, and the sky diver stops accelerating. We say that
she has reached terminal velocity, and from there on, she
moves downward with constant velocity. This terminal ve-
locity is usually between 100 and 120 MPH.

Frictional or resistive forces play a critical role in ana-
lyzing the motion. Aristotle did not have the opportunity to
try sky diving (nor have many of us), so this example was
not a part of his experience. He did observe the terminal
velocity, however, of very light objects such as feathers or
leaves. The weight of such objects is small and the surface
area is large relative to the weight, so the air-resistive force
R becomes equal in size to the weight much sooner than
for a heavier object.

Try tearing a small corner from a piece of paper and
watching it fall. Does it appear to reach a constant (termi-
nal) velocity? It will flutter as it falls, but it does not seem
to accelerate much for most of its downward motion. You
can see why Aristotle concluded that heavier objects fall
faster than lighter objects. Dropping heavier objects through
water can also show the terminal velocity. Water exerts a
larger resistive force at lower velocities than air.
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figure 4.15 Four forces act on a chair being pushed across
the floor, the weight W, the normal force N, the force P exerted
by the person pushing, and the frictional force f.

P

W

N

f
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the ball to a velocity that we often refer to as the initial veloc-
ity. The magnitude and direction of the initial velocity are
determined by the strength and direction of the force P and
the length of time that it acts on the ball. Since this force usu-
ally varies with time, a full analysis of the process of throw-
ing gets quite complex.

Once the ball leaves the hand, however, we are in the
second time period, where P is no longer a consideration.
During this interval, the gravitational force W and the air-
resistive force R produce changes in the ball’s velocity. From
this point on, the problem becomes one of projectile motion
(section 3.4). The gravitational force accelerates the ball
downward, and the air-resistive force acts in a direction op-
posite to the velocity, gradually reducing the ball’s velocity.

Contrary to Aristotle’s view, no forces are needed to
keep the ball moving once it has been thrown. In fact, if an
object is thrown in deep space, where air resistance is non-
existent and gravitational forces are very weak, it would
keep moving with constant velocity, as stated in Newton’s
first law. So, be careful with your tools when you are
working in space outside of your spacecraft.

Because the air-resistive force or the push exerted by a
person throwing a ball varies with time, we have avoided
working out numerical examples for these situations. Just
identifying the forces involved and their causes due to
third-law interactions with other objects provides a useful
description of what is happening.

How do we analyze the motion
of connected objects?
Verification of Newton’s laws of motion came initially
from simpler examples that can be easily set up in the lab-
oratory. One example not difficult to picture and set up in
a physics laboratory (or even at home if suitable toys are
available) is two connected carts accelerated by the pull of
a string (fig. 4.18). To keep things simple, we will assume
that the carts have excellent wheel bearings, so that they
roll with very little friction. We will also assume that a
scale is available to determine the masses of the carts and
their contents.

To measure the magnitude of the force applied by the
string, we would have to insert a small spring balance
somewhere between the hand and the carts. The trickiest
part of the entire experiment is applying a steady force
with this arrangement while the carts are accelerating.
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figure 4.16 The force of air resistance R acting on a sky
diver increases as the velocity increases.

figure 4.17 Three forces act on a thrown ball, the initial push P, the weight W, and air resistance R.

W
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R
P

W
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What happens when a ball is thrown?
Aristotle had trouble explaining the motion of a thrown
object such as a ball, once it had left the thrower’s hand.
Let’s reconsider this example from a Newtonian perspec-
tive. Do we need a force to keep the ball moving? Not
according to Newton’s first law. Three forces, however, are
involved in the flight of the ball: the initial push by the
thrower, the downward pull of gravity, and (once again) air
resistance (fig 4.17).

To highlight Newton’s approach, it is best to break the
motion down into two different spans of time. The first is
the process of throwing, when the hand is in contact with
the ball. During this interval, the force P exerted by the
hand dominates the motion. The combined effects of the
other forces (gravity and air resistance) must be smaller
than the force P if the ball is to accelerate. Thus P accelerates
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If we know the masses of the carts and their contents,
and the magnitude of the force applied by the string, we
should be able to predict the value of the acceleration of the
system from Newton’s second law. (See example box 4.3.)
For the masses given in the example, and an applied force
of 36 N, we find an acceleration of 2.0 m/s2 for the two
carts. The acceleration could be verified experimentally by
measuring the time required for the carts to travel a fixed
distance and using the equations developed for constant
acceleration in chapter 2 to calculate an experimentally
determined value.

In example box 4.3, we first treated the two carts as a
single system to find the acceleration. Suppose, however,
that we wanted to know the magnitude of the force exerted
by the hooks connecting the two carts. In this case, it
makes sense to treat the motion of the individual carts sep-
arately. Once we know the acceleration, we again apply
Newton’s second law to find the net force acting on each
cart. This computation is done in the second part of exam-
ple box 4.3 and is illustrated in figure 4.19.

For the second cart, a force of 16 N is required to pro-
duce the acceleration of 2 m/s2. By Newton’s third law,
there should then be a force of 16 N pulling back on the
first cart. Combined with the forward force of 36 N ap-
plied by the string, this results in a net force of 20 N act-
ing on the first cart (36 N � 16 N). This is exactly the
value required to give the first cart an acceleration of
2 m/s2.

From this example, we see that Newton’s laws provide
a completely consistent picture of the forces and accelera-
tions of the different parts of the connected-cart system.
This is a necessary condition for us to accept the laws as
valid. Obviously, another condition is that any predictions
be confirmed by experimental measurements. This has
been done many times over by experiments similar to the
one we have dealt with here.

We could try many variations on this experiment in the
laboratory to see if the results agree with predictions de-
rived from Newton’s laws. Even with careful experimental
technique using accurate stopwatches and balances, how-
ever, our results are unlikely to agree exactly with our pre-
dictions. It is impossible to eliminate the effects of friction
completely, and none of our measurements can be made
with infinite precision. The art of the experimentalist is to
reduce these inaccuracies to a minimum as well as to pre-
dict how they affect our results.

Newton’s laws of motion provide both qualitative and 
quantitative explanations of any familiar motion. First, we
identify the forces acting on the object by examining
interactions with other objects. The relative sizes of these
forces, when added together, give the acceleration of the
object. The acceleration may change as the forces change
with time, as in the case of a sky diver. Newton’s laws
have been verified many times over by experimental tests
of their quantitative predictions. They are a much more
consistent theory of the causes of motion than the older
Aristotelian view.
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F = 36 N
m1m2

figure 4.18 Two connected carts being accelerated by a
force F applied by a string.

figure 4.19 The interaction between the two carts
illustrates Newton’s third law.

36 Nm1m2
16 N 16 N

example box 4.3

Sample Exercise: Connected Objects

Two connected carts are pulled across the floor under the
influence of a force of 36 N applied by a string (fig. 4.18).
The forward cart and its contents have a mass of 10 kg,
and the second cart and contents have a mass of 8 kg.
Assuming that frictional forces are negligible:

a. What is the acceleration of the two carts?
b. What is the net force acting on each cart?

a. Defining the system as both carts, as discussed in text:

m1 � 10 kg Fnet � ma
m2 � 8 kg
F � 36 N or:
a � ?

a � 2.0 m/s2 in the forward direction

b. Treating each cart separately:

Fnet � ? first cart
(for each cart) Fnet � ma

� (10 kg)(2 m/s2)
� 20 N

second cart
Fnet � ma

� (8 kg)(2 m/s2)
� 16 N

�
36 N

18 kg
� 2.0 m/s2

a �
Fnet

m
�

36 N

10 kg � 8 kg
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summary

In 1685, Newton published his Principia, in which he introduced
three laws of motion as the foundation of his theory of mechan-
ics. These laws continue to serve as an extremely useful model
for explaining the causes of motion and for predicting how ob-
jects will move in many familiar situations.

1 A brief history. Newton’s theory was constructed on
ground-work laid by Galileo and replaced a much earlier and
less quantitative model developed by Aristotle to explain motion.
Newton’s theory had much greater predictive power than Aristotle’s
ideas. Although we now recognize its limitations, Newton’s theory
is still used extensively to explain the motion of ordinary objects.

2 Newton’s first and second laws. Newton’s second
law states that the acceleration of an object is proportional to the
net external force acting on that object and inversely propor-
tional to the mass of the object. The first law, a special case of the
second law, describes what happens when the net force is zero.
The acceleration must then be zero, and the object moves with
constant velocity.

3 Mass and weight. Newton’s second law defines the
inertial mass of an object as the property that causes the object to
resist a change in its motion. The weight of an object is the grav-
itational force acting on the object and is equal to the mass multi-
plied by the gravitational acceleration g. The weight of an object
may vary as g varies, but mass is an inherent property of the ob-
ject related to its quantity of matter.

4 Newton’s third law. Newton’s third law completes
the definition of force by showing that forces result from inter-
actions between objects. If object A exerts a force on object B,
then object B exerts an equal-size but oppositely directed force on
object A.

5 Applications of Newton’s laws. In analyzing the
motion of an object using Newton’s laws, the first step is to iden-
tify the forces that act on the object due to interactions with other
objects. The strength and direction of the net force then deter-
mine how the object’s motion will change.

m
a

Fnet

a = m
Fnet

FA

A B

FB

FA FB= –

m

W = mg

W

P

W
N

f
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* � more open-ended questions, requiring lengthier responses, suitable
for group discussion

Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. Did Galileo’s work on motion precede in time that of
Aristotle or Newton? Explain.

Q2. Why did Aristotle believe that heavier objects fall faster
than lighter objects? Explain.

Q3. Aristotle believed that a force was necessary to keep an
object moving. Where, in his view, did this force come
from in the case of a ball moving through the air? Explain.

*Q4. How did Aristotle explain the continued motion of a
thrown object. Does this explanation seem reasonable to
you? Explain.

Q5. Did Galileo develop a more complete theory of motion
than that of Newton? Explain.

Q6. Two equal forces act on two different objects, one of
which has a mass ten times as large as the other. Will the
more massive object have a larger acceleration, an equal
acceleration, or a smaller acceleration than the less mas-
sive object? Explain.

Q7. A 3-kg block is observed to accelerate at a rate twice that of
a 6-kg block. Is the net force acting on the 3-kg block there-
fore twice as large as that acting on the 6-kg block? Explain.

Q8. Two equal-magnitude horizontal forces act on a box as
shown in the diagram. Is the object accelerated horizon-
tally? Explain.

Q13. A car goes around a curve traveling at constant speed.
a. Is the acceleration of the car zero in this process?

Explain.
b. Is there a non-zero net force acting on the car?

Explain.

*Q14. Is Newton’s first law of motion explained by the second
law? Explain. Why did Newton state the first law as a sep-
arate law of motion?

Q15. Is the mass of an object the same thing as its weight?
Explain.

Q16. The gravitational force acting on a lead ball is much larger
than that acting on a wooden ball of the same size. When
both are dropped, does the lead ball accelerate at the same
rate as the wooden ball? Explain, using Newton’s second
law of motion.

Q17. The acceleration due to gravity on the moon is approxi-
mately one-sixth the gravitational acceleration near the
Earth’s surface. If a rock is transported from Earth to
the moon, will either its mass or its weight change in the
process? Explain.

Q18. Is mass a force? Explain.

Q19. Two identical cans, one filled with lead shot and the other
with feathers, are dropped from the same height by a stu-
dent standing on a chair.
a. Which can, if either, experiences the greater force due

to the gravitational attraction of the Earth? Explain.
b. Which can, if either, experiences the greater accelera-

tion due to gravity? Explain.

Q20. A boy sits at rest on the floor. What two vertical forces act
upon the boy? Do these two forces constitute an action/
reaction pair as defined by Newton’s third law of motion?
Explain.

Q21. The engine of a car is part of the car and cannot push
directly on the car in order to accelerate it. What external
force acting on the car is responsible for the acceleration
of the car on a level road surface? Explain.

Q22. It is difficult to stop a car on an icy road surface. Is it also
difficult to accelerate a car on this same icy road? Explain.

Q23. A ball hangs from a string attached to the ceiling, as shown
in the diagram.
a. What forces act on the ball? How many are there?
b. What is the net force acting on the ball? Explain.
c. For each force identified in part (a), what is the reac-

tion force described by Newton’s third law of motion?

Questions 75

questions

F–F

m

F1 F2

Q9. Is it possible that the object pictured in question 8 is mov-
ing, given the fact that the two forces acting on it are equal
in size but opposite in direction? Explain.

Q10. Suppose that a bullet is fired from a rifle in outer space
where there are no appreciable forces due to gravity or air
resistance acting on the bullet. Will the bullet slow down
as it travels away from the rifle? Explain.

Q11. Two equal forces act on an object in the directions pictured
in the diagram below. If these are the only forces involved,
will the object be accelerated? Explain, using a diagram.

Q12. An object moving horizontally across a table is observed
to slow down. Is there a non-zero net force acting on the
object? Explain.

Q8 Diagram

Q11 Diagram

Q23 Diagram
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*Q24. When a magician performs the tablecloth trick, the objects
on the table do not move very far. Is there a horizontal
force acting on these objects while the tablecloth is being
pulled off the table? Why do the objects not move very
far? Explain.

Q25. A sprinter accelerates at the beginning of a 100-meter race
and then tries to maintain maximum speed throughout the
rest of the race.
a. What external force is responsible for accelerating the

runner at the beginning of the race? Explain carefully
how this force is produced.

b. Once the runner reaches her maximum velocity, is it
necessary to continue pushing against the track in order
to maintain that velocity? Explain.

Q26. A mule is attempting to move a cart loaded with rock.
Since the cart pulls back on the mule with a force equal in
size to the force that the mule exerts on the cart (according
to Newton’s third law), is it possible for the mule to accel-
erate the cart? Explain.

Q27. The upward normal force exerted by the floor on a chair is
equal in size but opposite in direction to the weight of the
chair. Is this equality an illustration of Newton’s third law
of motion? Explain.

Q28. A toy battery-powered tractor pushes a book across a
table. Draw separate diagrams of the book and the tractor
identifying all of the forces that act upon each object.
What is the reaction force described by Newton’s third law
of motion for each of the forces that you have drawn?

Q29. Two masses, m1 and m2, connected by a string, are placed
upon a fixed frictionless pulley as shown in the diagram.
If m2 is larger than m1, will the two masses accelerate?
Explain.

Q30. Two blocks with the same mass are connected by a string
and are pulled across a frictionless surface by a constant
force, F, exerted by a string (see diagram).
a. Will the two blocks move with constant velocity?

Explain.
b. Will the tension in the connecting string be greater

than, less than, or equal to the force F? Explain.

*Q31. Suppose that a sky diver wears a specially lubricated suit
that reduces air resistance to a small constant force that
does not increase as the diver’s velocity increases. Will the
sky diver ever reach a terminal velocity before opening her
parachute? Explain.

Q32. If you get into an elevator on the top floor of a large build-
ing and the elevator begins to accelerate downward, will
the normal force pushing up on your feet be greater than,
equal to, or less than the force of gravity pulling down-
ward on you? Explain.

Q33. If the elevator cable breaks and you find yourself in a con-
dition of apparent weightlessness as the elevator falls, is
the gravitational force acting upon you equal to zero?
Explain.

m1

m2

F

E1. A single force of 40 N acts upon a 5-kg block. What is the
magnitude of the acceleration of the block?

E2. A ball with a mass of 2.5 kg is observed to accelerate at a
rate of 6.0 m/s2. What is the size of the net force acting on
this ball?

E3. A net force of 20 N acting on a wooden block produces an
acceleration of 4.0 m/s2 for the block. What is the mass of
the block?

E4. A 3.0-kg block being pulled across a table by a horizontal
force of 80 N also experiences a frictional force of 5 N.
What is the acceleration of the block?

E5. A pulled tablecloth exerts a frictional force of 0.6 N on a
plate with a mass of 0.4 kg. What is the acceleration of the
plate?

exercises

Q29 Diagram

Q30 Diagram
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E6. A 6-kg block being pushed across a table by a force P has
an acceleration of 3.0 m/s2.
a. What is the net force acting upon the block?
b. If the magnitude of P is 20 N, what is the magnitude of

the frictional force acting upon the block?

E7. Two forces, one of 50 N and the other of 30 N, act in oppo-
site directions on a box as shown in the diagram. What is
the mass of the box if its acceleration is 4.0 m/s2?

E8. A 4-kg block is acted upon by three horizontal forces as
shown in the diagram.
a. What is the net horizontal force acting on the block?
b. What is the horizontal acceleration of the block?

E9. A 4-kg sled sliding freely on an icy surface experiences a
2-N frictional force exerted by the ice and an air-resistive
force of 0.5 N.
a. What is the net force acting on the sled?
b. What is the acceleration of the sled?

E10. What is the weight of a 40-kg mass?

E11. What is the mass of a 196-N weight?

E12. Jennifer has a weight of 110 lb.
a. What is her weight in newtons? (1 lb � 4.45 N)
b. What is her mass in kilograms?

E13. The author of this text has a weight of 600 N.
a. What is his mass in kilograms?
b. What is his weight in pounds? (1 lb � 4.45 N)

E14. Who has the larger mass, a man weighing 145 lb or one
weighing 735 N?

E15. At a given instant in time, a 4-kg rock that has been dropped
from a high cliff experiences a force of air resistance of
15 N. What are the magnitude and direction of the accelera-
tion of the rock? (Do not forget the gravitational force!)

E16. At a given instant in time, a 5-kg rock is observed to be
falling with an acceleration of 7.0 m/s2. What is the magni-
tude of the force of air resistance acting upon the rock at
this instant?

E17. A 0.5-kg book rests on a table. A downward force of 6 N is
exerted on the top of the book by a hand pushing down on
the book.
a. What is the magnitude of the gravitational force acting

upon the book?
b. What is the magnitude of the upward (normal) force

exerted by the table on the book? (Is the book acceler-
ated?)

E18. An upward force of 18 N is applied via a string to lift a ball
with a mass of 1.5 kg.
a. What is the net force acting upon the ball?
b. What is the acceleration of the ball?

E19. A 60-kg woman in an elevator is accelerating upward at a
rate of 1.2 m/s2.
a. What is the net force acting upon the woman?
b. What is the gravitational force acting upon the woman?
c. What is the normal force pushing upward on the

woman’s feet?

synthesis problems

SP1. A constant horizontal force of 30 N is exerted by a string
attached to a 5-kg block being pulled across a tabletop. The
block also experiences a frictional force of 5 N due to con-
tact with the table.
a. What is the horizontal acceleration of the block?
b. If the block starts from rest, what will its velocity be

after 3 seconds?
c. How far will it travel in these 3 seconds?

SP2. A rope exerts a constant horizontal force of 250 N to pull
a 60-kg crate across the floor. The velocity of the crate
is observed to increase from 1 m/s to 3 m/s in a time of
2 seconds under the influence of this force and the fric-
tional force exerted by the floor on the crate.
a. What is the acceleration of the crate?
b. What is the net force acting upon the crate?
c. What is the magnitude of the frictional force acting on

the crate?
d. What force would have to be applied to the crate by the

rope in order for the crate to move with constant veloc-
ity? Explain.

SP3. A dish with a mass 0.4 kg has a force of kinetic friction
of 0.15 N exerted on it by a moving tablecloth for a time 
of 0.2 s.
a. What is the acceleration of the dish?
b. What velocity does it reach in this time, starting from

rest?
c. How far (in cm) does the dish move in this time?

SP4. A 60-kg crate is lowered from a loading dock to the floor
using a rope passing over a fixed support. The rope exerts a
constant upward force on the crate of 500 N.
a. Will the crate accelerate? Explain.
b. What are the magnitude and direction of the accelera-

tion of the crate?
c. How long will it take for the crate to reach the floor if

the height of the loading dock is 1.4 m above the floor?
d. How fast is the crate traveling when it hits the floor?

30 N

50 N

2 kg 25 N

5 N10 N

E7 Diagram

E8 Diagram
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SP5. Two blocks tied together by a horizontal string are being
pulled across the table by a horizontal force of 30 N as
shown. The 2-kg block has a 6-N frictional force exerted
on it by the table, and the 4-kg block has an 8-N frictional
force acting on it.
a. What is the net force acting on the entire two-block

system?
b. What is the acceleration of this system?
c. What force is exerted on the 2-kg block by the connect-

ing string? (Consider only the forces acting on this block.
Its acceleration is the same as that of the entire system.)

d. Find the net force acting on the 4-kg block and calcu-
late its acceleration. How does this value compare to
that found in part b?

SP6. A 60-kg man is in an elevator that is accelerating down-
ward at the rate of 1.4 m/s2.
a. What is the true weight of the man in newtons?
b. What is the net force acting on the man required to pro-

duce the acceleration?

c. What is the force exerted on the man’s feet by the floor
of the elevator?

d. What is the apparent weight of the man in newtons?
(This is the weight that would be read on the scale dial
if the man were standing on a bathroom scale in the
accelerating elevator.)

e. How would your answers to parts b through d change if
the elevator were accelerating upward with an accelera-
tion of 1.4 m/s2?

SP7. A sky diver has a weight of 750 N. Suppose that the air-
resistive force acting on the diver increases in direct pro-
portion to his velocity such that for every 10 m/s that the
diver’s velocity increases, the force of air resistance
increases by 100 N.
a. What is the net force acting on the sky diver when his

velocity is 40 m/s?
b. What is the acceleration of the diver at this velocity?
c. What is the terminal velocity of the sky diver?
d. What would happen to the velocity of the sky diver if

for some reason (perhaps a brief down draft) his veloc-
ity exceeded the terminal velocity? Explain.

30 N

6 N

2 kg 4 kg

8 N

HE1. Collect a variety of small objects such as coins, pencils,
keys, and bottle caps. Ice cubes, if they are available, also
make excellent test objects. Try sliding these objects across
a smooth surface such as a tabletop or floor, being as con-
sistent as possible in the initial velocity that you give to
them.
a. Do the objects slide the same distance after they leave

your hand? What differences are apparent, and how are
they related to the nature of the surface and size of the
objects? Which objects come closest to demonstrating
Newton’s first law of motion?

b. What factors seem to be important in reducing the fric-
tional force between the objects and the surface upon
which they are sliding? If you see some general princi-
ple at work, test this idea by finding other objects that
would support your hypothesis.

HE2. Place a sheet of paper under a medium-sized book lying on
a smooth tabletop or desktop.
a. Try to accelerate the book smoothly by exerting a con-

stant pull on the sheet of paper. What happens if you try
to accelerate the book too rapidly? Can you pull the
paper cleanly from underneath the book without mov-
ing the book? Explain your observations in terms of
Newton’s laws of motion.

b. Repeat these observations with a few books in a stack.
How does increasing the mass of the books affect the
results?

c. Try other objects. Which objects move the least when
the paper is pulled rapidly?

HE3. Falling objects whose surface area is large relative to their
weight will reach terminal velocity more readily than a ball
or a rock. Test several objects, such as a balloon, small
pieces of paper, plant parts (leaves, flowers, or seeds), or
whatever you think might work. Do these objects reach a
terminal velocity? How far does each object fall before
reaching constant velocity? How does the rate of fall differ
for different objects when dropped at the same time?
Which of the objects tested produces the clearest demon-
stration of terminal velocity, showing first a brief accelera-
tion followed by a constant velocity?

HE4. Using elevators in your dormitory or other campus build-
ings, observe the effects of the elevator’s acceleration. Most
elevators accelerate briefly as they start and again as they
stop (deceleration). Express elevators in high-rise buildings
are best for observing the effects of acceleration.
a. If you have a bathroom scale, see how much your ap-

parent weight differs from your true weight when the
elevator is stopping or starting. Can you estimate the rate
of acceleration from this information? (See everyday
phenomenon box 4.2 and synthesis problem 6.)

b. Try holding your arm away from your body and main-
taining it in this position as the elevator accelerates. How
difficult is this to do for different conditions during the
motion of the elevator? Explain your observations.

SP5 Diagram

home experiments and observations
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chapter

Circular Motion, the
Planets, and Gravity

5
chapter overview
Using the example of a ball on a string, we first examine the
acceleration involved in changing the direction of the velocity in circular
motion (centripetal acceleration). Then we consider the forces involved
in producing a centripetal acceleration in different cases, including that
of a car rounding a curve. Kepler’s laws of planetary motion will then
be examined and Newton’s law of universal gravitation will be
introduced to explain the motion of the planets. We will also show how
this gravitational force relates to the weight of an object and the
gravitational acceleration near the Earth’s surface.

chapter outline
1 Centripetal acceleration. How can we describe the acceleration

involved in changing the direction of an object’s velocity? How does
this acceleration depend on the object’s speed?

2 Centripetal forces. What types of forces are involved in producing
centripetal accelerations in different situations? What forces are
involved for a car rounding a curve?

3 Planetary motion. How do the planets move around the sun? How has
our understanding of planetary motion changed historically? What
are Kepler’s laws of planetary motion?

4 Newton’s law of universal gravitation. What is the fundamental nature
of the gravitational force, according to Newton? How does this force
help to explain planetary motion?

5 The moon and other satellites. How does the moon orbit the Earth?
How do the orbits of artificial satellites differ from the moon and from
each other?
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“The car failed to negotiate the curve.” How many
times have you seen a phrase like that in an accident
report in the newspapers? Either the road surface was
slippery or the driver was driving too fast for the sharp-
ness of the curve. In either case, poor judgment and
probably a poor sense of the physics of the situation
were at work (fig. 5.1).

When a car goes around a curve, the direction of its
velocity changes. A change in velocity means accelera-
tion, and by Newton’s second law, an acceleration re-
quires a force. The situation has much in common with 
a ball being twirled in a circle at the end of a string and
other examples of circular motion.

What forces keep a car moving around a curve? How
does the force required depend on the speed of the car
and the sharpness of the curve? What other factors are
involved? Finally, what does the car rounding a curve
have in common with the ball on a string and the mo-
tions of the planets around the sun?

The motions of the planets around the sun and the
moon around the Earth played important roles in the de-
velopment of Newton’s theory of mechanics. Newton’s
law of universal gravitation was a crucial part of that
theory. The gravitational force explains the behavior of
objects falling near the Earth’s surface, but it also explains

why the planets move in curved paths about the sun.
Circular motion is a very important special case of
motion in two dimensions, both in the history of physics
and in our everyday experience.

80 Chapter 5 Circular Motion, the Planets, and Gravity

figure 5.1 The car failed to negotiate the curve. Newton’s
first law at work.

5.1 Centripetal Acceleration
Suppose that we attach a ball to a string and twirl the ball
in a horizontal circle (fig. 5.2). With a little practice it is
not hard to keep the ball moving with a constant speed, but
the direction of its velocity changes continually. A change
in velocity implies an acceleration, but what is the nature
of this acceleration?

The key to this situation involves taking a careful look
at what happens to the velocity vector as the ball moves in
a circle. How does this vector change as the path of the ball
changes direction?

Can we evaluate the size of this change and how it is
related to the speed of the ball or the radius of the curve?
To define the concept of centripetal acceleration, we need
to answer these questions.

What is a centripetal acceleration?
What do we have to do to get the ball on the string to
change its direction? If you try twirling a ball as pictured
in figure 5.2, you will feel a tension in the string. In other
words, you have to apply a force by pulling on the string to
cause the change in direction of the ball’s velocity.

What would happen if this force were not present?
According to Newton’s first law of motion, an object will
continue moving in a straight line with constant speed if
there is no net force acting on the object. If the string
breaks, or if we let go of the string, this is exactly what

will happen. The ball will fly off in the direction that it
was traveling when the string broke (fig. 5.3). Without the
pull of the string, the ball will move in a straight line. It
will also fall, of course, as it is pulled down by the gravi-
tational force.

According to Newton’s second law of motion, if there is
a net force, there must be an acceleration (Fnet � ma). This
acceleration is associated with the change in the direction of
the velocity vector. In the case of the ball on the string, the
string pulls the ball toward the center of the circle causing

figure 5.2 A ball being twirled in a horizontal circle. Is the
ball accelerated?

gri12117_ch05_079-101.qxd  7/7/08  7:18 PM  Page 80



Confirming Pages

the direction of the velocity vector to change continually.
The direction of the force, and of the acceleration that it
produces, is toward the center of the circle. We call this
acceleration the centripetal acceleration:

Centripetal acceleration is the rate of change in velocity of an
object that is associated with the change in direction of the
velocity. Centripetal acceleration is always perpendicular to
the velocity vector itself and toward the center of the curve.

To find the size of the centripetal acceleration, we need
to determine how fast the velocity is changing. You might
guess that this depends on how rapidly you are twirling
the ball, but it also depends on the radius of the curve—the
size of the circle.

How do we find the change in velocity �v?
Figure 5.4 shows the ball and string as seen from above.
The ball is moving in a horizontal circle. Velocity vectors
are drawn on the circle at two positions separated by a
short time interval. The velocity v2 occurs a short time 
after the velocity v1, as the ball moves counterclock-
wise around the circle. These two vectors are drawn with
the same length, indicating that the speed of the ball is
unchanged.

The change in velocity, �v, is the difference between
the initial velocity and the final velocity for a given time
interval. In other words, the change in velocity is a vector
that is added to the initial velocity to produce the final ve-
locity. Adding �v to v1 produces v2. This vector addition 
is shown in the vector triangle to the right of the circle in 
figure 5.4. (See appendix C for a discussion of vector addi-
tion by graphical methods.)

Note that the vector �v has a direction different from
either of the velocity vectors. If we choose a short enough
time interval between the two positions, the direction of the
change in velocity points toward the center of the circle,
the direction of the instantaneous acceleration of the ball.
(Acceleration always has the same direction as the change
in velocity.) The ball is being accelerated toward the center
of the circle, the direction of the tension in the string.

What is the size of the centripetal
acceleration?
But how large is this centripetal acceleration, and how does
it depend on the speed of the ball and the radius of the
curve? The triangle illustrating the vector addition in fig-
ure 5.4 can be used to explore these questions. There are
three effects to consider:

1. As the speed of the ball increases, the velocity vectors
become longer, which makes �v longer. The triangle
in figure 5.4 becomes larger.

2. The greater the speed of the ball, the more rapidly the
direction of the velocity vector changes, because the
ball reaches the second position in figure 5.4 more
quickly.

3. As the radius of the curve decreases, the rate of change
in velocity increases because the direction of the ball
changes more rapidly. A tight curve (small radius) pro-
duces a large change, but a gentle curve (large radius)
produces a small change.

The first two effects both indicate that the rate of change
in velocity will increase with an increase in the speed of
the ball. Combining these two effects suggests that the cen-
tripetal acceleration should be proportional to the square of
the speed. We need to multiply by the speed twice. The
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v v

figure 5.3 If the string breaks, the ball flies off in a straight-
line path in the direction it was traveling at the instant the string
broke.

figure 5.4 The velocity vectors for two positions of a ball
moving in a horizontal circle. The change in velocity, �v, adds to
v1 to yield v2.

v2

v1

v2

v1

∆v
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third effect suggests that the rate of change of velocity is
inversely proportional to the radius of the curve. The larger
the radius, the smaller the rate of change. Taken together,
these effects produce the expression

for the size of the centripetal acceleration, ac. It is pro-
portional to the square of the speed and inversely propor-
tional to the radius, r, of the curve. The direction of the
centripetal-acceleration vector ac is always toward the cen-
ter of the curve, the direction of the change in velocity �v.

The ball moving in a circle is accelerated, even though
its speed remains constant. To change the direction of the
velocity vector is to change the velocity, and an acceler-
ation is involved. People often resist this idea: we use the
term acceleration in everyday language to describe in-
creases in speed without taking into account changes in
direction.

What force produces the centripetal
acceleration?
Since an object moving in a circle is accelerated, a force
must be acting to produce that acceleration, according to
Newton’s second law. For the ball on the string, the tension
in the string pulling on the ball provides the centripetal
acceleration. A closer look shows that this tension has both
horizontal and vertical components, since the string is not
completely within the horizontal plane. As shown in fig-
ure 5.5, the horizontal component of the tension pulls the
ball toward the center of the horizontal circle and produces
the centripetal acceleration.

The total tension in the string is determined by both
the horizontal and the vertical components of the tension.
The vertical component is equal to the weight of the ball,
since the net force in the vertical direction should be zero.
The ball stays in the horizontal plane of the circle and is not
accelerated in the vertical direction. In example box 5.1,

ac �
v2

r

the weight of the ball is approximately 0.50 N (W � mg),
so that becomes the value of the vertical component of the
tension.

The ball in example box 5.1 has a slow speed. Even at
this low speed, the horizontal component of the tension is
larger than the vertical component. As the ball twirls at a
faster rate, the centripetal acceleration increases even more
rapidly, since it is proportional to the square of the speed of
the ball. The horizontal component of the tension then
becomes much larger than the vertical component, which
remains equal to the weight of the ball (fig. 5.6). These
effects can be readily observed with your own ball and
string. Give it a try. You will feel the tension increase with
increasing speed.

Centripetal acceleration involves the rate of change in
the direction of the velocity vector. Its size is equal to the
square of the speed of the object divided by the radius of
the curve (ac � v2/r). Its direction is toward the center
of the curve. Just as with any acceleration, there must be
a force acting on the object to produce the centripetal
acceleration. For a ball on a string, that force is the hori-
zontal component of the tension in the string.
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figure 5.5 The horizontal component of the tension is the
force that produces the centripetal acceleration. The vertical
component of the tension is equal to the weight of the ball.

example box 5.1

Sample Exercise: Circular Motion of a Ball
on a String

A ball has a mass of 50 g (0.050 kg) and is revolving at
the end of a string in a circle with a radius of 40 cm
(0.40 m). The ball moves with a speed of 2.5 m/s, or one
revolution per second. (see Fig. 5.5)

a. What is the centripetal acceleration?
b. What is the horizontal component of the tension

needed to produce this acceleration?

a. v � 2.5 m/s
r � 0.40 m
ac � ?

b. m � 0.05 kg Fnet � Th � ma

Th � ? � (0.05 kg)(15.6 m/s2)

� 0.78 N

The horizontal component of the tension must equal 0.78 N
in magnitude. The vertical component of the tension must
equal the weight of the ball (0.50N) as discussed in the
text.

�

� 15.6 m/s2

(2.5 m/s)2

(0.4 m)

ac �
v2

r
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5.2 Centripetal Forces
For a ball twirled at the end of a string, the string pulls
inward on the ball, providing the force that causes the cen-
tripetal acceleration. For a car rounding a curve, however,
there is no string attached. Different forces must be at work
to provide the centripetal acceleration. A person riding on a
Ferris wheel also experiences circular motion. What forces
produce centripetal acceleration in these situations?

The net force that produces a centripetal acceleration
is often referred to as the centripetal force. This term is
sometimes a source of confusion, because it implies that
a special force is somehow involved. In fact, centripetal
forces are any force, or combination of forces, that acts
on an object in certain situations to produce the centripetal
acceleration. Almost any force can play this role: pulls
from strings, pushes from contact with other objects, fric-
tion, gravity, and so on. We need to analyze each situa-
tion separately to identify the forces and determine their
effects.

What force helps a car negotiate
a flat curve?
What forces are involved in producing the centripetal ac-
celeration for a car rounding a curve? It depends on whether
or not the curve is banked. The easiest situation to analyze
is when a curve is not banked, so that we deal with a flat
road surface.

For a flat road surface, friction alone produces the nec-
essary centripetal acceleration. The tendency of the car to
move in a straight line causes the tires to pull against the
pavement as the car turns. By Newton’s third law, the pave-
ment then pulls in the opposite direction on the tires (fig. 5.7).
The frictional force acting on the tires points toward the 
center of the curve. If this force were not present, the car
could not turn.

The size of a frictional force depends on whether or not
there is motion along the surfaces of contact producing the
friction. If there is no motion in the direction of the force,
we call it the static force of friction. If the object is slid-
ing, as it might on a wet or icy surface, the kinetic force of
friction is involved. Usually, the kinetic force of friction is
smaller than the maximum possible static force of friction,
so whether or not the car is skidding becomes an important
factor.

Unless the car has already begun to skid, the static force
of friction produces the centripetal acceleration for the car
rounding the curve. The part of the tire in contact with the
road is momentarily at rest on the road; it does not slide
along the road. If the tires do not move in the direction of
the frictional force, the static force is in effect.

How large is the required frictional force? It depends on
the speed of the car and the radius of the curve. From 
Newton’s second law, we know that the magnitude of the
required force is Fnet � mac, where the centripetal accelera-
tion ac is equal to v2/r. Putting these two ideas together, we
see that the frictional force f must be equal to mv2/r, since
it is the only force operating to produce the centripetal ac-
celeration. The speed of the car is a critical factor in deter-
mining how large a force is needed, which is why we often
slow down in approaching a curve.
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figure 5.6 At higher speeds, the string comes closer to lying
in the horizontal plane because a large horizontal component of
the tension is needed to provide the required centripetal force.

figure 5.7 The centripetal acceleration of a car rounding a
level curve is produced by frictional forces exerted on the tires by
the road surface.
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If the mass times the centripetal acceleration is greater
than the maximum possible frictional force, we are in trouble.
Because the square of the speed is involved in this re-
lationship, doubling the speed would require a frictional force
four times as large as that for the lower speed. Also, since we
cannot control the frictional force, a sharper curve with a
smaller radius r requires a lower speed. Both the speed and
the radius must be considered in making driving judgments.

What happens if the required centripetal force is larger
than the maximum possible frictional force? The frictional
force cannot produce the necessary centripetal accelera-
tion, and the car begins to skid. Once it is skidding, kinetic
friction comes into play rather than static friction. Since the
force of kinetic friction is generally smaller than that of
static friction, the frictional force decreases and the skid
gets worse. The car, like the ball on the broken string, fol-
lows its natural tendency to move in a straight line.

The maximum possible value of the frictional force is
dictated by the road and tire conditions. Any factor that
reduces the force of static friction will cause problems. Wet
or icy road surfaces are the usual culprits. In the case of
ice, the force of friction may diminish almost to zero, and
an extremely slow speed will be necessary to negotiate a
curve. There is nothing like driving on an icy road to give
you an appreciation of the value of friction. Newton’s first
law is illustrated vividly. (See also everyday phenomenon
box 5.1.)

What happens if the curve is banked?
If the road surface is properly banked, we are no longer to-
tally dependent on friction to produce the centripetal accel-
eration. For the banked curve, the normal force between the
car’s tires and the road surface can also be helpful (fig. 5.8).
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Seat Belts, Air Bags, and Accident Dynamics

The Situation. In automobile accidents, serious or fatal
injuries are often the result of riders being thrown from the
vehicle. Since the 1960s, federal regulations have required
that cars be equipped with seat belts. More recently, front-
seat air bags have also been required in an effort to reduce
the carnage. Still, we often read of people being thrown from
their vehicle in accident reports.

How do air bags and seat belts help? If your car is
equipped with air bags, as most now are, is it still necessary
to wear your seat belt? In what situations are air bags most
effective and when are seat belts essential?

The Analysis. Except in high-speed collisions where the
passenger compartment of the vehicle is crushed, most
injuries and fatalities are caused by motion of the rider
within, and outside of, the vehicle. The vehicle stops or
turns suddenly due to the collision and the rider continues
to move in a straight line, following Newton’s first law of
motion.

In a head-on collision, the car stops while the rider con-
tinues to move forward unless constrained. In the absence
of either seat belts or air bags, front-seat riders hit the wind-
shield or the steering column, resulting in serious head or
chest injuries. Seat belts can prevent this when used prop-
erly, but air bags are also designed to protect against these
injuries. As the rider begins to move forward relative to the
vehicle, the air bag inflates rapidly, providing a cushion
between the rider and other objects in the car. The rider
decelerates more gradually involving a smaller force and
less trauma. (This idea is best understood in terms of the
concept of impulse discussed in chapter 7.) Air bag usage
has resulted in a significant reduction in serious head and
chest injuries in head-on collisions with other vehicles or
with fixed objects.

Head-on collisions are not the most frequent type of
serious accident, however. Rollover accidents involving
single vehicles are common, and vehicles can also collide
in intersections, providing impacts to the side of the car.
In the latter case, the struck vehicle will often go into a
spin. In both of these cases, the vehicle undergoes rotational
motion while the rider moves forward in a straight line.

everyday phenomenon
box 5.1

(continued)

In a head-on collision, the air bag inflates rapidly to prevent the rider
from moving forward and colliding with the windshield or steering
column.
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The normal force N is always perpendicular to the surfaces
involved, so it points in the direction shown in the diagram.
The total normal force acting on the car (indicated in the
diagram) is the sum of those for each of the four tires.

Since the car is not accelerated vertically, the net force
in the vertical direction must be zero. The vertical compo-
nent of the normal force Nv must be equal in magnitude to
the weight of the car to yield a net vertical force of zero.
This fact determines how large the normal force will be.
Only the horizontal component of the normal force Nh

is in the appropriate direction to produce the centripetal
acceleration.

The angle of the banking and the weight of the car deter-
mine the size of the normal force. They also determine the
size of its horizontal component. At the appropriate speed,
this horizontal component pushing on the tires of the car is
all that is needed to provide the centripetal acceleration.
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figure 5.8 The horizontal component of the normal force
Nh exerted by the road on the car can help to produce the
centripetal acceleration when the curve is banked.

These are the accidents in which the rider is likely to be
thrown from the vehicle.

Will air bags help in these situations? Air bags are most
effective in head-on collisions and do not provide much pro-
tection against sideways motion of the rider. (Some newer
vehicles do come equipped with air bags in the front-seat
doors, which can protect against sideways movement, but air
bags are not usually provided for the rear seats.) In a rollover
accident, the vehicle goes into a spin about an axis through
its long dimension. The doors will sometimes open or the
windows will shatter during the first roll, providing openings
for the rider to fly through as he or she continues to move
forward while the vehicle turns. In some cases, the rider is
thrown from the vehicle and the vehicle then rolls over the
victim.

Seat belts can make a big difference. Because the vehicle
is turning rapidly in a rollover accident, a centripetal force
acting on the rider is necessary to hold the rider against the
seat rather than moving forward in a straight line. In the
absence of such a force, the rider is thrown outward against
the sides of the vehicle. Attempts by riders to brace them-
selves are usually totally inadequate to provide the required
centripetal force. The seat belt and shoulder harness, on the
other hand, can provide the force necessary to hold the rider
in place.

Statistics on accident fatalities are compelling. In rollover
accidents, riders who are wearing their seat belts generally
survive, while those who are not using their belts and shoul-
der harnesses are frequently killed or seriously injured. Often
those killed are thrown from the vehicle, but even when they

remain inside the vehicle, trauma from being thrown around
inside the vehicle can be fatal. Statistics indicate that a high
percentage of the deaths in rollover accidents involve riders
ejected from the vehicle.

Newton’s first law of motion is vividly illustrated in auto-
mobile accidents. An object keeps moving in a straight line
with constant speed unless acted upon by an external force.
Air bags and seat belts can provide that force, but seat belts
provide better protection for all passengers in rollover
accidents.

As the vehicle rolls, a rear-seat passenger is thrown against the side
of the vehicle (viewed from the back). A properly adjusted seat belt
and shoulder harness can prevent this.
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The higher the speed, the steeper the required banking angle
because a steeper angle produces a larger horizontal com-
ponent for the normal force. Fortunately, since both the
normal force and the required centripetal force are propor-
tional to the mass of the car, the same banking angle will
work for vehicles of different mass.

A banked curve is designed for a particular speed. Since
friction is also usually present, the curve can be negotiated
at a range of speeds above and below the intended speed.
Friction and the normal force combine to produce the re-
quired centripetal acceleration.

If the road is icy and there is no friction, the curve can
still be negotiated at the intended speed. Speeds higher than
that speed will cause the car to fly off the road, just as on
a flat road surface. Speeds too low, on the other hand, will
cause the car to slide down the icy banked incline toward
the center of the curve.

What forces are involved in riding
a Ferris wheel?
Riding a Ferris wheel is another example of circular mo-
tion that many of us have experienced. On a Ferris wheel,
the circular motion is vertical, unlike the horizontal circles
of our previous examples.

Figure 5.9 shows the forces exerted on the rider at the
bottom of the circle as the Ferris wheel turns. At this point
in the ride, the normal force acts upward and the weight
downward. Since the centripetal acceleration of the rider is
directed upward, toward the center of the circle, the net
force acting on the rider must also be upward. In other

words, the normal force of the seat pushing on the rider
must be larger than the weight of the rider.

By Newton’s second law, the net force must be equal to
the mass times the centripetal acceleration. In this case, the
centripetal force is the difference of two forces, the upward
normal force and the downward weight of the rider, so

Fnet � N � W � mac.

Since the normal force is larger than her weight, she feels
heavy in this position (N � W � mac). The situation is
similar to that in an upward accelerating elevator (see
everyday phenomenon box 4.2).

As the rider moves up or down along the sides of the
circle, a horizontal component of the normal force is needed
to provide the centripetal acceleration. This horizontal com-
ponent may be provided by the frictional force exerted by
the seat on the rider, by the seat back pushing on the rider
on the left side of the cycle, or by a seat belt or hand
bar on the right side of the cycle. The latter case is more
exciting.

At the top of the cycle, the weight of the rider is the
only force (other than a possible seat-belt force) in the ap-
propriate direction to produce the centripetal acceleration.
Again, from Newton’s second law, the net force must
equal the mass of the rider times the centripetal acceler-
ation, which is now directed downward. This yields the
relationship

Fnet � W � N � mac.

As the speed gets larger and the centripetal acceleration,
ac � v2/r, increases, the normal force must get smaller to
increase the total force. Usually, the top speed of the Ferris
wheel is adjusted so that the normal force is small when
the rider is at the top of the cycle. Since the force exerted
by the seat on the rider is small, the rider feels light, part
of the thrill of the ride.

If there is one nearby, take a break and go ride a Ferris
wheel. There is nothing like direct experience to bring
home the ideas we have just described. As you ride, try to
sense the direction and magnitude of the normal force. The
light feeling at the top and the sense of plunging outward
in the downward portion of the cycle are what the price of
the ride is all about.

A centripetal force is any force or combination of forces
that produces the centripetal acceleration for an object
moving around a curve. In the case of a car moving on a
flat road surface, the centripetal force is provided by fric-
tion. If the road surface is banked, the normal force of the
road pushing on the tires of the car also helps. In the case
of a Ferris wheel, the weight of the rider and the normal
force exerted by the seat on the rider combine to provide
the centripetal force. We use Newton’s laws of motion to
identify the forces and analyze each situation.

86 Chapter 5 Circular Motion, the Planets, and Gravity

W

N

figure 5.9 At the bottom of the cycle, the weight of the
rider and the normal force exerted by the seat combine to
produce the centripetal acceleration for a rider on a Ferris wheel.

gri12117_ch05_079-101.qxd  7/7/08  7:19 PM  Page 86



Confirming Pages

5.3 Planetary Motion
Have you ever watched Venus or Mars in the night sky and
wondered how and why their positions change from night to
night? From the standpoint of the history of science, the
motions of the planets are the most important examples of
centripetal acceleration. These objects are a part of our every-
day experience, yet many of us are surprisingly unaware of
how they move. How do the sun, the stars, and the planets
move? How can we make sense of the motions?

Early models of the heavens
Observing the heavens was probably a more popular pastime
when there were fewer roofs over our heads. If you have ever
spent a night in a sleeping bag under the stars, you probably
experienced a sense of wonder and amazement at all of those
bright objects out there. If you spent night after night observ-
ing the stars, you might notice, as the ancients did, that some
of the brightest objects move relative to the other stars.

These wanderers are the planets. The so-called fixed
stars always maintain the same relative position to one
another as they move across the sky (fig. 5.10). The Big
Dipper never seems to change its shape, but the planets
roam about with respect to the fixed stars in a regular but
curious fashion. Their motions excited the curiosity of
ancient observers of the heavens. They were carefully
tracked and often incorporated into religious and cultural
beliefs.

Suppose you were an early philosopher-scientist trying to
make sense of these motions. What kind of model might you
develop? Some features seem simple and regular. The sun, for
example, moves across the sky each day, from east to west, as
if it were at the end of an enormously long and invisible rope
tethered at the center of the Earth. The stars follow a similar
pattern. Their apparent motion as seen from Earth could be
explained by picturing them as lying on a giant sphere that
revolves around the Earth. This Earth-centered or geocentric
view of the universe seemed natural and reasonable.

The moon also moves across the sky in an apparently
circular orbit around the Earth. Unlike the stars, the moon
does not reappear in the same position each night. Instead,
it goes through a series of regular changes in position and
phase in a cycle of approximately 30 days. How many of
us can provide a clear explanation of the phases of the
moon? The motion of the moon will be considered more
fully in the final section of this chapter.

Early models of the motions of the heavenly bodies
developed by Greek philosophers involved a series of con-
centric spheres centered on the Earth. Plato and others of
his time viewed spheres and circles as ideal shapes that
would reflect the beauty of the heavens. The sun, the moon,
and the five planets known then each had its own sphere.
The fixed stars were on the outermost sphere. These
spheres were thought to revolve around the Earth in ways
that explained the positions of the heavenly bodies.

5.3 Planetary Motion 87

figure 5.10 A time-lapse photograph showing the apparent
motion of stars in the northern sky. Polaris (the “North star”) lies
near the center of the pattern and does not appear to move very
much. The entire pattern appears to rotate during the night about
a point near Polaris.

Unfortunately, the planets do not behave as though they
are on a continuously revolving sphere. The planets some-
times appear to move backward relative to their normal
direction of motion against the background of the fixed
stars. We call this retrograde motion. It takes a few months
for Mars to trace one of these retrograde patterns (fig. 5.11).

To explain the apparent retrograde motion of these plan-
ets, Ptolemy (Claudius Ptolemaeus), working in the second
century A.D., devised a more sophisticated model than the
one used by earlier Greek philosophers. Ptolemy’s model
used circular orbits rather than spheres but was still geo-
centric. He invented the idea of epicycles, circles that
rolled along the larger basic orbit of the planet around the

figure 5.11 An example of the retrograde motion of Mars
relative to the background of fixed stars. These changes take
place over a period of several months.
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Earth (fig. 5.12). The epicycles accounted for the retro-
grade motion and could also be used to explain other irreg-
ularities in planetary orbits.

Ptolemy’s model accurately predicted where to find the
planets at any given time of any year. As more accurate ob-
servations became available, refinements were needed, how-
ever, to improve the predictions. In some cases, this meant
adding epicycles to epicycles, but the basic scheme of cir-
cles was retained. Ptolemy’s system became part of the
accepted knowledge during the Middle Ages and was incor-
porated, along with many of Aristotle’s works, into the
teachings of the Roman Catholic Church and the emerging
European universities.

How did the Copernican model differ
from Ptolemy’s conception?
Ptolemy’s model is not the one that you were introduced to
in elementary school. It has been superseded. During the
sixteenth century, a Polish astronomer, Nicolaus Coperni-
cus (1473–1543) put forth a sun-centered or heliocentric
view, later championed by Galileo. Copernicus was not the
first to suggest such a model, but earlier heliocentric versions
had not taken hold. Copernicus spent many years working
out the details of his model, but he did not publish it until
within a year of his death.

Galileo was an early advocate of the Copernican model
and promoted it more vigorously than Copernicus himself.
In 1610, hearing of the invention of the telescope, Galileo
built his own improved version and turned it to the heav-
ens. He discovered that the moon has mountains, that Jupi-
ter has moons, and that Venus goes through phases like our
moon. He showed that the phases of Venus could be
explained better by the Copernican model than by a geo-
centric model. Galileo became famous throughout Europe
for his discoveries and ended up in trouble with church
authorities, a problem not to be taken lightly in his day.
People had been burned at the stake for similar offenses.

Copernicus placed the sun at the center of the circular
orbits of the planets and demoted the Earth to the status of
just another planet. Also, the Copernican model requires that
the Earth rotate on an axis through its center—thus explain-
ing the daily motions of the sun and the other heavenly bod-
ies (including the fixed stars). This idea was revolutionary at
the time. Why are we not blown away by the enormous
winds that rotation might produce? Perhaps the air near the
Earth’s surface is dragged along with the Earth.

The advantage of the Copernican view is that it does 
not require complicated epicycles to explain retrograde
motion, although epicycles were still used to make other
adjustments to planetary orbits. Retrograde motion comes
about because the Earth is orbiting the sun along with the
other planets. The position of Mars appears to change as
both Mars and Earth move in the same direction against the
background of the fixed stars (fig. 5.13). As the more rap-
idly moving Earth passes Mars, Mars slips behind and
briefly appears to move backward.

Accepting the Copernican model meant giving up the
Earth-centered view of the universe to endorse what
seemed to some to be an absurd proposition: that the Earth
rotates, with a frequency of one cycle per day. Since an
approximation of the radius of Earth was known (6400
km), rotation implied that we must be moving at roughly
1680 km/h (or just over 1000 MPH) if we are standing near
the equator on the Earth! We certainly do not feel that
motion.

Because Copernicus assumed the planets’ orbits to be
circular, the accuracy of his model for predicting was no
better than Ptolemy’s model. In fact, it required some ad-
justments (for which Copernicus used epicycles) just to
make it agree with already known astronomical data. Set-
tling the controversy generated by the competition between
the two models called for more accurate observations, a
project undertaken by a Danish astronomer, Tycho Brahe
(1546–1601).

Tycho was the last great naked-eye astronomer. He devel-
oped a large quadrant (fig. 5.14) that he used to make very
accurate sightings of the positions of the planets and stars. It
was capable of measuring these positions to an accuracy of 1⁄60

of a degree, considerably better than previously available
data. Tycho spent several years painstakingly collecting data
on the precise positions of the planets and other bodies—all
without the benefit of a telescope.
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figure 5.12 Ptolemy’s epicycles were circles rolling along
the circular orbits of the planets. This model explained the
retrograde motion observed for the outer planets.

Earth

Planet

Epicycle

Earth

Planet

gri12117_ch05_079-101.qxd  7/7/08  7:19 PM  Page 88



Rev. confirming Pages

of the path allowed by the string (fig. 5.15). A circle is a spe-
cial case of an ellipse in which the two foci coincide. The
orbits of most of the planets are very close to being circles,
but Tycho’s data were so precise that they showed a differ-
ence between a perfect circle, on one hand, and an ellipse
with two closely spaced foci. Kepler’s first law of planetary
motion states that the orbits of the planets are ellipses.

Kepler’s other two laws of planetary motion came after
even more laborious numerical trial and error with Tycho’s
data. Kepler’s second law describes how the planets move
faster when they are nearer to the sun, so that an imaginary
line drawn from the sun to the planet moves through equal
areas in equal times regardless of where it is in its orbit
(fig. 5.16)*. The first two laws were published in 1609.

The third law (published in 1619) states a relationship
between the average radius of the orbit and the time taken

5.3 Planetary Motion 89

Sun
Earth

Mars

Lines of sight

figure 5.14 Tycho Brahe’s large quadrant
permitted accurate measurement of the positions
of the planets and other heavenly bodies.

figure 5.15 An ellipse can be drawn by fixing a string at
two points (foci) and moving a pencil around the path permitted
by the string.

Kepler’s laws of planetary motion
Analyzing the data collected by Tycho fell to his assistant,
Johannes Kepler (1571–1630), after Tycho’s death. It was
an enormous task requiring the transformation of the data
to coordinates around the sun and then numerical trial and
error to find regular planetary orbits. It was already known
that these orbits were not perfect circles. Kepler was able
to show that the orbits of the planets around the sun were
ellipses, with the sun at one focus.

An ellipse can be drawn by attaching a string between
two fixed foci and then moving a pencil around the perimeter

*The second law turns out to be a consequence of conservation of angu-
lar momentum, which is discussed in chapter 8.

figure 5.13 As the Earth passes the more slowly moving Mars, Mars appears to move backward as seen against the
background of the much more distant fixed stars. (Not drawn to scale.)
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figure 5.16 Because planets move faster when nearer to
the sun, the radius line for each planet sweeps out equal areas
in equal times (Kepler’s second law). In other words, the two
blue sections each cover the same span of time and have the
same area. (Not drawn to scale.)

}25
days

25
days

Kepler’s Laws of Planetary Motion

1. The planets all move in elliptical orbits about the
sun, with the sun located at one focus of the ellipse.

2. An imaginary line drawn from the sun to any
planet moves through equal areas in equal inter-
vals of time.

3. If T is the amount of time taken for the planet to
complete one full orbit around the sun (period)
and if r is the average radius of the distance of the
orbit around the sun for each planet, then the ratio
of the square of the period to the cube of the radius
(T2/r3) is the same for all of the known planets.

example box 5.2

Sample Exercise: Using Kepler’s Third Law

How long does it takes Mars to complete one orbit around
the sun? The distance of Mars from the sun is
approximately 1.5 astronomical units (AU). (An AU is the
average distance from the Earth to the sun; thus the
radius of the earth’s orbit, REarth, is just 1 AU.)

REARTH � 1AU � the distance from Earth to the sun

RMars � 1.5 AU � the distance from Mars to the sun

TEarth � 1 Earth year (yr)

TMars � ? (in Earth years)

Kepler’s third law for this case can be stated as:

Cross multiplying, we find 

Therefore,

Inserting the given values:

(notice that the AU units cancel)

TMars � 23.4 yr2   L 1.8 Earth years.

T2
Mars � 3.4 yr2

T2
Mars �

(1.5AU)3
 
# (1yr) 2

(1AU) 3 ,

T2
Mars �

R3
Mars 

# T2
Earth

R3
Earth

 .

R3
Earth 

# T 2
Mars � R3

Mars 
# T 2

Earth.

R3
Mars

T 2
Mars

�
R3

Earth

T 2
Earth

.

bodies) and the more mundane motion of everyday objects
near the Earth’s surface.

Many of the early models for describing the motion of the
planets were geocentric (Earth-centered). Ptolemy’s model
included epicycles to explain the apparent retrograde motion
of the planets. Copernicus introduced a heliocentric
(sun-centered) model, which explained retrograde motion
more simply. This model was championed by Galileo.
Galileo was one of the first scientists to use a telescope
systematically, and he made significant discoveries 
supporting the heliocentric view. Kepler refined the
heliocentric model by showing that planetary orbits are
ellipses with some surprising regularities.

5.4 Newton’s Law of Universal
Gravitation
Planetary motion and centripetal acceleration lead us to the
next question. If the planets are moving in curved paths
around the sun, what force must be present to produce the
centripetal acceleration? You are probably aware that gravity

for one complete cycle around the sun (the period of the
orbit). Kepler found his third law after trying many other pos-
sible relationships between the periods, T, and the average
radii of the planetary orbits, r. To a high degree of accuracy,
he found that the ratio of the square of the period to the
cube of the radius (T2/r3) was the same for all of the known
planets (See example box 5.2). The behavior of the planets
is surprisingly regular. Kepler published his findings in
papers that also contained elaborate speculations on numer-
ical mysticism and musical harmonies associated with the
planets. Some of these ideas must have seemed strange to
Galileo and others who admired Kepler’s work.

Kepler’s laws added to the accuracy with which we can
predict the positions of the planets as they appear to wander
among the fixed stars. Like the Copernican model, Kepler’s
model was heliocentric (sun-centered), so it supported
Galileo’s efforts to overthrow the geocentric (Earth-centered)
model of Ptolemy. More importantly, however, Kepler’s laws
described a new set of precisely stated relationships that
called for explanation. The stage was set for Isaac Newton to
incorporate these relationships into a grand theory that
explains both celestial mechanics (the motion of the heavenly
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is involved, but that involvement was not at all obvious when
Newton began his work. How did Newton put it all together?

What was Newton’s breakthrough?
Newton realized that there is a similarity between the mo-
tion of a projectile launched near the Earth’s surface and the
orbit of the moon. To illustrate this point, Newton produced
a famous drawing similar to that shown in figure 5.17.

The idea is simple but earthshaking. Imagine, as Newton
did, a projectile being launched horizontally from an incred-
ibly high mountain. The larger the launch velocity, the far-
ther away from the base of the mountain the projectile will

land. At very large launch velocities, the curvature of the
Earth becomes a significant factor. In fact, if the launch
velocity is large enough, the projectile would never reach
the Earth’s surface. It keeps falling, but the curvature of the
Earth falls away, too. The projectile goes into a circular
orbit around the Earth.

Newton’s insight was that the moon, under the influ-
ence of gravity, is actually falling, just as a projectile does.
The moon, of course, is at a distance from the Earth much
greater than the height of any mountain. The same force that
accounts for the acceleration of objects near the Earth’s sur-
face, as described by Galileo, explains the orbit of the moon.

Newton’s law of universal gravitation
From Galileo’s work, Newton knew that near the Earth’s
surface the gravitational force is proportional to the mass
of the object, F � mg. Mass, then, should be involved in
any more general expression for the gravitational force.

Does the gravitational force vary with distance, though,
and, if so, how? The idea that a force could influence two
masses separated by a large distance was hard to accept
in Newton’s day (and, in some ways, even now). If such
a force exists, we would expect that this force “acting at a
distance” would decrease in strength as the distance
increases. Using geometrical reasoning (fig. 5.18), other
scientists had speculated that the force might be inversely
proportional to the square of the distance r between the
masses, but they could not prove it.

At this point, Kepler’s laws of planetary motion and the
concept of centripetal acceleration came into play. Newton
was able to prove mathematically that Kepler’s first and third
laws of planetary motion could be derived from the assump-
tion that the gravitational force between the planets and the
sun falls off with the inverse square of the distance. The
proof involved setting the assumed 1/r2 force equal to the
required centripetal force in Newton’s second law of motion.
All of Kepler’s laws are consistent with this assumption.
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figure 5.17 In a diagram similar to this, Newton imagined
a projectile fired from an incredibly high mountain. If fired with a
large enough horizontal velocity, the projectile falls toward the
Earth but never gets there.
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figure 5.18 If lines are drawn radiating outward from a point mass, the areas intersected by these lines increase in proportion to r2.
Does this suggest that the force exerted by the mass on a second mass might become weaker in proportion to 1/r2?
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The proof that Kepler’s laws could be explained by a
gravitational force proportional to the masses of two inter-
acting objects, and inversely proportional to the square of
the distance between the objects, led to Newton’s law of
universal gravitation. This law and Newton’s three laws
of motion are the fundamental postulates of his theory of
mechanics. The law of gravitation can be stated as

The gravitational force between two objects is proportional to
the mass of each object and inversely proportional to the
square of the distance between the centers of the masses:

where G is a constant. The direction of the force is attractive
and lies along the line joining the centers of the two masses
(fig. 5.19).

For this statement to be completely valid, the masses in
question must be either point masses or perfect spheres.

In Newton’s law of gravitation, G is the universal grav-
itational constant. It has the same value for any two ob-
jects. Newton did not actually know the value of this con-
stant, because he did not know the masses of the Earth, the
sun, and the other planets. Its value was determined
more than a hundred years later in an experiment done
by Henry Cavendish (1731–1810) in England. Cavendish
measured the very weak gravitational force between two
massive lead balls for different distances of separation. In
metric units, the value of G is

G � 6.67 � 10�11 N·m2/kg2.

The power-of-10 notation (see appendix B) is useful
here because G is a very small number. The power �11
means that the decimal point is located eleven places to the
left of where it is shown. If we did not use power-of-10
notation, the number would appear as

G � 0.000 000 000 066 7 N·m2/kg2.

Because of the small size of this constant, the gravitational
force between two ordinary-sized objects, such as people,
is extremely small and not usually noticeable. Cavendish’s
experiment required real ingenuity to measure such a weak
force.

F �
Gm1m2

r2 , How is weight related to the law
of gravitation?
Suppose that one of the masses is a planet or other very
large object. The force of gravity then can be quite large
because one of the masses is very large. Consider the force
exerted on a person standing on the surface of the Earth. As
figure 5.20 illustrates, the distance between the centers of
the two objects, the person and the Earth, is essentially the
radius of the Earth, re.

From Newton’s law of gravitation, the force on the per-
son must be F � Gmme/re

2, where m is the mass of the 
person and me is the mass of Earth. Since this gravi-
tational force is the weight of the person, we can also
express the force as F � W � mg. For these two expres-
sions for F to be the same, g, the gravitational acceleration,
must be related to the universal gravitational constant G by
g � Gme/re

2.
The gravitational acceleration near the Earth’s surface g is

therefore not a universal constant. It will be different on dif-
ferent planets and even slightly different at different points
on the Earth because of variations in the radius of the Earth
and other factors. The constant G is a universal constant of
nature that can be used to find the gravitational acceleration
for any planet if we know the radius and mass of the planet.

If we know the gravitational acceleration near the
Earth’s surface, it is easier to use the expression F � mg
to compute a weight than to use the law of universal grav-
itation. This computation is done both ways in the sample
exercise in example box 5.3. Either way, we get the same
result. The weight of the 50-kg person is approximately
490 N. The mass of Earth, 5.98 � 1024 kg, is a very large
number that was first determined by Cavendish when he
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figure 5.19 The gravitational force is attractive and acts
along the line joining the center of the two masses. It obeys
Newton’s third law of motion (F2 � �F1).

figure 5.20 For the Earth and an object near the Earth’s
surface, the distance between the centers of the two objects is
equal to the radius of the Earth.
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measured the universal constant G. In a sense, Cavendish
weighed the Earth by making that measurement.

If we wanted to know the gravitational force exerted on
a 50-kg person in a space capsule several hundred kilome-
ters above the Earth, we would have to use the more gen-
eral expression in Newton’s law of gravitation. Likewise, if
we wanted to know the weight of this person when stand-
ing on the moon, we would need to use the mass and radius
of the moon in place of those of the Earth in our calcula-
tion. The weight of a 50-kg person on the moon is only
about 1⁄6 the value of 490 N that we computed for the same
person standing on Earth. The expression F � mg is valid
only near the surface of the Earth.

The weaker gravitational force and acceleration of the
moon are explained by the moon’s smaller mass. Since our
muscles are adapted to conditions on Earth, we would find
that our smaller weight on the moon makes some amazing
leaps and bounds possible. The smaller gravitational force
on objects near the moon’s surface also explains why the
moon has essentially no atmosphere. Gas molecules escape
the gravitational pull of the moon much more readily than
they can from the Earth.

Newton recognized that the moon is falling toward the
Earth much like projectiles moving near the Earth’s surface.
He proposed that the gravitational force that explains pro-
jectile motion is also involved in the motions of the plan-
ets around the sun and of the moon around the Earth.

Newton’s law of universal gravitation states that the grav-
itational force between two masses is proportional to the
product of the masses and inversely proportional to the
square of the distance between them. Using this law and
his laws of motion, Newton was able to explain Kepler’s
laws of planetary motion as well as the motion of ordi-
nary objects near the Earth’s surface.

5.5 The Moon and Other Satellites
The moon has fascinated people as long as humanity has
existed and wondered about nature. In the twentieth cen-
tury, we have actually visited the moon for the first time
and brought back samples from its surface. That visit has
not dulled the romance that the moon holds for us, but it
may have reduced its mystery.

How are the phases of the moon associated with changes
in its position? Are Kepler’s laws of planetary motion valid
for the moon? How are the orbits of other satellites of
Earth similar to the moon’s?

How do we explain the phases of the moon?
The moon was the only Earth satellite available to Newton
and his predecessors to study. The moon played a pivotal
role in Newton’s thinking and in the development of his law
of gravitation. Observations of the moon and its phases, how-
ever, go back much farther than Newton’s day. The moon
figures in many early religions and rituals. Its course must
have been carefully followed even in prehistoric times.

How do we explain the phases of the moon? Is the time
that the moon rises in the evening related to whether it will
be a full moon or not? Moonlight is reflected sunlight. So,
to understand the moon’s phases, we have to take into ac-
count the positions of the sun, the moon, and the observer
(fig. 5.21). When the moon is full, it is on the opposite side
of the Earth from the sun, and we see the side that is fully
illuminated by the sun. The full moon rises in the east
about the same time that the sun sets in the west. These
events are determined by the Earth’s rotation.

Because Earth and the moon are both small compared
to the distances between Earth, the moon, and the sun, they
do not usually get in the way of light coming from the sun.
When they do, however, there is an eclipse. During a lunar
eclipse, Earth casts a full or partial shadow on the moon.
From figure 5.21, we can see that a lunar eclipse can only
occur during a full moon. A solar eclipse happens when
the moon is in the right position to cast a shadow on the
Earth. During what phase of the moon will this occur?

At other times during the moon’s 27.3-day revolution
around the Earth, we do not see all of the illuminated side
of the moon; we see a crescent or a half-moon or some
shape in between (fig. 5.22). The new moon occurs when
the moon is on the same side of Earth as the sun and is
more or less invisible. When we are a few days on either
side of the new moon, we see the familiar crescent.
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example box 5.3

Sample Exercise: Gravity, Your Weight, and the
Weight of the Earth

The mass of the Earth is 5.98 � 1024 kg, and its average
radius is 6370 km. Find the gravitational force (the weight)
of a 50-kg person standing on Earth’s surface

a. by using the gravitational acceleration.
b. by using Newton’s law of gravitation.

a. m � 50 kg F � W � mg

g � 9.8 m/s2 � (50 kg)(9.8 m/s2)

F � ? � 490 N

b. me � 5.98 � 1024 kg

re � 6.37 � 106 m

F � W � Gmme/re
2 

� 

� 490 N

Most scientific calculators will handle the scientific
notation directly. The powers add for multiplication and
subtract in division.

(6.67 � 10�11 N#m2/kg2)(50 kg)(5.98 � 1024 kg)

(6.37 � 106 m)2
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The next time you see the moon, think about where it is
in the sky, when it will rise and set, and how this is related to
its phase. Better yet, try explaining this to a friend. You too
can be the wizard who predicts the motions of the heavens.

Does the moon obey Kepler’s laws?
The moon’s orbit around Earth is more complicated than
those of the planets because two bodies, Earth and the sun,
exert strong forces on the moon, rather than just one (fig.
5.23). Earth is much closer to the moon than the sun is, but
the sun has a much larger mass than Earth, so the sun’s
effect is still appreciable. First, let’s consider just the effects
of Earth on the moon’s motion.
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figure 5.22 Photographs of different phases of the moon.
When during the day will each rise and set?

Explaining the Tides

The Situation. Anyone who has lived near the ocean is famil-
iar with the regular variation of the tides. Roughly twice a day
the tides go in and go out again. The actual cycle of two high
tides and two low tides is closer to 25 hours. Sometimes
high tide is higher and low tide is lower than at other times—
these times correspond to the full moon or the new moon.

The times when high tides and low tides happen shift
from day to day because of their 25-hour cycle, but the pat-
tern repeats monthly. How do we explain this behavior?

The Analysis. The monthly cycle and the correlations of the
highest tides with the phase of the moon suggest a lunar
influence. Both the moon and the sun exert gravitational
forces on the Earth. The sun exerts the stronger force because
of its much larger mass, but the moon is much closer, and
variations in its distance from Earth may be significant. The
gravitational force depends on 1/r2, so its strength will vary
as the distance r varies, as indicated in the drawing on
page 95.

High tide Low tide

everyday phenomenon
box 5.2

(continued)

High tide and low tide produce different water levels at the dock.

Half-moon

Full
moon

Sun Earth
New
moon

Half-moon

figure 5.21 The phases of the moon depend on the positions
of the sun, the moon, and the Earth. (Not drawn to scale.)

When the moon is between full moon and new moon, it
can often be seen during daylight. In particular, when it is
near half-moon, it rises around noon and sets around mid-
night (or vice versa, depending on where it is in its cycle).
Under just the right conditions near sunset or sunrise, we
can sometimes see the dark portion of the crescent moon
illuminated by earthshine.
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The physics of the situation is the same as for the orbits
of the planets around the sun. The gravitational attraction
between the moon and Earth provides the centripetal
acceleration to keep the moon moving in its roughly circu-
lar orbit. By Newton’s law of gravitation, the gravitational
force acting on the moon is proportional to 1/r2, where r
is the distance between the center of the moon and the cen-
ter of Earth. The tides can be explained by this depen-
dence of the gravitational force on distance. (See everyday
phenomenon box 5.2.)

Like the planets, the moon’s orbit is an ellipse but with
the Earth at one focus of the ellipse rather than the sun. The
sun also exerts a force on the moon that distorts the ellipse,
causing the moon’s orbit around Earth to oscillate about a
true elliptical path as the moon and Earth orbit together
around the sun. Calculating these oscillations was a prob-
lem that kept mathematical physicists busy for many years.

Kepler’s first and second laws of planetary motion are
approximately true for the moon, provided that we substi-
tute the Earth for the sun in the statement of these laws.

Kepler’s third law shows some differences between the
moon and the planets. When Newton derived the expres-
sion for the ratio in Kepler’s third law, he arrived at the
expression

where ms is the mass of the sun. For the moon, we would
replace the mass of the sun with the mass of Earth. We get
a different ratio for the moon’s orbit around Earth than for
the orbits of the planets around the sun.

Orbits of artificial satellites
Any satellite orbiting the Earth must have the same value
for the ratio T2/r3 as the moon. Kepler’s third law holds for
any satellite of Earth, then, as long as we keep in mind that
the ratio will not have the same value as it does for the
orbits of the planets. The value of this ratio for Earth satel-
lites is calculated either from the Earth’s mass or from the

T 2

r 3
 �  

4�2

Gms
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Since water is a fluid (except when frozen), the water that
makes up the oceans moves over the more rigid crust of
Earth. The primary force acting on the water is the gravita-
tional attraction of Earth that holds the water to the Earth’s
surface. The gravitational force exerted by the moon on the
water is also significant, however, and its strength per unit
mass is greatest on the side of Earth closest to the moon and
weakest on the opposite side of Earth because of the differ-
ence in distance.

This difference in strength of the moon’s pull produces a
bulge in the water surface on both sides of the Earth. The
bulge on the side nearest the moon results from the water
being pulled toward the moon by a stronger force per unit

mass than the force per unit mass exerted on the rest of the
Earth. This produces a high tide. The water will rise nearer 
to the top of the dock.

On the opposite side of the Earth, it is the Earth that is
being pulled by the moon with a stronger force per unit mass
than the water. Since the Earth is pulled away (slightly) from
the water, this also produces a high tide. The forces exerted
by the moon are small compared to the force that the water
and the Earth exert on each other but are still large enough
to produce the tides.

When the sun and the moon both line up with the Earth
during the new moon or full moon, the sun also contributes
to this difference in forces and produces bulges on either
side of the Earth, adding to those produced by the moon.
The highest tides occur during a full moon or a new moon
because of this combination of the moon and sun.

Why is the cycle 25 hours rather than 24 hours? The high-
tide bulges occur on either side of Earth along the line joining
the moon and the Earth. The Earth rotates underneath these
bulges with a period of 24 hours, but in this time, the moon
also moves, since it orbits Earth with a period of 27.3 days. In
one day, therefore, the moon has moved through roughly 1/27

of its orbital cycle, causing the time when the moon again
lines up with a given point on Earth to be a little longer than
1 day. This additional time is approximately 1/27 of 24 hours,
or a little less than an hour.

This model was conceived by Newton and accounts neatly
for the major features of the tides. The variation of the gravi-
tational force with distance is the key to the explanation.

r2
r

r1

Moon

Because it depends on distance, the gravitational force per unit mass
exerted by the moon on different parts of the Earth (and water in the
oceans) gets weaker as we move from the side nearer the moon to
the far side. (Not drawn to scale; the bulges here are greatly
exaggerated.)
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values of the period and average distance of the moon’s
orbit.

Any artificial satellite of Earth must have the same value
for this ratio. If its distance from the center of the Earth r
is smaller than the moon’s distance, its orbital period T
must also be smaller to keep the ratio T2/r3 the same. Using
this ratio, we can calculate the appropriate distance from
Earth for any satellite if we know its orbital period. For
example, a satellite with a synchronous orbit has a period
of 24 hours, which keeps it above the same point on the
Earth as Earth rotates. From the third-law ratio, we find a
distance r of 42 000 km for such a satellite (measured from
the center of the Earth). Since Earth’s radius is 6370 km, this
is roughly seven times the radius of the Earth. Quite a ways
up, but not nearly as high as the moon.

Most artificial satellites are even closer to the Earth. The
original Russian satellite, Sputnik, for example, had a period
of about 90 minutes or 1.5 h. Using the third-law ratio, this
yields an average distance from the center of the Earth of
6640 km. Subtracting Earth’s radius, 6370 km, indicates
that this distance is only 270 km above the Earth’s surface.
The shorter the period, the closer the satellite is to the
Earth. The orbital period cannot be much shorter than
Sputnik’s before atmospheric drag becomes too large for
motion to be sustained. Obviously, the orbit cannot have a
radius smaller than Earth’s radius.

The orbits of different satellites are planned to meet dif-
ferent objectives. Some are close to circular, others much
more elongated ellipses (fig. 5.24). The plane of the orbit
can pass through the poles of the Earth (polar orbit) or take
any orientation between the poles and the equator. It all de-
pends on the mission of the satellite.

Artificial satellites have become a routine feature of
today’s world that did not exist before 1958 when Sputnik
was launched. Their uses are many, including communica-
tions, surveillance, weather observations, and various military

applications. The basic physics of their behavior is accounted
for by Newton’s theory. If Newton could return, he might
be amazed at the developments, but for him, the analysis
would be routine.

The motion of the moon around Earth is governed
by the same principles as that of the planets around the
sun. The gravitational force provides the centripetal accel-
eration that keeps the moon in an approximately elliptical
orbit. The moon is illuminated primarily by the sun, and
the phases of the moon can be explained by the moon’s
position with regard to the sun and Earth. The full moon
occurs when the sun and moon are on opposite sides of
the Earth. Other satellites of Earth are governed by these
principles, but Kepler’s third-law ratio has a different value
for satellites of Earth (including the moon) than it does for
the planets. The moon is no longer alone; it has been
joined by many much smaller objects buzzing around the
Earth in lower orbits.

96 Chapter 5 Circular Motion, the Planets, and Gravity

figure 5.24 The orbits of different artificial satellites can
have different orientations and elliptical shapes.

Polar orbit

150 million km

Sun Moon

Earth

figure 5.23 The moon is influenced by gravitational attraction to both the Earth and the sun. (Distances and sizes
not drawn to scale.)
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3 Planetary motion. Kepler’s three laws of planetary
motion describe the orbits of the planets around the sun. The
orbits are ellipses that sweep out equal areas in equal times (the
first and second laws). The third law states a relationship between
the period of the orbit and the distance of the planet from the sun.

Objects moving in circular paths are accelerated because the
direction of the velocity vector continually changes. The forces
involved in producing this centripetal acceleration were examined
for the motion of a ball on a string, cars rounding curves, a rider
on a Ferris wheel, and finally the planets moving around the sun.
The force providing the centripetal acceleration for planetary
motion is described by Newton’s law of gravitation.

1 Centripetal acceleration. Centripetal acceleration is
the acceleration involved in changing the direction of the velocity
vector. It is proportional to the square of the speed of the object
and inversely proportional to the radius of the curve.

v2

v1

ac = v2
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r 3
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Polar orbit

2 Centripetal forces. A centripetal force is any force or
combination of forces that acts on a body to produce the cen-
tripetal acceleration, including friction, normal forces, tension in
a string, or gravity. The net force is related to the centripetal ac-
celeration by Newton’s second law.

4 Newton’s law of universal gravitation. Newton’s
law of universal gravitation states that the gravitational force
between two masses is proportional to each of the masses and
inversely proportional to the square of the distance between the
masses. Using this law with his laws of motion, Newton could
derive Kepler’s laws of planetary motion.

5 The moon and other satellites. The moon’s orbit
around Earth can also be described by Kepler’s laws, provided we
substitute the mass of Earth for that of the sun in the expression
for the period. Artificial satellites have the same ratio T2/r3 as that
for the moon.
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questions

* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. Suppose that the speed of a ball moving in a horizontal cir-
cle is increasing at a steady rate. Is this increase in speed
produced by the centripetal acceleration? Explain.

Q2. A car travels around a curve with constant speed.
a. Does the velocity of the car change in this process?

Explain.
b. Is the car accelerated? Explain.

Q3. Two cars travel around the same curve, one at twice the
speed of the other. After traveling the same distance, which
car, if either, has experienced the larger change in velocity?
Explain.

Q4. A car travels the same distance at constant speed around
two curves, one with twice the radius of curvature of the
other. For which of these curves is the change in velocity of
the car greater? Explain.

*Q5. The centripetal acceleration depends upon the square of the
speed rather than just being proportional to the speed. Why
does the speed enter twice? Explain.

Q6. A ball on the end of a string is whirled with constant speed
in a counterclockwise horizontal circle. At point A in the
circle, the string breaks. Which of the curves sketched
below most accurately represents the path that the ball
will take after the string breaks (as seen from above)?
Explain.

Q7. Before the string breaks in question 6, is there a net force
acting upon the ball? If so, what is its direction? Explain.

Q8. For a ball being twirled in a horizontal circle at the end of
a string, does the vertical component of the force exerted
by the string produce the centripetal acceleration of the
ball? Explain.

Q9. A car travels around a flat (nonbanked) curve with constant
speed.
a. Sketch a diagram showing all of the forces acting on

the car.
b. What is the direction of the net force acting on the car?

Explain.

Q10. Is there a maximum speed at which the car in question 9
will be able to negotiate the curve? If so, what factors
determine this maximum speed? Explain.

Q11. If a curve is banked, is it possible for a car to negotiate
the curve even when the frictional force is zero due to
very slick ice? Explain.

*Q12. If a ball is whirled in a vertical circle with constant speed,
at what point in the circle, if any, is the tension in the
string the greatest? Explain. (Hint: Compare this situation
to the Ferris wheel described in section 5.2.)

Q13. Sketch the forces acting upon a rider on a Ferris wheel
when the rider is at the top of the cycle, labeling each
force clearly. Which force is largest at this point, and
what is the direction of the net force? Explain.

*Q14. In what way did the heliocentric view of the solar system
proposed by Copernicus provide a simpler explanation
of planetary motion than the geocentric view of Ptolemy?
Explain.

Q15. Did Ptolemy’s view of the solar system require motion of
the Earth, rotational or otherwise? Explain.

*Q16. Heliocentric models of the solar system (Copernican or
Keplerian) require that the Earth rotate on its axis produc-
ing surface speeds of roughly 1000 MPH. If this is the
case, why do we not feel this tremendous speed? Explain.

Q17. How did Kepler’s view of the solar system differ from
that of Copernicus? Explain.

Q18. Consider the method of drawing an ellipse pictured in fig-
ure 5.15. How would we modify this process to make the
ellipse into a circle, which is a special case of an ellipse?
Explain.

Q19. Does a planet moving in an elliptical orbit about the sun
move fastest when it is farthest from the sun or when it is
nearest to the sun? Explain by referring to one of Kepler’s
laws.

Q20. Does the sun exert a larger force on the Earth than that
exerted on the sun by the Earth? Explain.

Q21. Is there a net force acting on the planet Earth? Explain.

Q22. Three equal masses are located as shown in the diagram.
What is the direction of the net force acting upon m2?
Explain.

Q23. Two masses are separated by a distance r. If this distance
is doubled, is the force of interaction between the two
masses doubled, halved, or changed by some other
amount? Explain.

A

1

2

3
4

m1 m2 m3

Q6 Diagram

Q22 Diagram
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Q24. A painter depicts a portion of the night sky as shown in the
diagram below, showing the stars and a crescent moon. Is
this view possible? Explain.

Q25. At what times during the day or night would you expect the
new moon to rise and set? Explain.

Q26. At what times of the day or night does the half-moon rise
or set? Explain.

Q27. Are we normally able to see the new moon? Explain.

Q28. During what phase of the moon can a solar eclipse occur?
Explain.

*Q29. A synchronous satellite is one that does not move relative
to the surface of the Earth; it is always above the same
location. Why does such a satellite not just fall straight
down to the Earth? Explain.

Q30. Is Kepler’s third law valid for artificial satellites orbiting
about the Earth? Explain.

Q31. Since the Earth rotates on its axis once every 24 hours, why
don’t high tides occur exactly twice every 24 hours?
Explain.

Q32. Why is there a high tide rather than a low tide when the
moon is on the opposite side of the Earth from the ocean
and the gravitational pull of the moon on the water is the
weakest? Explain.

Q33. Would tides exist if the gravitational force did not depend
upon the distance between objects? Explain.

exercises

E1. A ball is traveling at a constant speed of 5 m/s in a circle
with a radius of 0.8 m. What is the centripetal acceleration
of the ball?

E2. A car rounds a curve with a radius of 25 m at a speed of
20 m/s. What is the centripetal acceleration of the car?

E3. A ball traveling in a circle with a constant speed of 3 m/s
has a centripetal acceleration of 9 m/s2. What is the radius
of the circle?

E4. How much larger is the required centripetal acceleration
for a car rounding a curve at 60 MPH than for one round-
ing the same curve at 30 MPH?

E5. A 0.25-kg ball moving in a circle at the end of a string has
a centripetal acceleration of 4 m/s2. What is the magnitude
of the centripetal force exerted by the string on the ball to
produce this acceleration?

E6. A car with a mass of 1200 kg is moving around a curve
with a radius of 40 m at a constant speed of 20 m/s (about
45 MPH).
a. What is the centripetal acceleration of the car?
b. What is the magnitude of the force required to produce

this centripetal acceleration?

E7. A car with a mass of 1000 kg travels around a banked
curve with a constant speed of 27 m/s (about 60 MPH). The
radius of curvature of the curve is 40 m.
a. What is the centripetal acceleration of the car?
b. What is the magnitude of the horizontal component of

the normal force that would be required to produce this
centripetal acceleration in the absence of any friction?

E8. A Ferris wheel at a carnival has a radius of 12 m and turns
so that the speed of the riders is 8 m/s.
a. What is the magnitude of the centripetal acceleration of

the riders?

b. What is the magnitude of the net force required to pro-
duce this centripetal acceleration for a rider with a mass
of 70 kg?

E9. What is the ratio of the Earth’s orbital period about the sun
to the Earth’s period of rotation about its own axis?

E10. Joe has a weight of 720 N (about 162 lb) when he is stand-
ing on the surface of the Earth. What would his weight (the
gravitational force due to the Earth) be if he doubled his dis-
tance from the center of the Earth by flying in a spacecraft?

E11. Two masses are attracted by a gravitational force of 0.36 N.
What will the force of attraction be if the distance between
the two masses is tripled?

E12. Two 200-kg masses (440 lb) are separated by a distance of
1 m. Using Newton’s law of gravitation, find the magni-
tude of the gravitational force exerted by one mass on the
other.

E13. Two masses are attracted by a gravitational force of 0.14 N.
What will the force of attraction be if the distance between
these two masses is halved?

E14. The acceleration of gravity at the surface of the moon is
approximately 1⁄ 6 that at the surface of the Earth (9.8 m/s2).
What is the weight of an astronaut standing on the moon
whose weight on Earth is 180 lb?

E15. The acceleration of gravity on the surface of Jupiter is
26.7 m/s2. What is the weight on Jupiter of a woman whose
weight on Earth is 110 lb?

E16. The time separating high tides is 12 hours and 25 minutes.
If high tide occurs at 2:10 P.M. one afternoon:
a. At what time will high tide occur the next afternoon?
b. When would you expect low tides to occur the next day?

Q24 Diagram
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synthesis problems

SP1. A 0.20-kg ball is twirled at the end of a string in a horizon-
tal circle with a radius of 0.60 m. The ball travels with a
constant speed of 4.0 m/s.
a. What is the centripetal acceleration of the ball?
b. What is the magnitude of the horizontal component of

the tension in the string required to produce this cen-
tripetal acceleration?

c. What is the magnitude of the vertical component of the
tension required to support the weight of the ball?

d. Draw to scale a vector diagram showing these two com-
ponents of the tension and estimate the magnitude of
the total tension from your diagram. (See appendix C.)

SP2. A Ferris wheel with a radius of 12 m makes one complete
rotation every 8 seconds.
a. Using the fact that the distance traveled by a rider in

one rotation is 2�r, the circumference of the wheel, find
the speed with which the riders are moving.

b. What is the magnitude of their centripetal acceleration?
c. For a rider with a mass of 40 kg, what is the magnitude

of the centripetal force required to keep that rider mov-
ing in a circle? Is the weight of the rider large enough to
provide this centripetal force at the top of the cycle?

d. What is the magnitude of the normal force exerted by
the seat on the rider at the top of the cycle?

e. What would happen if the Ferris wheel is going so fast
that the weight of the rider is not sufficient to provide
the centripetal force at the top of the cycle?

SP3. A car with a mass of 900 kg is traveling around a curve with
a radius of 60 m at a constant speed of 25 m/s (56 MPH).
The curve is banked at an angle of 15 degrees.
a. What is the magnitude of the centripetal acceleration of

the car?
b. What is the magnitude of the centripetal force required

to produce this acceleration?
c. What is the magnitude of the vertical component of the

normal force acting upon the car to counter the weight
of the car?

d. Draw a diagram of the car (as in fig. 5.8) on the banked
curve. Draw to scale the vertical component of the nor-
mal force. Using this diagram, find the magnitude of the
total normal force, which is perpendicular to the surface
of the road.

e. Using your diagram, estimate the magnitude of the hor-
izontal component of the normal force. Is this compo-
nent sufficient to provide the centripetal force?

SP4. Assume that a passenger in a rollover accident must turn
through a radius of 3.0 m to remain in the seat of the vehi-
cle. Assume also that the vehicle makes a complete turn in
1 second.
a. Using the fact that the circumference of a circle is 2�r,

what is the speed of the passenger?
b. What is the centripetal acceleration? How does it com-

pare to the acceleration due to gravity?
c. If the passenger has a mass of 60 kg, what is the cen-

tripetal force required to produce this acceleration?
How does it compare to the passenger’s weight?

SP5. The sun’s mass is 1.99 � 1030 kg, the Earth’s mass is
5.98 � 1024 kg, and the moon’s mass is 7.36 � 1022 kg.
The average distance between the moon and the Earth is
3.82 � 108 m, and the average distance between the Earth
and the sun is 1.50 � 1011 m.
a. Using Newton’s law of gravitation, find the average force

exerted on the Earth by the sun.
b. Find the average force exerted on the Earth by the moon.
c. What is the ratio of the force exerted on the Earth by the

sun to that exerted by the moon? Will the moon have
much of an impact on the Earth’s orbit about the sun?

d. Using the distance between the Earth and the sun as the
average distance between the moon and the sun, find
the average force exerted on the moon by the sun.
Will the sun have much impact on the orbit of the moon
about the Earth?

SP6. The period of the moon’s orbit about the Earth is 27.3 days,
but the average time between full moons is approximately
29.3 days. The difference is due to the motion of the Earth
about the sun.
a. Through what fraction of its total orbital period does the

Earth move in one period of the moon’s orbit?
b. Draw a sketch of the sun, the Earth, and the moon with

the moon in the full moon condition. Then, 27.3 days
later sketch the moon’s position again for the new posi-
tion of the Earth. If the moon is in the same position
relative to Earth as it was 27.3 days earlier, is this a full
moon?

c. How much farther would the moon have to go to reach
the full moon condition? Show that this represents ap-
proximately an extra two days.
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HE1. Tape a string half a meter or so in length securely to a
small rubber ball. Practice whirling the ball in both hori-
zontal and vertical circles and make these observations:
a. For horizontal motion of the ball, how does the angle

that the string makes with the horizontal vary with the
speed of the ball?

b. If you let go of the string at a certain point in the circle,
what path does the ball follow after release?

c. Can you feel differences in tension in the string for dif-
ferent speeds of the ball? How does the tension vary
with speed?

d. For a vertical circle, how does the tension in the string
vary for different points in the circle? Is it greater at the
bottom than at the top when the ball moves with con-
stant speed?

HE2. Tie a small paper cup to a string, attaching it at two points
near the rim as shown in the diagram. Take a marble or
other small object and place it in the cup.
a. Whirl the cup in a horizontal circle. Does the marble

stay in the cup? (Be careful! A flying marble can be
dangerous.)

b. Whirl the cup in a vertical circle. Does the marble stay
in the cup? What keeps the marble in the cup at the top
of the circle?

c. Try slowing the cup down. Does the marble stay in
the cup?

d. If you are brave, try replacing the marble with water.
Under what conditions does the water stay in the cup?

HE3. Observe the position and phase of the moon on several
days in succession and at regularly chosen times during
the day and evening. (It is probably best to choose a point
near the first quarter of the moon’s cycle when the moon is
visible in the afternoon and evening.)
a. Sketch the shape of the moon on each successive 

day. Does this shape change for different times in the
same day?

b. Can you devise a method for accurately noting changes
in the position of the moon at a set time, say, 10 P.M.,
on successive days? A fixed sighting point, a meter
stick, and a protractor may be useful. Describe your
technique.

c. By how much does the position of the moon change
from one day to the next at your regular chosen time?

HE4. Consult your instructor or other sources to find out what
planets are observable in the evening during the current
month. Venus, Jupiter, or Mars are usually the best
candidates.
a. Locate the planet visually and observe it with binocu-

lars if possible. How does the planet differ in appear-
ance from that of nearby stars?

b. Sketch the position of the planet relative to nearby stars
for several nights. How does this position change?

Home Experiments and Observations 101

home experiments and observations

HE2 Diagram
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chapter overview
We usually approach energy by first considering how it is added to a
system. This involves the concept of work, which has a specialized
meaning in physics. If a force does work on a system, the energy of the
system increases. Work is a means of transferring energy.

We begin by defining work and showing how to find it in simple
cases. In different circumstances, work done on a system increases either
the kinetic energy or the potential energy of the system. Finally, we will
tie these ideas together by introducing the principle of conservation of
energy and applying it to practical situations, including oscillations.

chapter outline
1 Simple machines, work, and power. What is a simple machine? How

does the idea of work help us to understand the operation of simple
machines? How do physicists define work, and how is work related to
power?

2 Kinetic energy. What is kinetic energy? When and how does work
change the kinetic energy of an object?

3 Potential energy. What is potential energy? When and how does
work change the potential energy of an object?

4 Conservation of energy. What is the total energy of a system, and
when is it conserved? How can we use these ideas to explain the
motion of a pendulum and other phenomena?

5 Springs and simple harmonic motion. How is the motion of a mass on
a spring like a pendulum? What is simple harmonic motion?
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6.1 Simple Machines, Work, and Power
If you make a pendulum by fastening a ball to the end of a
string (fig. 6.2), what do you do to start it swinging? In
other words, how do you get energy into the system? Usu-
ally, you would start by pulling the ball away from the cen-
ter position directly below the point from which the string
is suspended. To do so, you must apply a force to the ball
with your hand and move the ball some distance.

To a physicist, applying a force to move an object some
distance involves doing work, even though the actual exer-
tion may be slight. Doing work on a system increases the
energy of the system, and this energy can then be used in
the motion of the pendulum. How do we define work,
though, and how can simple machines demonstrate the use-
fulness of the idea?

What are simple machines?
An early application of work was the analysis of the devices
such as levers, pulley systems, or inclined planes that we
call simple machines. A simple machine is any mechanical
device that multiplies the effect of an applied force. A lever
is one example of a simple machine. By applying a small

force at one end of a lever, a larger force can be exerted on
the rock at the opposite end (fig. 6.3).

What price do you pay for this multiplying effect of
the applied force? To move the rock a small distance, the
other end of the lever must move through a larger distance.

figure 6.1 A pendant swinging at the end of a chain.
Why does it return to approximately the same point after each
swing?

figure 6.2 The force applied does work to move the ball
from its original position directly below the point of suspension.

F

Have you ever watched a ball on the end of a string
swing back and forth? A pendant on the end of a chain
(fig. 6.1), a swing in the park, and the pendulum on a
grandfather clock all display the same hypnotic motion.
Galileo (it is said) amused himself during boring sermons
in church by watching the chandeliers sway slowly back
and forth at the end of their chains.

What intrigued Galileo is the way a pendulum always
seems to return to the same position at the end of each
swing. It may fall a little short of the earlier position in
successive swings, but the motion goes on for a long
time before coming to a complete stop. On the other
hand, the velocity is continually changing, from zero at
the end points of the swing to a maximum at the low
point in the path. How can the pendulum go through
such changes in velocity and yet always return to its
starting point?

Evidently, something is being saved or conserved. The
quantity that remains constant (and is conserved) turns
out to be what we now call energy. Energy did not play
a role in Newton’s theory of mechanics. It was not until
the nineteenth century that energy and energy transfor-
mations were elevated to the central position that they
now hold in our understanding of the physical world.

The motion of a pendulum and other types of oscilla-
tion can be understood using the principle of conser-
vation of mechanical energy. The potential energy that
the pendulum has at its end points is converted to kinetic
energy at the low point—and then back to potential
energy. What is energy, though, and how does it get

into the system in the first place? Why does energy now
play a central role in physics and all of science?

Energy is the basic currency of the physical world.
To spend energy wisely, we must understand it. That
understanding begins with the concept of work.
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figure 6.3 A lever is used to lift a rock. A small force F1

generates a larger force F2 to lift the rock, but F1 acts through a
larger distance d1 than does F2.

figure 6.4 A simple pulley system is used to lift a weight.
The tension in the rope pulls up on either side of the lower
pulley, so the tension is only half the size of the supported
weight.

F2

F1

d1

d2

TT
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Generally, with simple machines, we get by with a small
force if we are willing to apply that force over a large dis-
tance. The output force at the other end may be large, but it
acts only over a short distance.

The pulley system shown in figure 6.4 is another simple
machine that achieves a similar result. In this system, the
tension in the rope pulls up on either side of the pulley sup-
porting the weight. If the system is in equilibrium, the ten-
sion in the rope is only half the weight being lifted, since
there are, in effect, two ropes pulling up on the pulley. But
to lift the pulley and its load a certain height, the person
must move the rope twice the distance that the load moves.
(Both rope segments on either side of the pulley must
decrease in length by an amount equal to the increase in the
height of the load.)

The net result of using the pulley system illustrated in
figure 6.4 is that you can lift a weight a certain height by
applying a force equal to only half the weight being lifted.
However, we must pull the rope twice the distance the
weight is lifted. This way the product of the force and
the distance moved will be the same for the input force
applied by the person to the rope as for the output force
exerted on the load. The quantity force times distance is
thus conserved (if frictional losses are small). We call this
product work, and the result for an ideal simple machine is

work output � work input.

The ratio of the output force to the input force is called
the mechanical advantage of the simple machine. For our
pulley system, the mechanical advantage is 2. The output
force that lifts the load is twice the input force exerted by
the person pulling on the rope.

How is work defined?
Our discussion of simple machines shows that the quantity
force times distance has a special significance. Suppose

that you apply a constant horizontal force to a heavy crate to
move it across a concrete floor, as illustrated in figure 6.5.
You would agree that you have done work to move the
crate and that the farther you move it, the more work you
will do.

The amount of work that you do also depends on how
hard you have to push to keep the crate moving. These are
the basic ideas that we use in defining work: work depends
both on the strength of the applied force and the distance
that the crate is moved. If the force and the distance moved
are in the same direction, then work is the applied force
multiplied by the distance that the crate moves under the
influence of this force, or

work � force � distance
W � Fd,

where W is the work and d is the distance moved. The units
of work will be units of force multiplied by units of dis-
tance, or newton-meters (N�m) in the metric system. We
call this unit a joule (J). The joule is the basic metric unit
of energy. (1 J � 1 N�m)

The first part of the sample exercise in example box 6.1
shows how we find the work done in a simple case. A hori-
zontal force of 50 N is used to pull a crate a distance of 4 m,
resulting in 200 J of work done on the crate by the applied
force. In doing this work, we transfer 200 J of energy to the
crate and its surroundings from the person applying the
force. The person loses energy; the crate and its surround-
ings gain energy.
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Does any force do work?
In our initial example, the force acting on the crate was in
the same direction as the motion produced. What about
other forces acting on the crate—do they do work? The
normal force of the floor pushes upward on the crate, for
example, but the normal force has no direct effect in pro-
ducing the motion because it is perpendicular to the direc-
tion of the motion. Forces perpendicular to the motion, such
as the normal force or the gravitational force acting on the
crate, do no work when the crate moves horizontally.

What if the force acting on an object is neither perpen-
dicular nor parallel to the direction of the object’s motion?
In this case, we do not use the total force in computing
work. Instead, we use only that portion or component of the
force in the direction of the motion. This idea is illustrated
in figure 6.6 and in the second part of example box 6.1.

In figure 6.6, the rope used to pull the crate is at an angle
to the floor, so that part of the applied force is directed

upward, rather than parallel to the floor. The box does not
move in the direction of the force. Picture the force as
having two components, one parallel to the floor and the
other perpendicular to the floor. Only the component of
the force in the direction of motion is used in computing
the work. The component perpendicular to the motion does
no work.

By taking direction into account, we can complete the
definition of work:

The work done by a given force is the product of the compo-
nent of the force along the line of motion of the object multi-
plied by the distance that the object moves under the influence
of the force.

How is power related to work?
When a car accelerates, energy is transferred from the fuel
in the engine to the motion of the car. Work is done to
move the car, but often we are more concerned with how
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figure 6.5 A crate is moved a distance d across a concrete floor under the influence of a constant horizontal force F.

d

F

Initial
position

Final
position

figure 6.6 A rope is used to pull a box across the floor.
Only the portion of the force that is parallel to the floor is used
in computing the work.

d

40 N

30 N

50
 N

F

example box 6.1

Sample Exercise: How Much Work?

A crate is pulled a distance of 4 m across the floor under
the influence of a 50-N force applied by a rope to the
crate. What is the work done on the crate by the 50-N
force if

a. the rope is horizontal, parallel to the floor?
b. the rope pulls at an angle to the floor, so that the

horizontal component of the 50-N force is 30 N
(fig. 6.6)?

a. F � 50 N W � Fd

d � 4 m � (50 N)(4 m)

W � ? � 200 J

b. Fh � 30 N W � Fhd

d � 4 m � (30 N)(4 m)

W � ? � 120 J
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v = 0

m m
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2

figure 6.7 The work done on an object by the net force
acting on the object results in an increase in the object’s kinetic
energy.

fast this work is accomplished. The rate at which this work
can be done depends on the power of the engine. The
shorter the time, the greater the power. Power can be de-
fined as

Power is the rate of doing work; it is found by dividing the
amount of work done by the time required.

In the first part of the example in example box 6.1, we
computed a work value of 200 J for moving a crate 4 m
across the floor using a force of 50 N. If the crate is in mo-
tion for 10 seconds, the power is found by dividing 200 J
by 10 seconds, yielding a power of 20 J/s. A joule per sec-
ond (J/s) is called a watt (W), the metric unit of power. We
use watts commonly in discussing electric power, but watts
are also used more generally for any situation involving
the rate of transfer of energy.

Another unit of power still used to describe the power of
automobile engines is horsepower (hp). One horsepower is
equal to 746 watts or 0.746 kilowatt (kW). The day may
come when we routinely compare the power of different
engines in kilowatts rather than in horsepower, but we are
not there yet. The relationship of horsepower to the typical
horse is dubious, but comparing the iron horse to the flesh-
and-blood kind still has a certain appeal.

Work is the applied force times the distance moved, pro-
vided that the force acts along the line of motion of the
object. In simple machines, work output can be no greater
than work input, even though the output force is larger
than the input force. Power is the rate of doing work: the
faster the work is done, the greater the power. Doing work
on an object increases the energy of the object or system,
as in our initial example of pulling the pendulum bob
away from its equilibrium position.

6.2 Kinetic Energy
Suppose that the force applied to move a crate is the only
force acting on the crate in the direction of motion. What
happens to the crate then? According to Newton’s second
law, the crate will accelerate, and its velocity will increase.
Doing work on an object increases its energy. We call the
energy associated with the motion of the object kinetic
energy.

Since work involves the transfer of energy, the amount
of kinetic energy gained by the crate should be equal to the
amount of work done. How can we define kinetic energy

 P �
W

t

 power �
work

time

so that this is indeed the case? Work serves as the starting
point.

How do we define kinetic energy?
Imagine that you are pushing a crate across the floor
(fig. 6.5). If you place the crate on rollers with good bear-
ings, the frictional forces may be small enough to be
ignored. The force that you apply will then accelerate the
crate. If you knew the mass of the crate, you could find
its acceleration from Newton’s second law of motion.

As the crate gains speed, you will have to move faster to
keep applying a constant force. For equal time intervals,
the crate would move larger distances as its speed in-
creases, and you would find yourself doing work more rap-
idly. For constant acceleration, the distance traveled is
proportional to the square of the final speed. The work done
is therefore also proportional to the square of the speed.

Since the work done should equal the increase in kinetic
energy, the kinetic energy must increase with the square of
the speed. If the crate begins from rest, the exact relation-
ship is

work done � change in kinetic energy

We often use the abbreviation KE to represent kinetic
energy.

Kinetic energy is the energy of an object associated with its
motion and is equal to one-half the mass of the object times
the square of its speed.

Figure 6.7 illustrates the process. If the crate is initially
at rest, its kinetic energy is equal to zero. After being accel-
erated over a distance d, it has a final kinetic energy of

, which is equal to the work done on the crate. The
work done is actually equal to the change in kinetic energy.
If the crate was already moving when you began pushing,
its increase in kinetic energy would equal the work done.

In example box 6.2, we highlight these ideas by calcu-
lating the energy gained by the crate in two different ways.

1
2 mv2

KE �
1
2 mv2

�
1
2 mv2.
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figure 6.8 Frictional forces exerted on the car’s tires by the road surface do negative work in stopping the car,
resulting in a decrease in kinetic energy.

v

W = –fd = ∆KE

df

v = 0

In the first method, we use the definition of work. In the
second, we use the definition of kinetic energy. We find
that 200 J of work done on the crate results in an increase
in kinetic energy of 200 J. It is no accident that these val-
ues are equal. Our definition of kinetic energy guarantees
this to be true.

What is negative work?
If work done on an object increases its kinetic energy, can
work also decrease the energy of an object? Forces can
decelerate objects as well as accelerate them. Suppose, for
example, that we apply the brakes to a rapidly moving
car, and the car skids to a stop. Does the frictional force
exerted by the road surface on the tires of the car do work?

When the car skids to a stop, it loses kinetic energy.
A decrease in kinetic energy can be thought of as a nega-
tive change in kinetic energy. If the change in kinetic
energy is negative, the work done on the car should also be
negative.

Note that the frictional force exerted on the car acts
in the opposite direction to the motion of the car shown in
figure 6.8. When this is so, we say that the work done on
the car by the force is negative work, removing energy
from the system (the car) rather than increasing its energy.
For a frictional force of magnitude f, the work done is
W � �fd, if the car moves a distance d while decelerating.

Stopping distance for a moving car
The kinetic energy of the car is not proportional to the
speed but rather to the square of the speed. If we double
the speed, the kinetic energy quadruples. Four times as
much work must be done to reach the doubled speed as
was done to reach the original speed. Likewise, if we stop
the car, four times as much energy must be removed.

A practical application is the stopping distances of cars
traveling at different speeds. The amount of negative work
required to stop the car is equal to the kinetic energy of the
car before the brakes are applied. This amount of energy
must be removed from the system. Since kinetic energy is
proportional to the square of the speed, the work required
(and the stopping distance) increases rapidly with the speed
of the car. For example, the kinetic energy is four times as
large for a car traveling at 60 MPH as for one traveling at
30 MPH. Doubling the speed requires four times as much
negative work to remove the kinetic energy. The stopping
distance at 60 MPH will be four times that required at
30 MPH, since the work done is proportional to the dis-
tance (assuming the frictional force is constant).

In fact, the frictional force varies with the speed of the
car. If you look at the stopping distances in driver-training
manuals, you will see that they do indeed increase rapidly
with speed, although not exactly in proportion to the square
of the speed. The more kinetic energy present initially, the
more negative work is required to reduce this energy to
zero, and the greater the stopping distance.

Kinetic energy is the energy associated with an object’s
motion, and it is equal to one-half the mass of the object
times the square of its speed. The kinetic energy gained or
lost by an object is equal to the work done by the net
force accelerating or decelerating the object.

example box 6.2

Sample Exercise: Work and Kinetic Energy

Starting from rest on a frictionless floor, you move a
100-kg crate by applying a net force of 50 N for a time
of 4 s. This results in a final speed of 2 m/s after the crate
moves a distance of 4 m (see synthesis problem 2). Find

a. the work done on the crate.
b. the final kinetic energy of the crate.

a. F � 50 N W � Fd

d � 4 m � (50 N)(4 m)

W � ? � 200 J

b. m � 100 kg

v � 2.0 m/s

KE � ?
(100 kg)(2 m/s)2

� 200 J

� 1
2

KE � 1
2 mv2
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figure 6.9 A rope and pulley are used to lift a crate to a
higher position on the loading dock, resulting in an increase in
potential energy.

h = 2.0 m

F

W

6.3 Potential Energy
Suppose that we lift a crate to a higher position on a load-
ing dock, as in figure 6.9. Work is done in this process, but
no kinetic energy is gained if the crate ends up just sitting
on the dock. Has the energy of the crate increased? What
happens to the work done by the lifting force?

Drawing back a bowstring or compressing a spring are
similar. Work is done, but no kinetic energy is gained: in-
stead the potential energy of the system increases. How
does potential energy differ from kinetic energy?

Gravitational potential energy
To lift the crate in figure 6.9, we need to apply a force that
pulls or pushes upward on the crate. The applied force will
not be the only force acting on the crate. The gravitational
attraction of the Earth (the weight of the crate) pulls down
on the crate. If we lift the crate with a force exactly equal
to the force of gravity but opposite in direction, the net
force acting on the crate will be zero, and the crate will not
accelerate. We actually accelerate the crate a little bit at the
start of the motion and decelerate it at the end of the mo-
tion, moving it with constant velocity during most of the
motion.

The work done by the lifting force increases the gravi-
tational potential energy of the crate. The lifting force
and the gravitational force are equal in magnitude and op-
posite in direction, so the net force is zero and there is no
acceleration. The lifting force does work by moving the

object against the gravitational pull. If we let go of the rope,
the crate will accelerate downward, gaining kinetic energy.

How much gravitational potential energy is gained? The
work done by the lifting force is equal to the size of the
force times the distance moved. The applied force is equal
to the weight of the crate mg. If the crate is moved a height
h, the work done is mg times h or mgh. The gravitational
potential energy is equal to the work done,

PE � mgh,

where we use the abbreviation PE to represent potential
energy.

The height h is the distance that the crate moves above
some reference level or position. In example box 6.3, we
have chosen the original position of the crate on the ground
to be our reference level. We usually choose the lowest point
in the probable motion of the object as the reference level
to avoid negative values of potential energy. The changes
in potential energy are what is important, however, so the
choice of reference level does not affect the physics of 
the situation.

The essence of potential energy
The term potential energy implies storing energy to use
later on for other purposes. Certainly, this feature is pres-
ent in the situation just described. The crate could be left
indefinitely higher up on the loading dock. If we push it
off the dock, though, it would rapidly gain kinetic energy
as it fell. The kinetic energy, in turn, could be used to com-
press objects lying underneath, drive pilings into the
ground, or for other useful mayhem (fig. 6.10). Kinetic en-
ergy also has this feature, however, so storing energy is not
what distinguishes potential energy.

Potential energy involves changing the position of the
object that is being acted on by a specific force. In the case
of gravitational potential energy, that force is the gravita-
tional attraction of the Earth. The farther we move the
object away from the Earth, the greater the gravitational
potential energy. Other kinds of potential energy involve
different forces.

example box 6.3

Sample Exercise: Potential Energy

A crate with a mass of 100 kg is lifted onto a loading
dock 2 m above ground level. How much potential energy
has been gained?

m � 100 kg PE � mgh

h � 2 m � (100 kg)(9.8 m/s2)(2 m)

� (980 N)(2 m)

� 1960 J
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What is elastic potential energy?
What happens if we pull on a bowstring or stretch a spring?
In these examples, work is done by an applied force
against an opposing elastic force, a force that results from
stretching or compressing an object. Imagine a spring at-
tached to a post, as in figure 6.11, with a wooden block or
similar object attached to the other end of the spring. If we
pull the block from the original position where the spring
was unstretched, the system gains elastic potential energy.
If we let go, the block would fly back.

Since a force must be applied over some distance to
move the block, work is done in pulling against the force
exerted by the spring. Most springs exert a force propor-
tional to the distance the spring is stretched. The more the
spring is stretched, the greater the force. This can be stated
in an equation by defining the spring constant k that de-
scribes the stiffness of the spring. A stiff spring has a large
spring constant. The force exerted by the spring is given

6.3 Potential Energy 109

figure 6.10 The potential energy of the raised crate can be
converted to kinetic energy and used for other purposes.

figure 6.11 A wooden block is attached to a spring tied
to a fixed support at the opposite end. Stretching the spring
increases the elastic potential energy of the system.

figure 6.12 The applied force used to stretch the spring
varies with the distance stretched, going from an initial value of
zero to a final value of kx. Work done is equal to the shaded area
under the Force versus Distance curve.

Coconut

F
or

ce

x
Distance stretched

kx

0

by the spring constant multiplied by the distance stretched
or 

F � �kx,

where x is the distance that the spring is stretched, measured
from its original unstretched position. This is often called
Hooke’s Law, named after Robert Hooke (1635–1703). The
minus sign indicates that the force exerted by the spring
pulls back on the object as the object moves away from its
equilibrium position. Thus, if the mass is moved to the
right, the spring pulls back to the left. If the spring is com-
pressed, it pushes back to the right.

How do we find the increase in potential energy of such
a system? As before, we need to find the work done by the
force involved in changing the position of the object. We
want the block to move without acceleration so the net force
acting on the block is zero. The applied force must be ad-
justed so that it is always equal in magnitude but opposite
in direction to the force exerted by the spring. This means
that the applied force must increase as the distance x in-
creases (fig. 6.12).

The increase in elastic potential energy is equal to the
work done by the average force needed to stretch the spring.
Figure 6.12 suggests that the average force is one-half the
magnitude of the final force kx. The work done is the aver-
age force kx times the distance x, so

PE � kx2.

The potential energy of the stretched-spring system is one-
half the spring constant times the square of the distance
stretched. The same expression is valid when the spring is
compressed. The distance x is then the distance that the
spring is compressed from its original relaxed position.

1
2

1
2
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E = KE =    mv21
2
_

E = PE = mgh

h v h

E = PE = mgh

figure 6.13 Potential energy is converted to kinetic energy
and then back to potential energy as the pendulum swings
back and forth.

The potential energy stored in the spring can be con-
verted to other forms and put to various uses. If we let go of
the block when the spring is either stretched or compressed,
the block will gain kinetic energy. Cocking a bow and
arrow, squeezing a rubber ball, or stretching a rubber band
are all familiar examples in which we generate elastic po-
tential energy similar to the spring.

What are conservative forces?
Potential energy can result from work done against a vari-
ety of different forces besides gravity and springs. Work
done against frictional forces, however, does not result in
an increase in the potential energy of the system. Instead,
heat is generated, which either transfers energy out of the
system or increases the internal energy of the system at
the atomic level. As discussed in chapter 11, this internal
energy cannot be completely recovered to do useful work.

Forces such as gravity or elastic forces that lead to po-
tential energy relationships are referred to as conservative
forces. When work is done against conservative forces, the
energy gained by the system is completely recoverable for
use in other forms.

Potential energy is an object’s energy by virtue of its posi-
tion along the line of action of some conservative force
(such as gravity or the spring force). Potential energy is
stored energy associated with the position of the object
rather than the object’s motion. We find the potential
energy by computing the work done to move the object
against the conservative force. The system is poised to
release that energy, converting it to kinetic energy or
work done on some other system.

6.4 Conservation of Energy
The concepts of work, kinetic energy, and potential energy
are now available to us. How can they help explain what is
happening in systems like a pendulum?

Conservation of energy is the key. The total energy, the
sum of the kinetic and potential energies, is a quantity that
remains constant (is conserved) in many situations. We can
describe the motion of a pendulum by tracking the energy
transformations. What can this tell us about the system?

Energy changes in the swing
of a pendulum
Imagine a pendulum consisting of a ball initially hanging
motionless at the end of a string attached to a rigid sup-
port. You pull the ball to the side and release it to start it
swinging. What happens to the energy of the system?

In the first step, work is done on the ball by your hand.
The net effect of this work is to increase the potential

energy of the ball, since the height of the ball above the
ground increases as the ball is pulled to the side. The work
done transfers energy from the person doing the pulling to
the system consisting of the pendulum and the Earth. It be-
comes gravitational potential energy, PE � mgh, where h
is the height of the ball above its initial position (fig. 6.13).

When you release the ball, this potential energy begins
to change to kinetic energy as the ball begins its swing. At
the bottom of the swing (the initial position of the ball
when it was just hanging), the potential energy is zero, and
the kinetic energy reaches its maximum value. The ball
does not stop at the low point; its motion continues to a
point opposite the release point. During this part of the
swing, the kinetic energy decreases, and the potential en-
ergy increases until it reaches the point where the kinetic
energy is zero and the potential energy is equal to its initial
value before release. The ball then swings back, repeating
the transformation of potential energy to kinetic energy and
back to potential energy (fig. 6.13).

What does it mean to say that
energy is conserved?
As the pendulum swings, there is a continuing change of
potential energy to kinetic energy and back again. The
total mechanical energy of the system (the sum of the po-
tential and kinetic energies) remains constant because
there is no work being done on the system to increase or
decrease its energy. The swing of the pendulum demon-
strates the principle of conservation of energy:

If there are no nonconservative forces doing work on a system,
the total mechanical energy of the system (the sum of its
kinetic energy and potential energy) remains constant.
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Work is pivotal. If no energy is added or removed by
forces doing work, the total energy should not change. In
symbols, this statement takes the form:

If W � 0, E � PE � KE � constant,

where E is the symbol commonly used to represent the
total energy. A broader picture of the meaning of this very
important principle is provided in everyday phenomenon
box 6.1

We applied conservation of energy in describing the mo-
tion of the pendulum. Some points deserve close attention:
for example, why do we not consider the work done by
gravity on the pendulum? The answer is that the gravita-
tional force becomes part of the system by including the
gravitational potential energy of the ball in our description.
Gravity is a conservative force already accounted for by
potential energy.

What other forces act on the ball? The tension of the
string acts in a direction perpendicular to the motion of
the ball (fig. 6.14). This force does no work, because it has
no component in the direction of the motion. The only
other force that need concern us is air resistance. This force
does negative work on the ball, slowly decreasing the total
mechanical energy of the system. The total energy of the
system is not completely constant in this situation. It
would be constant only if air resistance were negligible.
The air-resistive effects are often small, however, and can
be ignored.

Why do we use the concept of energy?
What are the advantages of using the principle of conser-
vation of energy? Imagine trying to describe the motion
of the pendulum by direct application of Newton’s laws
of motion. You would have to deal with forces that vary

T

W

R
v

figure 6.14 Of the three forces acting on the ball, only the
force of air resistance does work on the system to change its
total energy. The tension does no work, and the work done by
gravity is already included in the potential energy.

Conservation of Energy

The Situation. Mark Shoemaker had just come out of a
physics lecture on the conservation of energy, and he was con-
fused. His instructor had noted that the principle of conserva-
tion of energy in its most general form implies that energy can
be neither created nor destroyed - it is always conserved.

On the other hand, Mark had been following news items
regarding the need to conserve energy. If energy is always 
conserved, what is the problem that news commentators and
environmentalists are harping on? Don’t they understand physics?

The Analysis. When people talk about conserving energy in
the context of everyday energy use, the term conservation of
energy has a different meaning than that involved in the
physics principle. Understanding these distinctions is critical to
understanding issues involving energy and the environment
that have been hot topics in recent years.

The principle of conservation of energy stated in this section
is limited to mechanical energy, the sum of the potential 

and kinetic energies of a mechanical system. In chapters 10
and 11, we will see that heat is also a form of energy and
must be included in a more general statement of the 
conservation principle. Later, in chapter 20, we will find that
even mass must be considered a form of energy. In this most
general context, energy is always conserved.

However, not all forms of energy have equal value in our
daily lives. To take an example, oil is an important energy
resource. The energy stored in oil is a form of potential energy
involving the electric forces that bind atoms together in 
molecules. When we use oil, we are converting this potential
energy to other forms of energy depending upon the application.

To release this potential energy, we usually burn the oil.
Burning generates heat, which is a form of energy. At high
temperatures, this heat can be very useful for running heat
engines of various kinds (discussed in chapter 11). The common
gasoline engine in our cars is a heat engine, as are the 

everyday phenomenon
box 6.1

(continued)
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continually in direction and magnitude as the pendulum
moves. A full description using Newton’s laws is quite
complex.

Using energy considerations, however, we can make pre-
dictions about the behavior of a system much more easily than
by applying Newton’s laws. To the extent that we can ignore
frictional effects, for example, we can predict that the ball will
reach the same height at either end of its swing. The kinetic
energy is zero at the end points of the swing where the ball
momentarily stops, and at these points, the total energy equals
potential energy. If no energy has been lost, the potential
energy has the same value that it had at the point of release,
which implies that the same height is reached (PE � mgh).

112 Chapter 6 Energy and Oscillations

diesel engines that power trucks and trains and the jet 
turbines that power airplanes. These engines transform some 
energy in the form of heat to kinetic energy for cars, trains,
boats, or airplanes.

But what happens, ultimately, to the kinetic energy 
associated with the moving vehicles? Eventually, it is trans-
formed to lower-temperature heat due to frictional effects in
the engine and the tires and air resistance. The energy has not
disappeared—it warms up the surroundings. However, it is now
in a form that is much less useful than the original potential
energy stored in the fuel. Heat at temperatures near those of
the surroundings is sometimes called low-grade heat—its uses
are limited to heating our homes or similar applications.

So what are we conserving when we talk about energy
conservation in our daily lives? We are conserving high-value
forms of energy by using them more wisely and, as much as
possible, preventing them from being converted to less useful
forms of energy. We are also limiting the environmental
effects associated with burning oil and other fuels such as
natural gas or coal. From the standpoint of physics, though,
the energy itself is conserved in all situations.

If you have a choice of commuting to work or school by
walking, riding a bicycle, or driving a fuel-efficient car as
opposed to driving a large car or sports utility vehicle (SUV),
your choice should be clear. By walking or riding a bicycle, as
pictured in the photograph, you convert some energy
obtained from the food you eat to low-grade heat, but much
less high-value energy is converted than if you are driving an
SUV or car. And, of course, your impact on the environment is
much smaller when you are walking or riding a bicycle.

Later chapters in this book deal with many aspects of
energy use. The laws of thermodynamics, discussed in 
chapters 10 and 11, are particularly important to 
understanding energy issues. Solar energy, geothermal power,
and other methods of generating electricity are discussed in
chapter 11. Chapter 13 addresses household electrical energy
uses, chapter 14 deals with electrical power generation, and 
chapter 19 discusses nuclear power.

The physics and economics of wise energy use are 
critical issues. To be involved in these debates, you should
understand what energy conservation is all about. Energy can
be neither created nor destroyed, but the ways in which it is
transformed from one form to another are extremely 
important to the use of energy resources and to the 
environment.

A demonstration sometimes performed in physics lec-
ture rooms illustrates this idea dramatically by using a
bowling ball as the pendulum bob. The bowling ball is sus-
pended from a support near the ceiling so that, when pulled
to one side, the ball is near the chin of the physics instruc-
tor. The instructor pulls the ball to this position, releases it
to allow it to swing across the room, and stands without
flinching as the ball returns and stops just a few inches
from his or her chin (fig. 6.15). Not flinching requires
some faith in the principle of conservation of energy! The
success of this demonstration depends on the ball not be
given any initial velocity when released—what happens if
it is pushed?

Is energy conserved for all these commuters?
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We can also use the principle of conservation of energy
to predict what the speed will be at any point in the swing.
The speed is zero at the end points and has its maximum
value at the low point of the swing. If we place our refer-
ence level for measuring potential energy at this low point,
the potential energy will be zero there because the height
is zero. All of the initial potential energy has been con-
verted to kinetic energy. Knowing the kinetic energy at the
low point allows us to compute the speed, as shown in
example box 6.4.

We could find the speed at any other point in the swing
by setting the total energy at any point equal to the initial
energy. Different values of the height h above the low
point yield different values of the potential energy. The re-
maining energy must be kinetic energy. The system has
only so much energy, either potential or kinetic energy or
some of both, but it cannot exceed the initial value.

How is energy analysis like accounting?
A sled on a hill and a roller coaster illustrate the principle
of conservation of energy. Conservation of energy can be
used to make predictions about the speed of the sled or
roller coaster that would be hard to make by direct appli-
cation of Newton’s laws. An energy accounting provides a
better overview. The pole-vaulting example in everyday
phenomenon box 6.2 can also be analyzed in this way.

Consider the sled on the hill pictured in figure 6.16. A
parent pulls the sled to the top of a hill, doing work on the
sled and rider that increases their potential energy. At 
the top of the hill, the parent may do more work by giving

figure 6.15 A bowling ball at the end of a cable
suspended from the ceiling is released and allowed to swing
across the room and back, stopping just in time.

example box 6.4

Sample Exercise: The Swing of a Pendulum

A pendulum bob with a mass of 0.50 kg is released from a
position in which the bob is 12 cm above the low point in
its swing. What is the speed of the bob as it passes
through the low point in its swing?

m � 0.5 kg The initial energy is

h � 12 cm E � PE � mgh

v � ? � (0.5 kg)(9.8 m/s2)(0.12 m)
(at the low point) � 0.588 J

At the low point, the potential energy is zero, so

E � KE � 0.588 J

mv2 � 0.588 J

Dividing both sides by m:

� 2.35 m2/s2

Taking the square root of both sides:

v � 1.53 m/s

�
(0.588 J)
1
2 (0.5 kg)

v2 �
KE
1
2 m

1
2

1
2

the sled a push, providing it with some initial kinetic
energy. The total work done by the parent is the energy
input to the system and equals the sum of the potential and
kinetic energies shown in table 6.1.

Where does this initial energy come from? It came from
the body of the parent doing the pulling and pushing. Mus-
cle groups were activated, releasing chemical potential en-
ergy stored in the body. That energy came from food,
which in turn involved solar energy stored by plants. A
parent who does not eat a good breakfast, or attempts too
many trips up the hill, may not have enough energy to get
to the top.

If the sled and rider slide down the hill with negligible
friction and air resistance, energy is conserved, and the
total energy at any point during the motion should equal
the initial energy. It is more realistic to assume that there is
some friction as the sled slides down the hill (fig. 6.17).
Although it is difficult to predict the amount of work done
against friction precisely, we can make an estimate if we
know the total distance traveled and make some assump-
tions about the size of the average frictional force. In
the energy accounting done in table 6.1, we assume that
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Energy and the Pole Vault

The Situation. Ben Lopez goes out for track. He specializes
in the pole vault and helps out sometimes with the sprint
relays where his speed can be used to good advantage. His
coach, aware that Ben is also taking an introductory physics
course, suggests that Ben try to understand the physics of the
pole vault. What factors determine the height reached? How
can he optimize these factors?

The coach knows that energy considerations are important
in the pole vault. What type of energy transformations are
involved? Could understanding these effects help Ben’s
performance?

The Analysis. It was not difficult for Ben to describe the
energy transformations that take place in the pole vault:
the vaulter begins by running down a path to the vaulting
standard and pit. During this phase, he is accelerating and
increasing his kinetic energy at the expense of chemical
energy stored in his muscles. When he reaches the standard,
he plants the end of the pole in a notch in the ground. At this
point, some of his kinetic energy is stored in the elastic
potential energy of the bent pole, which acts like a spring.
The rest is converted to gravitational potential energy as he
begins to rise over the standard.

Near the top of the vault, the elastic potential energy in
the bent pole converts to gravitational potential energy as the
pole straightens out. The vaulter does some additional work
with his arm and upper-body muscles to provide an extra
boost. At the very top of his flight, his kinetic energy should
be zero, with only a minimal horizontal velocity left to carry
him over the standard. Too large a kinetic energy at this

point would indicate that he had not optimized his jump by
converting as much energy as possible into gravitational
potential energy.

What can Ben learn from his analysis? First, the impor-
tance of speed. The more kinetic energy he generates during
his approach, the more energy is available for conversion to
gravitational potential energy (mgh), which will largely deter-
mine the height of his vault. Successful pole-vaulters are
usually good sprinters.

The characteristics of the pole and Ben’s grip on it are also
important factors. If the pole is too stiff, or if he has gripped
it too close to the bottom, he will experience a jarring impact
in which little useful potential energy is stored in the pole,
and some of his initial kinetic energy will be lost in the colli-
sion. If the pole is too limber, or if Ben’s grip is too far from
the bottom, it will not spring back soon enough to provide
useful energy at the top of his vault.

Finally, upper-body strength is important in clearing the
standard. Good upper-body conditioning should improve Ben’s
pole-vaulting. Timing and technique are also critical and can
be improved only through practice. As far as his coach is
concerned, that may be the most important message.

everyday phenomenon
box 6.2

A pole-vaulter on the way up. What energy transformations
are taking place?

The flexibility of the pole and the point at which the vaulter grasps the
pole are important to the success of the vault.
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2000 J of work has been done against friction by the time
the sled reaches the bottom of the hill.

The work done against friction removes energy from the
system and shows up as an expenditure on the account sheet.
The energy balance at the bottom of the hill is 8200 J,
rather than 10 200 J. This will lead to a smaller, more real-
istic value for the speed of the sled and rider at the bottom
of the hill than if we ignored friction. Although precise
calculations are not always possible, energy accounting sets
limits on what is likely and helps us understand the behav-
ior of systems such as the sled on the hill.

Energy is the currency of the physical world; an under-
standing of energy accounting is relevant to both science
and economics. Doing work on a system puts energy in
the bank. Total energy is then conserved, provided that
only conservative forces are at work. Many aspects of the
motion of the system can be predicted from a careful
energy accounting.

6.5 Springs and Simple
Harmonic Motion
If conservation of energy explains the motion of a pendu-
lum, what about other systems that oscillate? Many sys-
tems involve springs or elastic bands that move back and
forth, with potential energy being converted to kinetic

v

F
W ⇒ ∆PE

E = PE = mgh 0

h0 = 20 m

E = PE + KE

E = KE =   mv21
2
_

15 m

v

figure 6.16 Work done in pulling the sled up the hill produces an increase in potential energy of the sled and rider. This initial
energy is then converted to kinetic energy as they slide down the hill.

A parent pulls a sled and rider with a combined weight of
50 kg to the top of a hill 20 m high and then gives the sled
a push, providing an initial velocity of 4 m/s. Frictional forces
acting on the sled do 2000 J of negative work as the sled
moves down the hill.

Energy input

Potential energy gained by work done in pulling
sled up the hill:

PE � mgh � (50 kg)(9.8 m/s2)(20 m) 9 800 J

Kinetic energy gained by work done in pushing
the sled at the top:

KE � mv2 � (50 kg)(4 m/s)2 400 J

Total initial energy: 10 200 J

Energy expenditures

Work done against friction as the sled slides
down the hill:

W � �fd �2 000 J

Energy balance: 8 200 J

1
2

1
2

table 6.1

Energy Balance Sheet for the Sled

W = –fd 

v

f

figure 6.17 The work done by frictional forces is negative,
and it removes mechanical energy from the system.
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bob or mass on a spring as it varies with time. If we plot
the position of the mass against time, the resulting curve
takes the form shown in figure 6.19. The mathematical
functions that describe such curves are called “harmonic”
functions, and the motion is called simple harmonic
motion,* a term probably borrowed from musical descrip-
tions of sounds produced by vibrating strings, reeds, and
air columns. (See chapter 15.)

The line at zero on the graph in figure 6.19 is the equi-
librium position for the mass on a spring. Points above this
line represent positions on one side of the equilibrium
point, and those below the line represent positions on the
other side. The motion starts at the point of release, where
the distance of the mass from equilibrium is a maximum.
As the mass moves toward the equilibrium position (x � 0
on the graph) it gains speed, indicated by the increasing
slope of the curve. (See section 2.4.) The object’s position
changes most rapidly when it is near the equilibrium point,
where the kinetic energy and speed are the greatest.

As the mass passes through the equilibrium position,
it starts to move away from equilibrium in the direction
opposite to its initial position. The force exerted by the
spring is now in the direction opposite to the velocity and
is decelerating the mass. When the mass reaches the point
farthest from its release point, the speed and kinetic energy
are again zero, and the potential energy has returned to its
maximum value. (See example box 6.5.) The slope of the
curve is zero at this point, indicating that the mass is
momentarily stopped (its velocity is zero). The mass con-
tinually gains or loses speed as it moves back and forth.

What are the period and the frequency?
If you look at the graph in figure 6.19, you will notice that
the curve repeats itself regularly. The period T is the re-
peat time, or the time taken for one complete cycle. It is

116 Chapter 6 Energy and Oscillations

energy and then back to potential energy repeatedly. What
do such systems have in common? What makes them tick?

A mass on the end of a spring is one of the simplest
oscillating systems. This system, and the simple pendulum
described in section 6.4, are examples of simple harmonic
motion.

Oscillation of a mass attached to a spring
If we attach a block to the end of a spring, as in figure 6.18,
what happens when we pull it to one side of its equilibrium
position? The equilibrium position is where the spring is
neither stretched nor compressed. Doing work to pull the
mass against the opposing force of the spring increases
the potential energy of the spring-mass system. The poten-
tial energy in this case is elastic potential energy, kx2,
rather than the gravitational potential energy associated
with the pendulum. Increasing the potential energy of the
mass on the spring is similar to cocking a bow and arrow
or slingshot.

Once the mass is released, potential energy is converted
to kinetic energy. Like the pendulum, the motion of the
mass carries it beyond the equilibrium position, and the
spring is compressed, gaining potential energy again. When
the kinetic energy is completely reconverted to potential
energy, the mass stops and reverses, and the whole process
repeats (fig. 6.18). The energy of the system changes con-
tinuously from potential energy to kinetic energy and back
again. If frictional effects can be ignored, the total energy
of the system remains constant while the mass oscillates
back and forth.

Using a video camera or other tracking techniques, it is
possible to measure and plot the position of a pendulum

1
2

Potential
energy

x = 0
(Equilibrium point)

0

Kinetic
energy

Potential
energy

0

v

figure 6.18 Energy added by doing work to stretch the
spring is then transformed back and forth between the potential
energy of the spring and kinetic energy of the mass.

figure 6.19 The horizontal position x of the mass on the
spring is plotted against time as the mass moves back and forth.
The resulting curve is a harmonic function.

P
os

iti
on

 (
x)

0

Time (t )

T

amplitude

*If you have studied trigonometry, you may know that the curve plotted in
figure 6.19 is a cosine function. Sines and cosines are collectively referred
to as harmonic functions.
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example box 6.5

Sample Exercise: Motion of a Mass on a Spring

A 500-g mass (0.50 kg) is undergoing simple harmonic
motion at the end of a spring with a spring constant of
800 N/m. The motion takes place on a frictionless horizontal
surface as pictured in figure 6.18. The speed of the mass is
12 m/s when it passes through the equilibrium point.

a. What is the kinetic energy at the equilibrium point?
b. How far does the mass travel from the equilibrium

point before it turns around?

a. m � 0.50 kg KE � mv2

v � 12 m/s KE � (0.50 kg) (12 m/s)2

KE � ? KE � 36 J

b. x � ? E � KE � PE � 36 J
(when v � 0) but KE � 0 at the turn-around 

point

so PE � kx2 � 36 J

x2 �

x2 �

x2 � 0.09 m2

x � 0.30 m � 30 cm

72 J

800 N/m

2(36 J)

k

1
2

1
2

1
2

usually measured in seconds. You can think of the period
as the time between adjacent peaks or valleys on the curve.
A slowly oscillating system has a long period, and a rap-
idly oscillating system has a short period.

Suppose that the period of oscillation for a certain
spring and mass is half a second. There are then two
oscillations each second, which is the frequency of oscil-
lation. The frequency f is the number of cycles per unit
time, and it is found by taking the reciprocal of the
period, f � 1/T. A rapidly oscillating system has a very
short period and thus a high frequency. The unit com-
monly used for frequency is the hertz, which is defined as
one cycle per second.

What determines the frequency of the spring-mass sys-
tem? Intuitively, we expect a loose spring to have a low fre-
quency of oscillation and a stiff spring to have a high fre-
quency. This is indeed the case. The mass attached to the
spring also has an effect. Larger masses offer greater re-
sistance to a change in motion, producing lower frequencies.

The period and frequency of oscillation of a pendulum
depend primarily on its length, measured from the pivot
point to the center of the bob. To measure the period, you
usually measure the time required for several complete

swings and then divide by the number of swings to get the
time for one swing.

Simple experiments with a ball on a string will give you an
idea of how the period and frequency change with length. Try
it and see if you can find a trend (see home experiment 1).
The motion is regular—you can keep time by the swing of a
pendulum or the motion of a mass on a spring.

Will any restoring force produce simple
harmonic motion?
When a mass attached to a spring is moved to either side
of equilibrium, the spring exerts a force that pulls or pushes
the mass back toward the center. We call such a force the
restoring force. In this case, it is the elastic force exerted
by the spring. In any oscillation, there must be some such
restoring force.

As discussed in section 6.3, the spring force is directly
proportional to the distance x of the mass from its equilib-
rium position (F � �kx). The spring constant k has units
of newtons per meter (N/m). Simple harmonic motion re-
sults whenever the restoring force has this simple depend-
ence on distance. If the force varies in a more complicated
way with distance, we may get an oscillation but not sim-
ple harmonic motion, and it will not produce a simple har-
monic curve (fig. 6.19).

It is generally easiest to set up a spring-mass system by
suspending the spring from a vertical support and hanging
a mass on the end of the spring, as in figure 6.20. This
arrangement avoids the frictional forces of the tabletop in a

x = 0

figure 6.20 A mass hanging from a spring will oscillate up
and down with the same period as a horizontal mass-spring
system using the same spring and mass.
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horizontal arrangement. In the vertical setup, when the
mass is pulled down and released, the system oscillates up
and down rather than horizontally. Two forces then act on
the mass, the spring force pulling upward and the gravita-
tional force pulling downward.

Since the gravitational force in the vertical setup is con-
stant, it simply moves the equilibrium point lower. The
equilibrium point is where the net force is zero—the
downward pull of gravity is balanced by the upward pull of
the spring. The variations in the restoring force are still
provided by the spring. These variations are proportional
to the distance from equilibrium just as they are in the
horizontal case. This system also meets the condition for
simple harmonic motion. The potential energy involved,
however, is the sum of the gravitational and elastic poten-
tial energies.

Gravity is the restoring force for the simple pendulum.
When the pendulum bob is pulled to one side of its equi-
librium position, the gravitational force acting on the bob
pulls it back toward the center. The part of the gravitational
force in the direction of motion is proportional to the dis-
placement, if the displacement from equilibrium is not too

large. Thus, for small amplitudes of swing, the simple pen-
dulum also displays simple harmonic motion. Amplitude is
the maximum distance from the equilibrium point.

Look around for systems that oscillate. There are many
examples, ranging from a springy piece of metal to a ball
rolling in a depression of some kind. What force pulls back
toward the equilibrium position in each case? Is the motion
likely to be simple harmonic motion, or a more compli-
cated oscillation? What kind of potential energy is in-
volved? The analysis of vibrations such as these forms an
important subfield of physics that plays a role in music,
communications, analysis of structures, and other areas.

Any oscillation involves a continuing interchange of
potential and kinetic energies. If there are no frictional
forces removing energy from the system, the oscillation
will go on indefinitely. A restoring force that increases in
direct proportion to the distance from the equilibrium
position results in simple harmonic motion, with simple
curves (harmonic functions) describing the position, veloc-
ity, and acceleration of the object over time.

The concept of work is central to this chapter. Energy is trans-
ferred into a system by doing work on the system, which can
result in an increase in either the kinetic energy or the potential
energy of the system. If no additional work is done on the system,
the total energy of the system remains constant. This principle of
conservation of energy allows us to explain many features of the
behavior of the system.

1 Simple machines, work, and power. Work is de-
fined as force times the distance involved in moving an object.
Only the portion of the force in the direction of the motion is
used. In simple machines, work output cannot exceed work input.
Power is the rate of doing work.

3 Potential energy. If work done on an object moves
the object against an opposing conservative force, the potential
energy of the object is increased. Two types of potential energy
were considered, gravitational potential energy and elastic poten-
tial energy.

4 Conservation of energy. If no work is done on a sys-
tem, the total mechanical energy (kinetic plus potential) remains
constant. This principle of conservation of energy explains the be-
havior of many systems that involve exchanges of kinetic and po-
tential energy. The system can be analyzed by energy accounting.

F

W = Fd,

d

—P = W
   t

k 

m

h

x

PE =    kx2 PE = mgh

(gravitational) (elastic)

1–
2

E = KE + PE = constant 

m
v

1
2
_KE =    mv 2 

summary

2 Kinetic energy. The work done by the net force acting
on an object is used to accelerate the object, and the object gains
kinetic energy. Kinetic energy is equal to one-half the mass of the
object times the square of its speed. Negative work removes
kinetic energy.
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* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. Equal forces are used to move blocks A and B across the
floor. Block A has twice the mass of block B, but block B
moves twice the distance moved by block A. Which block,
if either, has the greater amount of work done on it?
Explain.

Q2. A man pushes very hard for several seconds upon a heavy
rock, but the rock does not budge. Has the man done any
work on the rock? Explain.

Q3. A string is used to pull a wooden block across the floor
without accelerating the block. The string makes an angle
to the horizontal as shown in the diagram.
a. Does the force applied via the string do work on the

block? Explain.
b. Is the total force involved in doing work or just a por-

tion of the force? Explain.

the ball moving in the circle at constant speed. Does the
force exerted by the string on the ball do work on the ball
in this situation? Explain.

*Q7. A man walks across the room. What forces act on the man
during this process? Which, if any, of these forces do work
on the man? Explain.

Q8. A woman uses a pulley arrangement to lift a heavy crate.
She applies a force that is one-fourth the weight of the
crate, but moves the rope a distance four times the height
that the crate is lifted. Is the work done by the woman
greater than, equal to, or less than the work done by the
rope on the crate? Explain.

Q9. A lever is used to lift a rock as shown in the diagram.
Will the work done by the person on the lever be greater
than, equal to, or less than the work done by the lever on
the rock? Explain.

questions 119

questions

d

F

Q4. In the situation pictured in question 3, if there is a fric-
tional force opposing the motion of the block, does this
frictional force do work on the block? Explain.

Q5. In the situation pictured in question 3, does the normal
force of the floor pushing upward on the block do any
work? Explain.

Q6. A ball is being twirled in a circle at the end of a string.
The string provides the centripetal force needed to keep

F

5 Springs and simple harmonic motion. The motions
of a simple pendulum and of a mass on a spring both illustrate the
principle of conservation of energy, but they involve different kinds
of potential energy. They are also examples of simple harmonic
motion, which results whenever the restoring force is proportional to
the distance of the object from its equilibrium position.

F

F = –kx

F

 x  x 

key terms

Simple machine, 103
Mechanical advantage, 104
Work, 104
Power, 106
Kinetic energy, 106
Negative work, 107

Potential energy, 108
Gravitational potential energy, 108
Elastic force, 109
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Elastic potential energy, 109
Conservative forces, 110

Conservation of energy, 110
Simple harmonic motion, 116
Period, 116
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Restoring force, 117
Amplitude, 118

*Q10. A crate on rollers is pushed up an inclined plane into a
truck. The pushing force required is less than half the
force that would be needed to lift the crate straight up into
the truck. Does the inclined plane serve as a simple
machine in this situation? Explain.

Q11. A boy pushes his friend across a skating rink. Since the fric-
tional forces are very small, the force exerted by the boy on
his friend’s back is the only significant force acting on the
friend in the horizontal direction. Is the change in kinetic
energy of the friend greater than, equal to, or less than the
work done by the force exerted by the boy? Explain.

Q3 Diagram

Q3 Diagram
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Q12. A child pulls a block across the floor with force applied
by a horizontally held string. A smaller frictional force
also acts upon the block, yielding a net force on the block
that is smaller than the force applied by the string. Does
the work done by the force applied by the string equal the
change in kinetic energy in this situation? Explain.

Q13. If there is just one force acting on an object, does its
work necessarily result in an increase in kinetic energy?
Explain.

Q14. Two balls of the same mass are accelerated by different
net forces such that one ball gains a velocity twice that of
the other ball in the process. Is the work done by the net
force acting on the faster-moving ball twice that done on
the slower-moving ball? Explain.

Q15. A box is moved from the floor up to a tabletop but gains
no speed in the process. Is there work done on the box,
and if so, what has happened to the energy added to the
system?

Q16. When work is done to increase the potential energy of an
object without increasing its kinetic energy, is the net
force acting on the object greater than zero? Explain.

Q17. Is it possible for a system to have energy if nothing is
moving in the system? Explain.

Q18. Suppose that work is done on a large crate to tilt the crate
so that it is balanced on one edge, as shown in the dia-
gram, rather than sitting squarely on the floor as it was at
first. Has the potential energy of the crate increased in
this process? Explain.

a. What form of energy is added to the system prior to its
release? Explain.

b. At what points in the motion of the pendulum after
release is its kinetic energy the greatest? Explain.

c. At what points is the potential energy the greatest?
Explain.

Q23. For the pendulum in question 22––when the pendulum
bob is halfway between the high point and the low point in
its swing––is the total energy kinetic energy, potential
energy, on both? Explain.

Q24. Is the total mechanical energy conserved in the motion of
a pendulum? Will it keep swinging forever? Explain.

Q25. A sports car accelerates rapidly from a stop and “burns
rubber.’’
a. What energy transformations occur in this situation?
b. Is energy conserved in this process? Explain.

Q26. A man commutes to work in a large sport utility vehicle
(SUV).
a. What energy transformations occur in this situation?
b. Is mechanical energy conserved in this situation? Explain.
c. Is energy of all forms conserved in this situation? Explain.

Q27. Suppose that we burn a barrel of oil just to warm our
hands on a cold day.
a. From the standpoint of physics, is energy conserved in

this process? Explain.
b. Why is this a bad idea from an economic or environ-

mental standpoint? Explain.

*Q28. A bird grabs a clam, carries it in its beak to a consider-
able height, and then drops it on a rock below, breaking
the clam shell. Describe the energy conversions that take
place in this process.

Q29. A mass attached to a spring, which in turn is attached to
a wall, is free to move on a friction-free horizontal sur-
face. The mass is pulled back and then released.
a. What form of energy is added to the system prior to the

release of the mass? Explain.
b. At what points in the motion of the mass after its re-

lease is its potential energy the greatest? Explain.
c. At what points is the kinetic energy the greatest? Explain.

Q30. Suppose that the mass in question 26 is halfway between
one of the extreme points of its motion and the center point.
In this position, is the energy of the system kinetic energy,
potential energy, or a combination of these forms? Explain.

*Q31. A spring gun is loaded with a rubber dart, the gun is
cocked, and then fired at a target on the ceiling. Describe
the energy transformations that take place in this process.

Q32. Suppose that a mass is hanging vertically at the end of a
spring. The mass is pulled downward and released to set
it into oscillation. Is the potential energy of the system in-
creased or decreased when the mass is lowered? Explain.

*Q33. A sled is given a push at the top of a hill. Is it possible
for the sled to cross a hump in the hill that is higher than
its starting point under these circumstances? Explain.

*Q34. Can work done by a frictional force ever increase the total
mechanical energy of a system? (Hint: Consider the accel-
eration of an automobile.) Explain.

*Q19. Which has the greater potential energy: a ball that is 10 feet
above the ground, or one with the same mass that is 20 feet
above the bottom of a nearby 50-foot-deep well? Explain.

Q20. When a bow and arrow are cocked, a force is applied to
the string in order to pull it back. Is the energy of the sys-
tem increased? Explain.

Q21. Suppose that the physics instructor pictured in figure 6.15
gives the bowling ball a push as she releases it. Will the
ball return to the same point or will her chin be in danger?
Explain.

Q22. A pendulum is pulled back from its equilibrium (center)
position and then released.

Q18 Diagram
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E1. A horizontally directed force of 40 N is used to pull a box
a distance of 2.5 m across a tabletop. How much work is
done by the 40-N force?

E2. A woman does 160 J of work to move a table 4 m across
the floor. What is the magnitude of the force that the
woman applied to the table if this force is applied in the
horizontal direction?

E3. A force of 60 N used to push a chair across a room
does 300 J of work. How far does the chair move in this
process?

E4. A rope applies a horizontal force of 180 N to pull a crate a
distance of 2 m across the floor. A frictional force of 60 N
opposes this motion.
a. What is the work done by the force applied by the rope?
b. What is the work done by the frictional force?
c. What is the total work done on the crate?

E5. A force of 50 N is used to drag a crate 4 m across a floor.
The force is directed at an angle upward from the crate so
that the vertical component of the force is 30 N and the
horizontal component is 40 N as shown in the diagram.
a. What is the work done by the horizontal component of

the force?
b. What is the work done by the vertical component of the

force?
c. What is the total work done by the 50-N force?

E6. A net force of 60 N accelerates a 4-kg mass over a distance
of 10 m.
a. What is the work done by this net force?
b. What is the increase in kinetic energy of the mass?

E7. A 0.4-kg ball has a velocity of 20 m/s.
a. What is the kinetic energy of the ball?
b. How much work would be required to stop the ball?

E8. A box with a mass of 5.0 kg is lifted (without acceleration)
through a height of 2.0 m, in order to place it upon the
shelf of a closet.
a. What is the increase in potential energy of the box?

b. How much work was required to lift the box to this
position?

E9. A spring with a spring constant k of 40 N/m is stretched a
distance of 20 cm (0.20 m) from its original unstretched posi-
tion. What is the increase in potential energy of the spring?

E10. To stretch a spring a distance of 0.20 m, 40 J of work is done.
a. What is the increase in potential energy of the spring?
b. What is the value of the spring constant k of the spring?

E11. Which requires more work: lifting a 2-kg rock to a height
of 4 m without acceleration, or accelerating the same rock
horizontally from rest to a speed of 10 m/s?

E12. At the low point in its swing, a pendulum bob with a mass
of 0.2 kg has a velocity of 4 m/s.
a. What is its kinetic energy at the low point?
b. Ignoring air resistance, how high will the bob swing

above the low point before reversing direction?

E13. A 0.20-kg mass attached to a spring is pulled back horizon-
tally across a table so that the potential energy of the sys-
tem is increased from zero to 120 J. Ignoring friction, what
is the kinetic energy of the system after the mass is
released and has moved to a point where the potential
energy has decreased to 80 J?

E14. A sled and rider with a combined mass of 50 kg are at the
top of a hill a height of 15 m above the level ground below.
The sled is given a push providing an initial kinetic energy
at the top of the hill of 1600 J.
a. Choosing a reference level at the bottom of the hill,

what is the potential energy of the sled and rider at the
top of the hill?

b. After the push, what is the total mechanical energy of
the sled and rider at the top of the hill?

c. If friction can be ignored, what will be the kinetic
energy of the sled and rider at the bottom of the hill?

E15. A roller-coaster car has a potential energy of 450 000 J and
a kinetic energy of 120 000 J at point A in its travel. At the
low point of the ride, the potential energy is zero, and
50 000 J of work have been done against friction since it
left point A. What is the kinetic energy of the roller coaster
at this low point?

E16. A roller-coaster car with a mass of 1200 kg starts at rest
from a point 20 m above the ground. At point B, it is 12 m
above the ground.
a. What is the initial potential energy of the car?
b. What is the potential energy at point B?
c. If the initial kinetic energy was zero and the work done

against friction between the starting point and point B is
30 000 J, what is the kinetic energy of the car at point B?

exercises

exercises 121

Q35. Suppose that a pulley system is used to lift a heavy crate,
but the pulleys have rusted and there are frictional forces
acting on the pulleys. Will the useful work output of this
system be greater than, equal to, or less than the work
input? Explain.

Q36. Is the elastic potential energy stored in the pole the only
type of potential energy involved in pole-vaulting? Explain.

Q37. If one pole-vaulter can run faster than another, will the
faster runner have an advantage in the pole vault? Explain.

30 N

40 N

50 N

4 m

E5 Diagram
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synthesis problems

SP1. Suppose that two horizontal forces are acting upon a
0.25-kg wooden block as it moves across a laboratory
table: a 5-N force pulling the block and a 2-N frictional
force opposing the motion. The block moves a distance of
1.5 m across the table.
a. What is the work done by the 5-N force?
b. What is the work done by the net force acting upon the

block?
c. Which of these two values should you use to find the

increase in kinetic energy of the block? Explain.
d. What happens to the energy added to the system via the

work done by the 5-N force? Can it all be accounted
for? Explain.

e. If the block started from rest, what are its kinetic energy
and velocity at the end of the 1.5-m motion?

SP2. As described in example box 6.2, a 100-kg crate is acceler-
ated by a net force of 50 N applied for 4 s.
a. What is the acceleration of the crate from Newton’s sec-

ond law?
b. If it starts from rest, how far does it travel in the time of

4 s? (See section 2.5 in chapter 2.)
c. How much work is done by the 50-N net force?
d. What is the velocity of the crate at the end of 4 s?
e. What is the kinetic energy of the crate at this time? How

does this value compare to the work computed in part c?

SP3. A slingshot consists of a rubber strap attached to a Y-shaped
frame, with a small pouch at the center of the strap to hold
a small rock or other projectile. The rubber strap behaves
much like a spring. Suppose that for a particular slingshot a
spring constant of 600 N/m is measured for the rubber
strap. The strap is pulled back approximately 40 cm (0.4 m)
prior to being released.
a. What is the potential energy of the system prior to

release?
b. What is the maximum possible kinetic energy that can

be gained by the rock after release?
c. If the rock has a mass of 50 g (0.05 kg), what is its

maximum possible velocity after release?
d. Will the rock actually reach these maximum values of

kinetic energy and velocity? Does the rubber strap gain
kinetic energy? Explain.

SP4. Suppose that a 200-g mass (0.20 kg) is oscillating at the
end of a spring upon a horizontal surface that is essentially
friction-free. The spring can be both stretched and compressed

and has a spring constant of 240 N/m. It was originally
stretched a distance of 12 cm (0.12 m) from its equilibrium
(unstretched) position prior to release.
a. What is its initial potential energy?
b. What is the maximum velocity that the mass will reach

in its oscillation? Where in the motion is this maximum
reached?

c. Ignoring friction, what are the values of the potential
energy, kinetic energy, and velocity of the mass when
the mass is 6 cm from the equilibrium position?

d. How does the value of velocity computed in part c com-
pare to that computed in part b? (What is the ratio of the
values?)

SP5. A sled and rider with a total mass of 40 kg are perched at
the top of a hill as pictured in the diagram. The top of this
hill is 40 m above the low point in the path of the sled. A
second hump in the hill is 30 m above this low point. Sup-
pose that we also know that approximately 2000 J of work
is done against friction as the sled travels between these
two points.
a. Will the sled make it to the top of the second hump if

no kinetic energy is given to the sled at the start of its
motion? Explain.

b. What is the maximum height that the second hump
could be in order for the sled to reach the top, assum-
ing that the same work against friction will be involved
and that no initial push is provided? Explain.

E18. The time required for one complete cycle of a mass oscil-
lating at the end of a spring is 0.25 s. What is the frequency
of oscillation?

E19. The frequency of oscillation of a pendulum is 8 cycles/s.
What is the period of oscillation?

E17. A 200-g mass lying on a frictionless table is attached to a
horizontal spring with a spring constant of 400 N/m. The
spring is stretched a distance of 40 cm (0.40 m).
a. What is the initial potential energy of the system?
b. What is the kinetic energy of the system when the mass

returns to the equilibrium position after being released?

40 m
30 m

SP5 Diagram
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SP6. Suppose you wish to compare the work done by pushing a
box on rollers up a ramp to the work done if you lift the
box straight up to the same final height.
a. What work is required to lift a 100N box (about 22 lbs)

up to a table which is 1 m off the floor?
b. Let’s assume you also have a ramp available that makes

an angle of 30° with the horizontal, as shown in the fig-
ure to the right. The ramp is 2 m long. The weight of the
box (100 N) is due to the Earth pulling on the box. This
100 N is a force directed straight down. If you push it up
a ramp, you are doing work against only the component
of this weight along the ramp, which is 50 N, as shown
in the diagram. How much work does it require to push
the box up the ramp, assuming no friction?

c. Which situation (pushing up the ramp or lifting straight
up) requires more work?

d. Which situation requires more force?
e. For which situation is the distance moved greater?
f. What is the change in the gravitational potential energy

of the box for each situation?
g. What advantage, if any, is there to using the ramp? Explain.

HE1. You can construct a simple pendulum easily by attaching a
ball to a string (with tape or a staple) and fixing the other
end of the string to a rigid support. (A pencil taped firmly
to the end of a desk or table will do nicely.)
a. The frequency of oscillation can be measured by timing

the swings. The usual method is to use a watch to mea-
sure the time required for ten or more complete swings.
The period T (the time required for one swing) is then
the total time divided by the number of swings counted
and the frequency f is just 1/T.

b. How does the frequency change if you vary the length
of your pendulum? (Try at least three different lengths.)

HE2. A ramp for a marble or small steel ball can be made by
bending a long strip of cardboard into a V-shaped groove.
Two such ramps can be placed end to end, as pictured in
the diagram, to produce a track in which the marble will
oscillate.
a. Can you measure a frequency of oscillation for this sys-

tem? Does this frequency depend upon how high up the
ramp the marble starts?

b. How high up the second ramp does the marble go? Is
more energy lost per cycle in this system than for a
pendulum?

HE3. The height to which a ball bounces after being dropped
provides a measure of how much energy is lost in the col-
lision with the floor or other surface. A small portion of the
energy is lost to air resistance as the ball is moving, but
most is lost in the collision.
a. Trying a number of different balls that you may have

available, test the height of the bounce using the same
height of release for all of the balls tested. Which ball
loses the most energy and which the least?

b. Can you explain why many balls return to a higher
height than a marble will? What characteristics of the
balls tested give the best bounce?

c. For a ball that bounces several times, does the period
(time between bounces) change with each bounce? Does
the bouncing ball undergo simple harmonic motion?

SP6 Diagram

HE2 Diagram

30° 100 N

86.6 N

50 N

1m

2 m

home experiments and observations
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chapter overview
In this chapter, we explore momentum and impulse and examine the use
of these concepts in analyzing events such as a collision between a
fullback and defensive back. The principle of conservation of momentum
is introduced and its limits explained. A number of examples will shed
light on how these ideas are used, particularly conservation of
momentum. Momentum is central to all of these topics—it is a powerful
tool for understanding a lot of life’s sudden changes.

chapter outline
1 Momentum and impulse. How can rapid changes in motion be

described using the ideas of momentum and impulse? How do these
ideas relate to Newton’s second law of motion?

2 Conservation of momentum. What is the principle of conservation of
momentum, and when is it valid? How does this principle follow from
Newton’s laws of motion?

3 Recoil. How can we explain the recoil of a rifle or shotgun using
momentum? How is this similar to what happens in firing a rocket?

4 Elastic and inelastic collisions. How can collisions be analyzed using
conservation of momentum? What is the difference between an elastic
and an inelastic collision?

5 Collisions at an angle. How can we extend momentum ideas to two
dimensions? How does the game of pool resemble automobile
collisions?

124
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Impulse

c h a p t e r
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7.1 Momentum and Impulse 125

figure 7.1 A collision between a running back and a
defensive back (in red, center of the photograph). How will the
two players move after the collision?

7.1 Momentum and Impulse
Imagine a baseball heading toward the catcher’s mitt when
its flight is rudely interrupted by the impact of a bat. In a
very short time, the velocity of the ball changes direction
and is accelerated in the direction opposite its original
flight. Similar changes happen when a tennis racket hits a
ball or when a ball bounces off a wall or the floor. In many
everyday situations, a brief impact causes a rapid change in
an object’s velocity.

The forces responsible for such rapid changes in motion
can be large, but they act for very short times and are diffi-
cult to measure. Not only are they brief, but they may change
rapidly during the collision.

What happens when a ball bounces?
Consider the seemingly simple example of dropping a ten-
nis ball. The ball is initially accelerated downward by the
gravitational force. When it reaches the floor, its velocity
quickly changes in direction, and the ball heads back up to-
ward you (fig. 7.2). There must be a strong force exerted on
the ball by the floor during the short time that they are in
contact. This force provides the upward acceleration neces-
sary to change the direction of the ball’s velocity.

If we used a high-speed camera to catch the action during
the time the ball is in contact with the floor, we would see
that the ball’s shape is distorted (fig. 7.3). The ball behaves

like a spring, first compressing as it moves downward, then
expanding (springing back) as it begins to move upward. A
quick test (squeezing the ball with your hands) will per-
suade you that a strong force is required to distort the ball.

What we have, then, is a strong force acting for a very
brief time producing a rapid acceleration that quickly changes
the ball’s velocity from a downward direction to an upward

v1

v2

figure 7.2 A tennis ball bouncing off the floor. There is a rapid
change in the direction of the velocity when the ball hits the floor.

The word momentum is overused by sports announc-
ers to mean changes in the flow of a game. The “old
mo” that announcers talk about bears only a metaphor-
ical relationship to the physical concept of momentum.
There are plenty of real examples of changes in mo-
mentum for us to consider in both the world of sports
and the world more generally.

Take the collision between a hard-charging fullback
and a defensive back on the football field (fig. 7.1). If
they meet head-on, the velocity of the fullback is sharply
reduced, although the two players might continue mov-
ing briefly in the original direction of the fullback’s
velocity. If the defensive back is moving before the colli-
sion, his velocity also changes abruptly. There must be
strong forces at work to produce these accelerations,
but these forces act for only an instant. How do we use
Newton’s laws to analyze this event?

Momentum, impulse, and conservation of momen-
tum figure in any discussion of collisions. The total mo-
mentum of the fullback and defensive back is involved
in predicting what will happen after the collision. How 
is momentum defined, and what does conservation of
momentum have to do with Newton’s laws? How is
conservation of momentum useful in predicting what

happens in collisions? These questions will be addressed
as we examine a variety of collisions and other high-
impact events.
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one. The magnitude of the ball’s velocity decreases rapidly
to zero and then increases equally rapidly in the opposite
direction. This all happens in a time so short that we would
miss it if we blinked.

How can we analyze such rapid changes?
We have described the collision of the ball with the floor
using force and acceleration, and we could also use Newton’s
second law to predict how the velocity actually changes.
The problem with this approach is that the time of the
interaction is very short, and the force itself varies during
this short time, so it is hard to describe the collision accu-
rately. It is more productive to look at the total change in
motion in this brief interaction.

We introduced Newton’s second law in chapter 4 using
the expression Fnet � ma. The acceleration a is the rate of
change in velocity, which can be expressed as the change in
velocity �v divided by the time interval �t required to pro-
duce that change. The time interval is important: the shorter
the time for a given change in velocity, the larger the accel-
eration and the force needed to produce this change.

We can restate Newton’s second law as

Fnet � m ,

expressing the acceleration in terms of the change in ve-
locity. Multiplying both sides of this equation by the time
interval �t recasts the second law as

Fnet�t � m�v.

While this is still Newton’s second law, rewriting it offers us
a different way of looking at events. This new view is more
convenient for describing the overall change in motion.

What are impulse and momentum?
Impulse shows up as the quantity on the left side of the
recast second law, Fnet�t. Impulse is the force acting on an
object multiplied by the time interval over which the force
acts. If the force varies during this time interval, and it often

a¢v
¢t
b

does, we must use the average value of the force over this
time interval.

Impulse is the average force multiplied by its time interval of
action:

impulse � F�t.

Since force is a vector quantity, impulse is also a vector in
the direction of the average force.

How a force changes the motion of an object depends
on both the size of the force and how long the force acts.
The stronger the force, the larger the effect, and the longer
the force acts, the greater its effect. Multiplying the two
factors together to get the impulse shows the overall effect
of the force.

On the right side of our recast second law, m�v is the
mass of the object multiplied by the change in velocity 
produced by the impulse. This product is the change in the
quantity of motion, to use Newton’s own term. We now call
this product the change in momentum of the object, where
momentum is defined as

Momentum is the product of the mass of an object and its
velocity, or

p � mv.

The symbol p is often used for momentum. If the mass
of the object is constant, the change in momentum is the
mass times the change in velocity or �p � m�v.

Like velocity, momentum is a vector and has the same
direction as the velocity vector. Two different objects trav-
eling in the same direction can have different masses and
velocities but still have the same momentum. For exam-
ple, a 7-kg bowling ball moving with the relatively slow
speed of 2 m/s would have a momentum of 14 kg·m/s.
On the other hand, a tennis ball with a mass of just
0.07 kg, moving with the much larger velocity of 200 m/s,
has the same momentum as the bowling ball, 14 kg·m/s
(fig. 7.4).

Using these definitions of impulse and momentum, we
can state our recast form of Newton’s second law as

impulse � change in momentum

� �p.

This statement of the second law is sometimes called the
impulse-momentum principle:

The impulse acting on an object produces a change in momen-
tum of the object that is equal in both magnitude and direc-
tion to the impulse.

126 Chapter 7 Momentum and Impulse

figure 7.3 A high-speed photograph of a ball hitting the
floor. The ball is compressed like a spring.
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This principle is not a new law but another way of express-
ing Newton’s second law of motion. It is particularly use-
ful for looking at collisions.

How do we apply the impulse-momentum
principle?
The impulse-momentum principle applies to almost any
collision. Whacking a golf ball with a golf club is a good
example (fig. 7.5). The impulse delivered by the golf club
produces a change in the golf ball’s momentum, also
described in example box 7.1. Note that the units of impulse
(force multiplied by time, or N·s) must equal those of
momentum (mass times velocity, or kg·m/s).

Does the momentum of the bouncing tennis ball we dis-
cussed earlier change when it hits the floor? Even if the
ball loses no energy in its collision with the floor and
bounces back with the same speed and kinetic energy it 
had just before hitting the floor, the momentum changes
because its direction changes. The momentum decreases to

zero as the ball comes to a momentary halt, and it changes
again as the ball gains momentum in the opposite direction
(fig. 7.6). The total change in momentum is larger than the
change that would happen if the tennis ball stopped and 
did not bounce.

When the tennis ball bounces back with the same speed,
the total change in momentum is twice the value of the
momentum just before the ball hits the floor. Its final
momentum is mv, where the direction of v is upward, but

7.1 Momentum and Impulse 127

m = 7 kg

m = 0.07 kg
v = 200 m /s

v = 2 m /s
p = 14 kg•m /s

p = 14 kg•m /s

figure 7.4 A bowling ball and a tennis ball with the same momentum. The tennis ball with its smaller mass must have a much
larger velocity.

figure 7.5 An impulse is delivered to the golf ball by the
head of the club. If the initial momentum of the ball is zero, the
final momentum is equal to the impulse delivered.

�p = pf

impulse

example box 7.1

Sample Exercise: The Momentum and
Impulse of Golf

A golf club exerts an average force of 500 N on a 0.1-kg
golf ball, but the club is in contact with the ball for only a
hundredth of a second.

a. What is the magnitude of the impulse delivered by
the club?

b. What is the change in velocity of the golf ball?

a. F � 500 N impulse � F�t

�t � 0.01 s � (500 N)(0.01 s)

impulse � ? � 5 N·s

b. m � 0.1 kg impulse � �p � m�v

�v � ? �v � 

� 

� 50 m/s

Since the golf ball started at rest, this change in velocity
equals the velocity of the ball as it leaves the face of the
club. The direction of this velocity is the same as the
impulse of the force exerted by the club.

5 N #
 s

0.1 kg

impulse

m
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128 Chapter 7 Momentum and Impulse

figure 7.6 The impulse exerted by the floor on the tennis
ball produces a change in its momentum.

pi

DuringBefore After

pf

∆p

Impulse

figure 7.7 Two football players colliding. The impulses
acting on the two players are equal in magnitude but opposite
in direction.

its initial momentum was �mv because the initial veloc-
ity was directed downward. We find the change in momen-
tum by subtracting the initial value from the final value:
mv � (�mv) � 2mv. The impulse required to produce this
change in momentum is twice as large as what is needed
simply to stop the ball.

There are many practical lessons involving impulse and
change in momentum. Why does it help to pull your hand
back as you catch a hard-thrown ball? When you pull your
hand back, you lengthen the time interval �t. This reduces
the average force that your hand must exert on the ball, since
impulse is the product of the force and the time interval
(F�t). If the time interval is longer, the force can be smaller
yet still produce the same impulse and change in momen-
tum. It hurts less this way! A padded dashboard or an air bag
similarly lessens injury to passengers by increasing the time
interval required to bring them to a halt in a collision.
Another practical lesson involving impulse and change in
momentum is described in everyday phenomenon box 7.1.

Everything that we have done in this section is just an-
other way of working with Newton’s second law of motion.
In fact, by dividing both sides of the impulse-momentum
principle by the time interval �t, Newton’s second law can
be expressed in the form that most nearly captures the
meaning of Newton’s original statement of the second law,
Fnet � �p/�t. In words, this form of the second law says that
the net force acting on an object is equal to the rate of
change in momentum of the object. This form covers a
wider range of situations than the more familiar Fnet � ma.

Momentum and impulse are most useful for evaluating
events such as collisions, where powerful forces act briefly
to produce striking changes in the motion of objects. The
impulse-momentum principle states that the change in
momentum is equal to the impulse. This is a different way
of stating Newton’s second law. The impulse, the product of
the average force and the time interval that it is applied,
allows us to predict the change in momentum of the
object. Large impulses yield large changes in momentum.

7.2 Conservation of Momentum
How do impulse and momentum help to explain the colli-
sion between the defensive back and fullback mentioned in
the chapter introduction? The conditions described in sec-
tion 7.1 are certainly present. The defensive back exerts a
sizable but brief force on the fullback (fig. 7.7), and the
momentum of both players changes rapidly in the collision.

The principle of conservation of momentum provides
the key to understanding such a collision. This principle
arises when we apply Newton’s third law to impulse and
changes in momentum. Conservation of momentum allows
us to predict many features of collisions without requiring
detailed knowledge of the forces of impact.

Why and when is momentum conserved?
Let’s take a more detailed look at the head-on collision be-
tween the hard-charging fullback and the defensive back.
To simplify the situation, we assume that the two players
meet in midair and that after the collision they move to-
gether, with the fullback held in the tackle of the defensive
back (fig. 7.7). What happens when they collide?

During the collision, the defensive back exerts a strong
force on the fullback, and by Newton’s third law, the full-
back exerts a force equal in magnitude but opposite in di-
rection on the defensive back. Since the time interval of
action �t is the same for both forces, the impulses F�t
must also be equal in magnitude but opposite in direction.
From the impulse-momentum principle (Newton’s second
law), changes in the momentum �p for each player are
also equal in magnitude but opposite in direction.

If the two players experience equal but oppositely di-
rected momentum changes, the total change in momentum
of the two players together is zero. We look at the overall
system and define the total momentum of that system as
the sum of the momentum values of the two players. There
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The Egg Toss

The Situation. Have you ever competed to see how far you
and a partner can successfully throw and catch a raw egg? The
most successful technique involves moving your hand back as
the egg lands in it. Why does this technique reduce the likeli-
hood of the egg breaking? What does this have to do with
momentum and impulse? How can your physics knowledge
reduce the chances of a raw egg bath? These same principles
apply when catching water balloons.

The Analysis. When you throw an egg or a balloon toward
your partner, you apply a force and give it momentum. When
your partner catches it and brings it to a stop, the object
experiences a change in momentum. That change in momen-
tum is equal to the impulse, as discussed on page 126. The
impulse is also equal to the product of the force of the hand
on the object multiplied by the time that force is applied.
Therefore, by the impulse-momentum principle, the change in
momentum is equal to the force of the hand on the egg mul-
tiplied by the time that force is applied: �p = F�t.

Unlike a golf swing or a bat hitting a baseball, the idea
here is not to increase the change in momentum; the idea is
to minimize the force applied to the egg so that it won’t
break. It is the strength of the force that will break the egg.
The larger the force applied by your hand in catching the egg,
the more likely it is that you will be splattered.

Once the egg leaves the thrower’s hand, it has a certain
momentum that stays the same as it travels from the
thrower to the catcher. We say this momentum is fixed. The
impulse required to reduce this momentum to zero is 
therefore also fixed, it does not change. Since F�t is fixed, if
you wish to decrease the force applied to the egg, the time
interval �t involved in the catch must be increased. We say
that force and time are inversely proportional to one another.
As one increases, the other decreases in proportion. F is 
proportional to 1/�t. (F is proportional to the inverse of �t.) 

The idea of inverse proportionality comes up frequently in
everyday life but is not always recognized or understood.
To take a simple example, let us say that you have $2.00 to
spend on candy. If you buy candy pieces that cost 10¢ each,
you will get 20 pieces of candy. If, instead, you buy candy
pieces that cost 25¢ each, you can only buy eight pieces of
candy. The more expensive the candy, the fewer pieces can be
purchased, a fact that most of us can easily recognize.

In this example, the amount of money you have to spend
is fixed, and it must equal the total cost of the candy, which
is the product of the price per piece times the number of
pieces. The number of pieces of candy you can buy and the
price of each piece of candy are therefore inversely propor-
tional to one another. As one increases, the other must
decrease in proportion.

As we have already indicated, inverse proportionality is
involved in catching the egg. The impulse is fixed, so force
and time are inversely proportional to one another. As you
increase one (say the time to stop it), the other (the force
applied) decreases. Your objective is then to make the time
involved in stopping the egg as large as possible.

How can this be done? You can increase the time
involved in the catch substantially by moving your hand back
as the egg reaches it. This should be done as smoothly as
possible so that the velocity (and momentum) of the egg
decreases to zero much more gradually than if your hand
were stationary. Using this technique, the average force
applied to the egg can be made much smaller than that
involved in a sudden stop. With luck, this force will be small
enough so the egg will not break!

This same principle has many applications. Air bags in cars
reduce the force applied to your head in a collision by
increasing the time it takes your head to come to a stop.
Gym floors have much more ‘give’ to them to reduce the
force on players’ knees when jumping and landing on the
floor. Dropping a wine glass on a carpeted floor will make a
mess by staining the carpet, but it is far less likely to break
the glass than if it is dropped onto a concrete floor. In all of
these examples, the force has decreased because the time it
takes to stop the object increases. You may not be able to
measure the decrease in time with a stopwatch because the
times involved are very short, but you can see the evidence of
the increased time in the result.

The next time you have a picnic, bring some raw eggs or
water balloons and apply the impulse-momentum principle
with your friends and family. With water balloons, good
technique will keep you dry, but sometimes it is more fun to
get wet.

everyday phenomenon
box 7.1
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example box 7.2

Sample Exercise: A Head-on Collision

A 100-kg fullback moving straight downfield with a
velocity of 5 m/s collides head-on with a 75-kg defensive
back moving in the opposite direction with a velocity of
�4 m/s. The defensive back hangs on to the fullback, and
the two players move together after the collision.

a. What is the initial momentum of each player?
b. What is the total momentum of the system?
c. What is the velocity of the two players immediately

after the collision?

a. fullback: p � mv

m � 100 kg � (100 kg)(5 m/s)

v � 5 m/s � 500 kg·m/s

p � ?

defensive back: p � mv

m � 75 kg � (75 kg)(�4 m/s)

v � �4 m/s � �300 kg·m/s

b. ptotal � ? ptotal � pfullback � pdefensive back

� 500 kg·m/s � (�300 kg·m/s)

� 200 kg·m/s

c. v � ? (for both players after the collision)

m � 100 kg � 75 kg p � mv

� 175 kg
v � 

� 

� 1.14 m/s

200 kg #
 m/s

175 kg

ptotal

m

The positive value of the momentum after the collision
means that the two players are traveling in the direction of
the fullback’s initial motion. The fullback had a larger ini-
tial momentum than the defensive back, so his direction of
motion prevails when the two values are added. The defen-
sive back will be carried backward briefly before the two
players hit the turf.

Conservation of momentum results when the changes
in momentum of different parts of a system cancel each
other by Newton’s third law. If there are no external 
forces acting on the system, its total momentum is
conserved. The principle applies to all sorts of situations
involving collisions and explosions or other forms of
brief but forceful interaction between objects.

is no change in the momentum of this system because the
changes in the momentums of the parts cancel one another.
The total momentum of the system is conserved.

To reach this conclusion, we ignored external forces
(produced by other objects) acting on the two players and
assumed that the only significant forces were their own
forces of interaction. The forces that they exert on one an-
other are internal to the system consisting of both players.
The principle of conservation of momentum can therefore
be stated as

If the net external force acting on a system of objects is zero,
the total momentum of the system is conserved.

The forces of interaction between the objects in a sys-
tem are internal forces whose effects on the total momen-
tum cancel one another, because of Newton’s third law of
motion. Different portions of the system can exchange mo-
mentum without affecting the total momentum of the sys-
tem. If there is a net external force acting on the system
because of interaction with some object that is not part of
the system, the entire system will be accelerated—and the
momentum of the system will change.

Conservation of momentum and collisions
Using the principle of conservation of momentum, what
information can we obtain about the results of a collision
(like the one between two football players)? If we know
the masses of the players and their initial velocities, we
can find how fast and in what direction the players will
move after they collide. We do not need to know anything
at all about the details of the strong forces involved in the
collision itself.

The sample exercise in example box 7.2 treats a head-
on collision between a fullback and a defensive back using
realistic numerical values. The fullback has a mass of
100 kg (equivalent to a weight of about 220 lb) and is mov-
ing straight downfield with a velocity of 5 m/s through the
hole created by his linemen. The somewhat smaller defen-
sive back charges up to meet him with a velocity in the
opposite direction of �4 m/s (fig. 7.8). The minus sign
indicates direction: we have chosen the fullback’s direction
of motion to be positive.

The total momentum of the system before the collision
in example box 7.2 is found by adding the initial momen-
tum of the fullback to the momentum of the defensive
back, taking into account the difference in sign. If we as-
sume that both players’ feet leave the ground just before
the collision (so that there are no frictional forces between
their feet and the ground), momentum should be conserved
in the collision. The total momentum of the two players
moving together after the collision has the same value as it
did immediately before the collision (fig. 7.9).
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the initial total momentum of the system is zero. If mo-
mentum is conserved, the total momentum of the system
after the push-off will also be zero. How can the total mo-
mentum be zero when at least one of the skaters is mov-
ing? Both skaters must move with momentum values equal
in magnitude but opposite in direction p2 � �p1. The mo-
mentum of the second skater p2 must be opposite that of
the first skater p1. When added together to find the total
momentum of the system, these individual values will can-
cel each other to produce a total momentum of zero.

After the push-off, the two skaters move in opposite
directions with momentum vectors equal in magnitude 
(fig. 7.11), but their velocities are not of equal magnitude.
Since momentum is mass times velocity (p � mv), the
skater with the smaller mass must have the larger velocity

figure 7.8 The two players before the collision, with velocity and momentum vectors for each.

figure 7.9 The two players after the collision, with velocity
and momentum vectors indicated.

figure 7.10 Two skaters of different masses prepare to
push off against one another. Which one will gain the larger
velocity?

7.3 Recoil
Why does a shotgun slam against your shoulder when fired,
sometimes with painful consequences? How can a rocket
accelerate in empty space when there is nothing there to
push against but itself? These are examples of the phe-
nomenon of recoil, a common part of everyday experience.
Conservation of momentum is the key to understanding
recoil.

What is recoil?
Imagine two ice skaters facing one another and pushing
against each other with their hands (fig. 7.10). The frictional
forces between their skates and the ice are presumably very
small, so we can neglect them. The upward normal force
and the downward force of gravity cancel one another, too,
since we know that there is no acceleration in the vertical
direction. The net external force acting on the system of the
two skaters is effectively zero, and conservation of momen-
tum should apply.

How do we apply conservation of momentum in this sit-
uation? Since neither skater is moving before the push-off,

7.3 Recoil 131
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to yield the same magnitude of momentum as the larger
skater. Suppose that the smaller skater’s mass is just half the
mass of the larger skater. The smaller skater’s velocity will
then be twice as large as the larger skater after pushing off.

The ice skaters illustrate the basics of recoil. A brief
force between two objects causes the objects to move in
opposite directions. The lighter object attains the larger
velocity to equalize the magnitudes of the momentums of
the two objects. The total momentum for the system after the
push-off equals zero, the value of the momentum of the sys-
tem before the push-off if the objects were initially at rest.
The total momentum of the system is conserved and does
not change.

Recoil of a shotgun
If you have ever fired a shotgun without holding it firmly
against your shoulder, you have probably had a painful ex-
perience of recoil. What happened? The explosion of the
powder in the shotgun causes the shot to move very rap-
idly in the direction of the gun’s aim. If the gun is free to
move, it will recoil in the opposite direction with a mo-
mentum equal in magnitude to the momentum of the shot
(fig. 7.12).

Even though the mass of the shot is considerably less
than the shotgun, the momentum of the shot is quite large
as a result of its large velocity. If the external forces acting
on the system can be ignored, the shotgun recoils with a
momentum equal in magnitude to the momentum of the
shot. The recoil velocity of the shotgun will be smaller than
the shot’s velocity because of the larger mass of the gun,
but it is still sizable. As the gun slams back against your
shoulder, you will know that it has recoiled.

How can you avoid a bruised shoulder? The trick is to
hold the gun firmly against your shoulder. (See example

figure 7.11 The two skaters after pushing off, with the
velocity and momentum vectors indicated.

figure 7.12 The shot and the shotgun have equal but
oppositely directed momentums after the gun is fired.

p–p

–p p

v2v1

100 kg 50 kg
Recoil

example box 7.3

Sample Question: Is Momentum Conserved
When Shooting a Shotgun?

Question: When a shotgun is held firmly against your
shoulder, is the momentum of the system conserved?

Answer: It depends on how you define the system.
If the system is defined as just the shotgun and the
pellets, there is then a strong external force exerted on 
the system by the shoulder of the shooter. Since the
condition for conservation of momentum is that the net
external force acting on the system be zero, the momen-
tum of this system is not conserved.

If we included the shooter and the Earth in our system,
then momentum would be conserved because all of the
forces would be internal to this system. The change in the
momentum of the Earth would be imperceptible, however.

box 7.3.) Your own mass then becomes part of the system.
This increased mass will produce a smaller recoil velocity,
even if you happen to be standing on ice with no frictional
forces between your feet and the Earth. More important,
the shotgun will not move against your shoulder.

How does a rocket work?
The firing of a rocket is another example of recoil. The ex-
haust gases rushing out of the tail of the rocket have both
mass and velocity and, therefore, momentum. If we ignore
external forces, the momentum gained by the rocket in the
forward direction will equal in magnitude the momentum
of the exhaust gases in the opposite direction (fig. 7.13).
Momentum is conserved, just as in our other examples of
recoil. The rocket and the exhaust gases push against one
another, and Newton’s third law applies.

The difference between a rocket and our earlier exam-
ples of the skaters and the shotgun is that firing a rocket
is usually a continuous process. The rocket gains momen-
tum gradually rather than in a single short blast. The mass
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of the rocket also changes as fuel is consumed and gases
exhaust from the rocket engines. Computation of the final
velocity becomes more difficult than for the skaters. For a
brief blast of the rocket, though, the same analysis can be
used.

Recoil works in empty outer space: the two objects need
only push against each other, just as with the skaters and the
shotgun. Rocket engines can be used for space travel, un-
like the propeller engines or jet engines used on airplanes.
Airplane engines depend on the presence of the atmo-
sphere, both as a source of oxygen used in burning fuel
and as something to push against. An airplane propeller
pushes against the air, and the air, by Newton’s third law,
pushes against the propeller. This interaction accelerates
the airplane. A rocket, on the other hand, is self-contained.
It exerts a force on its own exhaust gases, and by the third
law, the exhaust gases exert a force on the rocket.

During recoil, objects push against one another, moving
in opposite directions. If external forces can be neglected,
momentum is conserved. The total momentum before and
after the interaction equals zero. After the interaction, the
two objects move away with equal but oppositely directed
momentum vectors that cancel one another. Recoil is one
of many kinds of brief interaction to which conservation of
momentum applies.

7.4 Elastic and Inelastic Collisions
As the example involving football players showed, colli-
sions are one of the most fruitful areas for applying con-
servation of momentum. Collisions involve large forces of
interaction acting for very brief times, and they produce
dramatic changes in the motion of the colliding objects.
Because the forces of interaction are so large, any external
forces acting on the system usually are unimportant by com-
parison: momentum is conserved.

Different kinds of collisions produce different results.
Sometimes the objects stick together and sometimes they
bounce apart. What distinguishes these different cases, and
what do the terms elastic, inelastic, and perfectly inelastic
mean when applied to collisions? Is energy conserved as
well as momentum? Railroad cars, bouncing balls, and bil-
liard balls help illustrate the differences.

What is a perfectly inelastic collision?
The easiest type of collision to analyze is one where two
objects collide head-on and stick together after the col-
lision, like the two football players discussed earlier.
Because they stuck together and moved as one object after
the collision, we had just one final velocity to contend
with.

A collision in which the objects stick together after col-
lision is called a perfectly inelastic collision. The objects
do not bounce at all. If we know the total momentum
of the system before the collision (and external forces are
ignored), we can readily compute the final momentum and
velocity of the now-joined objects.

Coupling railroad cars are another example of this type
of collision. Example box 7.4 uses conservation of momen-
tum to predict the final momentum and velocity of coupled
railroad cars from knowledge of the momentum of the sys-
tem before the collision. The process is much the same as
the one used to predict the final velocity of the football
players in section 7.2. In both cases, the separate objects
move as one following the collision.

In example box 7.4, the total mass of the coupled cars
after the collision is five times that of car 5, so the final ve-
locity of the coupled cars must be one-fifth that of car 5 to
conserve momentum. The momentum of the system imme-
diately after the collision is equal to that just before the
collision, but the velocities have changed. The “final” ve-
locity that we calculated is valid immediately after the col-
lision. As the cars continue to move following the collision,
frictional forces will gradually decelerate them until they
come to rest.

Is energy conserved in collisions?
Is the kinetic energy after the railroad cars collide equal 
to the original kinetic energy of car 5 in the example in
example box 7.4? Using the relationship KE � mv2 intro-
duced in chapter 6, we can compute the kinetic energy be-
fore and after the collision. The original kinetic energy of
car 5 is 2250 kJ. (A kilojoule, kJ, is a thousand joules.)
Immediately after the collision, the kinetic energy of the
five cars moving together is just 450 kJ. (You can check
these values.) A portion of the original kinetic energy is
lost in any perfectly inelastic collision.

If we put a large spring on the front of the moving rail-
road car and allowed it to bounce off the other four cars
rather than coupling, we will find that a greater portion of
the kinetic energy is retained in the collision. When the ob-
jects bounce, the collision is either elastic or only partially
inelastic rather than perfectly inelastic. The distinction is
based on energy. An elastic collision is one in which no
energy is lost. A partially inelastic collision is one in
which some energy is lost, but the objects do not stick to-
gether. The greatest portion of energy is lost in the per-
fectly inelastic collision, when the objects stick.

1
2

figure 7.13 If a short blast is fired, the rocket gains
momentum equal in magnitude but opposite in direction to the
momentum of the exhaust gases.

–�p �p
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In most collisions, some kinetic energy is lost because
the collisions are not perfectly elastic. Heat is generated,
the objects may be deformed, and sound waves are cre-
ated, all of which involve conversions of the kinetic energy
of the objects to other forms of energy. Even if the objects
bounce, we cannot assume that the collision is elastic.
More likely, the collision will be partially inelastic, imply-
ing that some of the initial kinetic energy has been lost.

A ball bouncing off a floor or wall with no decrease in
the magnitude of its velocity is an example of an elastic
collision. Since the magnitude of the velocity does not
change (only the direction changes), the kinetic energy
does not decrease. No energy has been lost. More likely, of
course, some energy will be lost in such a collision, and
the magnitude of the ball’s velocity after the collision will
be a little smaller than before.

The opposite extreme to an elastic collision of a ball
with the wall would be a perfectly inelastic collision in
which the ball sticks to the wall. In this case, the velocity
of the ball after the collision is zero. So is its kinetic en-
ergy. All of the kinetic energy is lost (fig. 7.14).

What happens when billiard balls bounce?
Very little energy is lost when billiard balls collide with
one another. (Time spent playing pool can be justified as a
form of experimental physics. Your intuition about elastic

figure 7.14 An elastic collision and a perfectly inelastic
collision of a ball with a wall. The ball sticks to the wall in the
perfectly inelastic collision.

Elastic

Perfectly
inelastic

vi

vf = vi

vf = 0

vf

vi

example box 7.4

Sample Exercise: When Railroad Cars Couple

Four railroad cars, all with the same mass of 20 000 kg,
sit on a track, as shown in the drawing. A fifth car of
identical mass approaches them with a velocity of 15 m/s
(to the right). This car collides and couples with the other
four cars.

a. What is the initial momentum of the system?
b. What is the velocity of the five coupled cars after

the collision?

a. m5 � 20 000 kg pinitial � m5v5

v5 � 15 m/s � (20 000 kg)(15 m/s)

pinitial � ? � 300 000 kg·m/s

(before the collision)

b. mtotal � 100 000 kg vfinal �

pfinal � pinitial

vfinal � ? �

� 3 m/s

(for the five cars after the collision)

300 000 kg #
 m/s

100 000 kg

pfinal

mtotal

TNAN CN DN EN

pinitial

car 5

A railroad car approaches four others at rest on the track. What is the velocity of the cars after they couple?
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p1

p2

collisions can be improved in the process!) The collisions
are basically elastic. Both momentum and kinetic energy
are conserved in most collisions of billiard balls.

When colliding objects such as billiard balls bounce off
one another, we must deal with two final velocities rather
than one. We can readily compute the total momentum of
the system before and after the collision from our knowl-
edge of the initial momentum values of the objects. More
information is needed to determine the individual veloci-
ties of the objects after the collision, however, since one
value is not enough to determine two unknown velocities.
(This is why the case of the perfectly inelastic collision,
where objects stick together, is particularly easy to analyze.)
In an elastic collision, conservation of energy provides the
additional information.

For billiard balls, the simplest case is the white cue ball
colliding head-on with a second ball that is not moving be-
fore it is hit (the eleven ball in fig. 7.15). What happens? If
spin is a minor factor in the collision, the cue ball stops
dead on impact, and the eleven ball moves forward with a
velocity equal to that of the cue ball before the collision. If
the eleven ball acquires the same velocity that the cue ball
had before the collision, it also has the same momentum
mv as the initial momentum of the cue ball because both
balls have the same mass. Momentum is conserved.

Kinetic energy is also conserved. The cue ball had a
kinetic energy of mv2 before the collision. After the col-
lision, the velocity and kinetic energy of the cue ball are
zero, but the eleven ball now has a kinetic energy of mv2,
since its mass and speed are the same as the cue ball be-
fore the collision. Given the equal masses of the two balls,
the only way that both momentum and kinetic energy can
be conserved is for the cue ball to stop and the eleven ball
to move forward with the same momentum and kinetic en-
ergy that the cue ball had before the collision. This effect
is familiar to any pool player.

The same phenomenon is involved in the familiar
swinging-ball demonstration often seen as a decorative toy
on mantels or desktops (fig. 7.16). A row of steel balls hangs

1
2

1
2

by threads from a metal or wooden frame. If one ball is
pulled back and released, the collision with the other balls
results in a single ball from the other end of the chain fly-
ing off with the same velocity as the first ball just before the
collision. Both momentum and kinetic energy are conserved.

If two balls on one side are pulled back and released,
two balls fly off from the opposite side of the row of balls
after the collision. Again, both momentum and kinetic en-
ergy are conserved by this result. You can explore a variety
of other combinations. It can be entertaining as well as
addictive.

Collisions between hard spheres, such as billiard balls or
the steel balls in the swinging-ball apparatus, will generally
be more or less elastic. Most collisions involving everyday
objects, though, are inelastic to some degree. Some kinetic
energy is lost. Momentum will be conserved, however, as
long as our concern is with the values of momentum and
velocity immediately before and after the collision.

Conservation of momentum is the primary tool used in
understanding collisions. External forces can be ignored
for the brief time of the collision, when the collision forces
are dominant, and the law of conservation of momentum
applies. Kinetic energy can also be conserved if the colli-
sion is elastic, as it is approximately for billiard balls or
other hard spheres. Most collisions involving familiar
objects are partially inelastic and involve some loss of
energy. The greatest proportion of energy is lost in per-
fectly inelastic collisions where objects stick together.

7.5 Collisions at an Angle
What happens when objects such as billiard balls or automo-
biles collide at an angle, rather than head-on? Some inter-
esting applications of conservation of momentum arise

figure 7.15 A head-on collision between the white cue 
ball and the eleven ball initially at rest. The cue ball stops, and
the eleven ball moves forward.

figure 7.16 The swinging-ball apparatus provides an
example of collisions that are approximately elastic.

7.5 Collisions at an Angle 135
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when motion is not confined to a straight line. It becomes
more apparent that momentum is a vector when objects are
free to move in two dimensions. Balls on a pool table, cars
colliding at an intersection, or football players tackling all
provide interesting examples.

An inelastic two-dimensional collision
Two football players, originally traveling at right angles to
one another, collide and stick together, as in figure 7.17.
What will be their direction of motion after the collision?
How do we apply conservation of momentum in this
two-dimensional case? In figure 7.17, we assume that the
two players have the same masses and initial speeds as in
our earlier example (section 7.2), but we no longer have
a head-on collision. The momentum of the defensive back
is now directed across the field as the fullback heads
downfield.

Because momentum is a vector, we need to add the in-
dividual momentum vectors of the fullback and the defen-
sive back to get the total momentum of the system before
the collision. This can be done most readily by using a
vector diagram with the vectors drawn to scale. The vec-
tors can then be added graphically as we have done
before. As shown in figure 7.18, the total momentum of
the system before the collision is the hypotenuse of the
right triangle formed by adding the other two momentum
vectors.

If momentum is conserved in the collision, the total mo-
mentum of the two players after the collision will equal the
total momentum before the collision. Since the two players
move together after the collision, they will travel in the

direction of the total momentum vector shown in figure 7.18.
(See appendix C for a review of vector addition.) The direc-
tion of motion of both players changes as a result of the
collision. The larger momentum of the fullback before the
collision dictates that the final direction of motion is more
downfield than across the field, but it is some of both. This
result makes intuitive sense if you imagine yourself as one
of the players.

The final direction of motion of the two football players
after the collision depends on their momentum values be-
fore the collision. If the defensive back were bigger or
moving faster than we assumed initially, he would have a
larger momentum, and his tackle would cause a more im-
pressive change in the direction of the fullback’s motion.
On the other hand, if the defensive back is small and mov-
ing slowly, his effect on the fullback’s direction will be
small. Adjusting the length of the momentum arrow p2, the
momentum of the defensive back in figure 7.18, will illus-
trate these changes.

Everyday phenomenon box 7.2 describes a similar situ-
ation. Two cars approaching an intersection at right angles
to one another collide and stick together. Working back-
ward from information about the final direction of travel,
the investigator can draw conclusions about the initial ve-
locities of the two cars. Conservation of momentum is ex-
tremely important in accident analysis.

What happens in elastic two-dimensional
collisions?
When billiard balls collide, they do not stick together after the
collision: when objects bounce, we have to contend with 
two final velocities with different directions. Although many
real collisions are like this, analysis is more complicated 
for them than for the perfectly inelastic examples we have
discussed. More information is needed to predict the final
velocities. If we know that the collision is elastic, however,
conservation of kinetic energy can provide that additional
information.

Experimental physics on the pool table comes through
again with an interesting example (and one of practical value
to any pool player). Suppose that the cue ball strikes the

p1 = 500 kg•m/s

p2 = 300 kg•m/s

figure 7.17 The fullback and the defensive back
approaching each other at a right angle.

31°
583 kg•m/s

p1 = 500 kg•m/s

p2 = 300 kg•m/s

figure 7.18 The total momentum of the two football
players prior to the collision is the vector sum of their individual
momentums.
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An Automobile Collision

The Situation. Officer Jones is investigating an automobile
collision at the intersection of Main Street and 19th Avenue.
Driver A was traveling east on 19th Avenue when she was
struck from the side by driver B who was traveling north on
Main Street. The two cars stuck together after the collision
and ended up against the lamppost on the northeast corner
of the intersection.

Both drivers claim they started up just as the light in their
direction changed to green and then collided with the other
driver, who was running a red light and speeding. There are
no other witnesses. Which driver is telling the truth?

The Analysis. Officer Jones, having taken a physics course
during college and being trained in the art of accident investi-
gation, makes these observations:

1. The point of impact is well marked by the shards of glass
from the headlights of B’s car and other debris. Officer
Jones indicates this point on the diagram in her accident
report form.

2. The direction the two cars are traveling after the impact is
also obvious. (She indicated this by a line drawn from the
point of impact to the cars’ final resting spot.)

3. Both cars have about the same mass (both are compacts
of roughly the same vintage and size).

4. Conservation of momentum should determine the direc-
tion of the momentum vector after the collision.

After sketching the diagram and noting the direction of
the final momentum vector, Officer Jones concludes that B is
lying. Why? The final momentum vector must be equal to the
sum of the initial momentum vectors of the two cars before
the collision. Since the cars were traveling at right angles to
one another, the two initial momentum vectors form the sides
of a right triangle whose hypotenuse is the total momentum of
the system. The diagram clearly shows that the momentum
of B’s car must have been considerably larger than the
momentum of A’s car.

Since both drivers claimed to have just started from a
complete stop after the traffic signal changed, the driver with
the larger velocity before the collision is not telling it like
it was. Driver B is the one who had the larger velocity, and
so was presumably speeding through the red light. Driver B
is thus cited by Officer Jones.

everyday phenomenon
box 7.2
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The collision at Main Street and 19th Avenue.
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Officer Jones’s accident report contains a vector diagram derived
from conservation of momentum.
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stationary eleven ball at an angle (off-center), as in figure
7.19. What happens to the two balls after the collision?
The combined effects of conservation of momentum and
conservation of kinetic energy lead to a unique result well-
known to serious pool players.

The initial momentum of the system is simply that of
the cue ball, the only one moving. Its direction is indicated
by the arrow labeled pi in figure 7.19 and in the drawings
in figure 7.20. The force of interaction (and the impulse)
between the two balls is along a line joining the centers of
the balls at the point of impact. The eleven ball moves off
along this line because the force of contact pushes it in that
direction.

The total momentum of the system after the collision
must still be in the direction of the initial momentum be-
cause momentum is conserved in the collision. Conserva-
tion of momentum also restricts the possible momentum
and direction of the cue ball’s motion after the collision
(fig. 7.20). The momentum vectors of the two balls after
the collision are added here to give the total momentum of
the system, ptotal, which must be equal in both magnitude
and direction to the initial momentum of the system.

Since the collision is elastic, the initial kinetic energy of
the cue ball, mv2, must also equal the sum of the kinetic
energies of the two balls after the collision. Since the masses
of the two balls are equal, conservation of kinetic energy
in the collision requires that*

v2 � (v1)
2 � (v2)

2

where v is the speed of the cue ball before the collision,
and v1 and v2 are the speeds of the two balls afterward. The
velocity vectors form a triangle like the one formed by
the momentum vectors in figure 7.20. If the sum of the
squares of the two sides equals the square of the third side
of the triangle, this triangle must be a right triangle accord-
ing to the Pythagorean theorem from plane geometry. If
the velocity vectors form a right triangle, so do the momen-
tum vectors, which have the same directions as the corre-
sponding velocity vectors.

Conservation of momentum requires that the momen-
tum vectors add to form a triangle, but conservation of ki-
netic energy dictates that it be a right triangle. The cue ball
will move off at a right angle (90°) to the direction of mo-
tion of the eleven ball after the collision. In playing pool,
this is an important piece of intelligence if you are plan-
ning your next shot. Conservation of momentum and con-
servation of kinetic energy determine the shot.

If you have a pool table handy, test these conclusions
using a variety of impact angles. (Marbles or steel balls are

a suitable substitute.) You may not get perfect 90° angles
after the collision: the collision is not perfectly elastic, and
spin can sometimes be a factor. The angle between the two
final velocities, though, will usually be within a few de-
grees of a right angle. Seeing is believing—give it a try.

figure 7.19 The cue ball is aimed at a point off-center on
the second ball to produce an angular collision.

figure 7.20 The momentum vectors of the two balls after
the collision add to give the total (initial) momentum of the
system. The paths of the two balls are approximately at right
angles after the collision.

*Conservation of kinetic energy requires that mv2 � m(v1)
2 �

m(v2)
2, but the mass and the factor of can be divided out of the

equation.
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Conservation of momentum requires that the direction of
the momentum vector be conserved as well as its size.
When collisions occur at an angle, this requirement re-
stricts the directions and velocities of the resulting mo-
tions. If the collision is elastic, as with billiard balls, conser-
vation of energy adds another restriction. If you can

imagine the direction and magnitude of the original mo-
mentum vector, you will have some sense of the outcome.
These conservation laws are powerful predictors of what
happens when people, billiard balls, cars, and even sub-
atomic particles or stars collide.

summary

In this chapter, we recast Newton’s second law in terms of im-
pulse and momentum to describe interactions between objects,
such as collisions, that involve strong interaction forces acting
over brief time intervals. The principle of conservation of mo-
mentum, which follows from Newton’s second and third laws,
plays a central role.

1 Momentum and impulse. Newton’s second law can
be recast in terms of momentum and impulse, yielding the state-
ment that the net impulse acting on an object equals the change in
momentum of the object. Impulse is defined as the average force
acting on an object multiplied by the time interval during which
the force acts. Momentum is defined as the mass of an object
times its velocity.

2 Conservation of momentum. Newton’s second and
third laws combine to yield the principle of conservation of mo-
mentum: if the net external force acting on a system is zero, the
total momentum of the system is a constant.

3 Recoil. If an explosion or push occurs between two ob-
jects initially at rest, conservation of momentum dictates that the
total momentum after the event must still be zero if there is no net
external force. The final momentum vectors of the two objects are
equal in size but opposite in direction.

4 Elastic and inelastic collisions. A perfectly inelas-
tic collision is one in which the objects stick together after the
collision. If external forces can be ignored, the total momentum is
conserved. An elastic collision is one in which the total kinetic
energy is also conserved.

5 Collisions at an angle. Conservation of momentum
is not restricted to one-dimensional motion. When objects collide
at an angle, the total momentum of the system before and after
the collision is found by adding the momentum vectors of the in-
dividual objects.

Impulse ∆p

Fnet∆t = ∆p, p = mv

Before

If Fexternal = 0

After

PP

Ptotal = constant

Before

After

pf = pi

pf

Elastic
Perfectly
inelastic

vi

vf

vi

p2

p2 = –p1

p1
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140 Chapter 7 Momentum and Impulse

Except for the examples involving impulse, most of the sit-
uations described in this chapter highlight the principle of
conservation of momentum. The basic ideas used in apply-
ing conservation of momentum are:

1. External forces are assumed to be much smaller than
the very strong forces of interaction in a collision or
other brief event. If external forces acting on the sys-
tem can be ignored, momentum is conserved.

2. The total momentum of the system before the collision
or other brief interaction pinitial is equal to the momen-
tum after the event pfinal. Momentum is conserved and
does not change.

3. Equality of momentum before and after the event can
be used to obtain other information about the motion
of the objects.

For review, look back at how these three points are used
in each of the examples in this chapter. The total momen-
tum of the system before and after the event is always
found by adding the momentum values of the individual
objects as vectors. You should be able to describe the mag-
nitude and direction of this total momentum for each of
the examples.

* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. Does the length of time that a force acts on an object have
any effect on the strength of the impulse produced? Explain.

Q2. Two forces produce equal impulses, but the second force
acts for a time twice that of the first force. Which force, if
either, is larger? Explain.

Q3. Is it possible for a baseball to have as large a momentum 
as a much more massive bowling ball? Explain.

Q4. Are impulse and force the same thing? Explain.

Q5. Are impulse and momentum the same thing? Explain.

Q6. If a ball bounces off a wall so that its velocity coming back
has the same magnitude that it had prior to bouncing:
a. Is there a change in the momentum of the ball? Explain.
b. Is there an impulse acting on the ball during its colli-

sion with the wall? Explain.

Q7. Is there an advantage to following through when hitting a
baseball with a bat, thereby maintaining a longer contact
between the bat and the ball? Explain.

Q8. What is the advantage of a padded dashboard compared to
a rigid dashboard in reducing injuries during collisions?
Explain using momentum and impulse ideas.

Q9. What is the advantage of an air bag in reducing injuries
during collisions? Explain using impulse and momentum
ideas.

*Q10. If an air bag inflates too rapidly and firmly during a colli-
sion, it can sometimes do more harm than good in low-
velocity collisions. Explain using impulse and momentum
ideas.

Q11. If you catch a baseball or softball with your bare hand,
will the force exerted on your hand by the ball be reduced
if you pull your arm back during the catch? Explain.

Q12. A truck and a bicycle are moving side by side with the
same velocity. Which, if either, will require the larger im-
pulse to bring it to a halt? Explain.

Q13. Is the principle of conservation of momentum always valid,
or are there special conditions necessary for it to be valid?
Explain.

Q14. A ball is accelerated down a fixed inclined plane under
the influence of the force of gravity. Is the momentum
of the ball conserved in this process? Explain.

Q15. Two objects collide under conditions where momentum is
conserved. Is the momentum of each object conserved in
the collision? Explain.

Q16. Which of Newton’s laws of motion are involved in justify-
ing the principle of conservation of momentum? Explain.

key terms

Impulse, 126
Momentum, 126
Impulse-momentum principle, 126

Conservation of momentum, 128
Recoil, 132
Perfectly inelastic collision, 133

Elastic collision, 133
Partially inelastic collision, 133

study hint

questions
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*Q17. A compact car and a large truck have a head-on collision.
During the collision, which vehicle, if either, experiences:
a. the greater force of impact? Explain.
b. the greater impulse? Explain.
c. the greater change in momentum? Explain.
d. the greater acceleration? Explain.

Q18. A fullback collides midair and head-on with a lighter de-
fensive back. If the two players move together following
the collision, is it possible that the fullback will be car-
ried backward? Explain.

Q19. Two ice skaters, initially at rest, push off one another.
What is the total momentum of the system after they 
push off? Explain.

Q20. Two shotguns are identical in every respect (including the
size of shell fired) except that one has twice the mass of
the other. Which gun will tend to recoil with greater ve-
locity when fired? Explain.

*Q21. When a cannon rigidly mounted on a large boat is fired,
is momentum conserved? Explain, being careful to clearly
define the system being considered.

Q22. Is it possible for a rocket to function in empty space (in a
vacuum) where there is nothing to push against except it-
self? Explain.

Q23. Suppose that you are standing on a surface that is so slick
that you can get no traction at all in order to begin mov-
ing across this surface. Fortunately, you are carrying a bag
of oranges. Explain how you can get yourself moving.

Q24. Suppose an astronaut in outer space suddenly discovers
that the tether connecting her to the space shuttle is cut
and she is slowly drifting away from the shuttle. Assum-
ing that she is wearing a tool belt holding several wrenches,
how can she move herself back toward the shuttle? Explain.

*Q25. Suppose that on a perfectly still day, a sailboat enthusiast
decides to bring along a powerful battery-operated fan in
order to provide an air current for his sail, as shown in 
the diagram.
a. What are the directions of the change in momentum 

of the air at the fan and at the sail?
b. What are the directions of the forces acting on the fan

and on the sail due to these changes in momentum?
c. Would the sailor in this picture be better off with the

sail furled (down) or unfurled (up)? Explain.

Q26. A skateboarder jumps on a moving skateboard from the
side. Does the skateboard slow down or speed up in this
process? Eaplain, using conservation of momentum.

Q27. A railroad car collides and couples with a second railroad
car that is standing still. If external forces acting on the
system are ignored, is the velocity of the system after
the collision equal to, greater than, or less than that of the
first car before the collision? Explain.

Q28. Is the collision in question 24 elastic, partially inelastic,
or perfectly inelastic? Explain.

Q29. If momentum is conserved in a collision, does this indi-
cate conclusively that the collision is elastic? Explain.

Q30. A ball bounces off a wall with a velocity whose magni-
tude is less than it was before hitting the wall. Is the col-
lision elastic? Explain.

*Q31. A ball bounces off a wall that is rigidly attached to the
Earth.
a. Is the momentum of the ball conserved in this pro-

cess? Explain.
b. Is the momentum of the entire system conserved?

Explain, being careful to clarify how you are defining
the system.

Q32. A cue ball strikes an eight ball of equal mass, initially at
rest. The cue ball stops and the eight ball moves forward
with a velocity equal to the initial velocity of the cue ball.
Is the collision elastic? Explain.

Q33. Two lumps of clay traveling through the air in opposite
directions collide and stick together. Their momentum
vectors prior to the collision are shown in the diagram.
Sketch the momentum vector of the combined lump of
clay after the collision, making the length and direction
appropriate to the situation. Explain your result.

Q34. Two lumps of clay, of equal mass, are traveling through
the air at right angles to each other with velocities of
equal magnitude. They collide and stick together. Is it
possible that their velocity vector after the collision is in
the direction shown in the diagram? Explain.

p1
1 2

p2

Before

After

v1

v2

v3

Q33 Diagram

Q34 DiagramQ25 Diagram
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Q35. Two cars of equal mass collide at right angles to one
another in an intersection. Their direction of motion after
the collision is as shown in the diagram. Which car had the
greater velocity before the collision? Explain.

exercises

E1. An average force of 300 N acts for a time interval of 0.04 s
on a golf ball.
a. What is the magnitude of the impulse acting on the golf

ball?
b. What is the change in the golf ball’s momentum?

E2. What is the momentum of a 1200-kg car traveling with a
speed of 27 m/s (60 MPH)?

E3. A bowling ball has a mass of 6 kg and a speed of 1.5 m/s.
A baseball has a mass of 0.12 kg and a speed of 40 m/s.
Which ball has the larger momentum?

E4. A force of 45 N acts on a ball for 0.2 s. If the ball is ini-
tially at rest:
a. What is the impulse on the ball?
b. What is the final momentum of the ball?

E5. A 0.12-kg ball traveling with a speed of 40 m/s is brought
to rest in a catcher’s mitt. What is the size of the impulse
exerted by the mitt on the ball?

E6. A ball experiences a change in momentum of 24 kg·m/s.
a. What is the impulse acting on the ball?
b. If the time of interaction is 0.15 s, what is the magni-

tude of the average force acting on the ball?

E7. A 60-kg front-seat passenger in a car moving initially with
a speed of 18 m/s (40 MPH) is brought to rest by an air 
bag in a time of 0.4 s.
a. What is the impulse acting on the passenger?
b. What is the average force acting on the passenger in 

this process?

E8. A ball traveling with an initial momentum of 2.5 kg·m/s
bounces off a wall and comes back in the opposite direc-
tion with a momentum of �2.5 kg·m/s.
a. What is the change in momentum of the ball?
b. What impulse would be required to produce this change?

E9. A ball traveling with an initial momentum of 4.0 kg·m/s
bounces off a wall and comes back in the opposite direc-
tion with a momentum of �3.5 kg·m/s.
a. What is the change in momentum of the ball?
b. What impulse is required to produce this change?

E10. A fullback with a mass of 100 kg and a velocity of 3.5 m/s
due west collides head-on with a defensive back with a
mass of 80 kg and a velocity of 6 m/s due east.
a. What is the initial momentum of each player?
b. What is the total momentum of the system before the

collision?
c. If they stick together and external forces can be ignored,

what direction will they be traveling immediately after
they collide?

E11. An ice skater with a mass of 80 kg pushes off against a 
second skater with a mass of 32 kg. Both skaters are ini-
tially at rest.
a. What is the total momentum of the system after they

push off?
b. If the larger skater moves off with a speed of 3 m/s,

what is the corresponding speed of the smaller skater?

E12. A rifle with a mass of 1.2 kg fires a bullet with a mass of
6.0 g (0.006 kg). The bullet moves with a muzzle velocity
of 600 m/s after the rifle is fired.
a. What is the momentum of the bullet after the rifle is

fired?
b. If external forces acting on the rifle can be ignored,

what is the recoil velocity of the rifle?

E13. A rocket ship at rest in space gives a short blast of its en-
gine, firing 50 kg of exhaust gas out the back end with an
average velocity of 400 m/s. What is the change in mo-
mentum of the rocket during this blast?

E14. A railroad car with a mass of 12 000 kg collides and cou-
ples with a second car of mass 18 000 kg that is initially at
rest. The first car is moving with a speed of 12 m/s prior to
the collision.
a. What is the initial momentum of the first car?
b. If external forces can be ignored, what is the final ve-

locity of the two railroad cars after they couple?

E15. For the railroad cars in example box 7.4:
a. What is the kinetic energy of car 5 before the collision?
b. What is the kinetic energy of all five cars just after the

collision?
c. Is energy conserved in this collision?

Q36. A car and a small truck traveling at right angles to one
another with the same speed collide and stick together. The
truck’s mass is roughly twice the car’s mass. Sketch the di-
rection of their momentum vector immediately after the
collision. Explain your result.

*Q37. A cue ball strikes a glancing blow against a second bil-
liard ball initially at rest. Sketch the situation indicating
the magnitudes and directions of the momentum vectors
of each ball before and after the collision.

v

B

A

Q35 Diagram
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E16. A 4000-kg truck traveling with a velocity of 10 m/s due
north collides head-on with a 1200-kg car traveling with a
velocity of 20 m/s due south. The two vehicles stick to-
gether after the collision.
a. What is the momentum of each vehicle prior to the

collision?
b. What are the size and direction of the total momentum

of the two vehicles after they collide?

E17. For the two vehicles in exercise 16:
a. Sketch to scale the momentum vectors of the two vehi-

cles prior to the collision.
b. Add the two vectors on your sketch graphically.

E18. A truck with a mass of 4000 kg traveling with a speed
of 10 m/s collides at right angles with a car with a mass of
1500 kg traveling with a speed of 20 m/s.
a. Sketch to proper scale and direction the momentum

vectors of each vehicle prior to the collision.
b. Using the graphical method of vector addition, add the

momentum vectors to get the total momentum of the sys-
tem prior to the collision.

synthesis problems

SP1. A fast ball thrown with a velocity of 40 m/s (approximately
90 MPH) is struck by a baseball bat, and a line drive 
comes back toward the pitcher with a velocity of 60 m/s.
The ball is in contact with the bat for a time of just 0.04 s.
The baseball has a mass of 120 g (0.120 kg).
a. What is the change in momentum of the baseball during

this process?
b. Is the change in momentum greater than the final mo-

mentum? Explain.
c. What is the magnitude of the impulse required to pro-

duce this change in momentum?
d. What is the magnitude of the average force that acts on

the baseball to produce this impulse?

SP2. A bullet is fired into a block of wood sitting on a block of
ice. The bullet has an initial velocity of 500 m/s and a mass
of 0.005 kg. The wooden block has a mass of 1.2 kg and is
initially at rest. The bullet remains embedded in the block
of wood afterward.
a. Assuming that momentum is conserved, find the veloc-

ity of the block of wood and bullet after the collision.
b. What is the magnitude of the impulse that acts on the

block of wood in this process?
c. Does the change in momentum of the bullet equal that

of the block of wood? Explain.

SP3. Consider two cases in which the same ball is thrown against
a wall with the same initial velocity. In case A, the ball sticks
to the wall and does not bounce. In case B, the ball bounces
back with the same speed that it came in with.
a. In which of these two cases is the change in momentum

the largest?
b. Assuming that the time during which the momentum

change takes place is approximately the same for these
two cases, in which case is the larger average force
involved?

c. Is momentum conserved in this collision? Explain.

SP4. A car traveling at a speed of 18 m/s (approximately 40 MPH)
crashes into a solid concrete wall. The driver has a mass of
90 kg.
a. What is the change in momentum of the driver as he

comes to a stop?
b. What impulse is required in order to produce this change

in momentum?
c. How does the application and magnitude of this force

differ in two cases: the first, in which the driver is wear-
ing a seat belt, and the second, in which he is not wearing
a seat belt and is stopped instead by contact with the
windshield and steering column? Will the time of action
of the stopping force change? Explain.

SP5. A 1500-kg car traveling due north with a speed of 25 m/s
collides head-on with a 4500-kg truck traveling due south
with a speed of 15 m/s. The two vehicles stick together after
the collision.
a. What is the total momentum of the system prior to the

collision?
b. What is the velocity of the two vehicles just after the

collision?
c. What is the total kinetic energy of the system before the

collision?
d. What is the total kinetic energy just after the collision?
e. Is the collision elastic? Explain.

synthesis problems 143
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HE1. Take two marbles or steel balls of the same size and prac-
tice shooting one into the other. Make these observations:
a. If you produce a head-on collision with the second

marble initially at rest, does the first marble come to a
complete stop after the collision?

b. If the collision with a second marble occurs at an angle,
is the angle between the paths of the two marbles after
the collision a right angle (90°)?

c. If marbles of different sizes and masses are used, how
do the results of parts a and b differ from those ob-
tained with marbles of the same mass?

HE2. If you have access to a pool table, try parts a and b of
the observations in home experiment 1 on the pool table.
What effect does putting spin on the first ball have on the
collisions?

HE3. If you have both a basketball and a tennis ball, try drop-
ping the two of them onto a floor with a hard surface, first
individually and then with the tennis ball placed on top of
the basketball before the two are dropped together.
a. Compare the height of the bounce of each ball in these

different cases. The case where the two are dropped to-
gether may surprise you.

b. Can you devise an explanation for these results using
impulse and Newton’s third law? (Consider the force
between the basketball and the floor as well as that be-
tween the tennis ball and the basketball for the case
where they are dropped together.)

HE4. Place a cardboard box on a smooth tile or wood floor. 
Practice rolling a basketball or soccer ball at different
speeds and allowing the ball to collide with the box. Ob-
serve the motion of both the box and the ball just after the
collision.
a. How do the results of the collision vary for different

speeds of the ball (slow, medium, fast)?
b. If we increase the weight of the box by placing books

inside, how do the results of the collision change for 
the cases in part a?

c. Can you explain your results using conservation of
momentum?

home experiments and observations
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chapter

Rotational Motion
of Solid Objects

8
chapter overview
Starting with a merry-go-round—and making use of the analogy
between linear and rotational motion—we first consider what concepts
are needed to describe rotational motion. We then turn to the causes of
rotational motion, which involve a modified form of Newton’s second
law. Torque, rotational inertia, and angular momentum will be
introduced as we proceed. Our goal is to develop a clear picture of both
the description and causes of rotational motion. After studying this
chapter, you should be able to predict what will happen in many
common examples of spinning or rotating objects, such as ice skaters and
divers. The world of sports is rich in examples of rotational motion.

chapter outline
1 What is rotational motion? How can we describe rotational motion?

What are rotational velocity and acceleration, and how are they
related to similar concepts used to describe linear motion?

2 Torque and balance. What determines whether a simple object such
as a balance beam will rotate? What is torque, and how is it involved
in causing an object to rotate?

3 Rotational inertia and Newton’s second law. How can Newton’s
second law be adapted to explain the motion of rotating objects?
How do we describe rotational inertia, an object’s resistance to
changes in rotational motion?

4 Conservation of angular momentum. What is angular momentum,
and when is it conserved? How do spinning skaters or divers change
their rotational velocities?

5 Riding a bicycle and other amazing feats. Why does a bicycle remain
upright when it is moving but not when it is stationary? Can we treat
rotational velocity and angular momentum as vectors?
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In the park next door to the author’s house, there is a
child-propelled merry-go-round (fig. 8.1). It consists of
a circular steel platform mounted on an excellent bear-
ing so that it rotates without much frictional resist-
ance. Once set in rotation, it will continue to rotate.
Even a child can start it moving and then jump on (and
sometimes fall off). Along with the swings, the slide,
and the little animals mounted on heavy-duty springs,
the merry-go-round is a popular center of activity in
the park.

The motion of this merry-go-round bears both similar-
ities and differences to motions we have already consid-
ered. A child sitting on the merry-go-round experiences
circular motion, so some of the ideas discussed in chapter 5
will come into play. What about the merry-go-round itself,
though? It certainly moves, but it goes nowhere. How do
we describe its motion?

Rotational motion of solid objects such as the merry-
go-round is common: the rotating Earth, a spinning
skater, a top, and a turning wheel all exhibit this type of
motion. For Newton’s theory of motion to be broadly
useful, it should explain what is happening in rotational
motion as well as in linear motion (where an object
moves from one point to another in a straight line).
What causes rotational motion? Can Newton’s second
law be used to explain such motion?

We will find that there is a useful analogy between
the linear motion of objects and rotational motion. The
questions just posed can be answered best by making
full use of this analogy. Taking advantage of the similar-
ities between rotational motion and linear motion saves
space in our mental computers, thus making the learn-
ing process more efficient.

figure 8.1 The merry-go-round in the park is an example of
rotational motion. How do we describe and explain this motion?

8.1 What Is Rotational Motion?
A child begins to rotate the merry-go-round described in
the introduction. She does so by holding on to one of the
bars on the edge of the merry-go-round (fig. 8.1) as she
stands beside it. She begins to push the merry-go-round,
accelerating as she goes, until eventually she is running,
and the merry-go-round is rotating quite rapidly.

How do we describe the rotational motion of the merry-
go-round or that of a spinning ice skater? What quantities
would we use to describe how fast they are rotating or how
far they have rotated?

Rotational displacement and
rotational velocity
How would you measure how fast the merry-go-round is
rotating? If you stood to one side and watched the child
pass your position, you could count the number of revolu-
tions that the child makes in a given time, measured with
your watch. Dividing the number of revolutions by the time
in minutes yields the average rotational speed in revolu-
tions per minute (rpm), a commonly used unit for describ-
ing the rate of rotation of motors, Ferris wheels, and other
rotating objects.

If you say that the merry-go-round rotates at a rate of
15 rpm, you have described how fast an object is turning.
The rate is analogous to speed or velocity, quantities used

to describe how fast an object is moving in the case of lin-
ear motion. We usually use the term rotational velocity to
describe this rate of rotation. Revolutions per minute is just
one of several units used to measure this quantity.

In measuring the rotational velocity of the merry-go-
round, we describe how far it rotates in revolutions or com-
plete cycles. Suppose that an object rotates less than one
complete revolution. We could then use a fraction of a rev-
olution to describe how far it has turned, but we might also
use an angle measured in degrees. Since there are 360° in
one complete revolution or circle, revolutions can be con-
verted to degrees by multiplying by 360°/rev.

The quantity measuring how far an object has turned or
rotated is an angle, often called the rotational displace-
ment. It can be measured in revolutions, degrees, or a sim-
ple but less familiar unit used in mathematics and physics
called the radian.* The three units commonly used to de-
scribe rotational displacement are summarized in figure 8.2.

*The radian is defined by dividing the arc length through which the point
travels by the radius of the circle on which it is moving. Thus, in figure
8.2, if the point on the merry-go-round moves along the arc length a dis-
tance s, the number of radians involved is s/r where r is the radius. Since
we are dividing one distance by another, the radian itself has no dimen-
sions. Also, since the arc length s is proportional to the radius r, it does not
matter how large a radius we choose. The ratio of s to r will be the 
same for a given angle. By definition of the radian, 1 revolution (rev) �
360° � 2� radians, and 1 radian (rad) � 57.3°.
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Rotational displacement is analogous to the distance trav-
eled by an object in linear motion. If we include the direc-
tion of travel, this distance is sometimes called the linear
displacement.

The symbols used to describe rotational quantities mainly
come from the Greek alphabet. Greek letters are used to
avoid confusion with other quantities represented by letters
of our ordinary Roman alphabet. The Greek letter theta ( )
is commonly used to represent angles (rotational displace-
ments), and the Greek letter omega (�) is used to represent
rotational velocities.

The quantities that we have just introduced for describ-
ing the motion of an object such as the merry-go-round can
be summarized as

Rotational displacement is an angle showing how far an
object has rotated.

and

Rotational velocity � is the rate of change of rotational dis-
placement. It is found by dividing the rotational displacement
by the time taken for this displacement to happen

.

In describing rotational velocity, we usually use either
revolutions or radians as the measure of rotational displace-
ment. Degrees are less commonly used.

� � 
u

t

u

u

What is rotational acceleration?
In our original description of the child pushing the merry-
go-round, the rate of rotation increased as she ran along-
side. This involves a change in the rotational velocity, which
suggests the concept of rotational acceleration. The Greek
letter alpha (�) is the symbol used for rotational accelera-
tion. It is the first letter in the Greek alphabet and corre-
sponds to the letter a used to represent linear acceleration.

Rotational acceleration can be defined similarly to lin-
ear acceleration (see chapter 2):

Rotational acceleration is the rate of change in rotational
velocity. It is found by dividing the change in rotational veloc-
ity by the time required for this change to occur,

.

The units of rotational acceleration are rev/s2 or rad/s2.
These definitions for both rotational velocity and rota-

tional acceleration actually yield the average values of
these quantities. To get instantaneous values, the time in-
terval t must be made very small, as in the linear-motion
definitions of instantaneous velocity and instantaneous ac-
celeration (see sections 2.2 and 2.3). This then yields the
rate of change of either displacement or velocity at a given
instant in time.

You will remember these definitions of rotational dis-
placement, velocity, and acceleration better if you keep in
mind the complete analogy that exists between linear and
rotational motion. This analogy is summarized in figure
8.3. In one dimension, distance d represents the change
in position or linear displacement, which corresponds to
rotational displacement . Average velocity and accelera-
tion for linear motion are defined as before, with the corre-
sponding definitions of rotational velocity and acceleration
shown on the right side of the diagram in figure 8.3.

Constant rotational acceleration
In chapter 2, we introduced equations for the special case
of constant linear acceleration because of its many impor-
tant applications. By comparing linear and rotational quan-
tities, we can write similar equations for constant rotational
acceleration by substituting the rotational quantities for the
corresponding linear quantities in the equations developed
for linear motion. Table 8.1 shows the results beside cor-
responding equations for linear motion. Example box 8.1
is an application of the equations for constant rotational 
acceleration.

The merry-go-round in example box 8.1 starts from rest
and rotates through nine complete revolutions in 1 minute,
a good effort by the person pushing. It is unlikely that this
rate of acceleration could be sustained much longer than
1 minute. The rotational velocity reached in this time is a

u

a � 
¢�

t

figure 8.2 Revolutions, degrees, or radians are different
units for describing the rotational displacement of the merry-
go-round.

1°

1 radian
= 57.3°

1 revolution
= 360° 
= 2π radians

r s
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148 Chapter 8 Rotational Motion of Solid Objects

little less than a third of a revolution per second, a fast rota-
tional velocity for such a merry-go-round.

How are linear and rotational
velocity related?
How fast is the rider going when the merry-go-round in
example box 8.1 is rotating with a velocity of 0.30 rev/s?
The answer to this question depends on where the rider is
sitting. He or she will move faster when seated near the
edge of the merry-go-round than near the center. The ques-
tion involves a relationship between the linear speed of the
rider and the rotational velocity of the merry-go-round.

Figure 8.4 shows two circles on the merry-go-round with
different radii representing different positions of riders. The
rider seated at the greater distance from the center travels a
larger distance in 1 revolution than the rider near the center
because the circumference of his circle is greater. The out-
side rider is therefore moving with a greater linear speed
than the rider near the center.

The farther the rider is from the center, the farther he
travels in 1 revolution, and the faster he is moving. The cir-
cumference of the circle on which the rider is traveling
increases in proportion to the radius of the circle r, the
distance of the rider from the center. If we express the
rotational velocity in radians per second (rad/s), the rela-
tionship for the linear speed of the rider takes the form

v � r�.

figure 8.3 There is a close resemblance between quantities used to describe linear
motion and those used to describe rotational motion.

θω

Rotational motion

Displacement = θ

Velocity =      = ω

Acceleration =       = α   ∆ω
t 

__

Displacement = d

Velocity =     = v

Acceleration =       = a   ∆v
t 
__

Linear motion

v
d

d–
t

θ –
t

example box 8.1

Sample Exercise: Rotating a Merry-Go-Round

Suppose that a merry-go-round is accelerated at a
constant rate of 0.005 rev/s2, starting from rest.

a. What is its rotational velocity at the end of 1 min?
b. How many revolutions does the merry-go-round

make in this time?

a. � � 0.005 rev/s2 � � �0 � �t

�0 � 0 � 0 � (0.005 rev/s2)(60 s)

t � 60 s � 0.30 rev/s

b. � ? Since �0 is equal to zero,

� �t2

� (0.005 rev/s2)(60 s)2

� 9 rev

1
2

1
2u

u

Linear motion Rotational motion

v � v0 � at � � �0 � �t

d � v0t � at2 � �0t � �t21
2u

1
2

table 8.1

Constant Acceleration Equations for Linear
and Rotational Motion
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The linear speed v of a rider seated a distance r from the
center of a merry-go-round is equal to r times the rotational
velocity � of the merry-go-round. (For this simple relation-
ship to be valid, however, the rotational velocity must be
expressed in radians per second rather than revolutions or
degrees per second.)

The rate at which the merry-go-round or other object
turns will affect how fast a point on the rotating object will
move—in other words, its linear speed. Linear speed will
depend on the distance from the axis of rotation. A child
out at the edge of the merry-go-round will get a bigger thrill
from the ride than one more timidly parked near the middle.

Rotational displacement, rotational velocity, and rotational
acceleration are the quantities that we need to fully describe
the motion of a rotating object. They describe how far the
object has rotated (rotational displacement), how fast it
is rotating (rotational velocity), and the rate at which the
rotation may be changing (rotational acceleration). These
definitions are analogous to similar quantities used to
describe linear motion. They tell us how the object is
rotating, but not why. Causes of rotation are considered
next.

8.2 Torque and Balance
What causes the merry-go-round to rotate in the first place?
To get it started, a child has to push it, which involves
applying a force. The direction and point of application of
force are important to the success of the effort. If the child

pushes straight in toward the center, nothing happens. How
do we apply a force to produce the best effect?

Unbalanced torques cause objects to rotate. What are
torques, though, and how are they related to forces? A look
at a simple scale or balance can help us get at the idea.

When is a balance balanced?
Consider a balance made of a thin but rigid beam supported
by a fulcrum or pivot point, as in figure 8.5. If the beam
is balanced before we place weights on it, and if we put
equal weights at equal distances from the fulcrum, we
expect that the beam will still be balanced. By balanced,
we mean that it will not tend to rotate about the fulcrum.

Suppose that we wish to balance unequal weights on the
beam. To balance a weight twice as large as a smaller
weight, would we place the two weights at equal distances
from the fulcrum? Intuition suggests that the smaller weight
needs to be placed farther from the fulcrum than the larger
weight for the system to be balanced, but it may not tell
you how much farther (fig. 8.6). Trial and error with a sim-
ple balance will show that the smaller weight must be
placed twice as far from the fulcrum as the larger (twice as
large) weight.

Try it yourself using a ruler for the beam and a pencil
for the fulcrum. Coins can be used as the weights. Experi-
ments will show that both the weight and the distance from
the fulcrum are important. The farther a weight sits from the
fulcrum, the more effective it will be in balancing larger
weights on the other side of the fulcrum. Weight times dis-
tance from the fulcrum determines the effect. If this product
is the same for weights placed on either side of the ful-
crum, the balance will not rotate.

figure 8.4 The rider near the edge travels a greater
distance in 1 revolution than one near the center.

figure 8.5 A simple balance with equal weights placed at
equal distances from the fulcrum.

figure 8.6 A simple balance with unequal weights placed
at different distances from the fulcrum. What determines whether
the system will be balanced?

F1 F2

F1
F2
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What is a torque?
This product of the force and the distance from the
fulcrum—which describes the tendency of a weight to pro-
duce a rotation, is called the torque. More generally:

The torque, , about a given axis or fulcrum is equal to the
product of the applied force and the lever arm, l;

� Fl.

The lever arm is the perpendicular distance from the axis of
rotation to the line of action of the applied force.

The symbol is the Greek letter tau and is commonly used
for torque.

The length l is the distance from the fulcrum to the
point of application of the force and must be measured in
a direction perpendicular to the line of action of the force.
This distance is called the lever arm or moment arm of
the force in question. The strength of the torque depends
directly on both the size of the force and the length of its
lever arm. If the torques produced by weights on either
side of the fulcrum of our balance are equal in magnitude,
the scale is balanced. It will not rotate.

Most of us have tried to turn a nut with a wrench at
some time. We exert the force at the end of the wrench, in
a direction perpendicular to the handle (fig. 8.7). The han-
dle is the lever, and its length determines the lever arm. A
longer handle is more effective than a shorter one because
the resulting torque is greater.

As the term suggests, lever arm comes from our use of
levers to move objects. Moving a large rock with a crowbar,

t

t

t

for example, involves leverage. The applied force is most
effective if it is applied at the end of the bar and perpendi-
cular to the bar. The lever arm l is then just the distance
from the fulcrum to the end of the bar. If the force is
applied in some other direction, as in figure 8.8, the lever
arm is shorter than it would be if the force is applied per-
pendicular to the bar. The lever arm is found by drawing the
perpendicular line from the fulcrum to the line of action of
the force, as indicated in figure 8.8.

How do torques add?
The direction of rotation associated with a torque is also
important. Some torques tend to produce clockwise rota-
tions and others counterclockwise rotations about a particu-
lar axis. For example, the torque due to the heavier weight
on the right side of the fulcrum in figure 8.6 will produce a
clockwise rotation about the fulcrum if it acts by itself. This
is opposed by the equal-magnitude torque of the weight on
the left side of the fulcrum, which would produce a coun-
terclockwise rotation. The two torques cancel one another
when the system is balanced.

Since torques can have opposing effects, we assign oppo-
site signs to torques that produce rotations in opposite direc-
tions. If, for example, we chose to call torques that produce
a counterclockwise rotation positive, torques producing
clockwise rotations would be negative. (This is the conven-
tional choice—it is unimportant which direction is chosen
as positive as long as you are consistent in a given situa-
tion.) Identifying the sign of the torque indicates whether it
will add or subtract from other torques.

In the case of the simple balance, the net torque will be
zero when the beam is balanced, because the two torques
are equal but have opposite signs. The condition for balance
or equilibrium is that the net torque acting on the system be
zero. Either no torques act or the sum of the positive

F

F

l

l

figure 8.7 A wrench with a long handle is more effective
than one with a short handle because of the longer lever arm for
the longer wrench.

figure 8.8 When the applied force is not perpendicular to
the crowbar, the lever arm is found by drawing a perpendicular
line from the fulcrum to the line of action of the force.

l

F
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torques equals the sum of the negative torques, canceling
one another by adding up to zero.

In example box 8.2, we find the distance that a 3-N
weight must be placed from a fulcrum to balance a 5-N
weight producing a net torque of zero. (Since W � mg, a
5-N weight has a mass of approximately 0.5 kg or 500 g.)
The units of torque are those of force times distance, newton-
meters (N·m) in the metric system.*

What is the center of gravity of an object?
Often, the weight of an object is itself an important factor
in whether the object will rotate. How far, for example,
could the child in figure 8.9 walk out on the plank without

the plank tipping? The weight of the plank is important in
this case, and the concept of center of gravity is useful.

The center of gravity is the point about which the
weight of the object itself exerts no net torque. If we sus-
pend the object from its center of gravity, there would be
no net torque at the suspension or support point. The object
would be balanced. We can locate the center of gravity of a
rodlike object by finding the point where it balances on
your finger or other suitable fulcrum. For a more complex
two-dimensional (planar) object, you can locate the center
of gravity by suspending the object from two different
points, drawing a line straight down from the point of sus-
pension in each case, and locating the point of intersection
of the two lines, as figure 8.10 illustrates.

In the case of the plank (fig. 8.9), the center of gravity is
at the geometric center of the plank, provided that the
plank is uniform in density and cut. The pivot point will be
the edge of the supporting platform, the point to consider
when computing torques. The plank will not tip as long as
the counterclockwise torque produced by the weight of the
plank about the pivot point is larger than the clockwise
torque produced by the weight of the child. The weight of
the plank is treated as though it is concentrated at the cen-
ter of gravity of the plank.

The plank will verge on tipping when the torque of the
child about the edge equals the torque of the plank in mag-
nitude. This determines how far the child can walk on the
plank before it tips. As long as the torque of the plank
about the edge of the platform is larger than the torque of
the child, the child is safe. The platform keeps the plank
from rotating counterclockwise.

The location of the center of gravity is important in any
effort at balancing. If the center of gravity lies below the
pivot point, as in the balancing toy in figure 8.11, the toy
will automatically regain its balance when disturbed. The
center of gravity returns to the position directly below the
pivot point, where the weight of the toy produces no torque.

figure 8.9 How far can the child walk without tipping the
plank? The entire weight of the plank can be treated as though it
is located at the center of gravity.

Wc

Wp

Center
of gravity
of the plank

example box 8.2

Sample Exercise: Balancing a System

Suppose we have a 3-N weight that we want to balance
against a 5-N weight on a beam, which is balanced when
no masses are in place. The 5-N weight is placed 20 cm to
the right of the fulcrum.

a. What is the torque produced by the 5-N weight?
b. How far would we have to place the 3-N weight

from the fulcrum to balance the system?

a. F � 5 N � �Fl

l � 20 cm � 0.2 m � �(5 N)(0.2 m)

� ? � �1 N·m

The minus sign indicates that this torque would produce a
clockwise rotation.

b. F � 3 N � Fl

l � ? l �

�

� 0.33 m (33 cm)

�1 N#m
3 N

t

F

t

t

t

F

20 cm
3 N

5 N
?

Where should the 3-N weight be placed on the beam to balance
the system?

*Although the product of a Newton-meter (N.m) equals a Joule (J) when we
are using it as an energy unit, when a N.m is used as a torque unit we state
it as N.m, not Joules.
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In this position, the lever arm for the weight of the clown
and bar is zero.

Similarly, the location of your center of gravity is im-
portant in performing various maneuvers, athletic or other-
wise. Try, for example, touching your toes with your back
and heels against a wall. Why is this apparently simple trick
impossible for most people to do? Where is your center of
gravity relative to the pivot point determined by your feet?
Center of gravity and torque are at work here.

Torques determine whether or not something will rotate.
A torque is found by multiplying a force by its lever
arm (the perpendicular distance from the axis of rotation
to the line of action of the force). If the torque tending to
produce a clockwise rotation equals the torque tending
to produce a counterclockwise rotation, there is no rota-
tion. If one of these torques is larger than the other,
the torque will be unbalanced and the system will
rotate.

8.3 Rotational Inertia and Newton’s
Second Law
When a child runs beside a merry-go-round, starting it to
rotate, the force exerted by the child produces a torque
about the axle. From our discussion in section 8.2, we
know that the net torque acting on an object determines
whether or not it will begin to rotate. Can we predict the
rate of rotation by knowing the torque?

In linear motion, net force and mass determine the accel-
eration of an object, according to Newton’s second law of
motion. How do we adapt Newton’s second law to cases
of rotational motion? In this case, torque determines the
rotational acceleration. A new quantity, the rotational iner-
tia, takes the place of mass.

What is rotational inertia?
Let’s return to the merry-go-round. The propulsion system
(one energetic child or tired parent) applies a force at the
edge of the merry-go-round. The torque about the axle is
found by multiplying this force by the lever arm, in this
case the radius of the merry-go-round (fig 8.12). If the fric-
tional torque at the axle is small enough to be ignored, the
torque produced by the child is the only one acting on the
system. This torque produces the rotational acceleration of
the merry-go-round.

How would we find this rotational acceleration? To find
the linear acceleration produced by a force acting on an
object, we use Newton’s second law, Fnet � ma. By anal-
ogy, we can develop a similar expression for rotational
motion, where the torque replaces the force and the rota-
tional acceleration � replaces the linear acceleration. But
what quantity should we use in place of the mass of the
merry-go-round?

In linear motion, mass represents the inertia or resis-
tance to a change in motion. For rotational motion, a new
concept is needed, rotational inertia, also referred to as
the moment of inertia. The rotational inertia is the resis-
tance of an object to change in its rotational motion. Rota-
tional inertia is related to the mass of the object but also
depends on how that mass is distributed about the axis of
rotation.

t

figure 8.10 Locating the center of gravity of a planar
object. The center of gravity does not necessarily lie within the
object.

figure 8.11 The clown automatically returns to an upright
position because the center of gravity is below the pivot point.

1
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gravity

1
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W
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point
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To get a feeling for a concept, physicists often use the
trick of considering the simplest possible situation. For ro-
tational motion, the simplest case is a single concentrated
mass at the end of a very light rod, as in figure 8.13. If a
force is applied to this mass in a direction perpendicular to
the rod, the rod and mass will begin to rotate about the
fixed axis at the other end of the rod.

For the rod and mass to undergo a rotational accelera-
tion, the mass itself must have a linear acceleration. Like
riders on a merry-go-round, however, the farther the mass
is from the axis, the faster it moves for a given rotational
velocity (v � r�). To produce the same rotational acceler-
ation, a mass at the end of the rod must receive a larger
linear acceleration than one nearer the axis. It is harder to
get the system rotating when the mass is at the end of the
rod than when it is nearer to the axis.

Applying Newton’s second law to this situation, we find
that the resistance to a change in rotational motion depends
on the square of the distance of this mass from the axis of
rotation. Since the resistance to change also depends on 

the size of the mass, the rotational inertia of a concentrated
mass is

rotational inertia � mass � square of distance
from axis

I � mr2,

where I is the symbol commonly used for rotational inertia,
and r is the distance of the mass m from the axis of
rotation. The total rotational inertia of an object like the
merry-go-round can be found by adding the contributions
of different parts of the object lying at different distances
from the axis.

Newton’s second law modified
for rotational motion
By analogy to Newton’s second law, Fnet � ma, we can
state the second law for rotational motion as

The net torque acting on an object about a given axis is equal
to the rotational inertia of the object about that axis times the
rotational acceleration of the object, or

net � I�.

To put it differently, the rotational acceleration produced
is equal to the torque divided by the rotational inertia,
� � net/I. The larger the torque, the larger the rotational
acceleration, but the larger the rotational inertia, the smaller
the rotational acceleration. Rotational inertia dictates how
hard it is to change the rotational velocity of the object.

t

t

figure 8.12 The child exerts a force at the rim of the
merry-go-round that produces a torque about the axle.

figure 8.13 A single concentrated mass at the end of a
very light rod is set into rotation by the applied force F. Use
Newton’s second law to find the acceleration.

Top view

� = Fl

l = r

F

F
r

m
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To get a feel for these ideas, consider a simple object
such as a twirler’s baton. A baton consists of two masses at
the end of a rod (fig. 8.14). If the rod itself is light, most
of the baton’s rotational inertia comes from the masses at
either end. If you hold the baton at the center, a torque can
be applied with your hand, producing a rotational accelera-
tion and starting the baton to rotate.

Suppose that we could move these masses along the rod.
If we moved the masses toward the center of the rod so that
the distance from the center is half the original distance,
what happens to the rotational inertia? The rotational inertia
decreases to one-fourth of its initial value, ignoring the con-
tribution of the rod. Rotational inertia depends on the square
of the distance of the mass from the axis. Doubling the dis-
tance quadruples the rotational inertia. Halving the distance
divides the rotational inertia by four.

The baton will be four times as hard to get to rotate when
the masses are at the ends as when they are halfway from
the ends. In other words, the torque needed to produce a
rotational acceleration will be four times as large when
the masses are at the ends as when they are at the interme-
diate positions. If you had a rod with adjustable masses, you
could feel the difference in the amount of torque needed to
start it rotating. Try a pencil with lumps of clay for the
masses as a substitute.

Finding the rotational inertia
of the merry-go-round
Finding the rotational inertia of an object like a merry-go-
round is more difficult than just multiplying the mass by
the square of the radius. Not all of the mass of the merry-
go-round is at the outer edge—some of it is closer to the

axis and will make a smaller contribution to the rotational
inertia. Imagine breaking the merry-go-round down into
several pieces, finding the rotational inertia of each piece,
and adding the rotational inertias for each piece together to
get the total.

Results of this process for a few simple shapes are shown
in figure 8.15. The equations illustrate the ideas we have
discussed. For example, a solid disk has a smaller rotational
inertia than a ring of the same mass and radius, because 
the mass of the disk is, on average, closer to the axis. The
location of the axis is also important. A rod has a larger ro-
tational inertia about an axis through one end than about an
axis through the middle. When the axis of rotation is at the
end of the rod, there is more mass at greater distances from
the axis.

Depending on how it is constructed, the merry-go-round
might be like a solid disk. A child sitting on the merry-
go-round will also affect the rotational inertia. If several
children all sit near the edge of the merry-go-round, their
rotational inertia makes it more difficult to get the merry-
go-round moving. If the children cluster near the center,
they provide less additional rotational inertia. If you are
feeling tired, have the children sit near the middle. You will
save some effort.

figure 8.14 The rotational inertia of a baton is determined
largely by the masses at either end.

figure 8.15 Expressions for the rotational inertia of several
objects, each with a uniform distribution of mass over its volume.
The letter m is used to represent the total mass of the object.
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Example box 8.3 attaches some numbers to these quan-
tities. A child sitting on a merry-go-round is being acceler-
ated by a push at a rate of 0.05 rad/s2.* A torque of 48 N·m
is needed to produce this rotational acceleration. A force of
24 N applied at the edge would have a lever arm of 2 m
and produce the necessary torque of 48 N·m, a reasonable
force for a child to generate if the child is not too small.

Rotational inertia is the resistance to change in rotational
motion. It depends on both the mass of the object and the
distribution of that mass about the axis of rotation. The
rotational form of Newton’s second law, net � I�, shows
the quantitative relationship between torque, rotational
inertia, and rotational acceleration. Torque takes the place
of force, rotational inertia replaces mass, and rotational
acceleration replaces linear acceleration.

t

8.4 Conservation of Angular
Momentum
Have you ever watched an ice skater go into a spin? She
starts the spin with her arms and one leg extended, then
brings them in toward her body. As she brings her arms in,
the rate of the spin increases; as she extends her arms
again, her rotational velocity decreases (fig. 8.16).

The concept of angular or rotational momentum is use-
ful in situations like this. The principle of conservation of
angular momentum explains a variety of phenomena like
the ice skater, including tumbling divers or gymnasts as
well as the motion of planets around the sun. How can we
use the analogy between linear and rotational motion to
understand these ideas?

What is angular momentum?
If you were asked to invent the idea of angular (rotational)
momentum, how might you go about it? Linear momentum
is the mass (the inertia) times the linear velocity of an
object (p � mv). An increase in either the mass or the ve-
locity increases the momentum. Since it is a measure both
of how much is moving and how fast it is moving, Newton
called momentum the quantity of motion.

What is momentum’s rotational equivalent? In compar-
ing rotational and linear motion, rotational inertia plays the
role of mass and rotational velocity replaces linear velocity.
By analogy, we can define angular momentum as

Angular momentum is the product of the rotational inertia and
the rotational velocity, or

L � I �,

where L is the symbol used for angular momentum.
The term angular momentum is more common than rota-

tional momentum, but either can be used.

*To use Newton’s second law for rotational motion, the rotational acceler-
ation must be stated in radians per second squared. If the rotational
acceleration is provided in rev/s2 or some other angular unit, we convert it
to rad/s2 before proceeding.

figure 8.16 The rotational velocity of the skater increases
as she pulls her arms and leg in toward her body.

ω1
ω2

example box 8.3

Sample Exercise: Turning a Merry-Go-Round
and a Rider

A simple merry-go-round has a rotational inertia of
800 kg·m2 and a radius of 2 m. A child with a mass of
40 kg sits near the edge of the merry-go-round.

a. What is the total rotational inertia of the merry-
go-round and the child about the axis of the merry-
go-round?

b. What torque is required to give the merry-go-round
a rotational acceleration of 0.05 rad/s2?

a. Imerry-go-round � 800 kg·m2 Ichild � mr2

mchild � 40 kg � (40 kg)(2 m)2

r � 2 m � 160 kg·m2

The total rotational inertia is

Itotal � Imerry-go-round � Ichild

� 800 kg·m2 � 160 kg·m2

� 960 kg·m2

b. � � 0.05 rad/s2
net � I�

net � ? � (960 kg·m2)(0.05 rad/s2)

� 48 N·m

t

t
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Like linear momentum, angular momentum is the prod-
uct of two quantities, an inertia and a velocity. A bowling
ball spinning slowly might have the same angular momen-
tum as a baseball spinning much more rapidly, because of
the larger rotational inertia I of the bowling ball. With its
enormous rotational inertia, the Earth has a huge angular
momentum associated with its daily turn about its axis,
even though the rotational velocity is small.

When is angular momentum conserved?
We have used the analogy between linear and rotational
motion to introduce angular momentum. Can we also use it
to state the principle of conservation of angular momentum?
In chapter 7, we found that linear momentum is conserved
when there is no net external force acting on a system.
When would angular momentum be conserved?

Since torque takes the role of force for rotational mo-
tion, we can state the principle of conservation of angular
momentum as

If the net torque acting on a system is zero, the total angular
momentum of the system is conserved.

Torque replaces force, and angular momentum replaces
ordinary or linear momentum. Table 8.2 lists some impor-
tant parallels between linear and rotational motion.

Changes in the ice skater’s rate of spin
Conservation of angular momentum is the key to under-
standing what happens when the spinning ice skater
increases her rotational velocity by pulling in her arms.
The external torque acting on the skater about her axis of
rotation is very small, so the condition for conservation of
angular momentum exists. Why does her rotational veloc-
ity increase?

When the skater’s arms and one leg are extended, they
contribute a relatively large portion to her total rotational
inertia—their average distance from her axis of rotation is
much larger than for other portions of her body. Rotational
inertia depends on the square of the distance of various
portions of her mass from the axis (I � mr2). The effect of
this distance is substantial, even though her arms and one
leg are only a small part of the total mass of the skater.
When the skater pulls her arms and leg in toward her body,
their contribution to her rotational inertia decreases, and
therefore, her total rotational inertia decreases.

Conservation of angular momentum requires that her
angular momentum remain constant. Since angular mo-
mentum is the product of the rotational inertia and rota-
tional velocity, L � I�, if I decreases, � must increase for
angular momentum to stay constant. She can slow her rate
of spin by extending her arms and one leg again, which she
does at the end of the spin. This increases her rotational
inertia and decreases her rotational velocity: angular
momentum is conserved. These ideas are illustrated in
example box 8.4.

This phenomenon can be explored using a rotating plat-
form or stool with good bearings to keep the frictional
torques small (fig. 8.17). In these demonstrations, we often
have the students hold masses in their hands, which increase
the changes in rotational inertia that happen as the arms are
drawn in toward the body. A striking increase in rotational
velocity can be achieved!

Linear Rotational
Concept motion motion

Inertia m I

Newton’s Fnet � ma net � I�
second law

Momentum p � mv L � I�

Conservation If Fnet � 0, If net � 0,
of momentum p � constant L � constant

Kinetic energy KE � mv2 KE � I�21
2

1
2

t

t

table 8.2

Corresponding Concepts of Linear
and Rotational Motion

example box 8.4

Sample Exercise: Some Physics of Figure Skating

An ice skater has a rotational inertia of 1.2 kg·m2 when
her arms are extended and a rotational inertia of 0.5 kg·m2

when her arms are pulled in close to her body. If she goes
into a spin with her arms extended and has an initial
rotational velocity of 1 rev/s, what is her rotational 
velocity when she pulls her arms in close to her body?

I1 � 1.2 kg·m2 Since angular momentum 
I2 � 0.5 kg·m2 is conserved:

�1 � 1 rev/s Lfinal � Linitial

�2 � ? I2�2 � I1�1

Dividing both sides by I2,

�2 � (I1/I2)�1

� (1.2 kg·m2/0.5 kg·m2)(1 rev/s)

� (2.4)(1 rev/s)

� 2.4 rev/s
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A similar effect is at work when a diver pulls into a tuck
position to produce a spin. In this case, the diver starts with
her body extended and a slow rate of rotation about an axis
through her body’s center of gravity (fig. 8.18). As she
goes into a tuck, the rotational inertia about this axis is re-
duced, and rotational velocity increases. As her dive nears
completion, she comes out of the tuck, increasing the rota-
tional inertia and decreasing the rotational velocity. (The
torque about the center of gravity due to the gravitational
force acting on the diver is zero.)

There are many examples of varying the rotational ve-
locity by changing the rotational inertia. It is much easier to
produce a change in the rotational inertia of a body than
to change the mass of the body. We simply change the dis-
tance of various portions of the mass from the axis of rota-
tion. Conservation of angular momentum provides a quick
explanation for these phenomena.

Kepler’s second law
Conservation of angular momentum also plays a role in
the orbit of a planet about the sun, and in fact, it can be
used to explain Kepler’s second law of planetary motion
(see section 5.3). Kepler’s second law says that the radius
line from the sun to the planet sweeps out equal areas in
equal times. The planet moves faster in its elliptical orbit

when it is nearer to the sun than when it is farther from
the sun.

The gravitational force acting on the planet produces no
torque about the sun, because its line of action passes
directly through the sun (fig. 8.19). The lever arm for this
force is zero, and the resulting torque must also be zero.
Angular momentum, therefore, is conserved.

When the planet moves nearer to the sun, its rotational
inertia I about the sun decreases. To conserve angular mo-
mentum, the rotational velocity of the planet about the sun
(and thus its linear velocity*) must increase to keep the
product L � I� constant. This requirement results in equal
areas being swept out by the radius line in equal times. The

figure 8.17 A student holding masses in each hand
while sitting on a rotating stool can achieve a large increase
in rotational velocity by bringing his arms in toward his body.

figure 8.18 The diver increases her rotational velocity by
pulling into a tuck position, thus reducing her rotational inertia
about her center of gravity.

ω

*For a compact mass rotating about some axis, the definition of angular
momentum reduces to L � mvr, where mv is the linear momentum and r 
is the perpendicular distance from the axis of rotation to the line along
which the object is moving at that instant. If r decreases, v must increase
to conserve angular momentum.
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Achieving the State of Yo

The Situation. A physics professor noticed that one of his
students often carried a yo-yo to class and was proficient at
putting the yo-yo through its paces. The professor challenged
the student to explain the behavior of the yo-yo using the
principles of torque and angular momentum.

In particular, the professor asked the student to explain
why the yo-yo sometimes comes back but sometimes can
be made to “sleep,” or continue to rotate, at the end of the
string. What are the differences in these two situations?

The Analysis. The student carefully examined the yo-yo’s
construction and how the string is attached. He noticed that
the string is not tied tightly to the axle of the yo-yo, but ends
in a loose loop around the axle instead. When the yo-yo is
at the end of its string, the string can slip on the axle. When
wound around the axle, on the other hand, the string is less
likely to slip.

Usually, the yo-yo is started with the string wound around
the axle and looped around the middle finger. When the yo-yo
is released from the hand, the string unwinds, and the yo-yo
gains rotational velocity and angular momentum. The student
reasoned that a torque must be at work, and he drew a force
diagram for the yo-yo that looked like the one shown here.
Two forces act on the yo-yo, its weight acting downward and
the tension in the string acting upward.

Since the yo-yo is accelerated downward, the weight
must be greater than the tension to produce a downward net
force. The weight does not produce a torque about the center
of gravity of the yo-yo, though, because its line of action
passes through the center of gravity, and the lever arm is
zero. The tension acts along a line that is off-center and pro-
duces a torque that will cause a counterclockwise rotation
about the center of gravity, as in the drawing.

The torque due to the tension in the string produces a
rotational acceleration, and the yo-yo gains rotational velocity

and angular momentum as it falls. The yo-yo has a sizable
angular momentum when it reaches the bottom of the string,
and in the absence of external torques to change this angular
momentum, it will be conserved. This is what happens when
the yo-yo “sleeps” at the bottom of the string: the only
torque acting is the frictional torque of the string slipping
on the axle, and this will be small if the axle is smooth.

What happens, however, when the yo-yo returns to the
student’s hand? The yo-yo artist (yo-yoist?) jerks lightly on
the string at the instant that the yo-yo reaches the bottom
of the string. This jerk provides a brief impulse and upward
acceleration of the yo-yo. Since it is already spinning, the
yo-yo continues spinning in the same direction and the string
rewinds itself around the axle of the yo-yo. The line of action
of the tension in the string is now on the opposite side of the
axle, though, and its torque causes the rotational velocity and
angular momentum to decrease. The rotation should stop
when the yo-yo slips back into the student’s hand.

When the yo-yo is rising, the net force acting on the
yo-yo is still downward, and the linear velocity of the yo-yo
decreases along with its rotational velocity. The only time that
a net force acts upward is when the upward impulse is deliv-
ered by jerking on the string. The situation is similar to a ball
bouncing on the floor—the net force is downward except
during the very brief time of contact with the floor. Our ability
to affect the nature and timing of the impulse through the
string causes the yo-yo either to sleep or return. This is what
the “art of yo” is all about.

everyday phenomenon
box 8.1

A yo-yo will come back to your hand, or with sufficient skill, you can
make it “sleep” at the end of its string.

T

W

A cut-away diagram showing the forces acting on the yo-yo when
it is falling. Its weight and the tension in the string are the only
significant forces.
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velocity of the planet must be larger when the radius gets
smaller to keep the area being swept out the same.

You can observe a related effect in a simple experiment
with a ball on a string. If you let the string wrap around your
finger as it rotates, which produces a smaller radius of rota-
tion, the ball will increase its rotational velocity about your
finger. The rotational velocity � increases as the rotational
inertia I decreases because of the decreased radius. Angular
momentum is conserved. Try it!

Everyday phenomenon box 8.1 provides an example in
which angular momentum is conserved at some points in the
motion of a yo-yo. At other points the angular momentum
changes under the influence of torques.

By analogy to linear momentum, angular momentum is
the product of the rotational inertia and the rotational
velocity. Angular momentum is conserved when the net
external torque acting on a system is zero. Decreases in
rotational inertia lead to increases in rotational velocity, as
demonstrated by the spinning ice skater. A spinning diver,
a ball rotating at the end of a string, and a planet orbiting
the sun are other examples of this effect.

8.5 Riding a Bicycle and Other
Amazing Feats
Have you ever wondered why a bicycle remains upright
when it is moving but promptly falls over when not mov-
ing? Angular momentum is involved, but some additional
wrinkles are needed in the explanation. The direction of
angular momentum is an important consideration. How

can angular momentum have direction, and how is this
direction involved in explaining the behavior of a bicycle, a
spinning top, or other phenomena?

Is angular momentum a vector?
Linear momentum is a vector, and the direction of the
momentum p is the same as for the velocity v of the object.
Since angular momentum is associated with a rotational
velocity, the question comes down to whether rotational
velocities have direction. How would we define the direc-
tion of a rotational velocity?

If a merry-go-round (or just a disk) is rotating in a coun-
terclockwise direction, as in figure 8.20, how might we indi-
cate that direction with an arrow? The term counterclockwise
indicates the direction of rotation as seen from a certain per-
spective, but it does not define a unique direction. To com-
plete our description, we would also have to specify the axis
of rotation and our perspective or viewpoint. An object seen
rotating counterclockwise when viewed from above is seen
rotating clockwise when viewed from below. We could draw
an axis of rotation and a curved arrow around it, as we often
do, but it would be more desirable to specify direction with a
simple straight arrow.

The usual solution to this problem is to define the direc-
tion of the rotational-velocity vector as being along the axis
of rotation and in the upward direction for the coun-
terclockwise rotation in figure 8.20. A rule for whether the
vector should point up or down along the axis can be
defined with the help of your right hand. If you hold your
right hand with the fingers curling around the axis of rota-
tion in the direction of the rotation, your thumb points in
the direction of the rotational-velocity vector. If the merry-
go-round were rotating clockwise (instead of counterclock-
wise), your thumb would point down, the direction of the
rotational-velocity vector.

figure 8.19 The gravitational force acting on the planet
produces no torque about an axis through the sun because the
lever arm is zero for this force.

figure 8.20 The direction of the rotational-velocity vector
for the counterclockwise rotation is defined to be upward along
the axis of rotation, as indicated by the thumb on the right hand
with the fingers curled in the direction of rotation.

ω

F

V

L = mvr

ω
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The direction of the angular-momentum vector is the
same as the rotational velocity, since L � I�. Conservation
of angular momentum requires that the direction of the
angular-momentum vector remain constant, as well as its
magnitude.

Angular momentum and bicycles
Most of us have had some experience with riding a bicycle.
The wheels of a bicycle acquire angular momentum when
the bicycle is moving. Torque is applied to the rear wheel
by the pedals and chain to produce a rotational accelera-
tion. If the bicycle is moving in a straight line, the direction
of the angular-momentum vector is the same for both
wheels and is horizontal (fig. 8.21).

To tip the bike over, the direction of the angular-
momentum vector must change, and that requires a torque.
This torque would normally come from the gravitational
force acting on the rider and the bicycle through their cen-
ter of gravity. When the bicycle is exactly upright, this
force acts straight downward and passes through the axis 
of rotation for the falling bike. This axis of rotation is the
line along which the tires contact the road. The torque
about this axis will be zero, because the line of action of
the force passes through the axis of rotation and the lever

arm is zero. The direction and magnitude of the original
angular momentum are conserved.

If the bike is not perfectly upright, a gravitational torque
acts about the line of contact of the tires with the road.
As the bike begins to fall, it acquires a rotational velocity
and angular momentum about this axis. By our “right-hand
rule,” the direction of that angular-momentum vector is
along the axis and points forward or backward depending
on the direction of tilt. If the bike tilts to the left as seen
from behind, the change in angular momentum associated
with this torque points straight back, as in figure 8.22.

If the bike is standing still, that is all there is to it—the
gravitational torque causes the bike to fall. When the bike
is moving, however, the change in angular momentum 	L
produced by the gravitational torque adds to the angular
momentum already present (L1) from the rotating tires. As
shown in figure 8.22, this causes a change in the direction
of the total angular-momentum vector (L2). This change in
direction can be accommodated simply by turning the wheel

figure 8.21 The angular-momentum vector for each wheel
is horizontal when the bicycle is upright.

figure 8.22 The change in angular momentum (	L)
associated with a leftward tilt points straight back, parallel to
the line of contact of the tires with the road. This change
causes the angular momentum vector (and the wheel) to turn
to the left.

L

L

L1

L2∆L

axis of rotation of
the wheel

axis of rotation of
the tilt

Visualizing these angular momentum vectors and their
changes can be an abstract and difficult task. The effect
will seem much more real if you can directly experience it.
If a bicycle wheel mounted on a hand-held axle (such as
that pictured in figure 8.23) is available, try the tilt effect
yourself. Grasp the wheel with both hands by the handles
on each side and have someone give it a good spin with
the wheel in a vertical plane. Then try tilting the wheel
downward to the left to simulate a fall. The wheel will
seem to have a mind of its own and will turn to the left
as suggested by figure 8.22.

study hint
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of the bicycle rather than letting the bike fall. We compensate
for the effects of the gravitational torque by turning 
the bicycle towards the direction of the impending fall. 
The larger the initial angular momentum, the smaller the
turn required. The angular momentum of the wheels is a
major factor in stabilizing the bicycle.

This result may be surprising—yet all of us who have rid-
den bicycles take advantage of it routinely. When the bike is
moving slowly, sharp turns of the wheel can keep it from
falling while you shift your weight. Smaller adjustments suf-
fice when the bike is moving more rapidly. By leaning into a
curve, you use the gravitational torque to change the direc-
tion of angular momentum, helping to round the curve. Like-
wise, if you roll a coin along a tabletop, you will see it curve
as it begins to fall. The path curves in the direction that the
coin is tilting.

You can also observe this effect of torque in changing
the direction of an angular-momentum vector by holding a
bicycle upright on its rear wheel and having a friend spin
the front wheel. It is harder to change the direction of this
wheel when it is spinning rapidly than when it is spinning
slowly or not at all. You will also get the feeling that the
wheel has a mind of its own. As you try to tilt the wheel, it
will tend to turn in a direction perpendicular to the tilt.

A bicycle tire mounted on a hand-held axle is even more
effective for sensing the effects of torques applied to the
axle. This is a common demonstration apparatus, but usu-
ally the tire is filled with steel cable rather than air. The
steel cable gives the wheel a larger rotational inertia and a
larger angular momentum for a given rate of spin. If you
hold the axle on either side while the wheel is spinning in a
vertical plane and then try to tip the wheel, you get a sense
of what happens when you are riding a bicycle. It also
demonstrates how hard it is to change the direction of the
angular momentum of a rapidly spinning wheel. Everyday
phenomenon box 8.2 discusses how torques are involved in
the gear system of a bicycle.

Rotating stools and tops
The hand-held bicycle wheel is good for other demonstra-
tions that highlight angular momentum as a vector. If a stu-
dent holds the wheel with its axle in the vertical direction
while sitting on a rotating stool, conservation of angular
momentum produces striking results. It is best to start the
wheel spinning while holding the stool so that the stool does
not rotate initially. We then have the student turn the wheel
over, as in figure 8.23, reversing the direction of the angular-
momentum vector of the wheel.

Can you imagine what happens then? To conserve an-
gular momentum, the original direction of the angular-
momentum vector must be maintained. The only way this
can happen is for the stool with the student volunteer to
begin to rotate in the same direction that the wheel was

rotating initially. The sum of the angular-momentum vector
of the wheel and the vector of the student and stool add to
yield the original angular momentum (fig. 8.24). This will
be true if the angular momentum gained by the student and
stool is exactly twice the original angular momentum of 
the wheel. The student can stop the rotation of the stool by
flipping the wheel axis back to its original direction.

The direction of angular momentum and its conserva-
tion are important in many other situations. The angular

figure 8.23 A student holds a spinning bicycle wheel while
sitting on a stool that is free to rotate. What happens if the
wheel is turned upside down?

figure 8.24 The angular momentum of the student and
stool, Ls, adds to that of the wheel, �Lw, to yield the direction
and magnitude of the original angular momentum, Lw.

Lw

After wheel
is flipped

Before wheel
is flipped

⇒ Lw

 –Lw

Ls
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Bicycle Gears

The Situation. Most modern bicycles come equipped with
the ability to change gears. When we are climbing a hill,
we shift into a low gear making pedaling easier. When we 
are on level ground or a downgrade, we shift into higher gears,
allowing us to cover more ground per turn of the pedal crank.

How do these gears work? How does the torque exerted
on the rear wheel change when we change gears? What is
the advantage of having many different gears? Adding a rota-
tional twist to the concept of simple machines can help in
understanding how gears work. Similar ideas apply to an
automobile transmission.

The Analysis. The photograph shows the pedal wheel and
the rear-wheel gear assembly for a 21-speed bicycle. There are 
seven sprockets (toothed wheels) of different sizes on the rear-
wheel hub. There are also three different sprockets on the
pedal wheel, only one of which is fully visible in the photo-
graph. A pulley and lever mechanism (called a derailleur)
allows us to move the chain from one sprocket to another.
This is controlled by levers mounted on the handlebars that
are linked to the derailleurs by cables.

When we pedal the bicycle we apply a torque to the
pedal sprocket by pushing on the pedals. If our feet push
perpendicularly to the pedal shaft, then the lever arm is
just the length of the shaft. That will be the case when the
pedal is in the forward position where we get maximum
torque as shown in the drawing. This maximum-torque
position alternates from the left foot to the right foot as
the crank turns.

The torque exerted on the pedal chain ring causes the
sprocket to accelerate rotationally provided that this torque
is larger than the opposing torque exerted by the tension
in the chain pulling back on the sprocket. This tension, in
turn, produces a torque on the rear wheel via the rear-
wheel sprocket. The size of the torque transmitted to the
rear wheel depends on which of the several sprockets is
engaged with the chain. A larger sprocket radius yields a
larger torque because of the greater lever arm. (The lever

everyday phenomenon
box 8.2

There are seven different sprockets on the rear-wheel gear assembly
of a 21-speed bicycle. The two smaller sprockets on the pedal wheel
lie behind the largest sprocket.

(continued)

momentum of the helicopter’s rotors, for example, is an
extremely important factor in helicopter design. The mo-
tion of a top also shows fascinating effects. If you have a
top, observe what happens to the direction of the angular-
momentum vector as the top slows down. As the top begins
to totter, the change in direction of the angular-momentum
vector causes the rotation axis of the top to rotate (precess)
about a vertical line. Does this remind you of what happens
with a bicycle wheel?

Angular momentum and its direction are also central to
atomic and nuclear physics. The particles that make up atoms
have spins, and these spins imply angular momentum. The
ways these angular-momentum vectors add are used to ex-
plain a variety of atomic phenomena. While the size scales
differ enormously, it is useful to recognize the common

ground that atoms and nuclei share with bicycle wheels and
the solar system.

Like linear momentum, angular momentum is a vector. Its
direction is the same as that of the rotational-velocity
vector, which is along the axis of rotation, with the “right-
hand rule” specifying which way it points along that axis.
Conservation of angular momentum requires that both
the magnitude and direction of the angular-momentum
vector be constant (if there are no external torques).
Many interesting phenomena can be explained using
these ideas, including the stability of a moving bicycle, the
motion of a spinning top, and the behavior of atoms and
galaxies.
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2 Torque and balance. A torque is what causes an
object to rotate. It is defined as a force times the lever arm of the
force, which is the perpendicular distance from the line of action
of the force to the axis of rotation. If the net torque acting on an
object is zero, the object will not change its state of rotation.

We have considered the rotational motion of a solid object and
what causes changes in rotational motion. We have used an anal-
ogy between linear motion and rotational motion to develop many
of the concepts. The key ideas are summarized here:

1 What is rotational motion? Rotational displacement
is described by an angle. Rotational velocity is the rate of change
of that angle with time. Rotational acceleration is the rate of
change of rotational velocity with time.

summary
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arm is equal to the radius of the sprocket engaged.) As with
an automobile, the rear wheel pushes against the road
surface via friction, and by Newton’s third law, the frictional
force pushes forward on the bicycle.

How are simple-machine ideas involved? Suppose that the
chain is engaged with the smallest sprocket on the rear-wheel
assembly. The torque exerted on the rear wheel by the chain
is then relatively small because of the small lever arm. The
wheel turns several times, however, for each turn of the pedal
sprocket. If, for example, the radius of the pedal sprocket is
five times that of the rear-wheel sprocket, then the rear wheel
turns five times for each turn of the pedal crank. (The circum-
ference of each sprocket (2�r) is proportional to the radius,

and the circumference determines how far the chain must
travel for each turn.)

In this case, then, a small torque turns the rear wheel
through a large angle while a larger input torque turns the 
pedal sprocket through a smaller angle. By analogy to linear
work (force times distance moved), rotational work can be
defined as the torque times the angle through which the
sprocket turns ( ). As for any simple machine, the work
output equals the work input, ignoring frictional torques at
the wheel axles.

Would the situation we have just described represent a
high gear or a low gear? Since we are getting several turns of
the rear wheel for each turn of the pedal crank, this is a high
gear. For a lower gear, we need to move the chain to a larger
sprocket on the rear wheel (or a smaller sprocket on the
pedal wheel). This will transmit a larger torque to the rear
wheel at the expense of turning the wheel through a smaller
angle and moving the bicycle through a smaller distance for
each turn of the crank. When we are going uphill, we need
this larger torque to overcome the pull of gravity.

For a 21-speed bike, there are three sprocket sizes on the
pedal wheel and seven on the rear wheel allowing twenty-
one (3 � 7) different ratios between the two sprockets. The
advantage of having all these choices is that we can adjust
the mechanical advantage of our gear system to the condi-
tions we encounter, thus adjusting the force that we need to
apply to the pedals to achieve the desired torque. If this force
is too large, we will quickly tire. When it is small, however, we
may not be taking maximum advantage of the easier riding
conditions. We can go faster in a higher gear.

t u

F

T
T

r1

r2

A force applied to the pedal produces a torque on the pedal wheel.
This torque produces a tension in the chain that exerts a smaller
torque on the rear-wheel sprocket due to its smaller radius.
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* � more open-ended questions, requiring lengthier responses, suitable
for group discussion 
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. Which units would not be appropriate for describing a rota-
tional velocity: rad/min2, rev/s, rev/h, m/s? Explain.

Q2. Which units would not be appropriate for describing a rota-
tional acceleration: rad/s, rev/s2, rev/m2, degrees/s2? Explain.

Q3. A coin rolls down an inclined plane gaining speed as it rolls.
Does the coin have a rotational acceleration? Explain.

Q4. The rate of rotation of an object is gradually slowing down.
Does this object have a rotational acceleration? Explain.

Q5. Is the rotational velocity of a child sitting near the center
of a rotating merry-go-round the same as that of another
child sitting near the edge of the same merry-go-round?
Explain.

Q6. Is the linear speed of a child sitting near the center of a
rotating merry-go-round the same as that of another child
sitting near the edge of the same merry-go-round? Explain.

Q7. If an object has a constant rotational acceleration, is its
rotational velocity also constant? Explain.

*Q8. A ball rolls down an inclined plane gaining speed as it
goes. Does the ball experience both linear and rotational
acceleration? How far does the ball travel in one revolution?

key terms

Linear motion, 146
Rotational velocity, 146
Rotational displacement, 146
Radian, 146
Linear displacement, 147

Rotational acceleration, 147
Fulcrum, 149
Torque, 150
Lever arm, 150
Center of gravity, 151

Rotational inertia, 152
Moment of inertia, 152
Angular momentum, 155
Conservation of angular momentum, 156

questions

ω
r

m

α

F

�net =   α, ΙΙ  = mr 2

L = Iω
If �ext = 0,  L = constant

3 Rotational inertia and Newton’s second law. In
the form of Newton’s second law that relates to rotation, torque
takes the place of force, rotational acceleration replaces ordinary
linear acceleration, and rotational inertia replaces mass. Rotational
inertia depends on the distribution of mass about the axis of rotation.

4 Conservation of angular momentum. By analogy
to linear momentum, angular momentum is defined as the rota-
tional inertia times the rotational velocity. It is conserved when no
net external torque acts on the system.

5 Riding a bicycle and other amazing feats (angu-
lar momentum as a vector). The direction of the rotational-
velocity and angular-momentum vectors are defined by the 
right-hand rule. These vectors explain the stability of a moving
bicycle and other phenomena. If there are no external torques, the
direction of the angular momentum is conserved, as well as its
magnitude.
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How is the linear velocity of the ball related to its rota-
tional velocity? Explain.

Q9. Which, if either, will produce the greater torque: a force
applied at the end of a wrench handle (perpendicular to the
handle) or an equal force applied in the same direction near
the middle of the handle? Explain.

Q10. Which of the forces pictured as acting upon the rod in the
diagram will produce a torque about an axis perpendicular
to the plane of the diagram at the left end of the rod?
Explain.

Q11. The two forces in the diagram have the same magnitude.
Which orientation will produce the greater torque on the
wheel? Explain.

Q12. Is it possible to balance two objects of different weights
on the beam of a simple balance resting upon a fulcrum?
Explain.

*Q13. Is it possible for the net force acting on an object to be
zero, but the net torque to be greater than zero? Explain.
(Hint: The forces contributing to the net force may not lie
along the same line.)

Q14. You are trying to move a large rock using a steel rod as a
lever. Will it be more effective to place the fulcrum nearer
to your hands or nearer to the rock? Explain.

Q15. A pencil is balanced on a fulcrum located two-thirds of
the distance from one end. Is the center of gravity of this
pencil located at its center point? Explain.

Q16. A solid plank with a uniform distribution of mass along
its length rests on a platform with one end of the plank
protruding over the edge. How far out can we push the
plank before it tips? Explain.

*Q17. A uniform metal wire is bent into the shape of an L. Will
the center of gravity for the wire lie on the wire itself?
Explain.

Q18. An object is rotating with a constant rotational velocity.
Can there be a net torque acting on the object? Explain.

*Q19. A tall crate has a higher center of gravity than a shorter
crate. Which will have the greater tendency to tip over if
we push near the top of the crate? Explain with a force
diagram. Where is the probable axis of rotation?

Q20. Two objects have the same total mass, but object A has its
mass concentrated closer to the axis of rotation than
object B. Which object will be easier to set into rotational
motion? Explain.

Q21. Is it possible for two objects with the same mass to have
different rotational inertias? Explain.

Q22. Can you change your rotational inertia about a vertical
axis through the center of your body without changing
your total weight? Explain.

Q23. A solid sphere and a hollow sphere made from different
materials have the same mass and the same radius. Which
of these two objects, if either, will have the greater rota-
tional inertia about an axis through its center? Explain.

Q24. Is angular momentum always conserved? Explain.

Q25. A metal rod is rotated first about an axis through its cen-
ter and then about an axis passing through one end. If the
rotational velocity is the same in both cases, is the angu-
lar momentum also the same? Explain.

Q26. A child on a freely rotating merry-go-round moves from
near the center to the edge. Will the rotational velocity of
the merry-go-round increase, decrease, or not change at
all? Explain.

*Q27. Moving straight inward, a large child jumps onto a freely
rotating merry-go-round. What effect will this have on the
rotational velocity of the merry-go-round? Explain.

Q28. Is it possible for an ice skater to change his rotational
velocity without involving any external torque? Explain.

Q29. Suppose you are rotating a ball attached to a string in a
circle. If you allow the string to wrap around your finger,
does the rotational velocity of the ball change as the
string shortens? Explain.

Q30. Does the direction of the angular-momentum vector of
the wheels change when a bicycle goes around a corner?
Explain.

Q31. An ice skater is spinning counterclockwise about a verti-
cal axis when viewed from above. What is the direction
of her angular-momentum vector? Explain.

Q32. A pencil, balanced vertically on its eraser, falls to the right.
a. What is the direction of its angular-momentum vector

as it falls?
b. Is its angular momentum conserved during the fall?

Explain.

*Q33. A top falls over quickly if it is not spinning, but will stay
approximately upright for some time when it is spinning.
Explain why this is so.

Q34. Can a yo-yo be made to “sleep” if the string is tied tightly
to the axle? Explain.

F1

F2

Axis

Q10 Diagram

F1

F2

Q11 Diagram
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exercises

E1. Suppose that a merry-go-round is rotating at the rate of
10 rev/min.
a. Express this rotational velocity in rev/s.
b. Express this rotational velocity in rad/s.

E2. When the author was a teenager, the rate of rotation for
popular music records on a record player was 45 RPM.
a. Express this rotational velocity in rev/s.
b. Through how many revolutions does the record turn in 

a time of 5 s?

E3. Suppose that a disk rotates through three revolutions in
4 seconds.
a. What is its displacement in radians in this time?
b. What is its average rotational velocity in rad/s?

E4. The rotational velocity of a merry-go-round increases at a
constant rate from 0.6 rad/s to 1.8 rad/s in a time of 4 s.
What is the rotational acceleration of the merry-go-round?

E5. A bicycle wheel is rotationally accelerated at the constant
rate of 1.2 rev/s2.
a. If it starts from rest, what is its rotational velocity after

4 s?
b. Through how many revolutions does it turn in this

time?

E6. The rotational velocity of a spinning disk decreases from
6 rev/s to 3 rev/s in a time of 12 s. What is the rotational
acceleration of the disk?

E7. Starting from rest a merry-go-round accelerates at a con-
stant rate of 0.2 rev/s2.
a. What is its rotational velocity after 5 s?
b. How many revolutions occur during this time?

E8. A force of 50 N is applied at the end of a wrench handle
that is 24 cm long. The force is applied in a direction per-
pendicular to the handle as in the diagram.
a. What is the torque applied to the nut by the wrench?
b. What would the torque be if the force were applied half

way up the handle instead of at the end?

E9. A weight of 30 N is located a distance of 10 cm from the
fulcrum of a simple balance beam. At what distance from
the fulcrum should a weight of 20 N be placed on the
opposite side in order to balance the system?

E10. A weight of 3 N is located 10 cm from the fulcrum on the
beam of a simple balance. What weight should be placed at
a point 5 cm from the fulcrum on the opposite side in order
to balance the system?

E11. Two forces are applied to a merry-go-round with a radius
of 1.2 m as shown in the diagram below. One force has a
magnitude of 80 N and the other a magnitude of 50 N.
a. What is the torque about the axle of the merry-go-round

due to the 80-N force?
b. What is the torque about the axle due to the 50-N force?
c. What is the net torque acting on the merry-go-round?

E12. A net torque of 60 N·m is applied to a disk with a rota-
tional inertia of 12.0 kg·m2. What is the rotational accelera-
tion of the disk?

E13. A wheel with a rotational inertia of 4.5 kg�m2 accelerates 
at a rate of 3.0 rad/s2. What net torque is needed to produce
this acceleration?

E14. A torque of 60 N·m producing a counterclockwise rotation
is applied to a wheel about its axle. A frictional torque of
10 N·m acts at the axle.
a. What is the net torque about the axle of the wheel?
b. If the wheel is observed to accelerate at the rate of

2 rad/s2 under the influence of these torques, what is the
rotational inertia of the wheel?

E15. Two 0.2-kg masses are located at either end of a 1-m long,
very light and rigid rod as in the diagram. What is the rota-
tional inertia of this system about an axis through the cen-
ter of the rod?

50 N

24
 cm

 

E8 Diagram

80 N
1.2 m

50 N
E11 Diagram

Axis

1 m

0.2 kg0.2 kg

E15 Diagram
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synthesis problems

SP1. A merry-go-round in the park has a radius of 1.8 m and a
rotational inertia of 900 kg·m2. A child pushes the merry-
go-round with a constant force of 80 N applied at the edge
and parallel to the edge. A frictional torque of 12 N·m acts
at the axle of the merry-go-round.
a. What is the net torque acting on the merry-go-round

about its axle?
b. What is the rotational acceleration of the merry-go-

round?
c. At this rate, what will the rotational velocity of the

merry-go-round be after 15 s if it starts from rest?
d. What is the rotational acceleration of the merry-go-

round if the child stops pushing after 15 s? How long
will it take for the merry-go-round to stop turning?

SP2. A 4-m long plank with a weight of 80 N is placed on a dock
with 1 m of its length extended over the water, as in the
diagram. The plank is uniform in density so that the center
of gravity of the plank is located at the center of the plank.
A boy with a weight of 150 N is standing on the plank and
moving out slowly from the edge of the dock.
a. What is the torque exerted by the weight of the plank

about the pivot point at the edge of the dock? (Treat all
the weight as acting through the center of gravity of the
plank.)

b. How far from the edge of the dock can the boy move
until the plank is just on the verge of tipping?

c. How can the boy test this conclusion without falling in
the water? Explain.

SP3. In the park, several children with a total mass of 240 kg are
riding on a merry-go-round that has a rotational inertia of
1500 kg·m2 and a radius of 2.2 m. The average distance
of the children from the axle of the merry-go-round is 2.0 m
initially, since they are all riding near the edge.

a. What is the rotational inertia of the children about the
axle of the merry-go-round? What is the total rotational
inertia of the children and the merry-go-round?

b. The children now move inward toward the center of
the merry-go-round so that their average distance from
the axle is 0.5 m. What is the new rotational inertia
for the system?

c. If the initial rotational velocity of the merry-go-round
was 1.2 rad/s, what is the rotational velocity after the
children move in toward the center, assuming that the
frictional torque can be ignored? (Use conservation of
angular momentum.)

d. Is the merry-go-round rotationally accelerated during
this process? If so, where does the accelerating torque
come from?

SP4. A student sitting on a stool that is free to rotate but is ini-
tially at rest, holds a bicycle wheel. The wheel has a rota-
tional velocity of 5 rev/s about a vertical axis, as shown in
the diagram. The rotational inertia of the wheel is 2 kg·m2

about its center and the rotational inertia of the student and
wheel and platform about the rotational axis of the plat-
form is 6 kg·m2.
a. What are the magnitude and direction of the initial

angular momentum of the system?
b. If the student flips the axis of the wheel, reversing the

direction of its angular-momentum vector, what is the
rotational velocity (magnitude and direction) of the stu-
dent and the stool about their axis after the wheel is
flipped? (Hint: See fig. 8.23.)

c. Where does the torque come from that accelerates the
student and the stool? Explain.

1 m

3 m

SP2 Diagram

E16. A mass of 0.8 kg is located at the end of a very light and
rigid rod 50 cm in length. The rod is rotating about an axis
at its opposite end with a rotational velocity of 3 rad/s.
a. What is the rotational inertia of the system?
b. What is the angular momentum of the system?

E17. A uniform disk with a mass of 4 kg and a radius of 0.2 m
is rotating with a rotational velocity of 20 rad/s.
a. What is the rotational inertia of the disk? (See fig. 8.15.)
b. What is the angular momentum of the disk?

E18. A student, sitting on a stool rotating at a rate of 20 RPM,
holds masses in each hand. When his arms are extended,
the total rotational inertia of the system is 4.5 kg·m2. He 
pulls his arms in close to his body, reducing the total rota-
tional inertia to 1.5 kg·m2. If there are no external torques,
what is the new rotational velocity of the system?

SP4 Diagram
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home experiments and observations

HE1. If there is a park nearby containing a freely rotating child’s
merry-go-round, take some time with a friend to observe
some of the phenomena discussed in this chapter. In partic-
ular, make these observations:
a. What is a typical rotational velocity that can be achieved

with the merry-go-round? How would you go about mea-
suring this?

b. How long does it take for the merry-go-round to come
to rest after you stop pushing? Could you estimate the
frictional torque from this information? What other in-
formation would you need?

c. If you or your friend are riding on the merry-go-round,
what happens to the rotational velocity when you move
inward or outward from the axis of the merry-go-round?
How do you explain this?

HE2. Create a simple balance using a ruler as the balance beam
and a pencil as the fulcrum. (A pencil or pen with a hexag-
onal cross section is easier to use than one with a round
cross section.)
a. Does the ruler balance exactly at its midpoint? What

does this imply about the ruler?
b. Using a nickel as your standard, what are the ratios of

the weights of pennies, dimes, and quarters to that of the
nickel? Describe the process used to find these ratios.

c. Is the distance from the fulcrum necessary to balance
two nickels on one side with a single nickel on the op-
posite side exactly half the distance for the single nickel?
How would you account for any discrepancy?

HE3. You can make a simple top by cutting a circular piece of
cardboard, poking a hole through the center, and using a
short dull pencil for the post. A short wooden dowel with
a rounded end works even better than a pencil.

a. Try building such a top and testing it. How far up the
pencil should the cardboard disk sit for best stability?

b. Observe what happens to the axis of rotation of the top
as it slows down. What is the direction of the angular-
momentum vector, and how does it change?

c. What happens to the stability of your top if you tape two
pennies near the edge on opposite sides of the cardboard
disk?

HE4. Try spinning a quarter or other large coin about its edge on a
smooth tabletop or other similar surface. Describe the motion
that follows, paying particular attention to the direction of the
angular-momentum vector.

HE5. As described in the study hint on page 160, use a bicycle
wheel mounted on a hand-held axle (probably available
from your friendly physics department) to study the angu-
lar momentum vectors and their changes. In particular,
make these observations:
a. Grasp the wheel with both hands by the handles on each

side and have someone give it a good spin with the
wheel in a vertical plane. Then try tilting the wheel
downward to the left to simulate a fall. What direction
does the wheel turn? Describe what happens.

b. Grasp the wheel with both hands by the handles on each
side and hold it in the vertical orientation. Without spin-
ning the wheel, rotate it into the horizontal plane. Now
repeat this, but first have someone give it a good spin
with the wheel in the vertical plane. Is it harder or easier
to rotate it into the horizontal plane when the wheel is
spinning? Explain how this can be related to riding a
bicycle.
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Energy issues have become increasingly impor-
tant as the worldwide oil supply tightens. Although
Newton’s theory of mechanics was introduced in the
seventeenth century, the physics underlying our
understanding of energy utilization did not make
great strides until the nineteenth century. Some of
these developments, particularly in the fields of
fluid mechanics and thermodynamics, were stimu-
lated by the industrial revolution. This revolution
could not have happened without the invention of
steam engines, which were used to run factories,
trains, and ships.

Understanding the behavior of fluids, particu-
larly gases, is critical to our understanding of many
kinds of engines including steam engines. Thermody-
namics is also crucial because it describes the energy
conversions that take place in heat engines and other
systems. The study of fluid mechanics and thermody-
namics is a central part of the training of the mechani-
cal engineers who design these systems.

The history of the field of thermodynamics
has taken some strange twists and turns. A French sci-
entist and engineer, Sadi Carnot (1796–1832), devel-
oped a theory of heat engines around 1820, but
Carnot’s theory raised more questions than it
answered. Carnot had some understanding of what
we now call the second law of thermodynamics, but

he lacked the crucial insights of the first law. The first
law involves conservation of energy, but that idea
came into its own only around 1850, about thirty
years later. A comprehensive theory had to wait until
then for the insights that resulted from combining
the first and second laws of thermodynamics.

The first and second laws of thermodynamics
emerged during the 1850s through the work of many
scientists, most prominently Rudolph Clausius
(1822–1888) and William Thompson (later Lord Kelvin)
(1824–1907). Another important contributor was
James Prescott Joule (1818–1889), who measured the
heating effect of mechanical work, a key idea in the
first law of thermodynamics. Together, the first and
second laws of thermodynamics place limits on what
can be accomplished with energy in the form of heat.

The laws of thermodynamics play an enor-
mous role in any discussion of the use of energy
resources. Energy is still a critical issue—our heavy
dependence on fossil fuels cannot go on indefinitely.
Concerns about global warming (associated with the
greenhouse effect) and other environmental issues
related to energy use have become hot political
issues. Understanding the science underlying these
issues is important for economists, politicians, envi-
ronmentalists, and citizens in general. Chapters 9, 10,
and 11 address these ideas.

Fluids and Heat

unit

Two
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chapter overview
Our first objective in this chapter is to explore the meaning of pressure.
We will then investigate atmospheric pressure and how pressure varies
with depth in a fluid. Those ideas will prepare us to explore the behavior
of floating objects as well as what happens when fluids are in motion.
Moving fluids are described by Bernoulli’s principle, which helps us to
explain why a curveball curves and many other phenomena.

chapter outline
1 Pressure and Pascal’s principle. What is pressure? How is it

transmitted from one part of a system to another? How does a
hydraulic jack or press work?

2 Atmospheric pressure and the behavior of gases. How do we
measure atmospheric pressure, and why does it vary? Why can we
compress gases more readily than liquids? What is Boyle’s law?

3 Archimedes’ principle. What is Archimedes’ principle? How is it
related to differences in pressure? Why does a steel boat float but a
lump of steel sink?

4 Fluids in motion. What special characteristics can we observe in
moving fluids? What is viscosity? How does the velocity of a moving
fluid vary if we change the width of its pipe or stream?

5 Bernoulli’s principle. What is Bernoulli’s principle, and how is it
related to conservation of energy? How can Bernoulli’s principle be
used to explain the motion of a curveball and other phenomena?
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The Behavior
of Fluids

chapter

9
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Boats hold a special fascination for many of us. As
a child, you probably floated twigs or sticks in streams. A
stick or toy boat will follow the current of a stream,
sometimes moving swiftly and other times getting caught
in an eddy or stranded near the bank. You were observ-
ing some characteristics of fluid flow.

You probably also noticed that some things float and
some do not. Stones sink quickly to the bottom of the
stream. As you grew older, you may have wondered
why a steel boat floats, while a piece of metal dropped
in the water quickly sinks (fig. 9.1). Does the shape of
the material have something to do with whether it
floats or not? Can you make a boat of concrete?

Things can float in air as well as in water. A bal-
loon filled with helium pulls up on the string, but a
balloon filled with air drifts down to the floor. What
makes the difference?

The behavior of things that float (or sink) in water or
air is one aspect of the behavior of fluids. Water and air
are both examples of fluids, although one is a liquid
and the other a gas. They both flow readily and con-
form to the shapes of their containers, unlike solids,
which have shapes of their own. Although liquids are

usually much denser than gases, many of the principles
that apply to liquids also apply to gases, so it makes
sense to consider them together under the common
heading of fluids.

Pressure plays a central role in describing the behav-
ior of fluids. We will explore pressure thoroughly in this
chapter. Pressure is involved in Archimedes’ principle,
which explains how things float, but pressure is also im-
portant in other phenomena we will consider, including
the flow of fluids.

9.1 Pressure and Pascal’s Principle 171

9.1 Pressure and Pascal’s Principle
A small woman wearing high-heel shoes sinks into soft
ground, but a large man wearing size-13 shoes may walk
across the same ground without difficulty (fig. 9.2). Why is
this so? The man weighs much more than the woman, so he
must exert a larger force on the ground. But the woman’s
high heels leave much deeper indentations in the ground.

Clearly weight alone is not the determining factor. How
the force is distributed across the area of contact between the
shoes and the Earth is more important. The woman’s shoes
have a small area of contact, while the man’s shoes have
a much larger area of contact. The force exerted on the
ground by the man’s feet due to his weight is distributed
over a larger area.

How is pressure defined?
What is happening when you stand or walk on soft ground? If
you are not accelerating in the vertical direction, your weight

figure 9.1 A steel boat floats, but a piece of metal dropped
in the water quickly sinks. How do we explain this?

figure 9.2 A woman’s high heels sink into the soft ground,
but the larger shoes of the much bigger man do not.

must be balanced by the normal force exerted upward on
your feet by the ground. By Newton’s third law, you exert a
downward normal force on the ground equal to your weight.

The quantity that determines whether the soil will yield,
letting your shoes sink into the ground, is the pressure ex-
erted on the soil by your shoes. The total normal force does
not matter as much as the force per unit area:

Pressure is the ratio of the force to the area over which it is
applied:

P �

Pressure is measured in units of newtons per meter squared
(N/m2)—the metric unit of force divided by the metric unit
of area. This unit is also called a pascal (1 Pa � 1 N/m2).

The heel area of a woman’s high-heel shoe can be as
small as just 1 or 2 square centimeters (cm2). When you
walk, there are times when almost all of your weight is
supported by your heel. The weight shifts from heel to toe
as you move forward with your other foot off the ground.
Take a few steps to test this statement. The woman’s
weight divided by the small area of her heel produces a
large pressure on the ground.

The man’s shoe, on the other hand, may have a heel
area of as much as 100 cm2 (for a size-13 shoe). Since his
heel area may be 100 times larger than the woman’s heel,
he can weigh two or three times as much as the woman yet
exert a pressure on the ground (P � F/A) that is a small
fraction of the pressure exerted by the woman. His smaller
pressure leads to a smaller indentation in the ground.

F

A
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The area over which a force is distributed is the critical
factor in pressure. The area of a surface increases more
rapidly than the linear dimensions of the surface. A square
that is 1 cm on each side has an area of 1 cm2, for exam-
ple, but a square that is 2 cm on a side has an area of 4 cm2

(2 cm � 2 cm), four times as large as the smaller square
(fig. 9.3). For a circle, the area is equal to � times the
square of the radius of the circle (A � �r2). A circle with
a radius of 10 cm has an area 100 times larger (102) than a
circle with a radius of 1 cm.

Pascal’s principle
What happens inside a fluid when pressure is exerted on
it? Does pressure have direction? Does it transmit a force
to the walls or bottom of a container? These questions point
to another important feature of pressure in fluids.

When we apply a force by pushing down on the piston
in a cylinder, as in figure 9.4, the piston exerts a force on
the fluid. By Newton’s third law, the fluid also exerts a
force (in the opposite direction) on the piston. The fluid in-
side the cylinder will be squeezed and may decrease in vol-
ume somewhat. It has been compressed. Like a compressed
spring, the compressed fluid will push outward on the walls
and bottom of the cylinder as well as on the piston.

Although the fluid behaves like a spring, it is an un-
usual spring. It pushes outward uniformly in all directions
when compressed. Any increase in pressure is transmitted

uniformly throughout the fluid, as figure 9.4 indicates. If
we ignore variations in pressure due to the weight of the
fluid itself, the pressure that pushes upward on the piston
is equal to the pressure that pushes outward on the walls
and downward on the bottom of the cylinder.

The ability of a fluid to transmit the effects of pressure
uniformly is the core of Pascal’s principle and the basis of
the operation of a hydraulic jack and other hydraulic de-
vices. Blaise Pascal (1623–1662) was a French scientist
and philosopher whose primary contributions were in the
areas of fluid statics and probability theory. Pascal’s prin-
ciple is usually stated as

Any change in the pressure of a fluid is transmitted uniformly
in all directions throughout the fluid.

How does a hydraulic jack work?
Hydraulic systems are the most common applications of
Pascal’s principle. They depend on the uniform transmis-
sion of pressure, as well as on the relationship between
pressure, force, and area stemming from the definition
of pressure. The basic idea is illustrated in figure 9.5.

A force applied to a piston with a small area can produce
a large increase in pressure in the fluid because of the small
area of the piston. This increase in pressure is transmitted
through the fluid to the piston on the right in figure 9.5,
which has a much larger area. Since pressure is force per unit
area, the force exerted on the larger piston by this pressure is
proportional to the area of the piston (F � PA). Applying the
same pressure to the much larger area of the second piston
results in a much larger force on the second piston.

Since it is feasible to build a system in which the area
of the second piston is more than 100 times larger than the
first piston, we can produce a force on the second piston
more than 100 times larger than the input force. The me-
chanical advantage, the ratio of the output force to the input
force, of a hydraulic system will usually be large com-
pared to a lever or other simple machine. (See section 6.1.)
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figure 9.3 A square with sides 2 cm long has an area that
is four times as large as a square with sides 1 cm long.

figure 9.4 The pressure exerted on the piston extends
uniformly throughout the fluid, causing it to push outward with
equal force per unit area on the walls and bottom of the cylinder.

figure 9.5 A small force F1 applied to a piston with a small
area produces a much larger force F2 on the larger piston. This
allows a hydraulic jack to lift heavy objects.

1 cm

2 cm

50 kg

P
F2

A2A1

F1

P
P P

F2
F1

=
A2
A1
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A small force applied to the input piston of a hydraulic
jack can be multiplied to produce a force large enough to
lift a car (fig. 9.6). These ideas are illustrated in example
box 9.1.

As discussed in chapter 6, we pay a price for getting a
larger output force. The work done by the larger piston in
lifting the car cannot be any greater than the work input to
the handle of the jack. Since work is equal to force times
distance (W � Fd), a large output force means that the
larger piston moves just a small distance. Conservation of
energy requires that if the output force is 50 times larger
than the input force, the input piston must move 50 times
farther than the output piston.

With a hand-pumped hydraulic jack, you have to move
the smaller piston several times, letting the jack’s chamber
refill with fluid after each stroke. The total distance moved
by the smaller piston is the sum of the distances moved on
each stroke. The larger piston inches upward as you pump.
A similar process occurs in larger hydraulic jacks.

Hydraulic systems and fluid are also used in the brake
systems of cars and in many other applications. Oil is more
effective than water as a hydraulic fluid because it is not cor-
rosive and can also lubricate, ensuring smooth operation of
the system. Hydraulic systems take good advantage of the
ability of fluids to transmit changes in pressure, as described
by Pascal’s principle. They also use the multiplying effect
produced by pistons of different areas. A hydraulic system is
a good example of the concept of pressure in action.

Pressure is the ratio of the force to the area over which it
is applied. A force applied to a small area exerts a much
larger pressure than the same force applied to a larger
area. Changes in pressure are transmitted uniformly
through a fluid, and the pressure pushes outward in all
directions, according to Pascal’s principle. These ideas
explain the operation of a hydraulic jack and other
hydraulic systems.

9.2 Atmospheric Pressure and
the Behavior of Gases
Living on the surface of the Earth, we are at the bottom of
a sea of air. Except for smog or haze, air is usually invisi-
ble. We seldom give it a second thought. How do we know
it is there? What measurable effects does it have?

We feel the presence of air, of course, when riding a
bike or walking on a gusty day. Skiers, bicycle racers, and
car designers are all conscious of the need to reduce resist-
ance to the flow of air past themselves and their vehicles.
The labored breathing of a mountain climber is partly due
to the thinning of the atmosphere near the top of a high
mountain. How do we measure atmospheric pressure and
its variations with weather or altitude?

How is atmospheric pressure measured?
Atmospheric pressure was first measured during the seven-
teenth century. Galileo noticed that the water pumps he de-
signed were capable of pumping water to a height of only
32 feet, but he never adequately explained why. His disciple,
Evangelista Torricelli (1608–1647), invented the barometer
as he attempted to answer this question.

Torricelli was interested in vacuums. He reasoned that
Galileo’s pumps created a partial vacuum and that the pres-
sure of the air pushing down on the water at the pump intake
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figure 9.6 A hydraulic jack can easily lift a car.

example box 9.1

Sample Exercise: Some Basics of Jacks

A force of 10 N is applied to a circular piston with an area
of 2 cm2 in a hydraulic jack. The output piston for the jack
has an area of 100 cm2.

a. What is the pressure in the fluid?
b. What is the force exerted on the output piston by

the fluid?

a. F1 � 10 N P �

A1 � 2 cm2

� 0.0002 m2
�

P � ?
� 50 000 N/m2

� 50 kPa

A kilopascal (kPa) is 1000 Pa, or 1000 N/m2.

b. A2 � 100 cm2 F2 � PA2

� 0.01 m2 � (50 000 N/m2)(0.01 m2)

P � 50 kPa � 500 N

F2 � ?

The mechanical advantage of this jack is 500 N divided by
10 N, or 50: the output force is 50 times larger than the
input force.

10 N

0.0002 m2

F1

A1

gri12117_ch09_169-190.qxd  7/16/08  3:02 AM  Page 173



Confirming Pages

was responsible for lifting the water. In thinking about how
to test this hypothesis, he was struck by the idea of using a
much denser fluid than water. Mercury or quicksilver was
the logical choice, because it is a fluid at room temperature
and has a density approximately 13 times that of water. A
given volume of mercury therefore has a mass (and weight)
that is 13 times an equal volume of water. Densities of a
few common substances are listed in table 9.1

Density is the mass of an object divided by its volume. The
metric units of density are kg/m3 or g/cm3.

In his early experiments, Torricelli used a glass tube
about 1 meter in length, sealed at one end and open at the
other. He filled the tube with mercury and then, holding his
finger over the open end, inverted the tube and placed this
end in the open container of mercury (fig. 9.7). The mercury
flowed from the tube into the container until an equilibrium
was reached, leaving a column of mercury in the tube
approximately 760 mm (76 cm or 30 in.) high. The pressure
of air pushing down on the surface of the mercury in the
open container apparently was strong enough to support a
column of mercury 760 mm high.

Torricelli was careful to demonstrate experimentally that
there was a vacuum in the space at the top of the tube above
the column of mercury. The reason that the mercury column
does not fall is that the pressure at the top of the column is
effectively zero, while the pressure at the bottom of the col-
umn is equal to atmospheric pressure. We still often quote
atmospheric pressure in either millimeters of mercury or

inches of mercury (the commonly used unit in the United
States). How are these units related to the pascal?

We can establish the relationship between these units
if we know the density of mercury. From this, we can find
the weight of the column of mercury being supported by the
atmosphere. Dividing this weight by the cross-sectional area
of the tube gives us force per unit area, or pressure. Using
this reasoning, we find that a column of mercury 760 mm
in height produces a pressure of 1.01 � 105 Pa, known as
standard atmospheric pressure.

Atmospheric pressure is approximately 100 kilopascals
(kPa) at sea level, or 14.7 pounds per square inch (psi).
(Pounds per square inch is the British unit of pressure still
used in the United States for measuring tire pressure and
many other pressures of practical interest 1 psi � 6.9 kPa.)
Living at the bottom of this sea of air, you have 14.7
pounds pushing on you for every square inch of your body.
Why do you not notice this? Fluids permeate your body
and push back out—the interior and exterior pressures are
essentially equal. (See everyday phenomenon box 9.1.)

A famous experiment designed to demonstrate the ef-
fects of air pressure was performed by Otto von Guericke
(1602–1686). Von Guericke designed two bronze hemi-
spheres that could be smoothly joined together at their rims.
He then pumped the air out of the sphere formed from the
two hemispheres, using a crude vacuum pump that he had
invented. As shown in figure 9.8, two eight-horse teams
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figure 9.7 Torricelli filled a tube with mercury and inverted
it into an open container of mercury. Air pressure acting on the
mercury in the dish can support a column of mercury 760 mm in
height.

760 mm

Mercury

Material Density (g/cm3)

Water 1.00

Ice 0.92

Aluminum 2.7

Iron, steel 7.8

Mercury 13.6

Gold 19.3

table 9.1

Densities of Some Common Substances

figure 9.8 Two teams of eight horses were unable to
separate von Guericke’s evacuated metal sphere. What force
pushes the two hemispheres together?
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Measuring Blood Pressure

The Situation. When you visit your doctor’s office, the nurse
will almost always take your blood pressure before the doctor
spends time with you. A cuff is placed around your upper arm
(as shown in the photograph) and air is pumped into the cuff,
producing a feeling of tightness in your arm. Then the air is
slowly released while the nurse listens to something with a
stethoscope and records some numbers, such as 125 over 80.

What is the significance of these two numbers? What is
blood pressure and how is it measured? Why are these read-
ings an important factor, along with your weight, tempera-
ture, and medical history, in assessing your health?

The Analysis. Your blood flows through an elaborate system
of arteries and veins in your body. As we all know, this flow is
driven by your heart, which is basically a pump. More accu-
rately, the heart is a double pump. One-half pumps blood
through your lungs, where the blood cells pick up oxygen and
discard carbon dioxide. The other half of the heart pumps blood
through the rest of your body to deliver oxygen and nutrients.
Arteries carry blood away from the heart into small capillaries
that interface with other cells in muscles and organs. The veins
collect blood from the capillaries and carry it back to the heart.

We measure the blood pressure in a major artery in your
upper arm at about the same height as your heart. When air
is pumped into the cuff around your upper arm, it compresses
this artery so that the blood flow stops. The nurse places the
stethoscope, a listening device, near this same artery at a
lower point in the arm and listens for the blood flow to
restart as the air in the cuff is released.

The heart is a pulsating pump that pumps blood most
strongly when the heart muscle is most fully compressed. The
pressure therefore fluctuates between high and low values.
The higher reading in the blood pressure measurement, the 
systolic pressure, is taken when the blood just begins to spurt 

through the compressed artery at the peak of the heart’s cycle.
The lower reading, the diastolic pressure, is taken when blood
flow occurs even at the low point in the cycle. There are distinc-
tive sounds picked up by the stethoscope at these two points.

The pressure recorded is actually the pressure in the air
cuff for these two conditions. It is a gauge pressure, meaning
that it is the pressure difference between the pressure being
measured and atmospheric pressure. It is recorded in the
units mm of mercury, which is the common way of recording
atmospheric pressure. Thus a reading of 125 means that the
pressure in the cuff is 125 mm of mercury above atmospheric
pressure. A mercury manometer that is open to the air on one
side (see the drawing) will measure gauge pressure directly.

High blood pressure can be a symptom of many health prob-
lems, but most specifically, it is a warning sign for heart attacks
and strokes. When arteries become constricted from the buildup
of plaque deposits inside, the heart must work harder to pump
blood through the body. Over time this can weaken the heart
muscle. The other danger is that blood vessels might burst in the
brain, causing a stroke, or blood clots might break loose and
block smaller arteries in the heart or brain. In any case, high
blood pressure is an important indicator of a potential problem.

Low blood pressure can also be a sign of problems. It can
cause dizziness when not enough blood is reaching the brain.
When you stand up quickly, you sometimes experience a feel-
ing of “light-headedness” because it takes a brief time for
the heart to adjust to the new condition where your head is
higher. Giraffes have a blood pressure about three times
higher than humans (in gauge pressure terms). Why do you
suppose this is so?

everyday phenomenon
box 9.1

An open-ended manometer can be used to measure the gauge
pressure of the cuff. The stethoscope is used to listen for sounds
indicating the restart of blood flow.

Release valve

Stethoscope

Open end
Cuff

Having your blood pressure measured is a standard procedure for
most visits to a doctor’s office. How does this process work?
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weather. Column heights were lower on stormy days than
on clear days. This pressure variation has been used ever
since to indicate changes in weather. Falling atmospheric
pressure points to stormy weather ahead. Readings are
usually corrected to sea level so that variations in altitude
will not mask changes related to weather.

The weight of a column of air
Can we calculate the variation in atmospheric pressure
with altitude the same way that we compute the pressure at
the bottom of a column of mercury? We would need to
know the weight of the column of air above us. Even
though mercury and air are both fluids, there is a signifi-
cant difference (besides the difference in density) between
the behavior of a column of mercury and a column of air.

Mercury, like most liquids, is not readily compressible.
In other words, increasing the pressure on a given amount
of mercury does not change the volume of the mercury
much. The density of the mercury (mass per unit volume) is
the same near the bottom of the column of mercury as near
the top. A gas like air, on the other hand, is easy to com-
press. As the pressure changes, the volume changes, and so
does the density. Therefore, we cannot use a single value for
the density to compute the weight of a column of air. Its
density decreases as we rise in the atmosphere (fig. 9.10).

This major difference between gases and liquids comes
from differences in their atomic or molecular “packing.”
Except at very high pressures, the atoms or molecules of a
gas are separated by large distances compared to the size
of the atoms themselves, as in figure 9.11. The atoms in a
liquid, on the other hand, are closely packed, much like
those in a solid. They cannot be easily squeezed.

Gases are springy. They can readily be compressed to
a small fraction of their initial volume. They can also ex-
pand if pressure is reduced, like the gas in Pascal’s balloon.
Changes in temperature are likely to affect the volume or

figure 9.9 A balloon that was partially inflated near sea
level expanded as the experimenters climbed the mountain.
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figure 9.10 The density of a column of air decreases as
altitude increases because air expands as pressure decreases.

were unable to pull the hemispheres apart. When the stop-
cock was opened to let air back into the evacuated sphere,
the two hemispheres could easily be separated.

Variations in atmospheric pressure
If we live at the bottom of a sea of air, we might expect
pressure to decrease as we go up in altitude. The pressure
that we experience results from the weight of the air above
us. As we go up from the Earth’s surface, there is less atmo-
sphere above us, so the pressure should decrease.

Similar reasoning led Blaise Pascal to try to measure at-
mospheric pressure at different altitudes shortly after Torri-
celli’s invention of the mercury barometer. Because Pascal
was in poor health through most of his adult life, and not
up to climbing mountains, he sent his brother-in-law to the
top of the Puy-de-Dome mountain in central France with a
barometer similar to Torricelli’s. Pascal’s brother-in-law
found that the height of the mercury column supported by
the atmosphere was about 7 cm lower at the top of the
1460-m (4800-ft) mountain than at the bottom.

Pascal also had his brother-in-law take a partially
inflated balloon to the top of the mountain. As Pascal
predicted, the balloon expanded as the climbers gained
elevation, indicating a decrease in the external atmospheric
pressure (fig. 9.9). Pascal was even able to show a decrease
in pressure within the city of Clermont between the low
point in town and the top of the cathedral tower. The
decrease was small but measurable.

Using the newly invented barometer, Pascal also ob-
served variations in pressure related to changes in the
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pressure of a gas much more than they affect a liquid. If the
temperature is held constant, however, the volume changes
with changes in pressure.

How does the volume of a gas
change with pressure?
Variations in the volume and density of a gas that accom-
pany changes in pressure were studied by Robert Boyle
(1627–1691) in England, as well as by Edme Mariotte
(1620–1684) in France. Boyle’s results were first reported in
1660 but went unnoticed on the European continent where
Mariotte published his similar conclusions in 1676. Both
were interested in the springiness, or compressibility, of air.

Both experimenters used a bent glass tube sealed on
one end and open on the other (fig. 9.12). In Boyle’s ex-
periment, the tube was partially filled with mercury, so that
air was trapped in the closed portion of the tube. He allowed
air to pass back and forth initially so that the pressure in the
closed side of the tube was equal to atmospheric pressure and
the column of mercury on either side was at the same height.

As Boyle added mercury to the open end of the tube, the
volume of the air trapped on the closed side decreased.
When he added enough mercury to increase the pressure to
twice atmospheric pressure, the height of the air column on
the closed side decreased by one-half. In other words, dou-
bling the pressure caused the volume of air to decrease by
half. Boyle discovered that the volume of a gas is inversely
proportional to the pressure.

We can express Boyle’s law in symbols:

PV � constant,

where P is the pressure in the gas and V is the volume of
the gas. If the pressure increases, the volume decreases
in inverse proportion to keep the product of pressure and
volume constant. We often write Boyle’s law (also known
as Mariotte’s law in continental Europe) as

P1V1 � P2V2 ,

where P1 and V1 are the initial pressure and volume, and P2

and V2 are the final pressure and volume (see example

box 9.2). For Boyle’s law to be valid, a fixed mass or quan-
tity of gas must be kept at a constant temperature while the
pressure and volume change.

As we gain altitude, atmospheric pressure decreases, and
the volume of a given mass of air increases. Since density
is the ratio of the mass to the volume, the density of the air
must be decreasing as the volume increases. In computing
the weight of a column of air, we have to take the change
in density into account, and the computation becomes more
complex than for the column of mercury. The density of a
gas also depends on temperature, which usually decreases
as we gain altitude, a further complication.

figure 9.11 The atoms in a liquid are closely packed while
those in a gas are separated by much larger distances.

figure 9.12 In Boyle’s experiment, adding mercury to the
open side of the bent tube caused a decrease in the volume of
the trapped air in the closed side.

Liquid Gas

(a) (b)

V2V1

example box 9.2

Sample Exercise: How Does a Gas Change
with Pressure?

A fixed quantity of gas is held in a cylinder capped at
one end by a movable piston. The pressure of the gas is
initially 1 atmosphere (101 kPa) and the volume is initially
0.3 m3. What is the final volume of the gas if the pressure
is increased to 3 atmospheres at constant temperature?

P1 � 1 atm P1V1 � P2V2 � constant

V1 � 0.3 m3

P2 � 3 atm
V2 � 

V2 � ? � 

�

� 0.1 m3

1
3 (0.3 m3)

(1 atm)(0.3 m3)

3 atm

P1V1

P2
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We live at the bottom of a sea of air, whose pressure we
can measure with barometers. The earliest barometers were
a column of mercury in a closed glass tube. The height of
the column supported by atmospheric pressure is a mea-
sure of the pressure. Atmospheric pressure decreases with
increasing altitude, because it is determined by the weight
of the column of air above. Determining the weight of a
column of air is harder than determining the weight of a
column of mercury, however, because air is compressible,
and its density varies with altitude. Boyle’s law describes
how the volume of a gas changes with pressure: increasing
the pressure decreases the volume in inverse proportion.

9.3 Archimedes’ Principle
Why do some things float while others do not? Is floating
determined by the weight of the object? A large ocean
liner floats, but a small pebble quickly sinks. Clearly, it is
not a matter of the total weight of the object. The density
of the object is the key. Objects that are denser than the
fluid they are immersed in will sink—those less dense will
float. The complete answer to the question of why things
sink or float is found in Archimedes’ principle, which de-
scribes the buoyant force exerted on any object fully or
partly immersed in a fluid.

What is Archimedes’ principle?
A block of wood floats, but a metal block of the same
shape and size sinks. The metal block weighs more than
the block of wood, even though it is the same size, which
means that the metal is denser than wood. Density is the
ratio of the mass to the volume (or mass per unit volume).
The metal has a greater mass than wood for the same vol-
ume. Since weight is found by multiplying the mass by the
gravitational acceleration g, the metal also has a greater
weight for the same volume.

If we compared the densities of the metal and wood
blocks to water, we would find that the metal block has a
density greater than water and that the density of the wood
block is less than water. The average density of an object
compared to a fluid is what determines whether the ob-
ject will sink or float in that fluid.

If we push down on a block of wood floating in a pool
of water, we can clearly feel the water pushing back up on
the block. In fact, it is hard to submerge a large block of
wood or a rubber inner tube filled with air. They keep pop-
ping back up to the surface. The upward force that pushes
such objects back toward the surface is called the buoyant
force. If the block of wood is partially submerged at first
and you push down to submerge it farther, the buoyant
force gets larger as more of the block is underwater.

Legend has it that Archimedes was sitting in the public
baths observing floating objects when he realized what de-
termines the strength of the buoyant force. When an object

is submerged, its volume takes up space occupied by water:
it displaces the water, in other words. The more water dis-
placed by the object as you push downward, the greater
the upward buoyant force. Archimedes’ principle can be
stated as

The buoyant force acting on an object fully or partially sub-
merged in a fluid is equal to the weight of the fluid displaced
by the object.

If the fluid has a greater density than the object, the weight
of the fluid displaced when the object is fully submerged
will be greater than the weight of the object. By Archimedes’
principle, the buoyant force will be greater than the weight
of the object, and there will be a net upward force on the
object that pushes it toward the surface.

What is the source of the buoyant force?
The source of the buoyant force described by Archimedes’
principle is the increase in pressure that occurs with in-
creasing depth in a fluid. When we swim to the bottom of
the deep end of a swimming pool, we can feel pressure
building on our ears. The pressure near the bottom of the
pool is larger than near the surface for the same reason that
the pressure of the atmosphere is greater near the surface of
the Earth than at higher altitudes. The weight of the fluid
above us contributes to the pressure that we experience.

By Pascal’s principle, the atmospheric pressure pushing
on the surface of the pool extends uniformly throughout the
fluid. To get the total pressure at some depth, we add the ex-
cess pressure resulting from the weight of the water to the
atmospheric pressure. For many purposes, the excess pres-
sure above atmospheric pressure is of most interest. Since
our bodies have internal pressures equal to atmospheric
pressure, our eardrums are sensitive to the increase in pres-
sure beyond atmospheric pressure rather than to the total
pressure.

To find the excess pressure at a certain depth in a liquid,
we need to determine the weight of the liquid above that
depth. The problem is similar to finding the pressure at the
bottom of a column of mercury discussed in section 9.2.
If we imagine a column of water in a swimming pool
(fig. 9.13), the weight of the column depends on the volume
of the column and the density of the water. The volume of the
column is directly proportional to its height h and therefore
so is its weight. The excess pressure increases in direct
proportion to the depth h below the surface.*

A large can filled with water demonstrates this variation
of pressure with depth. If we punch holes in the can at dif-
ferent depths, the water shoots from a hole near the bottom
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*Since the weight W � mg � Vrg, and V � Ah, the excess pressure,

The symbol for density, r, is the Greek letter rho.¢P �
W

A
�
rgAh

A
� rgh.
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of the can with a much greater horizontal velocity than
from a hole punched near the top (fig. 9.14). Since the can
is submerged in the atmosphere, the excess pressure above
atmospheric pressure is most significant. A larger excess
pressure provides a larger accelerating force for the emerg-
ing water.

How does the fact that pressure increases with depth
explain the buoyant force? Imagine a rectangular-shaped
object, such as a steel block, submerged in water. If we sus-
pend the block from a string, as in figure 9.15, the pressure
of the water will push on the block from all sides. Because
the pressure increases with depth, however, the pressure at
the bottom of the block is greater than at the top. This
greater pressure produces a larger force (F � PA) pushing
up on the bottom of the block than that pushing down on the
top. The difference in these two forces is the buoyant force.
The buoyant force is proportional to both the height and the
cross-sectional area of the block, and thus to its volume, Ah.
The volume of the fluid displaced by the object is directly
related to the weight of the fluid displaced, which leads to
the statement of Archimedes’ principle.

What forces act on a floating object?
If there are no strings attached, or other forces pushing or
pulling on an object partially or fully submerged in a fluid,
only the weight of the object and the buoyant force de-
termine what happens. The weight is proportional to the
density and volume of the object, and the buoyant force
depends on the density of the fluid and the volume of fluid
displaced by the object. The motion of the object is governed
by the sizes of the buoyant force pushing upward and the
weight pulling downward. There are just three possibilities:

1. The density of the object is greater than the den-
sity of the fluid. If the object has an average density
greater than the fluid it is submerged in, the weight of the
object will be greater than the weight of the fluid displaced
by the fully submerged object, because the same volume
is involved. Since the weight, which acts downward, is
greater than the buoyant force, which acts upward, the net
force acting on the object will be downward and the object
will sink (unless it is supported by another force such as
one exerted by a string tied to the block).

2. The density of the object is less than the density
of the fluid. If the object’s density is less than the fluid’s,
the buoyant force will be larger than the weight of the ob-
ject when the object is fully submerged. The net force act-
ing on the object will be upward, and the object will float
to the top. When it reaches the surface of the fluid, just
enough of the object remains submerged so that the weight
of the fluid displaced by the submerged portion of the ob-
ject (the buoyant force) will equal the weight of the object.
The net force is zero, and the object is in equilibrium. It
has no acceleration.

3. The density of the object equals the density of the
fluid. The weight of the object then equals the weight of the
fluid displaced when the object is submerged. The object
floats when fully submerged, rising or sinking in the fluid by

figure 9.14 Water emerging from a hole near the bottom
of a can filled with water has a larger horizontal velocity than
water emerging from a hole near the top.

A

h
W

V = Ah

figure 9.13 The weight of a column of water is
proportional to the volume of the column. The volume V is
equal to the area A times the height h.

figure 9.15 The pressure acting on the bottom of the
suspended metal block is greater than that acting on the top
due to the increase of pressure with depth.

T

W
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changing its average density slightly, which is what a fish or
a submarine does. The average density of a submarine can
be increased or decreased by taking in or releasing water.

Why does a boat made of steel float?
Steel is a lot denser than water, and a large steel boat is a
very heavy object. Why does it float? The answer is that
the boat is not made of solid steel all the way through.
There are open spaces filled with air and other materials in
the boat. A solid piece of steel will quickly sink, but if the
average density of the boat is less than the water it is dis-
placing, a steel boat will certainly float. Because of the air
spaces and other materials, the average density of the boat
will be much less than that of steel.

According to Archimedes’ principle, the buoyant force
that acts on the boat must equal the weight of the water dis-
placed by the hull of the boat. For the boat to be in equilib-
rium (with a net force of zero), the buoyant force must equal
the weight of the boat. As we load the boat with cargo, the
total weight of the boat increases. So must the buoyant force.
The amount of water displaced by the hull must increase, so
the boat sinks lower in the water. There is a limit to how
much weight can be added to a boat (often expressed as tons
of displacement). A fully loaded oil tanker will ride much
lower in the water than an unloaded tanker (fig. 9.16).

Other important considerations in designing a boat are
the shape of the hull and how the boat will be loaded. If the

center of gravity of the boat is too high or if the boat is
unevenly loaded, there is some danger that the boat will
tip over. Wave action and winds add to this danger, so a mar-
gin of safety must be included in the design. Once water
enters the boat, the overall weight of the boat and its average
density increase. When the boat’s average density becomes
larger than the average density of water, down she goes.

When will a balloon float?
Buoyant forces also act on objects submerged in a gas such
as air. If a balloon is filled with a gas whose density is less
than air, the average density of the balloon is less than air,
and the balloon will rise. Helium and hydrogen are the two
common gases with densities less than air, but helium is
more commonly used in balloons even though its density is
somewhat greater than hydrogen. Hydrogen can combine ex-
plosively with the oxygen in air, making its use dangerous.

The average density of the balloon is determined by the
material the balloon is made of as well as by the density of the
gas with which it is filled. Ideal materials for making balloons
stretch very thin without losing strength. They should also
remain impermeable to the flow of gas, so that the helium or
other gas will not be lost rapidly through the skin of the bal-
loon. Balloons made of Mylar (which is often coated with alu-
minum) are much less permeable than ordinary latex balloons.

Hot-air balloons take advantage of the fact that any gas
will expand when it is heated. If the volume of the gas in-
creases, its density decreases. As long as the air inside the
balloon is much hotter than the air surrounding the bal-
loon, there will be an upward buoyant force. The beauty of
a hot-air balloon is that we can readily adjust the density
of the air within the balloon by turning the gas-powered
heater on or off. This gives us some control over whether
the balloon will ascend or descend.

Buoyant forces and Archimedes’ principle are useful
in applications besides boats and balloons. We can use
Archimedes’ principle to determine the density of objects
or the fluid in which they are submerged. This, in fact, was
Archimedes’ original application. Archimedes is said to have
used his idea to determine the density of the king’s crown
to ascertain whether it was truly pure gold. (The king sus-
pected a goldsmith of fraud.) Gold is denser than cheaper
metals that might have been substituted for gold.

Archimedes’ principle states that the buoyant force acting
on an object is equal to the weight of the fluid displaced
by the object. If the average density of the object is
greater than the density of the fluid being displaced, the
weight of the object will exceed the buoyant force and
the object will sink. The buoyant force results because the
pressure on the bottom of the object is greater than on
top since pressure increases with depth. Archimedes’ 
principle can be used to understand the behavior of boats,
balloons, or objects floating in a bathtub or stream.
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figure 9.16 A fully loaded tanker rides much lower in the
water than an empty tanker.
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9.4 Fluids in Motion
If we return to the bank of the stream mentioned in the in-
troduction to this chapter, what else can we see? When a stick
or toy boat floats down the stream, we might notice that the
speed of the current varies from point to point in the stream.
Where the stream is wide, the flow is slow. Where the stream
narrows, the speed increases. Also, the speed is usually
greater near the middle of the stream than close to the banks.
Eddies and other features of turbulent flow may be observed.

These are all characteristics of the flow of fluids. The
speed of flow is affected by the width of the stream and by
the viscosity of the fluid, a measure of the frictional effects
within the fluid. Some of these features are easy to under-
stand, while others, particularly the behavior of turbulent
flow, are still areas of active research.

Why does the water speed change?
One of the most obvious features of the stream’s current is
that the water speed increases where the stream narrows.
Our stick or toy boat moves slowly through the wider por-
tions of the stream but gains speed when it passes through
a narrow spot or rapids.

As long as no tributaries add water to the stream and
there are no significant losses through evaporation or seep-
age, the flow of the stream is continuous. In a given time,
the same amount of water that enters the stream at some
upper point leaves the stream at some lower point. We call
this continuity of flow. If flow were not continuous, water
would collect at some point or, perhaps, be lost somewhere
within that segment of the stream, something that does not
usually happen.

How would we describe the rate of flow of water through
a stream or pipe? A volume flow rate is a volume divided by
time, so many gallons per minute or, in the metric system,
liters per second or cubic meters per second. As figure 9.17
shows, the volume of a portion of water of length L flowing
past some point in a pipe is the product of the length times
the cross-sectional area A, or LA. The speed with which
this volume moves determines the rate of flow.

What is the rate of flow through the pipe? To find the
rate, we divide the water’s volume LA by the time interval

t, which gives us LA/t. Since L/t is the speed v of the water,
we get

rate of flow � vA.

This expression is valid for any fluid and makes intuitive
sense: the greater the speed, the greater the rate of flow,
and the larger the cross section of the pipe or stream, the
greater the rate of flow.

How does the rate of flow explain changes in the speed of
the water? If the flow through the pipe is continuous, the rate
of flow must be the same at any point along the pipe. The
same number of gallons per minute flow past each point. If the
cross-sectional area A decreases, the speed v increases to keep
the rate vA constant. If the cross-sectional area increases, the
speed decreases to maintain the same rate of flow.

The same principle applies to a stream. Where the stream
is narrower, the cross-sectional area of the stream will gen-
erally be smaller than at a wider point in the stream. The
stream may be deeper at the narrow places, but usually not
enough to make the cross-sectional area as large as at the
wider places. If the cross-sectional area decreases, the fluid
speed must increase to maintain the rate of flow.

How does viscosity affect the flow?
Up to this point, we have ignored any variation in the fluid
speed across its cross-sectional area. We mentioned that
the water speed will usually be greatest near the middle of
the stream. The reason is the frictional or viscous effects
between layers of the fluid itself and between the fluid and
the walls of the pipe or the banks of the stream.

Imagine the fluid as made up of layers, and you can see
why the speed will be greatest near the center. Figure 9.18
shows different layers of a fluid moving through a trough.
Since the bottom of the trough is not moving, it exerts a
frictional force on the bottom layer of fluid, which moves
more slowly than the layer immediately above it. This layer
exerts a frictional drag, in turn, on the layer above it, which
flows more slowly than the next one above it, and so on.

The viscosity of the fluid is the property of fluid that
determines the strength of the frictional forces between the
layers of the fluid—the larger the viscosity, the larger the
frictional force. The magnitude of the frictional force also

figure 9.17 The rate at which water moves through a pipe
is defined by the volume divided by time. This is equal to the
speed of the water times the cross-sectional area.

L A 

Rate of flow = vA

v

figure 9.18 Because of the frictional or viscous forces
between layers, each layer of fluid flowing in the trough moves
more slowly than the layer immediately above.

v
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depends on the area of contact between layers and the rate
at which the speed is changing across the layers. If these
other factors are the same, a fluid with a high viscosity like
molasses experiences a larger frictional force between lay-
ers than a fluid with a low viscosity such as water.

A thin layer of fluid that does not move at all is usually
found next to the walls of the pipe or trough. The fluid
speed increases as the distance from the wall increases.
The exact variation with distance depends on the viscosity
of the fluid and the overall rate of flow of the fluid through
the pipe. For a fluid with a low viscosity, the transition
to the maximum speed occurs over a short distance from
the wall. For a fluid with a high viscosity, the transition
takes place over a larger distance, and the speed may vary
throughout the pipe or trough (fig. 9.19).

The viscosity of different fluids varies enormously.
Honey, thick oils, and syrup all have much larger viscosi-
ties than water or alcohol. Most liquids have much higher
viscosities than gases. The viscosity of a given fluid also
changes substantially if its temperature changes. An in-
crease in temperature usually produces a decrease in vis-
cosity. Heating a bottle of syrup, for example, makes it less
viscous, causing it to flow more readily.

Laminar and turbulent flow
One of the most fascinating questions about the flow of
fluids is why the flow is smooth or laminar under some con-
ditions but turbulent in others. Both kinds of flow can be
observed in rivers or creeks. How do they differ—and what
determines which type of flow prevails?

In sections of a stream where flow is smooth or laminar,
there are no eddies or other similar disturbances. The flow of
the stream can be described by streamlines that indicate the
direction of flow at any point. The streamlines for laminar

flow are roughly parallel, as in figure 9.20. The speeds of
different layers may vary, but one layer moves smoothly
past another.

As the stream narrows and the fluid speed increases, the
simple laminar-flow pattern disappears. Ropelike twists in
the streamlines appear, then whorls and eddies: the flow
becomes turbulent. In most applications, turbulent flow is
undesirable, because it greatly increases the fluid’s resist-
ance to flow through a pipe or past other surfaces. It does
make river rafting much more exciting, though.

If the density of a fluid and the width of the pipe or
stream do not vary, the transition from laminar to turbulent
flow is predicted by two quantities, the average fluid speed
and the viscosity. Higher speeds are more likely to produce
turbulent flow, as we would expect. On the other hand,
higher viscosities inhibit turbulent flow. Larger fluid densi-
ties and pipe widths are also more conducive to turbulent
flow. From experiments, scientists have been able to use
these quantities to predict with some accuracy the speed at
which the transition to turbulent flow will begin.

You can observe the transition from laminar to turbulent
flow in many common phenomena. The higher water speeds
at the narrowing of a stream often produce turbulent flow.
The transition can also be seen in the flow of water from a
spigot. A small flow rate will usually produce laminar
flow, but as the flow rate increases, the flow becomes tur-
bulent. Flow may be smooth near the top of the water col-
umn but turbulent lower down, as the water is accelerated
by gravity. Try it next time you are near a sink.

You can also see this phenomenon in the smoke rising
from a candle or incense stick. Near the source, the upward
flow of the smoke is usually laminar. As the smoke acceler-
ates upward (due to the buoyant force), the column widens,
and the flow becomes turbulent (fig. 9.21). The whorls and
eddies are much like those you see in a stream.
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figure 9.19 The velocity increases rapidly from the
wall inward for a low-viscosity fluid but more gradually for a
high-viscosity fluid.

High  viscosity

v

Low viscosity

v

figure 9.20 In laminar flow, the streamlines are roughly
parallel to one another. In turbulent flow, the flow patterns are
much more complicated.

Turbulent flow

Laminar flow
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The conditions that produce turbulence are well under-
stood, but until recently, scientists could not explain why
the flow patterns develop as they do. Some surprising pat-
terns can be discerned in the seemingly chaotic behavior of
turbulent flow in different situations. Recent theoretical ad-
vances in the study of chaos have produced a much better
understanding of the reasons for these patterns.

The study of chaos and the regular behaviors that ap-
pear in turbulent flow have provided new insights into
global weather patterns including hurricanes and other phe-
nomena. Perhaps the most striking examples of atmos-
pheric flow patterns are the photographs sent back from the
Voyager flyby of the planet Jupiter. Whorls and eddies can
be seen in the flow of the atmospheric gases on Jupiter.
These include the famous red spot, which is now thought to
be a giant, and very stable, atmospheric eddy (fig. 9.22).

The rate of flow of a stream is equal to the fluid speed
multiplied by the cross-sectional area through which the
stream is flowing. For the flow to be continuous, the 
speed must increase where the stream narrows to pass
through a smaller cross-sectional area. The fluid speed 
of the stream also varies across its area because of vis-
cosity: the fluid speed is largest at the center and smallest
near the banks or pipe walls. Smooth or laminar flow
gives way to turbulent flow with its eddies and whorls
as the fluid speed increases or the viscosity decreases.

9.5 Bernoulli's Principle
Have you ever wondered why a spinning ball curves? This
and many other interesting phenomena can be explained by
a principle regarding the flow of fluids that was published
in 1738 by Daniel Bernoulli (1700–1782) in a treatise on
hydrodynamics. Although energy ideas had not been fully
developed at that time, Bernoulli's principle is really a
result of conservation of energy.

What is Bernoulli’s principle?
What happens if we do work on a fluid, increasing its en-
ergy? This increase may show up as an increase in kinetic
energy of the fluid, leading to an increase in the fluid’s
speed. It could also appear as an increase in potential en-
ergy if the fluid is squeezed (elastic potential energy) or if
the fluid is raised in height (gravitational potential energy).
Bernoulli considered all of these possibilities. Bernoulli’s
principle is a direct result of applying conservation of en-
ergy to the flow of fluids.

The most interesting examples of Bernoulli’s principle
involve changes in kinetic energy. If a fluid that is not
compressible (not squeezable) is flowing in a level pipe or
stream, any work done on this fluid will increase its kinetic
energy. (If a fluid is compressible, some of the work is used
to squeeze the fluid.) To accelerate the fluid and increase its
kinetic energy, there must be a net force doing work on the
fluid. This force is associated with a difference in pressure
from one point to another within the fluid.

If there is a difference in pressure, the fluid accelerates
from the region of higher pressure toward the region of lower

figure 9.21 Smoke rising from an incense stick first
exhibits laminar flow, and then as the speed increases and the
column widens, turbulent flow appears.

figure 9.22 Whorls and eddies, including the giant red spot
(lower left), can be seen in the atmosphere of the planet Jupiter.
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pressure, because that is the direction of the force acting on
the fluid. We expect to find higher fluid speeds in the regions
of lower pressure. In the simple case of an incompressible
fluid flowing in a level pipe or stream,* work and energy
considerations lead to a statement of Bernoulli’s principle:

The sum of the pressure plus the kinetic energy per unit vol-
ume of a flowing fluid must remain constant.

P � rv2 � constant

Here, P is the pressure, r is the density of the fluid, and v is
the fluid’s speed. The second term in this sum is the kinetic
energy per unit volume (kinetic energy divided by volume)
of the fluid, since density is mass divided by volume.

A fuller statement of Bernoulli’s principle would in-
clude the effects of gravitational potential energy, allowing
for changes in the height of the fluid. However, many of
the most interesting effects can be investigated using the
form just stated. In applying Bernoulli’s principle, the as-
sociation of lower pressures with higher fluid speeds is
often the key point.

How does the pressure vary in pipes and hoses?
Consider a pipe with a constriction in its center section, as
in figure 9.23. Would you expect the pressure of water
flowing in the pipe to be greatest at the constriction or in
the wider sections of the pipe? Intuition leads you to sus-
pect that the pressure is greater in the constricted section,
but this is not the case.

We know that the speed of the water will be greater in
the constricted section (where the cross-sectional area is
smaller) than in the wider portions of the pipe, because of
the concept of continuous flow. What does Bernoulli’s
principle tell us? To keep the sum P � rv2 constant, the
pressure must be larger where the fluid speed is smaller. In
other words, if the speed increases, the pressure must
decrease.

Open tubes at different places in the pipe (fig. 9.23) can
serve as simple pressure gauges. For the water in these
open tubes to rise, fluid pressure must be greater than at-
mospheric pressure. The height that the fluid rises will de-
pend on how much greater its pressure is. The water level
in these tubes will reach a greater height above the main
pipe where the pipe is wider rather than at the constriction,
indicating that the pressure is higher in the wider portion
of the pipe.

This result goes against our intuition because we tend,
incorrectly, to associate higher pressure with higher speed.

1
2

1
2

Another confirming example is the nozzle on a hose. The
nozzle constricts the area of flow and increases the fluid’s
speed. By Bernoulli’s principle, the pressure of the water is
smaller at the narrow end of the nozzle than farther back in
the hose, contrary to what we expect.

If you place your hand in front of the nozzle, you will
feel a force on your hand as the water strikes it. This force
results from the change in the velocity and momentum of
the water as it strikes your hand. By Newton’s second law,
a force is required to produce this change in momentum,
and by Newton’s third law, the force exerted on the water
by your hand is equal in magnitude to the force exerted on
your hand by the water. That force is not directly associ-
ated with the fluid pressure in the hose—the pressure is
actually greater farther back in the hose where the water is
not moving very fast.

Air flow and Bernoulli’s principle
Bernoulli’s principle, as we have stated it, is only valid for
fluids whose density does not change (noncompressible
fluids), but we often extend it to investigate effects of the
motion of air and other compressible gases. Even for com-
pressible fluids, a larger fluid speed is usually associated
with a smaller fluid pressure.

A simple demonstration will make a believer of you.
Take half a sheet of tablet paper (or even a facial tissue)
and hold it in front of your mouth, as in figure 9.24. The
paper should hang down limply in front of your chin. If
you blow across the top of it, the paper rises, and if you
blow hard enough, the paper may even stand straight out
horizontally. What is happening?

Blowing across the top of the paper makes the air flow
across the top with a greater speed than underneath the
paper. The air underneath presumably is not moving much
at all. This greater speed leads to a reduction in pressure.
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figure 9.23 Vertical open pipes can serve as pressure
gauges. The height of the column of water is proportional to the
pressure. The pressure of a moving fluid is greater where the
fluid velocity is smaller.

v2v1

h1

h2

*If the stream is not level, an additional term, rgh, must be included to
account for changes in potential energy.
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Since the air pressure is then greater on the bottom of the
paper than on the top, the upward force on the bottom
of the paper is larger than the downward force on the top,
so the paper rises. Contrary to intuition, blowing between
two strips of paper makes them move closer together rather
than farther apart, for the same reason. Try it.

Bernoulli's principle is frequently used to explain the lift
force on an airplane wing. The wing shape and tilt can pro-
duce a greater air speed across the top of the wing than
across the bottom, leading to greater pressure on the bot-
tom of the wing than on the top. Although the simplicity of
this explanation can be appealing, it is also misleading and
cannot yield accurate predictions. The effects involved in
producing the lift forces on a wing are actually quite com-
plex. They have been thoroughly explored and analyzed
with the help of wind tunnels.

What keeps the department-store
ball in the air?
Another demonstration of Bernoulli’s principle that uses
airflow is often seen in department stores when vacuum
cleaners are being advertised. A ball can be suspended in
an upward-moving column of air produced by a vacuum
cleaner. As the air moves upward, the speed of airflow is
greatest in the center of the stream and falls off to zero
away from the center. Once again, Bernoulli’s principle re-
quires that the pressure will be smallest in the center, where
the speed is greatest.

The pressure increases away from the center of the air
column toward regions where the air is moving less rapidly.
If the ball moves out of the center of the air column, a larger
pressure and a larger force act on the outer side of the ball
than on the side nearer the center of the column. The ball
moves back into the center. The upward force of air hitting
the bottom of the ball holds it up, while the low pressure in
the center of the column keeps the ball near the center. You
can produce the same effect with a small ball and a hair
dryer (fig. 9.25).

The motion of a curveball discussed in everyday phe-
nomenon box 9.2 provides another example of Bernoulli’s
principle at work. In all of these phenomena, we see the
effects of a reduction in fluid pressure associated with an
increase in fluid speed, as predicted by Bernoulli’s princi-
ple. We do not always expect this. We are tempted to think
that blowing between two pieces of paper will push them
apart, for example, but a simple experiment shows other-
wise. Understanding such surprises is part of the fun of
physics.

Bernoulli’s principle is derived from energy considerations
and says that the sum of the pressure plus the kinetic energy
per unit volume remains constant from one point in a fluid
to another. This holds true if the fluid is not compressible and
changes in height are not involved. Pressure is then lower
where fluid speed is higher. This effect explains many surpris-
ing phenomena involving pipes, hoses, airplane wings, and
the fact that blowing across the top of a piece of paper
causes the paper to rise rather than drop.

figure 9.24 Blowing across the top of a limp piece of paper
causes the paper to rise, demonstrating Bernoulli’s principle.

figure 9.25 A ball is suspended in an upward-moving
column of air produced by a hair dryer. The air pressure is
smallest in the center of the column where the air is moving with
the greatest speed.
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Throwing a Curveball

The Situation. Baseball players know that they can be
badly fooled by a well-thrown curveball. The idea that a fast-
moving curveball can be deflected by as much as a foot on
its way to the plate is hard for some people to accept. Many
people have insisted, over the years, that the curve is just an
illusion. Does the path of a curveball really curve? If so, how
can we explain it?

The Analysis. There is no secret to throwing a curveball.
A right-handed pitcher throws a curveball with a counter-
clockwise spin (as viewed from above), so that it curves away
from a right-handed batter. The pitch is most effective when it
starts out looking as if it is headed toward the inside of the
plate and then curves over the plate and down and away
from the batter.

Bernoulli’s principle can explain the deflection of the
ball’s path. Because the surface of the spinning ball is rough,
it drags a layer of air around with it, creating a whirlpool of
air near the ball. The ball is also moving toward the plate,
which produces an additional flow of air past the ball in the
direction opposite to the velocity of the ball. The whirlpool
created by the spin of the ball causes the air to move more
swiftly on the side opposite the right-handed batter, where
the two effects add, than on the side nearer the batter, as
shown in the drawing.

By Bernoulli’s principle, a greater speed of airflow is
associated with a lower pressure: the air pressure is lower on
the side of the ball opposite the batter than on the near side.

This difference in pressure produces a deflecting force on the
ball, pushing it away from the right-handed batter.

Although Bernoulli’s principle gives a good explanation
of the direction of the deflecting force and the direction of
the curve, it cannot be used to make accurate quantitative
predictions. Air is a compressible fluid, and the usual form of
Bernoulli’s principle is valid only for noncompressible fluids
such as water or other liquids. More accurate methods of
treating the effects of airflow past the ball must be used for
predicting the degree of curvature.

Both theoretical computations and experimental mea-
surements have confirmed that there is a deflecting force on
the ball and that the path of the ball does indeed curve. The
degree of curvature depends on the rate of spin on the ball
and the roughness of the surface of the ball, as you might
expect from Bernoulli’s principle. Some pitchers have been
known to cheat by roughening the ball’s surface with sand-
paper hidden in their gloves. Debate continues about whether
the orientation of the seams of the baseball also has an
effect. The pitcher’s grip on the ball is an important factor
in how much spin he can put on the ball. Once the ball is
released, however, experimental evidence suggests that the
orientation of the seams is not important in the strength of
the deflecting force.

A good discussion of the theory and the experimental
evidence is found in an article by Robert Watts and Ricardo
Ferrer in the January 1987 issue of the American Journal of
Physics, pages 40–44. The curved motion of spinning balls is
important in other sports, such as golf and soccer. A good
athlete needs to be able to recognize and take advantage
of the effects of these curves.

everyday phenomenon
box 9.2

A batter is badly fooled by a curveball. Does the path of the ball
really curve?

F

v

Top view

The whirlpool of air created by the spin of the ball causes the air to
move more rapidly on one side of the ball than on the other. This
produces a deflecting force, as predicted by Bernoulli’s principle.
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Fluid pressure is central to understanding the behavior of fluids,
which include both liquids and gases. This chapter has focused
on the effects of pressure in determining the behavior of both sta-
tionary fluids and fluids in motion.

1 Pressure and Pascal’s principle. Pressure is defined
as the ratio of force to area exerted on or by a fluid. According to
Pascal’s principle, pressure extends uniformly in all directions
through a fluid, which explains the operation of hydraulic systems.

P = F
A
_

A

F

P1V1 = P2V2

V2V1

W
FB

2 Atmospheric pressure and the behavior of gases.
We can measure atmospheric pressure by determining the height
of a column of mercury supported by the atmosphere. Atmo-
spheric pressure decreases with increasing altitude. The density of
air also changes with altitude, because a lower pressure leads to a
larger volume, according to Boyle’s law.

4 Fluids in motion. The rate of flow of a fluid is equal
to the speed times the cross-sectional area, vA. In continuous
flow, the speed increases if the area decreases. Fluids with high
viscosity have a greater resistance to flow than those with low vis-
cosity. As the flow speed increases, the flow may change from
laminar (smooth) flow to turbulent flow.

3 Archimedes’ principle. In a fluid, pressure increases
with depth, producing a buoyant force on objects submerged in
the fluid. Archimedes’ principle states that this force is equal
to the weight of the fluid displaced by the object. If the buoyant
force is less than the weight of the object, it will sink in the fluid.
Otherwise, it will float.

5 Bernoulli’s principle. Energy considerations require
that the kinetic energy per unit mass of a fluid increase as the
pressure decreases. This is Bernoulli’s principle for cases in
which changes in height are not important. Higher fluid speeds
are associated with lower pressures. These ideas can be used to
explain the curve of a curveball and other phenomena.

P � 1  ρv2 � constant�2

v2v1

A1
A2

v1A1 = v2A2
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* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. Is it possible for a 100-lb woman to exert a greater pres-
sure on the ground than a 250-lb man? Explain.

Q2. If we measure force in pounds (lb) and distance in feet
(ft), what are the units of pressure in this system? Explain.

Q3. The same force is applied to two cylinders that contain air.
One has a piston with a large area, and the other has a pis-
ton with a small area. In which cylinder will the pressure
be greater? Explain.

Q4. A penny and a quarter are embedded in the concrete bot-
tom of a swimming pool filled with water. Which of these
coins experiences the greater downward force due to water
pressure acting on it? Explain.

*Q5. Why are bicycle tires often inflated to a higher pressure
than automobile tires, even though the automobile tires
must support a much larger weight? Explain.

Q6. The fluid in a hydraulic system pushes against two pis-
tons, one with a large area and the other with a small area.
a. Which piston experiences the greater force due to fluid

pressure acting on it? Explain.
b. When the smaller piston moves, does the larger piston

move through the same distance, a greater distance, or
a smaller distance than the smaller piston? Explain.

Q7. If the output piston in a hydraulic pump exerts a greater force
than one applied to the input piston, is the pressure at the
output piston also larger than at the input piston? Explain.

Q8. When a mercury barometer is used to measure atmo-
spheric pressure, does the closed end of the tube above the
mercury column usually contain air? Explain.

*Q9. Could we use water instead of mercury to make a barome-
ter? What advantages and disadvantages would be associ-
ated with the use of water? Explain.

Q10. A blood pressure reading is given as 130/75.
a. What units are implied by these numbers?
b. Are these numbers total pressures or gauge pressures?

Explain.

Q11. If you climbed a mountain carrying a mercury barometer,
would the level of the mercury column in the glass tube of
the barometer increase or decrease (compared to the mer-
cury reservoir) as you climb the mountain? Explain.

Q12. If you filled an airtight balloon at the top of a mountain,
would the balloon expand or contract as you descend the
mountain? Explain.

*Q13. When you go over a mountain pass in an automobile,
your ears often “pop” both on the way up and on the way
down. How can you explain this effect?

Q14. The plunger of a sealed hypodermic syringe containing
air is slowly pulled out. Does the air pressure inside the
syringe increase or decrease when this happens? Explain.

Q15. Helium is sealed inside a balloon impermeable to the
flow of gas. If a storm suddenly comes up, would you ex-
pect the balloon to expand or contract? Explain. (Assume
that there is no change in temperature.)

Q16. Is it possible for a solid metal ball to float in mercury?
Explain.

Q17. A rectangular metal block is suspended by a string in a
beaker of water so that the block is completely sur-
rounded by water. Is the water pressure at the bottom of
the block equal to, greater than, or less than the water
pressure at the top of the block? Explain.

Q18. Is it possible for a boat made of concrete to float?
Explain.

Q19. A block of wood is floating in a pool of water.
a. Is the buoyant force acting on the block greater than,

less than, or equal to the weight of the block? Explain.
b. Is the volume of the fluid displaced by the block

greater than, less than, or equal to the volume of the
block? Explain.

Q20. A large bird lands on a rowboat that is floating in a
swimming pool. Will the water level in the pool increase,
decrease, or remain the same when the bird lands on the
boat? Explain.

Q21. Is it possible that some objects might float in salt water
but sink in fresh water? Explain.

*Q22. A rowboat is floating in a swimming pool when the an-
chor is dropped over the side. When the anchor is dropped,
will the water level in the swimming pool increase, de-
crease, or remain the same? Explain.

Q23. If an object has a smaller density than water, will the
object stay fully submerged, partly submerged, or rise
completely out of the water when it is released underwater?
Explain.

Pressure, 171
Pascal’s principle, 172
Atmospheric pressure, 173
Density, 174

Boyle’s law, 177
Buoyant force, 178
Archimedes’ principle, 178
Viscosity, 181

Turbulent flow, 182
Bernoulli’s principle, 184

questions

key terms
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Q24. A steady stream of water flowing in a narrow pipe reaches
a point where the pipe widens. Does the speed of the water
increase, decrease, or remain the same when the pipe
widens? Explain.

Q25. Why does the stream of water flowing from a faucet often
get more narrow as the water falls? Explain.

Q26. Does a stream of liquid with a high viscosity flow more
rapidly under the same conditions as a stream with low
viscosity? Explain.

Q27. If the speed of flow in a stream decreases, is the flow
likely to change from laminar to turbulent flow? Explain.

Q28. Why is the flow of smoke from a cigarette often laminar
near the source but turbulent farther from the source?
Explain.

Q29. If you blow between two limp pieces of paper held hang-
ing down a few inches apart, will the pieces of paper come
closer together or move farther apart? Explain.

*Q30. A wind gust blows sideways across an outward-swinging
door that is slightly ajar. Will this cause the door to slam
shut or swing open? Explain.

Q31. A hair dryer can be used to create a stream of air. Is the
air pressure in the center of the stream greater than, less
than, or equal to the air pressure at some distance from the
center of the stream? Explain.

Q32. From the perspective of a right-handed batter, does a ris-
ing fastball spin clockwise or counterclockwise? Explain.

exercises

E9. With the temperature held constant, the piston of a cylinder
containing a gas is pulled out so that the volume increases
from 0.1 m3 to 0.3 m3. If the initial pressure of the gas was
80 kPa, what is the final pressure?

E10. A 0.5-kg block of wood is floating in water. What is the
magnitude of the buoyant force acting on the block?

E11. A block of wood of uniform density floats so that exactly
half of its volume is underwater. The density of water is
1000 kg/m3. What is the density of the block?

E12. A certain boat displaces a volume of 4.5 m3 of water. (The
density of water is 1000 kg/m3.)
a. What is the mass of the water displaced by the boat?
b. What is the buoyant force acting on the boat?

E13. A rock with a volume of 0.2 m3 is fully submerged in
water having a density of 1000 kg/m3. What is the buoyant
force acting on the rock?

E14. A stream moving with a speed of 0.5 m/s reaches a point
where the cross-sectional area of the stream decreases to
one-fourth of the original area. What is the water speed in
this narrowed portion of the stream?

E15. Water emerges from a faucet at a speed of 1.5 m/s. After
falling a short distance, its speed increases to 3 m/s as a re-
sult of the gravitational acceleration. By what number
would you multiply the original cross-sectional area of the
stream to find the area at the lower position?

E16. An airplane wing with an average cross-sectional area 10 m2

experiences a lift force of 60 000 N. What is the difference
in air pressure, on the average, between the bottom and top
of the wing?

E1. A force of 40 N pushes down on the movable piston of
a closed cylinder containing a gas. The piston’s area is
0.5 m2. What pressure does this produce in the gas?

E2. A 110-lb woman puts all of her weight on one heel of her
high-heel shoes. The heel has an area of 0.4 in2. What is
the pressure that her heel exerts on the ground in pounds
per square inch (psi)?

E3. A 250-lb man supports all of his weight on a showshoe
with an area of 200 in2. What pressure is exerted on the
snow (in pounds per square inch)?

E4. The pressure of a gas contained in a cylinder with a mov-
able piston is 450 Pa (450 N/m2). The area of the piston is
0.2 m2. What is the magnitude of the force exerted on the
piston by the gas?

E5. In a hydraulic system, a force of 400 N is exerted on a pis-
ton with an area of 0.001 m2. The load-bearing piston in
the system has an area of 0.2 m2.
a. What is the pressure in the hydraulic fluid?
b. What is the magnitude of the force exerted on the load-

bearing piston by the hydraulic fluid?

E6. The load-bearing piston in a certain hydraulic system has
an area 50 times as large as the input piston. If the larger
piston supports a load of 6000 N, how large a force must
be applied to the input piston?

E7. A column of water in a vertical pipe has a cross-sectional
area of 0.2 m2 and a weight of 450 N. What is the increase
in pressure (in Pa) from the top to the bottom of the pipe?

E8. With the temperature held constant, the pressure of a gas in
a cylinder with a movable piston is increased from 10 kPa
to 90 kPa. The initial volume of the gas in the cylinder is
0.36 m3. What is the final volume of the gas after the pres-
sure is increased?
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SP1. Suppose that the input piston of a hydraulic jack has a
diameter of 2 cm and the load piston a diameter of 25 cm.
The jack is being used to lift a car with a mass of 1400 kg.
a. What are the areas of the input and load pistons in

square centimeters? (A � �r2)
b. What is the ratio of the area of the load piston to the

area of the input piston?
c. What is the weight of the car in newtons? (W � mg)
d. What force must be applied to the input piston to sup-

port the car?

SP2. Water has a density of 1000 kg/m3. The depth of a swim-
ming pool at the deep end is about 3 m.
a. What is the volume of a column of water 3 m deep and

0.5 m2 in cross-sectional area?
b. What is the mass of this column of water?
c. What is the weight of this column of water in newtons?
d. What is the excess pressure (above atmospheric pres-

sure) exerted by this column of water on the bottom of
the pool?

e. How does this value compare to atmospheric pressure?

SP3. A steel block with a density of 7800 kg/m3 is suspended
from a string in a beaker of water so that the block is com-
pletely submerged but not resting on the bottom. The block
is a cube with sides of 3 cm (0.03 m).
a. What is the volume of the block in cubic meters?
b. What is the mass of the block?
c. What is the weight of the block?
d. What is the buoyant force acting on the block?
e. What tension in the string is needed to hold the block in

place?

SP4. A flat-bottomed wooden box is 3 m long and 1.5 m wide,
with sides 1 m high. The box serves as a boat carrying five
people as it floats on a pond. The total mass of the boat
and the people is 1200 kg.
a. What is the total weight of the boat and the people in

newtons?
b. What is the buoyant force required to keep the boat and

its load afloat?
c. What volume of water must be displaced to support the

boat and its load? (The density of water is 1000 kg/m3.)
d. How much of the boat is underwater? (What height of

the sides must be submerged to produce a volume equal
to that of part c?)

SP5. A pipe with a circular cross section has a diameter of 8 cm.
It narrows at one point to a diameter of 5 cm. The pipe is
carrying a steady stream of water that completely fills the
pipe and is moving with a speed of 1.5 m/s in the wider
portion.
a. What are the cross-sectional areas of the wide and nar-

row portions of the pipe? (A � �r2, and the radius is
half the diameter.)

b. What is the speed of the water in the narrow portion of
the pipe?

c. Is the pressure in the narrow portion of the pipe greater
than, less than, or equal to the pressure in the wider
portion? Explain.

synthesis problems

home experiments and observations

HE1. Using an awl or drill, punch three similar holes in an empty
plastic milk jug at three different heights. Plug the holes and
fill the jug with water.
a. Placing the jug at the edge of the sink, unplug the holes

and let the water flow out. Which hole produces the
greatest initial speed for the emerging water?

b. Which stream travels the greatest horizontal distance?
What factors determine how far the water will go hori-
zontally?

c. Observe the shape of the water streams as they fall into
the sink. Do the streams narrow as the water falls? If
so, how can this be explained?

HE2. If you have some modeling clay available, try building a
boat from the clay.
a. Does the clay sink when it is rolled into a ball? What

does this indicate about the density of the clay?
b. Is a flat boat more effective than a canoe in carrying the

maximum load of steel washers or other weights? Try
them both. What are the problems with each?

HE3. If you have a hair dryer handy, try supporting a ping-pong
ball in a vertical column of air coming from the dryer.
a. Can you get the ping-pong ball to stay in place? How

far from the center can the ball wander and still return?
b. Will a tennis ball or a small balloon work? What differ-

ences do you note in each of these cases?

HE4. Using paper clips and a pen or pencil as a support rod, sus-
pend two full-sized pieces of paper a few inches apart so
that they hang vertically.
a. Blow downward between the two pieces and observe

the effect. How does increasing the spacing affect the
results?

b. Try blowing at different rates. How does this affect the
results?
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chapter

Temperature
and Heat

10
chapter overview
The first two sections of this chapter explore the ideas of temperature,
heat, and the relationship between these two distinct concepts. We then
introduce the first law of thermodynamics, which helps us explain why a
drill bit gets hot as it works, as well as many aspects of gas behavior.
Finally, we discuss the ways heat is transferred from one object to
another.

chapter outline
1 Temperature and its measurement. What is temperature? How do we

go about measuring it? Where should we place the zero of a
temperature scale?

2 Heat and specific heat capacity. What is heat? How does it differ
from temperature? Does adding heat always change the temperature
of a substance? How is heat involved in changes of phase?

3 Joule’s experiment and the first law of thermodynamics. Are there
other ways of changing the temperature of an object besides adding
heat? What does the first law of thermodynamics say and mean?

4 Gas behavior and the first law. How can the behavior of gases be
explained using the first law of thermodynamics? What is an ideal gas?

5 The flow of heat. What are the different ways that heat can be
transferred from one object to another? How do these ideas apply to
heating or cooling a house?
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Have you ever touched a drill bit right after drilling a
hole in a piece of wood or metal (fig. 10.1)? Chances are
that you removed your hand quickly, since the bit was
probably hot, particularly if you had been drilling in
metal. The same phenomenon is at work when brakes
get hot on your bicycle or car, or in any process where
one surface is rubbing on another.

We could also make the drill bit hot by placing it in a
pot of boiling water or the flame of a blowtorch. In ei-
ther case, when the bit gets hotter, we say that its tem-
perature has increased. What is temperature, though,
and how do we go about comparing one temperature
to another? Is the final condition of the drill bit any dif-
ferent if it has been warmed by drilling rather than by
being placed in contact with hot water?

Questions such as these lie in the realm of thermo-
dynamics, the study of heat and its effects on matter.
Thermodynamics is ultimately about energy but in a
broader context than mechanical energy, which we
discussed in chapter 6. The first law of thermodynamics,
introduced in this chapter, extends the principle of con-
servation of energy to include the effects of heat.

What is the difference between heat and tempera-
ture? Our everyday language often blends these two
ideas. A true appreciation for this distinction did not
emerge until about the middle of the nineteenth cen-
tury when the laws of thermodynamics were developed.
Heat, temperature, and the distinction between them

are critical, however, to understanding why things get
hot or cold and why some remain that way longer than
others. The same ideas involved in cooling a drink are
important to understanding global weather patterns.

192 Chapter 10 Temperature and Heat

figure 10.1 The drill bit feels hot after drilling a hole in a
piece of metal. What causes the increase in its temperature?

10.1 Temperature and Its Measurement
Suppose that, as child, you were not feeling well and were
looking for an excuse to skip school. You thought you might
have had a fever, and your mother, by placing a hand on
your forehead, agreed that you felt a little hot. To confirm
this hunch, however, she took your temperature (fig. 10.2).
She told you that you had a temperature of 101.3°.

What exactly did this tell you? Since units are important,
but often unstated, the measurement indicated that your
body temperature is 101.3° Fahrenheit. This is above 98.6° F,
which is generally considered normal, so you had a fever.
(In most other parts of the world, your temperature would
have been read as 38.5° Celsius, above the normal tempera-
ture of 37.0° C.) You were probably justified in spending
the rest of the day in bed. The thermometer provides a
quantitative measure of how hot or cold things are and a
basis for comparing your current temperature to your nor-
mal temperature. This quantitative measure usually carries
more credibility with the boss or a professor than the vaguer
statement that you felt like you had a fever.

How do we measure temperature?
Taking a temperature or reading a thermometer is a com-
mon experience. Besides the obvious function of comparing
the “hotness” or “coldness” of different objects, however,

do the numbers have any more fundamental meaning? To
ask a basic question, how do hot objects differ from cold
objects? What is temperature?

Although we all have an intuitive feel for what hot and
cold mean, putting that impression into words can be hard.
Try it before you read on: how would you define the term
hot? Even our senses can mislead us. The pain that we feel
when we touch something very hot can be hard to distinguish

figure 10.2 Taking a temperature. What does the
thermometer tell us?
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from the pain that we feel when we touch a very cold ob-
ject. A metal block feels colder to the touch than a wooden
block, even though the two blocks may have the same tem-
perature. In the end, temperature measurement is a com-
parison, and the comparative terms hotter and colder have
more meaning than hot or cold themselves.

A closer look at what happens when we use a thermome-
ter is helpful. The traditional clinical thermometer was a
sealed glass tube partially filled with some fluid, usually
mercury. (These have now been largely replaced by digital
thermometers.) The inside diameter of the tube was very
small, but it widened at the bottom into a reservoir contain-
ing most of the mercury (fig. 10.3). Usually you placed the
thermometer in your mouth under your tongue and waited
a few minutes until the thermometer reached the same tem-
perature as the inside of your mouth. At first, the mercury
rose in the thin tube. When the mercury level in the tube
was no longer changing, you assumed that it had reached
the same temperature as your mouth.

Why does the mercury rise? Most materials expand as
they get warmer, and mercury and many other liquids ex-
pand at a greater rate than glass. As it expands, the mer-
cury in the reservoir must go somewhere, so it rises in the
narrow tube. We use the physical property of the thermal
expansion of mercury to give an indication of temperature;
by placing marks along the tube, we create a temperature
scale. Any other physical property that changes with tem-
perature could, in principle, be used. Such properties in-
clude changes in electrical resistance, thermal expansion of
metals, and even changes in color.

In this whole process, we assume that if two objects are
in contact with one another long enough so that the physi-
cal properties (such as volume) of the objects are no longer
changing, the two objects have the same temperature.
When we take a temperature with the clinical thermometer,
we wait until the mercury stops rising before reading the

thermometer. This procedure gives us part of the definition
of temperature by defining when two or more objects have
the same temperature. When the physical properties are no
longer changing, the objects are said to be in thermal
equilibrium. Two or more objects in thermal equilibrium
have the same temperature. This assumption is sometimes
referred to as the zeroth law of thermodynamics, because
it underlies the definition of temperature and the process of
temperature measurement.

How were temperature scales developed?
What do the numbers on a thermometer mean? When the
first crude thermometer was made, the numbers marking
the divisions on the scale were arbitrary. They were useful
for comparing temperatures only if the same thermometer
was used. To compare a temperature measured in Germany
with one thermometer to another measured in England with
a different thermometer, a standard temperature scale was
needed.

The first widely used temperature scale was devised by
Gabriel Fahrenheit (1686–1736) in the early 1700s. Anders
Celsius (1701–1744) invented another widely used scale
somewhat later, in 1743. Both of these scales use the freez-
ing point and boiling point of water to anchor the scales.
The modern Celsius scale uses the triple point of water,
where ice, water, and water vapor are all in equilibrium.
This point varies only slightly from the freezing point at
normal atmospheric pressure. Fahrenheit set the freezing
point of water at 32° and the boiling point at 212° on his
scale. These two points are set at 0° and 100° on the Cel-
sius scale (fig. 10.4).

As figure 10.4 shows, the Celsius degree is larger than
the Fahrenheit degree. Only 100 Celsius degrees span the
temperature range between the freezing point and boiling
point of water, while 180 Fahrenheit degrees (212° � 32°)
are needed to span the same range. The ratio of Fahrenheit
degrees to Celsius degrees is therefore 180⁄100, or 9⁄ 5. The
Fahrenheit degree is 5⁄ 9 the size of the Celsius degree, so
more Fahrenheit degrees are needed to cover the same range
in temperature.

The Celsius scale is used in science and in most of the
world. Because Fahrenheit temperatures are still more
familiar in the United States, we commonly have to convert
from one scale to the other. Since the zero points
and the size of the degree differ, we take both factors
into account in the conversion. For example, an ordinary
room temperature of 72° Fahrenheit is 40 degrees above the
32°F freezing point of water. Because it takes only 5⁄9 as
many Celsius degrees to span the same range, this tempera-
ture would be (5⁄9)(40°) or 22 Celsius degrees above the
freezing point of water. The Celsius scale has its zero at the
freezing point of water, so 72°F is equal to 22°C.

Let’s recap. First, we found how many Fahrenheit de-
grees this temperature is above the freezing point of water
by subtracting 32. Then we multiplied by the factor 5⁄ 9,

10.1 Temperature and Its Measurement 193

figure 10.3 The traditional clinical thermometer contained
mercury in a thin glass tube with a wider reservoir of mercury at
the bottom.
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194 Chapter 10 Temperature and Heat

figure 10.4 The Fahrenheit and Celsius scales use different
numerical values for the freezing and boiling points of water. The
Celsius degree is larger than the Fahrenheit degree.

figure 10.5 A constant-volume gas thermometer allows
the pressure to change with temperature while the volume is
held constant. The difference in height of the two mercury
columns is proportional to the pressure.
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which is the ratio of the size of the Fahrenheit degree to
the Celsius degree. We know it takes fewer Celsius degrees
to span this range, since the Celsius degree is larger than
the Fahrenheit degree. We can express this conversion in
an equation:

Using the same logic to perform the reverse conversion
from Celsius to Fahrenheit, or simply rearranging the equa-
tion, it becomes

Multiplying the temperature in Celsius by 9⁄ 5 tells us how
many Fahrenheit degrees above the freezing point it is.
This value then is added to 32°F, the freezing point on the
Fahrenheit scale. Using this relationship, you can confirm
that the boiling point of water (TC � 100°C) equals 212°F.
Normal body temperature (98.6°F) is equivalent to 36°C.
A body temperature of 38°C would be enough to keep you
home from school or work.

TF � 9
5 TC � 32.

TC � 5
9 (TF � 32).

Is there an absolute zero?
Do the zero points on either scale have any special signifi-
cance? Although the zero point on the Celsius scale is the
freezing point of water, there is no special significance to
these points. In fact, the temperature goes below zero on
either scale, as happens frequently in places like Minnesota
and Alaska in the winter. Fahrenheit’s zero point was based
on the temperature of a mixture of salt and ice in a satu-
rated salt solution.

Although the zero points of both the Fahrenheit and
Celsius scales were selected arbitrarily, there is an absolute
zero with more fundamental significance. Absolute zero
was not proposed until 100 years or so after these scales
were originally developed.

The first indication of an absolute zero for temperature
measurements came from studying changes in pressure and
volume that take place in gases when the temperature
is changed. If we hold the volume of a gas constant while
increasing the temperature, the pressure of the gas will in-
crease. Pressure is another physical property that changes
with temperature, just like the volume of mercury in the
case of a mercury thermometer. (See chapter 9 for a dis-
cussion of pressure.) Because the pressure of a gas of con-
stant volume increases with temperature, we can use this
property as a means of measuring temperature (fig. 10.5).

If we plot the pressure of a gas as a function of the tem-
perature measured on the Celsius scale, we get a graph like
figure 10.6. If the temperatures and pressures are not too
high, a striking feature emerges from such graphs. The
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curves for different gases or amounts all are straight lines,
and when these lines are extended backward to zero pres-
sure, they all intersect the temperature axis at the same
point. This is true regardless of the gas used (oxygen, nitro-
gen, helium, and so on) or the quantity of gas.

The curves all intersect the axis at �273.2°C. Since a
negative pressure has no meaning, this intersection suggests
that the temperature cannot get any lower than �273.2°C.
It is important to keep in mind that most gases will con-
dense to liquids and then solidify well before this point is
reached.

We refer to this temperature, �273.2°C, as absolute zero.
The Kelvin, or absolute, temperature scale has its zero at
this point and uses intervals the same size as the Celsius
degree. To convert Celsius temperatures to kelvins, we
simply add 273.2 to the Celsius temperature, or

TK � TC � 273.2.

Room temperature of 22°C is an absolute temperature
of approximately 295 K. (The term degree and the degree
symbol are not used in expressing absolute temperatures;
they are simply called kelvins.) The absolute temperature
scale currently in use is basically the same as the one orig-
inally suggested by observing the behavior of gases.

As we cool a substance to near absolute zero, all molec-
ular motion is ceasing. Absolute zero is a temperature that
we can approach but never really reach. It represents a lim-
iting value. Speaking of anything getting any colder than
absolute zero is not meaningful.

Temperature measurements are based on physical proper-
ties that change with temperature, such as the volume
of a liquid or the pressure of a gas. The Fahrenheit and
Celsius scales have different zero points and different-
sized degrees. The Kelvin or absolute scale starts at
absolute zero and uses intervals the same size as the
Celsius degree.

10.2 Heat and Specific Heat Capacity 195

figure 10.6 The pressure plotted as a function of
temperature for different amounts of different gases. When
extended backward, the lines all intersect the temperature axis
at the same point regardless of gas type or quantity.
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figure 10.7 Pouring cold milk into a hot cup of coffee
lowers the temperature of the coffee.

10.2 Heat and Specific Heat Capacity
You are already late for class or work, but your morning
cup of coffee is too hot to drink. What can you do to cool
it to the point where you won’t scald your tongue? You can
blow on it, but blowing is not a very efficient way of cool-
ing coffee quickly. If you take milk with your coffee, you
can pour a little cold milk into the cup, and the tempera-
ture of the coffee will be lowered (fig. 10.7).

What happens when objects or fluids at different tem-
peratures come in contact with one another? The temper-
ature of the colder object increases, and the temperature
of the warmer one decreases, with both objects eventually
coming to the same intermediate temperature. Something is
flowing from the hotter to the colder body (or vice versa).
But what is flowing?

What is specific heat capacity?
Early attempts at explaining phenomena like our coffee-
cooling example involved the idea that an invisible fluid
called caloric flowed from the hotter to the cooler object.
The amount of caloric transferred dictated the extent of the
temperature change. Different materials were thought to store
different amounts of caloric in the same amount of mass,
which helped to explain some observations. Although the
caloric model successfully explained many simple phenom-
ena involving temperature changes, there were also problems
with it, which we will discuss in section 10.3.
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The specific heat capacity of steel is approximately
0.11 cal/g·C°, much less than water. Dropping 100 grams
of room-temperature steel shot into our cup of coffee
is much less effective in cooling the coffee than pouring
100 grams of room-temperature water into the cup. The
steel absorbs less heat from the coffee for each degree of
temperature that it changes than the water does (fig. 10.8).

When the cold steel is dropped into the hot water, heat
flows from the water into the steel shot. From the defini-
tion of specific heat capacity, we can find how much heat
must be absorbed by the steel to change its temperature by
a given amount. Since specific heat capacity is the amount
of heat per unit mass per unit temperature change, the total
heat required is

Q � mc�T,

where Q is the standard symbol for a quantity of heat, m
is the mass, c is the symbol for specific heat capacity, and
�T is the change in temperature. Because the specific heat
capacity c is much larger for water than for steel, a larger
quantity of heat is needed to warm 100 grams of water to a
given temperature than 100 grams of steel. Since this heat
comes from the hot coffee, water is more effective than
steel in cooling the coffee.

The large specific heat capacity of water is partly re-
sponsible for its moderating effect on temperatures near the
coast of an ocean or large lake. A large body of water, with
its large specific heat capacity, requires the addition or re-
moval of a large quantity of heat to change its temperature.
The body of water will have a moderating influence on the
air temperature in its vicinity. Nights will be warmer and
days cooler than at some distance inland, because it is dif-
ficult to change the temperature of the water.

What is the distinction between
heat and temperature?
When two objects at different temperatures are placed in
contact, heat will flow from the object with the higher tem-
perature to the one with the lower temperature (fig 10.9).
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figure 10.8 One-hundred grams of room-temperature
water (20°C) is more effective than 100 grams of room-
temperature steel shot in cooling a hot beaker of water.

Specific heat capacity
Substance in cal/g·C°

water 1.0

ice 0.49

steam 0.48

ethyl alcohol 0.58

glass 0.20

granite 0.19

steel 0.11

aluminum 0.215

lead 0.0305

table 10.1

Specific Heat Capacities of Some Common Substances

Water Steel shot

We now use the term heat for the quantity of energy
that flows from one object to another when two objects of
different temperatures come in contact. As we will see in
section 10.3, heat flow is a form of energy transfer between
objects.

The idea of exchange of heat sheds light on a large va-
riety of phenomena. If you drop a 100-gram steel ball,
initially at room temperature, into your cup of coffee, you
will find that it is less effective in cooling your coffee
than 100 grams of room-temperature milk or water. Steel
has a lower specific heat capacity than milk or water.
(Milk is mostly water, as is coffee.) Less heat is needed to
change the temperature of 100 grams of steel than to change
the temperature of an equal mass of water by the same
amount.

The specific heat capacity of a material is the quantity of heat
needed to change a unit mass of the material by a unit amount
in temperature (for example, to change 1 gram by 1 Celsius
degree). It is a property of the material.

The specific heat capacity of a material is the relative
amount of heat needed to raise its temperature. This num-
ber is determined experimentally for each substance. For
example, the specific heat capacity of water is 1 cal/g·C°—
that is, it takes 1 calorie of heat to raise the temperature of
1 gram of water 1°C. The calorie is a commonly used unit
of heat. It is defined as the quantity of heat required to
raise the temperature of 1 gram of water 1 Celsius degree.
Likewise, if 1 calorie is removed from 1 gram of water, its
temperature decreases 1°C. Water happens to have an un-
usually large specific heat capacity. Therefore, we use
water as a reference material for measuring the specific
heat capacities of other materials, a few of which are listed
in table 10.1.
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Heat added increases the temperature, and heat removed
decreases the temperature—heat and temperature are not
the same. The quantity of heat added or removed to pro-
duce a given change in temperature depends on the amount
of material involved (its mass) and the specific heat capac-
ity of the material.

Temperature is a quantity that tells us which direction
the heat will flow. If two objects are at the same tempera-
ture, no heat will flow. If they are at different temperatures,
the direction of heat flow is from the higher to the lower
temperature. The quantity of heat transferred depends on
the temperature difference between the two materials as
well as on their masses and specific heat capacities.

Heat and temperature are closely related concepts but
play different roles in our explanation of heating and cool-
ing processes:

Heat is energy that flows from one object to another when
there is a difference in temperature between the objects.

Temperature is the quantity that indicates whether or not, and
in which direction, heat will flow. Objects at the same temper-
ature are in thermal equilibrium, and no heat will flow from
one to the other.

How is heat involved in melting or freezing?
Can heat be added to or removed from a substance without
changing the temperature at all? This does indeed occur
when substances go through a change of phase or state.
The melting of ice and the boiling of water are the most
familiar examples of changes in phase. Whenever we cool a

drink using ice or boil water for tea or coffee we produce
changes of phase. What happens?

Ice, liquid water, and water vapor are different phases of
the same substance, water. If the temperature of water is
cooled to 0°C, and we continue to remove heat, the water will
freeze into ice. Likewise, if we warm ice to 0°C and continue
to add heat, the ice will melt (fig. 10.10). As we add heat, the
temperature of the ice and water remains at 0°C while the
melting is taking place. Heat is being added, but no change in
temperature occurs. Apparently, adding or removing heat
produces changes other than just temperature changes.

Careful measurements have shown that it takes approxi-
mately 80 calories of heat to melt 1 gram of ice. This ratio,
80 cal/g, is referred to as the latent heat of fusion of water
and is often denoted by the symbol Lf . Latent heat changes
the phase of water without changing its temperature. Like-
wise, approximately 540 calories of heat is required to turn
1 gram of water at 100°C into steam. This ratio, 540 cal/g,
is called the latent heat of vaporization, Lv. These values
are valid only for water. Other substances have their own
particular latent heats of fusion and vaporization.

What happens when we cool a glass of water by adding
ice? At first, the ice and water are at different temperatures,
the ice somewhere below 0°C and the water somewhere
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figure 10.9 Heat flows from the hotter object to the colder
one when two objects at different temperature are placed in
contact. The changes in temperature that result depend on the
quantities of material and the specific heat capacity of each
object.

figure 10.10 Adding heat to a mixture of
water and ice at 0°C melts the ice without changing
the temperature of the mixture.

Q

m1, c1 m2, c2

T1

T2

T1 > T2

gri12117_ch10_191-211.qxd  7/16/08  3:33 AM  Page 197



Confirming Pages

above this temperature. Heat flows from the water to the
ice until the ice reaches a temperature of 0°C. At this
point, the ice begins to melt as heat continues to flow from
the water to the ice. If enough ice is present, this flow of
heat will proceed until the water also reaches a tempera-
ture of 0°C. Example box 10.1 illustrates these ideas.

If the glass were well insulated so that heat could not
flow into the glass from the warmer surroundings, the ice
and water mixture would remain at 0°C after both the
water and the ice have reached this temperature, and no
more ice would melt. Usually, though, heat flows into the
system from the surroundings, and the ice continues to
melt more slowly. Once the ice is gone, the drink will
begin to warm and will eventually reach room temperature
as heat flows in from the surrounding air.

Once it reaches thermal equilibrium, an ice-water mix-
ture, well stirred, remains at 0°C. Small quantities of heat
may flow into or out of the mixture from the surround-
ings, and small quantities of ice may melt or freeze, but the
temperature will not change. This is one reason why the tem-
perature 0°C is useful as a reference point for our tempera-
ture scales. It is a stable and reproducible temperature.

When we cook food by boiling, we take advantage of
the fact that water boils at 100°C—and that we can con-
tinue to add heat without changing the temperature. Add-
ing heat from the burner causes the liquid water to change
to water vapor while the temperature remains at 100°C.

Since the temperature is constant, the cooking time required
to boil an egg or a potato is also fairly constant, depending
on the size of the egg or potato.

Cooks should be aware, however, of the effects of alti-
tude on the boiling temperature. In cities like Denver or
Albuquerque, both located approximately a mile above sea
level, water boils at a temperature of about 96°C because
of the lower atmospheric pressure at this altitude. It takes
longer to boil an egg or potato in these places than near
sea level, where the boiling point is 100°C. If you do not
make the adjustment in cooking time, your potatoes will be
crunchy in the center.

Another familiar phenomenon involving the latent heat
of vaporization is that of cooling by perspiration (sweat-
ing). The cooling is caused by evaporation, the fact that the
sweat on your skin changes from a liquid to a vapor. Heat
is drawn from your body to provide the heat of vaporiza-
tion needed to evaporate the sweat, thus cooling your body.
One of the reasons we find climates of high humidity so
uncomfortable is that the greater amount of water vapor in
the air inhibits the evaporation of sweat from our bodies.

Temperature changes can be caused by the flow of energy
as heat from one object to another. The amount of heat
required to produce a given change in temperature
depends on the mass and specific heat capacity of the
object as well as the temperature change. Temperature is
a quantity that tells us when and in which direction heat
will flow: heat flows from the hotter to the cooler body.
When a substance changes phase, as from ice to water or
water to steam, heat is added or removed without chang-
ing the temperature. The amount of heat needed per unit
mass to produce a phase change is called the latent heat.

10.3 Joule’s Experiment and the
First Law of Thermodynamics
Can the temperature of an object be increased without plac-
ing the object in contact with a warmer object? What is go-
ing on when things get warmer from rubbing? These ques-
tions were a subject of scientific debate during the first
half of the nineteenth century. Their resolution came about
through the experimental work of James Prescott Joule
(1818–1889), which was followed by the statement of the
first law of thermodynamics around mid-century.

One of the first persons to raise these questions force-
fully was the colorful American-born scientist and adven-
turer, Benjamin Thompson (1753–1814), also known as
Count Rumford. Thompson, finding himself on the losing
side of the American Revolutionary War, migrated to Europe,
where he served the king of Bavaria as a consultant on
weaponry. In Bavaria, he received the title Count Rumford.
From his experience in supervising the boring of cannon
barrels, Rumford knew firsthand that the barrels and drill
bits became quite hot during drilling (fig. 10.11). He once
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example box 10.1

Sample Exercise: Changing Ice to Water

If the specific heat capacity of ice is 0.5 cal/g·C°, how
much heat would have to be added to 200 g of ice,
initially at a temperature of �10°C, to:

a. raise the ice to the melting point?
b. completely melt the ice?

a. Heat required to raise the temperature:

m � 200 g Q � mc�T

c � � (200 g) (10°C)

T � �10°C � 1000 cal

Qraise � ?

b. Heat required to melt the ice:

Lf � Q � mLf

Qmelt � ? � (200 g)

� 16 000 cal

The total heat required to raise the ice to 0°C and to
melt it is

1000 cal � 16 000 cal � 17 000 cal or 17 kcal.

a80 cal
g
b

80 cal
g

a0.5 cal
g.C�

b0.5 cal
g.C�
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demonstrated that water could be boiled by placing it in
contact with the cannon barrel as it was being drilled.

What was the source of the heat that caused the increase in
temperature? No hotter body was present that heat might flow
from. Horses were used to turn the drill, but their tempera-
ture, although warm, was certainly below the boiling point of
water. The horses performed mechanical work on the drilling
engine. Was this work capable of generating heat?

What did Joule’s experiments show?
Rumford’s demonstration took place in 1798 and was
discussed by many scientists during the early part of the
nineteenth century. Quantitative research on Rumford’s
observations was not done until the 1840s, when Joule per-
formed a famous series of experiments. Joule showed that
various ways of performing mechanical work on a system
had a consistent and predictable effect in raising the tem-
perature of the system.

In the most dramatic of Joule’s experiments, he turned a
simple paddle wheel in an insulated beaker of water and
measured the increase in temperature (fig. 10.12). A system
of weights and pulleys turned the paddle wheel, transferring
energy from the weights to the water. As the weights fell,
losing gravitational potential energy, the paddle wheel did
work against the resisting viscous forces of the water. This
work was equal to the loss in potential energy of the weights.

A thermometer placed in the water measured the in-
crease in temperature. Joule found that 4.19 J of work was
required to raise the temperature of 1 gram of water by
1 C°. (The use of the joule (J) as an energy unit did not
come about until well after Joule’s work. He stated his
results in more archaic energy units. See chapter 6 for the
definition of the joule.) Since we can also raise the tem-
perature of 1 gram of water 1 C° by adding 1 calorie of heat,
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figure 10.11 Rumford’s cannon-drilling apparatus. What is
the source of heat that raises the temperature of the drill and the
cannon barrel? figure 10.12 A falling mass turns a paddle in an insulated

beaker of water in this schematic representation of Joule’s
apparatus for measuring the temperature increase produced
by doing mechanical work on a system.

m

Insulation

Joule’s experiment implies that 4.19 J of work is equivalent
to 1 calorie of heat. 

Joule used several ways of performing work in his ex-
periments, as well as several kinds of systems. The results
were always the same: 4.19 J of work produced the same
temperature increase as 1 calorie of heat. The final state of
the system provided no clue as to whether the temperature
was increased by adding heat or by doing mechanical work.

The first law of thermodynamics
At the time of Joule’s work, several people had already
suggested that the transfer of heat was a transfer of kinetic
energy between the atoms and molecules of the systems
involved. Joule’s experiments supported this view and led
directly to the statement of the first law of thermodynam-
ics. The idea underlying the first law is that both work
and heat represent transfers of energy into or out of a
system.

If energy is added to a system either as work or as heat,
the internal energy of the system increases accordingly.
The change in internal energy is equal to the net amount of
heat and work transferred into the system. An increase in
temperature is one way an increase in internal energy might
show up. The first law of thermodynamics summarizes
these ideas:

The increase in the internal energy of a system is equal to the
amount of heat added to a system minus the amount of work
done by the system.
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In symbols, we often write the first law of thermody-
namics as

�U � Q � W,
where U represents the internal energy of the system, Q
represents the amount of heat added to the system, and
W represents the amount of work done by the system 
(fig. 10.13). The minus sign in this statement is a direct
result of the convention of choosing work done by the sys-
tem to be positive rather than work done on the system.
Work done on the system adds energy to the system, but
work done by the system on its surroundings removes
energy from the system and reduces the internal energy.
This sign convention is convenient for discussing heat
engines, the main focus of chapter 11.

On its surface, the first law seems like a statement of
conservation of energy, and indeed it is. Its apparent sim-
plicity obscures the important insights that it contains.
First and foremost among these insights is that heat flow is
a transfer of energy, an idea strongly reinforced by Joule’s
experiments. Before 1850, the concept of energy had been
restricted to mechanics. In fact, it was only then coming
into its own in mechanics and did not play an important
role in Newton’s original theory. The first law of thermo-
dynamics extended the concept of energy into new areas.

What is internal energy?
The first law also introduced the concept of the internal
energy of a system. An increase in internal energy can
show up in a variety of ways: one is an increase in temper-
ature, as in Joule’s experiment with the paddle wheel. A
temperature increase is related to an increase in the aver-
age kinetic energy of the atoms or molecules making up
the system.

A change in phase, such as melting or vaporization, is
another way that an increase in the internal energy of a
system affects the system. In a phase change, the average
potential energy of the atoms and molecules is increased
as the atoms and molecules are pulled farther away from
each other. No temperature change occurs, but there is still
an increase in internal energy.

An increase in internal energy, then, can show up as ei-
ther an increase in the kinetic energy or potential energy
(or both) of the atoms or molecules making up the system:

The internal energy of the system is the sum of the kinetic and
potential energies of the atoms and molecules making up the
system.

Internal energy is a property of the system uniquely de-
termined by the state of the system. If we know that the sys-
tem is in a certain phase, and the temperature, pressure, and
quantity of material are specified, there is only one possible
value for the internal energy. The amount of heat or work
that have been transferred to the system, on the other hand,
are not uniquely determined by its state. As Joule’s experi-
ment showed, either heat or work could be transferred to the
beaker of water to produce the same increase in temperature.

The system under study can be anything we wish it to
be—a beaker of water, a steam engine, or an elephant. It is
best, however, to consider a system that has distinct boun-
daries, so that we can easily define where it begins and
ends. Choosing the system is similar to the process of iso-
lating an object in mechanics to apply Newton’s second law.
In mechanics, forces define the interaction of the chosen
object with other objects. In thermodynamics, the transfer
of heat or work defines the interaction of a system with
other systems or the surroundings.

Example box 10.2 applies the first law of thermody-
namics. The system is a beaker containing water and ice
(fig. 10.14). The internal energy of the system is increased
by both heating on a hot plate and doing work by stirring.
Notice that the work done by stirring is a negative quantity,
since it represents work done on the system. The increase
in internal energy results in the melting of the ice.

Counting food calories
A final note on energy units is worth mentioning. When we
eat food, we add energy to our system by taking in material
that can release potential energy in chemical reactions. We
often measure that energy in a unit called a Calorie. This
unit is actually a kilocalorie, or 1000 calories. The calorie
counting that is done for food uses the unit:

1 Cal � 1 kilocalorie � 1000 cal

The capital C used in the abbreviation indicates that this is
a larger unit than the ordinary calorie.

Caloric values given for different types of food are the
amount of energy these foods release when they are di-
gested and metabolized. This energy may be stored in var-
ious ways within the body, including fat cells. Our bodies
are constantly converting energy stored in muscles to other
forms of energy. When we do physical work, for example,
we transfer mechanical energy to other systems and warm
the surroundings by heat flow from our bodies. When you
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figure 10.13 The internal energy U of a system is
increased by the transfer of either heat or work into the system.

Q –WU
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count calories, you are counting energy intake. If your
output is less than your intake, you should expect to get
larger.

Joule discovered that doing 4.19 joules of work on a
system increased the temperature of the system by the
same amount as adding 1 calorie of heat. This discovery
convinced scientists that the flow of heat was a form of
energy transfer and led to the statement of the first law
of thermodynamics. The first law says that the change in
the internal energy of a system is equal to the net amount
of heat and work transferred into the system. The internal
energy is the sum of the kinetic and potential energies
of the atoms making up the system. These ideas extend
the principle of conservation of energy.

10.4 Gas Behavior and the First Law
What happens when we compress air in a cylinder? How
does a hot-air balloon work? The behavior of gases in these
and other situations can be investigated using the first law
of thermodynamics, with the help of some additional facts
about the nature of gases. Our atmosphere is another inter-
esting system for exploring the laws of thermodynamics.

What happens when we compress a gas?
Suppose that a gas is contained in a cylinder with a mov-
able piston, as in figure 10.15. If the piston is pushed
inward by an external force, work is done by the piston on
the gas in the cylinder. What effect does this have on the
pressure or temperature of the gas?

From the first law of thermodynamics, we know that
doing work on a system adds energy to the system. By
itself, work would increase the internal energy of the gas,
but the change in internal energy also depends on the heat
flow into or out of the gas. Knowing how much work is
done on the gas provides only part of the picture.

From the definition of work (section 6.1), we know that
the work done on the gas equals the force exerted by the
piston times the distance that the piston moves. Since pres-
sure is the force per unit area, the force exerted on the pis-
ton by the gas equals the pressure of the gas times the area
of the piston (F � PA). If we move the piston without
accelerating it, the net force acting on the piston is zero,
and the external force applied to the piston equals the force
exerted by the gas on the piston.

Putting these ideas together, the magnitude of the work
done on the gas is the force times the distance d that the
piston moves, or W � Fd � (PA)d. The motion of the pis-
ton produces a change in the volume of the gas, and this
change in volume equals the area of the piston times the
distance that it moves, �V � Ad (see fig. 10.15). The work
done by the gas in an expansion is therefore W � P�V.
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figure 10.14 The ice in the beaker can be melted either by
adding heat from a hot plate or by doing work stirring the ice
and water mixture.

example box 10.2

Sample Exercise: Applying the First Law
of Thermodynamics

A hot plate is used to transfer 400 cal of heat to a beaker
containing ice and water. 500 J of work are also done on
the contents of the beaker by stirring.

a. What is the increase in internal energy of the
ice-water mixture?

b. How much ice melts in this process?

a. We first convert the heat units to joules:

Q � 400 cal Q � (400 cal)(4.19 J/cal)

W � �500 J � 1680 J

�U � ? �U � Q � W

� 1680 J � (�500 J)

� 2180 J

b. Lf � 80 cal/g �U � mLf

� 335 J/g

m � ?

� 6.5 g
(amount of ice melted)

Since the internal energy was expressed in joules, we
converted the latent heat to units of J/g by multiplying
by 4.19 J/cal.

�
2180 J

335 J/g

m �
¢U

Lf
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the kinetic energy of the gas molecules. Absolute temperature
is directly related to the average kinetic energy of the mole-
cules of a system. If the internal energy of an ideal gas
increases, the temperature also increases in direct proportion.
A plot of internal energy as a function of absolute tempera-
ture for an ideal gas looks like the graph in figure 10.16.

The temperature of a gas will therefore increase in an
adiabatic compression. According to the first law of ther-
modynamics, the internal energy of the gas increases by an
amount equal to the work done on the gas. If we know the
specific heat capacity and mass of the gas, we can calculate
the increase in temperature from the energy increase.

The reverse is also true. If we allow the gas to expand
against the piston, doing work on its surroundings, the in-
ternal energy of the gas decreases. The temperature of the
gas decreases in an adiabatic expansion—this is how a re-
frigerator works. A pressurized gas is allowed to expand,
lowering its temperature. The cool gas then circulates
through coils inside the refrigerator, removing heat from
the contents of the refrigerator.

How can we keep the temperature
of a gas from changing?
Is it possible for the temperature of a gas to remain con-
stant during a compression or expansion? In an isothermal
process, the temperature does not change. (Iso means equal,
and thermal refers to warmth or temperature.) Because of
the direct relationship between temperature and internal
energy in an ideal gas, the internal energy must be constant
if there is no change in temperature. The change in internal
energy, �U, is zero for an isothermal process in an ideal gas.

If �U is zero, the first law of thermodynamics (�U �
Q � W) requires that W � Q. In other words, if an amount
of heat Q is added to the gas, an equal amount of work W
will be done by the gas on its surroundings if the tempera-
ture and the internal energy are to remain constant. It is
possible to add heat to a gas without changing its tempera-
ture, as long as the gas does an equal amount of work on
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figure 10.15 A movable piston compresses a gas in a
cylinder. The magnitude of the work done is W � Fd � P�V.

P
F

d

∆V

after

before

If the gas is being compressed, the volume of the gas is
decreasing, and the change in volume �V will be negative,
indicating that the work done is also negative. Work is
negative when it is done on the system. From the first law,
�U � Q � W, negative work increases the energy of the
system, since the minus signs cancel. We do work on the
gas in compressing it, and that work increases the internal
energy of the gas. If the gas is expanding, positive work is
done by the gas on its surroundings, and the internal energy
of the gas decreases.

Compressing a gas causes its internal energy to increase
in proportion to the change in volume of the gas, provided
that there is no heat flow across the boundaries of the con-
tainer. What effect does this have on the gas? How does a
change in internal energy affect the gas?

How is internal energy related
to temperature?
Many natural processes involving gases are adiabatic, mean-
ing that no heat flows into or out of the gas during the
process. If we compress a gas in a cylinder, for example, the
compression can occur quickly enough that there is no time
for a significant amount of heat to be transferred. The increase
in internal energy is equal to the work done on the gas. What
happens to the gas?

In general, internal energy is made up of both the ki-
netic and potential energies of the atoms and molecules in
the system. In a gas, the internal energy is almost exclu-
sively kinetic energy, because the molecules are so far
apart (on average) that the potential energy of interaction
between them is negligible. An ideal gas is one for which
the forces between atoms (and the associated potential
energy) are small enough to be completely ignored. This is
a good approximation for gases in many situations.

For an ideal gas, the internal energy of the gas is exclu-
sively kinetic energy: increasing the internal energy increases

figure 10.16 The internal energy is plotted as a function
of absolute temperature for an ideal gas. The internal energy
increases in direct proportion to the temperature.
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figure 10.17 Heat is added to the air in a hot-air balloon
by the propane burner above the gondola. The heated air
expands making it less dense than the surrounding air.

its surroundings by expanding. (This is not an adiabatic
process since heat is flowing into the system!)

Here again, the reverse is also true. If we compress a
gas while holding the temperature constant, heat is removed
from the gas, according to the first law of thermodynam-
ics. For the internal energy and the temperature to remain
constant, energy added to the gas in the form of work must
result in an equal amount of energy in the form of heat
being removed. Isothermal compressions and expansions
are important processes in heat engines, which we will con-
sider in chapter 11.

What happens to the gas in a hot-air balloon?
When the gas is heated in a hot-air balloon (fig. 10.17), the
pressure, not the temperature, remains constant. The pressure
of the gas inside the balloon cannot be significantly larger
than the surrounding atmosphere. When pressure remains
constant in a process, it is called isobaric (baric refers to
pressure). The internal energy increases as the gas is heated,
and so does the temperature. The gas also expands in this
process, however, which removes some internal energy.

The gas expands in the isobaric heating process because
of another property of ideal gases discovered near the be-
ginning of the nineteenth century. A series of experiments
showed that the pressure, volume, and absolute temperature of

an ideal gas are related by the equation PV � NkT where N
is the number of molecules in the gas and k is a constant of
nature called Boltzmann’s constant. (Ludwig Boltzmann
(1844–1906) was an Austrian physicist who developed a sta-
tistical theory of gas behavior.) This equation is called the
equation of state of an ideal gas. Example box 10.3 uses
this equation of state.

The temperature T used in the equation of state must be
the absolute temperature. Recall that the concept of ab-
solute temperature originally arose in the study of the be-
havior of gases (see section 10.1). The equation of state
combines Boyle’s law (section 9.2) with the effect of tem-
perature on pressure discussed in section 10.1. The equa-
tion of state shows that if the temperature increases while
the pressure and number of molecules are held constant,
the volume of the gas also must increase. In other words,
the gas expands. Likewise, if the gas expands at constant
pressure, the temperature must increase.

For an isobaric expansion, the first law of thermody-
namics indicates that the heat added to the gas must be
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example box 10.3

Sample Exercise: Using the Ideal Gas Law

Suppose that the pressure of an ideal gas mixture remains
constant, and the volume of the mixture is decreased from
4 liters to 1 liter. If the initial temperature is 600K, what is
the final temperature?

This question can be answered using the ideal gas
law: PV = NkT. Since we assume no gas escapes the
container, we assume N, the number of molecules of gas,
remains constant. Boltzmann’s constant also does not
change. The ideal gas law, PV � NkT, can be rewritten as
V/T = Nk/P = a constant.

Vinitial = 4 liters
Vfinal = 1 liter
Tinitial = 600K
Tfinal = ?

Notice that even though you may not know how many
molecules of gas there are (N) or the value of Boltzmann’s
constant, k (which you could look up), you can still use the
ideal gas law to discover how the pressure, temperature,
and volume change relative to one another.

Cross multiplying:

Therefore:

Tfinal �
1

4
(600K) � 150K

Tfinal �
1

4
Tinitial

Tfinal

Tinitial

�
1l

4l
�

1

4

Tfinal

Tinitial

�
Vfinal

Vinitial

Vinitial

Tinitial

�
Vfinal

T final
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figure 10.18 In thermal conduction, energy flows through
a material when there is a temperature difference across the
material.

Q
T1 T2

T1 > T2

Metal bar

greater than the amount of work done by the gas in ex-
panding. The internal energy, U, increases when the tem-
perature increases. Since �U � Q � W, Q must be larger
than W (which is positive, since the gas is expanding) for
the internal energy to increase. The first law of thermody-
namics and the equation of state for an ideal gas can then
be used to compute how much heat must be added to the
system to produce a given amount of expansion.

Since the gas inside the balloon has expanded, the same
number of molecules now occupy a larger volume, and the
density of the gas has decreased. In other words, the bal-
loon rises because the density of the gas inside the balloon is
less than the density of the air outside the balloon. The buoy-
ant force acting on the balloon is described by Archimedes’
principle (section 9.3).

The same phenomenon occurs on a much larger scale in
the atmosphere. A warm air mass will rise compared to
cooler air masses for the same reason that a hot-air balloon
rises. Air heated near the ground on a warm summer day
expands, becomes less dense, and rises in the atmosphere.
Rising air carries water vapor that provides the moisture
for the formation of clouds at higher elevations. The rising
columns of warm air also create air turbulence, which can
become a problem for aircraft. These thermals are a real
boon, however, to hang-glider enthusiasts and soaring eagles.

The behavior of gases and the implications of the first law
of thermodynamics play important roles in our understand-
ing of weather phenomena. Latent heat is involved in the
evaporation and condensation of water as well as in the for-
mation of ice crystals in snow or sleet. The source of energy
for all of these processes is the sun: surface water and the
atmosphere of the Earth are a huge engine driven by the sun.

The first law of thermodynamics explains many processes
involving gases. The absolute temperature of a gas is
directly related to the internal energy of the gas: in the case
of an ideal gas, the internal energy is the kinetic energy of
the gas molecules. The amount of heat added and the work
done by the gas determine its temperature, yielding 
different results for adiabatic, isothermal, and isobaric
processes. The first law, together with the equation of state,
can be used to predict the behavior of gases in heat
engines, hot-air balloons, and air masses in the atmosphere.

10.5 The Flow of Heat
In most areas of the world we need to heat our homes and
buildings in the winter. We warm our houses by burning wood
or fossil fuels such as coal, oil, or natural gas in a furnace, or
by electric heating. We pay for the fuel that we use and thus
have an incentive to keep the heat it generates from escaping.
How does heat flow away from a house or any other warm
object? What mechanisms are involved, and how can we
lessen the loss of heat by our awareness of these mechanisms?

Conduction, convection, and radiation are the three basic
means of heat flow. All three are important in heat loss (or
gain) from a house. An understanding of these mechanisms
can help you achieve comfort while saving fuel in your
house, residence-hall room, or workplace.

Heat flow by conduction
In conduction, heat flows through a material when objects
at different temperatures are placed in contact with one an-
other (fig 10.18). Heat flows directly from the hotter body to
the cooler body at a rate that depends on the temperature dif-
ference between the bodies and a property of the materials
called the thermal conductivity. Some materials have much
larger thermal conductivities than others. Metals, for exam-
ple, are much better heat conductors than wood or plastic.
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figure 10.19 When a metal block and a wooden block, both
at room temperature, are picked up, the metal block feels cooler.
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figure 10.20 In convection, thermal energy is transferred
by the motion of a heated fluid. In a room, this occurs when
heated air flows from a radiator or heater duct.

Convection is also involved in heat loss from buildings.
When warm air leaks out of a building or cooler air leaks
in from outside, we say that we are losing heat to infiltra-
tion, a form of convection. Infiltration can be prevented, to
some extent, by weatherstripping doors and windows and
by sealing other cracks or holes. It is not desirable, however,
to eliminate infiltration completely. A turnover of the air in
a house is needed to keep the air fresh and free of odors.

What is radiation, and how does
it transfer heat?
Radiation involves the flow of energy by electromagnetic
waves. Wave motion and electromagnetic waves are dis-
cussed in chapters 15 and 16. The electromagnetic waves
involved in the transfer of heat lie primarily in the infrared
portion of the electromagnetic wave spectrum. Infrared
wavelengths are shorter than those of radio waves but
longer than the wavelengths of visible light. (See fig. 16.5.)

While conduction requires a medium to travel through,
and convection a medium to be carried along with, radia-
tion can take place across a vacuum, such as the evacuated
barrier in a thermos bottle (fig. 10.21). The radiation is re-
duced to a minimum by silvering the facing walls of the
evacuated space. Silvering causes the electromagnetic waves
to be reflected rather than absorbed and reduces the energy
flow into or out of the container.

The same principle is involved in the use of foil-backed
insulation in housing construction. Some of the heat flow
across the dead-air space within a wall is due to radiation and
some to conduction through the air. Using foil-backed insu-
lation reduces heat flow from radiation. Thin sheets of foil-
backed insulation may have R values equal to that of thicker
sheets of insulation without the foil backing.
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Imagine that you pick up a block of metal in one hand and
a block of wood in the other (fig. 10.19). The two blocks are
at room temperature, but your body is typically 10 to 15 Cel-
sius degrees warmer than room temperature, so heat will flow
from your hands to the blocks. The metal block, however, will
feel colder than the wood block. Since the two blocks are ini-
tially at the same temperature, the difference lies in the ther-
mal conductivity, not in the temperature, of the two materials.
Metal conducts heat more readily than wood does, so the heat
flows more rapidly from your hand into the metal than into the
wood. Since contact with the metal cools your hand more rap-
idly than contact with the wood, the metal block feels colder.

Heat flow is a flow of energy, the actual transfer of kinetic
energy of atoms and electrons. Because of the higher temper-
ature of your hands, the average kinetic energy of the atoms
in your hands is larger than the average kinetic energy of the
atoms in the blocks. As the atoms bump into one another,
kinetic energy is transferred, and the average kinetic energy
of the atoms in the blocks increases at the expense of the
atoms in your hands. Free electrons in metals play an impor-
tant role in this process: metals are good conductors of both
heat and electrical charge.

In discussing home insulation, we often use the concept
of thermal resistance or R values to compare the effective-
ness of different materials as insulators. The greater the
conductivity, the lower the R value, since good thermal con-
ductors are poor thermal insulators. The R value, in fact,
relates both to the thickness of the material and to its ther-
mal conductivity. The insulating effect of a material in-
creases as its thickness increases, so R values increase with
the thickness of the material.

Still air is a good thermal insulator. Porous materials with
trapped pockets of air like rock wool or fiberglass insulation
make excellent insulators and have high R values. Their low
thermal conductivities result from the air pockets trapped in
these materials rather than from the material itself. When we
use such materials to insulate the walls, ceilings, and floors
of a dwelling, we reduce their ability to conduct heat and
lessen heat loss from the house.

What is convection?
If we heat a volume of air, then move the air by blowers or
natural flow, we transfer heat by convection. In heating a
house, we often move air, water, or steam through pipes or
ducts to carry heat from a central furnace to different rooms.
Convection transfers heat by the motion of a fluid contain-
ing thermal energy.

Convection, therefore, is the main way of heating a
house. Warm air is less dense than cooler air, so it tends to
rise from radiators or baseboard heaters toward the ceiling.
As it does, the warm air sets up air currents within the room
that distribute energy around the room. Warm air rises along
the wall containing the heat source, and cooler air falls
along the opposite wall (fig. 10.20). This is called natural
convection; The use of fans would be forced convection.
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Radiation is also involved in the loss of energy from
roofs or from road surfaces to the dark (and cold) night
sky. Blacktopped road surfaces in particular, and black sur-
faces in general, are effective radiators of electromagnetic
waves. The road surface radiates energy to the sky, cooling
the surface more rapidly than the surrounding air. Even
when the air temperature is still above freezing, the surface
of a blacktopped road can drop below the freezing point,
creating icy conditions.

Good absorbers of electromagnetic radiation are also
good emitters: black materials both absorb more solar en-
ergy in the summer and lose more heat in the winter. A
black roof may look nice, but it is not the best color for
energy conservation. A lighter color is more effective both
in keeping your home cool in the summer and warm in
the winter.

206 Chapter 10 Temperature and Heat

Solar Collectors and the Greenhouse Effect

The Situation. Flat-plate solar collectors are often used for
collecting solar energy to heat water or houses. The flat-plate
collector consists of a metal plate with water-carrying tubes
bonded to its surface. The plate and tubes are painted black
and are held in a frame insulated below the plate, and with a
glass or transparent plastic cover on top. How does the flat-
plate collector work? What heat-flow processes are involved,
and what relationship, if any, does the solar collector have to
the much-discussed greenhouse effect?

The Analysis. The flat-plate collector receives energy from
the sun as electromagnetic radiation, the only form of heat
flow that can take place across the vacuum of space. Electro-
magnetic waves emitted by the sun are mainly in the visible
part of the electromagnetic spectrum, the wavelengths to
which our eyes are sensitive. These waves pass easily through
the transparent cover plate of the collector.

The black surface of the collector plate absorbs most of the
visible light that falls on it, reflecting very little. This absorbed
energy raises the internal energy and temperature of the 

plate. Water traveling through the tubes bonded to the plate
is heated by conduction. The plate must be at a higher 
temperature than the water for heat flow to take place. The

everyday phenomenon
box 10.1

Metal
collector
plate Insulation

Glass cover plate

Visible light

The black-surfaced metal collecting plate of a flat-plate solar collector
is insulated below and covered with a glass or transparent plastic
plate above.

(continued)

figure 10.21 Radiation is the only mechanism that can
carry thermal energy across the evacuated space in a thermos
bottle. Silvering the walls reduces the flow of radiation.

Infrared
radiation

Vacuum

Insulation
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insulation below the plate reduces heat flow to the
surroundings.

Since it is warm, the metal plate will radiate heat in the
form of infrared electromagnetic waves. Glass (or plastic) is
opaque to infrared radiation, so these waves cannot pass
through the glass cover. The glass cover also reduces heat loss
from convection, since it prevents air currents from passing
directly over the metal plate. The glass enclosure of a green-
house serves the same purpose. Besides reducing convection
losses, the glass allows visible sunlight in while preventing heat
loss from radiation at longer wavelengths. It is an energy trap.
This one-way transmission of radiation at visible wavelengths,
but not at longer infrared wavelengths, is the greenhouse
effect. It is what causes your car to heat up on a sunny day
when the windows are closed.

The Earth also resembles a large greenhouse. Carbon
dioxide gas, as well as certain other gases present in the
atmosphere in smaller quantities, is transparent to visible
radiation but not to infrared radiation. Carbon dioxide is a
natural by-product of the burning of any carbon-based fuel
such as oil, natural gas, coal, or wood. Carbon dioxide is
taken up by plant life and converted to other carbon com-
pounds, so that the global plant cover is also a factor in
determining the amount of carbon dioxide in the atmosphere.

Our heavy use of fossil fuels such as oil, coal, and natural
gas has increased the amount of carbon dioxide in the upper
atmosphere. The greenhouse effect associated with this
increase in carbon dioxide and other greenhouse gases is
slowly increasing the Earth’s average temperature (global
warming). The loss of forests and other plant life that absorb
carbon dioxide may also contribute to the carbon dioxide
buildup. Although modeling of the earth’s atmosphere is a
complex problem, there is ample evidence to support the 
conclusion that global warming is occuring.

With a slow increase in the Earth’s temperature, we
can expect that the polar ice caps will begin to melt, and
this appears to be happening. Thawing of the ice caps will
cause the oceans to rise, and low-lying coastal regions
may be flooded. Changes in global weather patterns may
also affect crop production. The precise effects are difficult
to predict because other factors are also at work that can
either accelerate or moderate these effects.

The solution to the global warming problem lies
primarily in reducing worldwide use of fossil fuels. This can
be achieved through energy conservation (see everyday
phenomenon box 6.1) and through development of other
energy resources that do not depend upon fossil fuels. To
develop rational enviromental policies, we need to
carefully monitor the greenhouse effect and other factors
that can increase or decrease the Earth’s temperature.

Carbon
dioxide

Infrared
radiation

Visible light
from sun

Earth

Carbon dioxide and other gases in the atmosphere of the Earth play
the same role as the cover plate on a solar collector. Visible light
passes through, but infrared radiation does not.

Knowledge of the basic mechanisms of heat transfer is
useful in designing a house. Conduction, convection, and
radiation are all important in understanding how heat flows
into and out of a house, as well as how it circulates inside the
house. Large windows produce high heat loss, even when
double-pane windows are used. If the window is on the
south side of the house, however, this heat loss may be
partially offset by the heat gain by radiation from the sun.
Heat-flow mechanisms are also important in understanding
how to make the best use of solar energy, discussed in
everyday phenomenon box 10.1.

The flow of heat can occur by three distinct means—
conduction, convection, and radiation. In conduction,
energy is transferred through a material: some materials
are better thermal conductors than others. Convection
involves transfer of heat by the flow of a fluid containing
thermal energy. Radiation is the flow of energy through
electromagnetic waves. All three of these processes are
important in any application of the first law of thermo-
dynamics, since the flow of heat is one way the internal
energy of a system can change.
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2 Heat and specific heat capacity. The energy that
flows between objects because they are at different temperatures is
called heat. The amount of heat required to cause a one-degree
change in temperature to one unit of mass is called the specific heat
capacity. Latent heat is the amount of heat per unit mass required to
change the phase of a substance without changing the temperature.

by adding heat or by doing work on the system. Increasing the
internal energy increases the potential and kinetic energies of the
atoms and molecules making up the system, and it may show up
as an increase in temperature, a change of phase, or as changes in
other properties of the system.

4 Gas behavior and the first law. The internal en-
ergy of an ideal gas equals the kinetic energy of the gas mole-
cules. It varies directly with the absolute temperature of the gas.
Work done by the gas is proportional to its change in volume, so
the first law can be used to predict how the temperature or pres-
sure will change when work is done or heat is added.

5 The flow of heat. There are three basic mechanisms
of heat flows from one system to another. Conduction is the di-
rect flow of heat through materials. Convection is the flow of
heat carried by a moving fluid. Radiation is the flow of heat by
electromagnetic waves.
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Conduction

Convection
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Heat, which plays an important role in the first law of thermo-
dynamics, is the focus of this chapter. We used the first law of
thermodynamics to explain changes in temperature or phase of a
substance as well as the behavior of an ideal gas. The distinction
between the concepts of heat and temperature is critical.

1 Temperature and its measurement. Temperature
scales have been devised to provide a consistent means of describ-
ing how hot or cold an object is. When objects are at the same
temperature, no heat flows between them, and the physical prop-
erties remain constant. The idea of an absolute zero of temperature
emerged from studies of gas behavior.

summary

100°C

0°C

212°F

32°F

3 Joule’s experiment and the first law of ther-
modynamics. The first law of thermodynamics states that the
internal energy of a substance or system can be increased either
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* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. Is an object that has a temperature of 0°C hotter than,
colder than, or at the same temperature as one that has a
temperature of 0°F? Explain.

Q2. Which spans a greater range in temperature, a change in tem-
perature of 10 Fahrenheit degrees or a change of 10 Celsius
degrees? Explain.

Q3. The volume of a gas held at constant pressure increases in
a predictable way when its temperature increases. Could
such a system be used as a thermometer? Explain.

*Q4. We sometimes attempt to determine whether another per-
son has a fever by placing a hand on their forehead. Is this
a reliable procedure? What assumptions do we make in
this process?

Q5. Is it possible for a temperature to be lower than 0°C?
Explain.

Q6. Is it possible for a temperature to be lower than 0 K on the
Kelvin temperature scale? Explain.

Q7. Is an object with a temperature of 273.2 K hotter than,
colder than, or at the same temperature as an object with a
temperature of 0°C? Explain.

Q8. Two objects at different temperatures are placed in contact
with one another but are insulated from the surroundings.
Will the temperature of either object change? Explain.

Q9. Is it possible for the final temperature of the objects dis-
cussed in question 8 to be greater than the initial tempera-
tures of both objects? Explain.

Q10. Two objects of the same mass, but made of different mate-
rials, are initially at the same temperature. Equal amounts
of heat are added to each object. Will the final temperature
of the two objects necessarily be the same? Explain.

Q11. Two cities, one near a large lake and the other in the des-
ert, both reach the same high temperature during the day.
Which city, if either, would you expect to cool down more
rapidly once the sun has set? Explain.

Q12. Is it possible to add heat to a substance without changing
its temperature? Explain.

Q13. What happens if we add heat to water that is at the tem-
perature of 100°C? Does the temperature change? Explain.

Q14. What happens if we remove heat from water at 0°C? Does
the temperature change? Explain.

Q15. Is it possible to change the temperature of a glass of water
by stirring the water, even though the glass is insulated
from its surroundings? Explain.

Q16. A hammer is used to pound a piece of soft metal into a
new shape. If the metal is thermally insulated from its sur-
roundings, will its temperature change due to the pound-
ing? Explain.

Q17. Which represents the greater amount of energy, 1 J or
1 cal? Explain.

*Q18. Suppose that the internal energy of a system has been
increased, resulting in an increase in the temperature of
the system. Is it possible to tell from the final state of the
system whether the change in internal energy was due to
the addition of heat or of work to the system? Explain.

Q19. Is it possible for the internal energy of a system to be
greater than the kinetic energy of the molecules and atoms
making up the system? Explain.

*Q20. Based upon his experiments, Joule proposed that the
water in a pool at the bottom of a waterfall should have a
higher temperature than that at the top. Why might this be
so? Explain.

Q21. An ideal gas is compressed without allowing any heat to
flow into or out of the gas. Will the temperature of the gas
increase, decrease, or remain the same in this process?
Explain.

Q22. Is it possible to decrease the temperature of a gas without
removing any heat from the gas? Explain.

Q23. Heat is added to an ideal gas, and the gas expands in the
process. Is it possible for the temperature to remain con-
stant in this situation? Explain.

Q24. Heat is added to an ideal gas maintained at constant volume.
Is it possible for the temperature of the gas to remain
constant in this process? Explain.

Q25. Heat is added to a hot-air balloon causing the air to ex-
pand. Will this increased volume of air cause the balloon
to fall? Explain.

*Q26. Heat is added to ice causing the ice to melt but producing
no change in temperature. Because water expands when
it freezes into ice, the volume of the water obtained from
melting the ice is less than the initial volume of ice. Does
the internal energy of the ice-water system change in this
process? Explain.

Q27. A block of wood and a block of metal have been sitting
on a table for a long time. The block of metal feels colder
to the touch than the block of wood. Does this mean that
the metal is actually at a lower temperature than the wood?
Explain.

Q28. Heat is sometimes lost from a house through cracks around
windows and doors. What mechanism of heat transfer (con-
duction, convection, or radiation) is involved? Explain.

Q29. Is it possible for water on the surface of a road to freeze
even though the temperature of the air just above the road
is above 0°C? Explain.

Q30. What heat transfer mechanisms (conduction, convection,
or radiation) are involved when heat flows through a
glass windowpane? Explain.

Q31. Is it possible for heat to flow across a vacuum? Explain.

Questions 209

questions
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Q32. What property does glass share with carbon dioxide gas
that makes them both effective in producing the greenhouse
effect? Explain.

Q33. What mechanism of heat flow (conduction, convection, or
radiation) is involved in transporting useful thermal energy
away from a flat-plate solar collector? Explain.

Q34. Will a solar power plant (one that generates electricity from
solar energy) have the same tendency to increase the green-
house effect in the atmosphere as a coal-fired power plant?
Explain.

210 Chapter 10 Temperature and Heat

exercises

E1. An object has a temperature of 45°C. What is its tempera-
ture in degrees Fahrenheit?

E2. The temperature on a winter day is 14°F. What is the tem-
perature in degrees Celsius?

E3. The temperature in a residence-hall room is 24°C. What is
the temperature of the room on the absolute (Kelvin) tem-
perature scale?

E4. The temperature on a warm summer day is 95°F. What is
this temperature
a. in degrees Celsius?
b. on the absolute (Kelvin) scale?

E5. The temperature of a beaker of water is 318.2 K. What is
this temperature
a. in degrees Celsius?
b. in degrees Fahrenheit?

E6. How much heat is required to raise the temperature of 70 g
of water from 20°C to 80°C?

E7. How much heat must be removed from a 200-g block of
copper to lower its temperature from 150°C to 30°C? The
specific heat capacity of copper is 0.093 cal/g·C°.

E8. How much heat must be added to 60 g of ice at 0°C to
melt the ice completely?

E9. If 600 cal of heat are added to 50 g of water initially at a tem-
perature of 10°C, what is the final temperature of the water?

E10. How much heat must be added to 120 g of water at an ini-
tial temperature of 60°C to
a. heat it to the boiling point?
b. completely convert the 100°C water to steam?

E11. If 200 cal of heat are added to a system, how much energy
has been added in joules?

E12. If 600 J of heat are added to 50 g of water initially at 20°C,
a. how much energy is this in calories?
b. what is the final temperature of the water?

E13. While a gas does 300 J of work on its surroundings, 800 J
of heat is added to the gas. What is the change in the inter-
nal energy of the gas?

E14. The volume of an ideal gas is increased from 0.8 m3 to
2.4 m3 while maintaining a constant pressure of 1000 Pa
(1 Pa � 1 N/m2). How much work is done by the gas in
this expansion?

E15. If the initial temperature in exercise E14 is 700K, what is the
final temperature?

E16. Work of 1500 J is done on an ideal gas, but the internal
energy increases by only 800 J. What is the amount and
direction of heat flow into or out of the system?

E17. If 500 cal of heat are added to a gas, and the gas expands
doing 500 J of work on its surroundings, what is the
change in the internal energy of the gas?

E18. Work of 600 J is done by stirring an insulated beaker con-
taining 100 g of water.
a. What is the change in the internal energy of the system?
b. What is the change in the temperature of the water?

synthesis problems

SP1. Heat is added to an object initially at 30°C, increasing its
temperature to 80°C.
a. What is the temperature change of the object in Fahren-

heit degrees?
b. What is the temperature change of the object in kelvins?
c. Is there any difference in the numerical value of a heat

capacity expressed in cal/g·C° from one expressed in
cal/g·K? Explain.

SP2. A student constructs a thermometer and invents her own
temperature scale with the ice point of water at 0°S (S for

student) and the boiling point of water at 50°S. She mea-
sures the temperature of a beaker of water with her ther-
mometer and finds it to be 15°S.
a. What is the temperature of the water in degrees Celsius?
b. What is the temperature of the water in degrees

Fahrenheit?
c. What is the temperature of the water in kelvins?
d. Is the temperature range spanned by 1 Student degree

larger or smaller than the range spanned by 1 Celsius
degree? Explain.
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SP5. A beaker containing 400 g of water has 1200 J of work
done on it by stirring and 200 cal of heat added to it from
a hot plate.
a. What is the change in the internal energy of the water

in joules?
b. What is the change in the internal energy of the water

in calories?
c. What is the temperature change of the water?
d. Would your answers to the first three parts differ if

there had been 200 J of work done and 1200 cal of heat
added? Explain.

SP6. Suppose that the pressure of an ideal gas mixture remains
constant at 1800 Pa (1 Pa = 1N/m2) and the temperature is
increased from 250K to 750K.
a. If the original volume of the gas was 0.15 m3, what is

the final volume? (See example box 10.3.)
b. What is the change in volume �V for this process?
c. How much work does the gas do on the surroundings

during the expansion?
d. If the initial volume was 0.24m3 and the same tempera-

ture change occurred, would the work done be the same
as in the first case? Show by repeating the steps of the
first three parts.

e. Is the same amount of gas involved in these two situa-
tions? Explain.

Home Experiments and Observations 211

SP3. The initial temperature of 150 g of ice is �20°C. The spe-
cific heat capacity of ice is 0.5 cal/g·C° and water’s is
1 cal/g·C°. The latent heat of fusion of water is 80 cal/g.
a. How much heat is required to raise the ice to 0°C and

completely melt the ice?
b. How much additional heat is required to heat the water

(obtained by melting the ice) to 25°C?
c. What is the total heat that must be added to convert the

80 g of ice at �20°C to water at �25°C?
d. Can we find this total heat simply by computing how

much heat is required to melt the ice and adding the
amount of heat required to raise the temperature of 80 g
of water by 45°C? Explain.

SP4. A 150-g quantity of a certain metal, initially at 120°C, is
dropped into an insulated beaker containing 100 g of water
at 20°C. The final temperature of the metal and water in
the beaker is measured as 35°C. Assume that the heat ca-
pacity of the beaker can be ignored.
a. How much heat has been transferred from the metal to

the water?
b. Given the temperature change and mass of the metal,

what is the specific heat capacity of the metal?
c. If the final temperature of the water and this metal is

70°C instead of 35°C, what quantity of this metal (ini-
tially at 120°C) was dropped into the insulated beaker?

home experiments and observations

HE1. Look around your home to see what kinds of thermometers
you can find. Indoor, outdoor, clinical, or cooking thermo-
meters can be found in most homes. For each thermometer,
note:
a. What temperature scales are used?
b. What is the temperature range of the thermometer?
c. What is the smallest temperature change that can be

read on each thermometer?
d. What changing physical property is used to indicate

change in temperature for each thermometer?

HE2. Take two Styrofoam cups, partially fill them with equal
amounts of cold water, and drop equal amounts of ice into
each cup to obtain a mixture of ice and water.
a. Stir the water and ice mixture in one of the cups vigor-

ously with a nonmetallic stirrer until all of the ice has
been melted. Note the time that it takes to melt the ice.

b. Set the second cup aside and observe it every 10 min-
utes or so until all the ice has melted. Note the time that
it takes for the ice to melt.

c. How do the times compare? Where is the energy com-
ing from to melt the ice in each cup?

HE3. Fill a Styrofoam cup with very hot water (or coffee). Take
objects made of different materials such as a metal spoon,
a wooden pencil, a plastic pen, or a glass rod. Put one end
of each object into the water and make these observations:
a. How close to the surface of the water do you have to

hold the object for it to feel noticeably warm to the
touch?

b. From your observations, which material would you
judge to be the best conductor of heat? Which is the
worst? Can you rank the materials according to their
ability to conduct heat?

HE4. Conduct an energy survey of your residence-hall room or
other similar living space. Note:
a. What is the heat source (or sources) for the room and

how does this heat flow into the room? What heat-flow
mechanisms are involved?

b. How is heat lost from the room? What heat-flow mech-
anisms are involved?

c. What could be done to reduce heat loss or to otherwise
improve the energy efficiency of the room?
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chapter overview
After a discussion of heat engines, we will explore the second law of
thermodynamics. The second law is central to understanding the
efficiency of heat engines. Using both the first and second laws of
thermodynamics, we then consider the use of energy resources in today’s
global economy. These issues have fundamental significance to the
quality of our environment as well as to the health of our economy. The
laws of thermodynamics are critical to making intelligent choices about
energy policy.

chapter outline
1 Heat engines. What is a heat engine? What does the first law of

thermodynamics tell us about how heat engines work?

2 The second law of thermodynamics. How would an ideal heat engine
operate if we could build one? How is the concept of an ideal engine
related to the second law of thermodynamics—what does the second
law say and mean?

3 Refrigerators, heat pumps, and entropy. What does a refrigerator or
heat pump do? What is entropy? How is it related to limitations on
the use of heat energy?

4 Thermal power plants and energy resources. How can we generate
power efficiently? What are the implications of the second law of
thermodynamics in our use of energy resources such as fossil fuels and
solar energy?

5 Perpetual motion and energy frauds. Is perpetual motion possible
according to the laws of thermodynamics? How can we judge the
claims of inventors?

212
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Many of us spend a good portion of our lives driving
or riding in automobiles. We talk about how many miles
per gallon we get or discuss the merits of different
kinds of engines. We regularly drive into gas stations to
buy unleaded gasoline, and we generally have a good
idea of what this fuel costs at different places (fig. 11.1).

How many of us really understand what is going on
inside that engine, though? As we turn the ignition
switch and depress the gas pedal, the engine roars into
action, consumes fuel, and powers the car at our com-
mand, without requiring the driver to have a detailed
knowledge of its principles of operation. Ignorance may
be bliss—until something goes wrong—and then some
understanding of the engine may be useful. What does
an automobile engine do, and how does it work?

The internal combustion engine used in most modern
automobiles is a heat engine. The science of thermody-
namics arose in an attempt to better understand the
principles of operation of steam engines, the first prac-
tical versions of heat engines. Building more efficient
engines was the primary objective. Although steam en-
gines are usually external-combustion engines, whose
fuel is burned outside of the engine rather than inside,
the basic principles of operation of steam engines and
automobile engines are the same.

How do heat engines work? What factors determine
the efficiency of a heat engine, and how can efficiency
be maximized? The second law of thermodynamics plays
a central role. Heat engines will lead us to an exploration
of the second law and the related concept of entropy.
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figure 11.1 Filling up the family chariot. How does the
engine use this fuel to produce motion?

11.1 Heat Engines
Think for a moment about what the internal-combustion
engine in your car does. We have said that both steam en-
gines and gasoline engines are heat engines. What does
this mean? We know that fuel is burned in the engine and
that work is done to move the car. Somehow, work is gen-
erated from heat released in burning the fuel. Can we de-
velop a model that describes the basic features of all heat
engines?

What does a heat engine do?
Let’s sketch a description of what the gasoline engine in
your car does: Fuel in the form of gasoline is mixed with
air and introduced into a can-shaped chamber in the engine
called a cylinder. A spark produced by a spark plug ignites
the gas-air mixture, which burns rapidly (fig. 11.2). Heat is
released from the fuel as it burns, which causes the gases
in the cylinder to expand, doing work on the piston.

Through mechanical connections, work done on the pis-
tons is transferred to the drive shaft and to the wheels of
the car. The wheels push against the road surface, and by
Newton’s third law, the road exerts a force on the tires that
does the work to move the car.

Not all of the heat obtained from burning fuel is con-
verted to work done in moving the car. The exhaust gases

figure 11.2 Heat released by burning gasoline in the
cylinder of an automobile engine causes the piston to move,
converting some of the heat to work.

v

Spark plug
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emerging from the tailpipe of your car are hot, so some
heat is released into the environment. Unused heat is a
general feature of the operation of a heat engine.

This general description shows you the features com-
mon to all heat engines: Thermal energy (heat) is intro-
duced into the engine. Some of this energy is converted to
mechanical work. Some heat is released into the environ-
ment at a temperature lower than the input temperature.
Figure 11.3 presents these ideas schematically. The circle
represents the heat engine. The box at the top is the high-
temperature source of heat, and the box at the bottom is
the lower-temperature environment into which the waste
heat is released.

Efficiency of a heat engine
How much useful mechanical work can an engine produce
for a given energy input of heat? It is important to know
how productive or efficient an engine is. Efficiency is de-
fined as the ratio of the net work done by the engine to the
amount of heat that must be supplied to accomplish this
work. In symbols,

where e is the efficiency, W is the net work done by the en-
gine, and QH is the quantity of heat taken in by the engine

e � 
W

QH

,

from the high-temperature source or heat reservoir. The
work W is positive, since it represents work done by the
engine on the surroundings. (The subscripts H and C used
in this and subsequent sections stand for hot and cold.)

In example box 11.1, a heat engine takes in 1200 J of
heat from a high-temperature source and does 400 J of work
in each cycle, resulting in an efficiency of 1⁄3. We usually
state efficiency as a decimal fraction, 0.33 or 33% in this
case. An efficiency of 33% is greater than that of most
automobile engines but less than that of the steam turbines
powered by coal or oil used in many electric power plants.

In computing this efficiency, we used heat and work
values for one complete cycle. An engine usually functions
in cycles where the engine repeats the same process over
and over. It is necessary to use a complete cycle or an av-
erage of several complete cycles to compute efficiency, be-
cause heat and work exchanges occur at different points
within the cycle.

What does the first law of thermodynamics
tell us about heat engines?
The first law of thermodynamics places some limits on
what a heat engine can do. Since the engine returns to its
initial state at the end of each cycle, its internal energy at
the end of the cycle has the same value as at the beginning.
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figure 11.3 A schematic representation of a heat
engine. Heat is taken in at high temperatures, TH . Some heat
is converted to work, and the remainder is released at a
lower temperature, TC .

TH

TC

QH

QC

W

example box 11.1

Sample Exercise: How Efficient Is This Engine?

A heat engine takes in 1200 J of heat from the high-
temperature heat source in each cycle and does 400 J of
work in each cycle.

a. What is the efficiency of this engine?
b. How much heat is released into the environment

in each cycle?

a. QH � 1200 J

W � 400 J

e � ?

� 33%

b. QC � ? W � QH � QC

so QC � QH � W

� 1200 J � 400 J

� 800 J

� 
1

3
� 0.33

� 
400 J

1200 J

e � 
W

QH
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The change in the internal energy of the engine for one
complete cycle is zero.

The first law states that the change in internal energy is
the difference between the net heat added and the net work
done by the engine (�U � Q � W). Since the change in
internal energy �U is zero for one complete cycle, the net
heat Q flowing into or out of the engine per cycle must
equal the work W done by the engine during the cycle.
Energy is conserved.

Net heat is the difference between the heat input from
the higher-temperature source QH and heat released to the
lower-temperature (or colder) environment QC. The first law
of thermodynamics shows that the net work done by the
heat engine is:

since the work done equals the net heat.*
In the sample exercise in example box 11.1, 800 J of

heat are released to the environment. The width of the ar-
rows in figure 11.4 corresponds to the quantities of heat
and work involved in this example. Start with the wide
arrow at the top: in each cycle, 1200 J of heat are taken in,
400 J (1⁄3 of the total) are converted to work, and 800 J of
heat (2⁄3 of the total) are released to the lower-temperature

W � QH �   0QC 0 ,

reservoir. The arrow representing the released heat is twice
as wide as the arrow depicting the work, and the combined
width of these two arrows equals the width of the arrow of
the original heat input.

Automobile engines, diesel engines, jet engines, and the
steam turbines used in power plants all are heat engines.
You can create a simple steam turbine by placing a pin-
wheel in front of the spout of a tea kettle, as in figure 11.5.
The input heat is supplied to the tea kettle by the stove or
hot plate. Some of this heat is converted to work in turning
the pinwheel. The rest of the heat is released into the room
and does no work on the pinwheel, although it does warm
the room slightly.

If a string or thread is attached to the shaft of the pin-
wheel, work done on the pinwheel could be used to lift a
small weight. This pinwheel steam turbine would not be
powerful or efficient. Designing better engines with both
high power (the rate of doing work) and high efficiency
(the fraction of input heat converted to work) has been
the goal of scientists and mechanical engineers for the last
200 years. Everyday phenomenon box 11.1 discusses a
recent development in this effort. Discovering the factors
that have an impact on efficiency is an important part of
this quest.
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figure 11.4 The arrow widths depict the quantities of
energy in the sample exercise in example box 11.1.

figure 11.5 Steam issuing from the kettle
makes the pinwheel turn in this simple steam turbine.
Work could be done to lift a small weight with such
an engine.

TH

TC

QH = 1200 J

QC = 800 J

W = 400 J

*We are using the absolute value of QC , as indicated by the vertical bars.
Since QC flows out of the engine, it is often considered a negative quan-
tity. The relationship is clearer if we make the minus sign explicit.
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A heat engine takes in heat from a high-temperature
source, converts part of this heat into work, and releases
the remaining heat to the environment at a lower temper-
ature. Gasoline engines in cars, jet engines, rocket engines,
and steam turbines are all heat engines. The efficiency
of an engine is the ratio of work done by the engine to
the amount of heat taken in from the high-temperature
source. Since the change in internal energy is zero for a
complete cycle, the first law of thermodynamics requires
that the work done in one cycle equal the net heat flow
into and out of the engine.

11.2 The Second Law of Thermodynamics
If the efficiency of a typical automobile engine is less than
30%, we seem to be wasting a lot of energy. What is the
best efficiency that we could achieve? What factors deter-
mine efficiency? These questions are as important today for
automotive engineers or designers of modern power plants
as they were for the early designers of steam engines.

What is a Carnot engine?
One of the earliest scientists to be intrigued by these ques-
tions was a young French engineer named Sadi Carnot

216 Chapter 11 Heat Engines and the Second Law of Thermodynamics

Hybrid Automobile Engines

The Situation. Automobile companies have been working
for years to develop better engines and drive systems. The
goals are to achieve greater efficiency and lower exhaust
emissions without excessive increases in cost. Federal and
state environmental regulations provide incentive.

Electric cars have been one solution. Although electric
motors produce essentially no exhaust emissions, electric cars
suffer from limited range, weight issues associated with the
storage batteries, and the need to recharge for several hours
with relatively high-cost electric power. The introduction of
hybrid systems that involve both an electric motor and a
gasoline engine is a more recent development. How do
these hybrid systems work? What are their advantages
and disadvantages?

The Analysis. Although different arrangements are possible,
most hybrid designs allow both the electric motor and the
gasoline engine to turn the transmission, which transmits
power to the drive wheels of the car. The gasoline engine is a
heat engine, but the electric motor is not. The electric motor
converts electrical energy stored in batteries to mechanical
energy to drive the car. Either or both engines can power
the car depending upon conditions. A sophisticated power-
splitting transmission is needed to direct the energy flows.

In city-driving conditions, the electric motor is used to power
the car when starting from a complete stop or accelerating at
low speeds. This avoids the exhaust emissions associated with
using a gasoline engine at speeds at which it is not very effi-
cient. It also avoids the need for a large gasoline engine that 

everyday phenomenon
box 11.1

Gasoline
engine

Gasoline
tank

Battery 
pack

Electric
motor

Power-splitting
transmission

Generator

The gasoline engine and the electric motor can both drive the wheels of a hybrid car. The gasoline
tank and battery pack represent different ways of storing energy.

(continued)
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(1796–1832). Carnot was inspired by the work of his
father, also an engineer, who had studied and written about
the design of water wheels, an important source of me-
chanical power at the time.

The workings of a water wheel provided Carnot with
the basis for modeling an ideal heat engine. Carnot’s father
realized that bringing in all of the water at the highest
point and releasing it at the lowest point maximized the ef-
ficiency of the water wheel. Carnot reasoned that the great-
est efficiency of a heat engine would be obtained by taking
in all of the input heat at a single high temperature and re-
leasing all of the unused heat at a single low temperature.

This would maximize the effective temperature difference
within the limits of the temperatures of the heat source and
the environment.

Carnot imposed another requirement on his ideal en-
gine: all of the processes had to occur without undue tur-
bulence or departure from equilibrium. This requirement
also paralleled his father’s ideas on water wheels. In an
ideal heat engine, the working fluid of the engine (steam,
or whatever else might be used) should be roughly in equi-
librium at all points in the cycle. This condition means that
the engine is completely reversible—it can be turned around
and run the other way at any point in the cycle, because it

11.2 The Second Law of Thermodynamics 217

would otherwise be required for good acceleration. The gaso-
line engine can even be turned off in these situations.

In highway driving, the gasoline engine provides the
primary power with the electric motor kicking in when extra
acceleration is needed. At times when the full power of the
gasoline engine is not needed to drive the car, it is also used
to drive a generator to produce electricity to charge the bat-
teries. (See chapter 14 for a discussion of electric motors and
generators.) Electric power can also be generated by running
the electric motor in reverse when the car is going downhill
or braking for a stop. In this way we recapture and store
energy in the batteries that would otherwise be lost as
low-grade heat. The flow chart shows the different possible
directions of energy flow in a hybrid vehicle.

The advantages of the hybrid system are:

1. Because we are not using the gasoline engine for the
peak power needed for acceleration, we can get by with
a small gasoline engine. The smaller the engine, the
greater the fuel economy.

2. The batteries of the hybrid car are charged by the gaso-
line engine and by recapturing energy in the braking
process. They do not need to be recharged overnight
with high-cost electric power as the batteries for an
all-electric car must be. Also, we do not need as large
a battery pack for the hybrid vehicle as that required
for decent range in an all-electric car.

3. Because it is used mainly for highway driving and
running the generator, the gasoline engine can operate
at its most efficient speed. This leads to lower exhaust
emissions, which are greatest at low speeds and high
accelerations.

The disadvantages of hybrid systems lie primarily in the
extra cost of having both a gasoline engine and a relatively
large electric motor, as well as a sophisticated transmission
for directing the power from these two sources. (Standard
gasoline-engine automobiles require an electric motor as the
starter, but the electric motor used in hybrid cars must have
higher power and greater size.) The hybrid car also has
an expensive battery pack that ultimately will need to be
replaced.

These disadvantages are reflected in higher cost for the
hybrid vehicle than that of a standard gasoline vehicle of
similar size and features. Despite this, hybrid cars have gained
quick acceptance from people who are aware of the environ-
mental benefits of better fuel economy and lower emissions.
More stringent environmental regulations will make hybrid
vehicles an even more attractive option.

Gasoline
engine

Generator

Electric
motor

Battery
pack

Transmission

Power-splitting
transmission

Flow chart showing the possible directions of energy flow in a hybrid
vehicle. During braking, energy flows from the wheels to the battery
pack via the electric motor.
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is always near equilibrium. This was Carnot’s ideal—a real
engine might depart considerably from these conditions.

When Carnot published his paper on the ideal heat en-
gine in 1824, the energy aspects of heat and the first law of
thermodynamics were not yet understood. Carnot pictured
caloric flowing through his engine just as water flowed
through a water wheel. It was not until after the develop-
ment of the first law around 1850 that the full impact of
Carnot’s ideas became apparent. It then became clear that
heat does not simply flow through the engine. Some of the
heat is converted to mechanical work done by the engine.

What are the steps in a Carnot cycle?
The cycle devised by Carnot for an ideal heat engine is
illustrated in figure 11.6. Imagine a gas or some other fluid
contained in a cylinder with a movable piston. In step 1 of the
cycle (the energy input), heat flows into the cylinder at a
single high temperature TH. The gas or fluid expands isother-
mally (at constant temperature) during this process and does
work on the piston. In step 2, the fluid continues to expand,
but no heat is allowed to flow between the cylinder and its
surroundings. This expansion is adiabatic (with no heat flow).

Step 3 is an isothermal compression—work is done by
the piston on the fluid to compress the fluid. This is the
exhaust step, since heat QC flows out of the fluid at a single
low temperature TC during this compression. The final step,
step 4, returns the fluid to its initial condition by an addi-
tional compression done adiabatically. All four steps must
be done slowly so that the fluid is in approximate equilib-
rium at all times. The complete process is then reversible, a
crucial feature of the Carnot engine.

When the fluid is expanding in steps 1 and 2, it is doing
positive work on the piston that can be transmitted by
mechanical links for another use. In steps 3 and 4, the fluid
is being compressed, which requires that work be done on
the engine by external forces. The work added in steps 3

and 4 is less than the amount done by the engine in steps 1
and 2, however, so that the engine does a net amount of
work on the surroundings.

What is the efficiency of a Carnot engine?
The first law of thermodynamics made it possible to com-
pute the efficiency of the Carnot cycle by assuming that 
the working fluid was an ideal gas. The process involves
computing the work done on or by the gas in each step and
the quantities of heat that must be added and removed in
steps 1 and 3. Using the definition of efficiency from sec-
tion 11.1, we obtain

where ec is the Carnot efficiency and TH and TC are the
absolute temperatures (for example, temperatures in Kelvin)
at which heat is taken in and released.

Example box 11.2 illustrates these ideas. For the tem-
peratures given, a Carnot efficiency of approximately 42%
is obtained. According to Carnot’s ideas, this would be the
maximum efficiency possible for any engine operating
between these two temperatures. Any real engine operating
between these same two temperatures has a somewhat lower
efficiency because it is impossible to run a real engine in the
completely reversible manner required for a Carnot engine.

The second law of thermodynamics
The absolute temperature scale was developed in the 1850s
by Lord Kelvin in England. Kelvin was aware of Joule’s
experiments and had a hand in the statement of the first
law of thermodynamics. He was in an excellent position to
take a fresh look at Carnot’s ideas on heat engines.

By combining Carnot’s ideas with the new recognition
that heat flow is a transfer of energy, Kelvin put forth a

ec � 
TH � TC

TH

,
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figure 11.6 The Carnot cycle. Step 1: isothermal expansion; step 2: adiabatic expansion; step 3: isothermal
compression; step 4: adiabatic compression.
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general principle or law of nature. This principle, which we
now call the second law of thermodynamics, is usually
stated as

No engine, working in a continuous cycle, can take heat from
a reservoir at a single temperature and convert that heat com-
pletely to work.

In other words, it is not possible for any heat engine to
have an efficiency of 1 or 100%.

Using the second law of thermodynamics, we can also
show that no engine operating between two given tempera-
tures can have a greater efficiency than a Carnot engine
operating between the same two temperatures. This proof,
which involves the reversible feature of the Carnot cycle,
justifies Carnot’s contention that the Carnot engine is the
best that can be achieved. In fact, if some engine did have
an efficiency greater than the Carnot efficiency, the second
law of thermodynamics would be violated. This argument
is illustrated in figure 11.7.

Here is how the argument goes. An engine with an effi-
ciency greater than the Carnot engine would produce a
greater amount of work than the Carnot engine for the
same amount of heat input QH. Some of this work could be
used to run the Carnot engine in reverse, returning the heat
released by the first engine to the higher-temperature reser-
voir. To run the engine in reverse, we reverse the directions

of the arrows without changing the quantities of heat and
work.

The remaining work (Wexcess in figure 11.7) would be
available for external use, and no heat would end up in the
lower-temperature reservoir. The two engines operating
in tandem would take a small quantity of heat from the
higher-temperature reservoir and convert it completely to
work. This violates the second law of thermodynamics.
Therefore, no engine can have a greater efficiency than a
Carnot engine operating between these two reservoirs.

The Carnot efficiency is thus the maximum possible effi-
ciency for any heat engine operating between these two
temperatures. Since the proof follows from the second law
of thermodynamics, the Carnot efficiency is sometimes
referred to as the second-law efficiency.

The second law of thermodynamics cannot be proved.
It is a law of nature, which, as near as we know, cannot be
violated. It sets a limit on what can be achieved with heat en-
ergy. Time has shown it to be an accurate statement. The sec-
ond law is consistent with what we know about heat transfer,
heat engines, refrigerators, and many other phenomena.

Sadi Carnot developed the concept of a completely
reversible, ideal heat engine. The Carnot engine takes in
all of its heat at a single high temperature and releases
the unused heat at a single low temperature; its efficiency
depends on this temperature difference. The second law
of thermodynamics as stated by Lord Kelvin says that no
continuously operating engine can take in heat at a single
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QH

QC

Wexcess

QC

WCarnot

More 
efficient 
engine

Carnot
engine

TC

TH

figure 11.7 A diagram showing that if some engine had a
greater efficiency than a Carnot engine operating between the
same two temperatures, the second law of thermodynamics
would be violated.

example box 11.2

Sample Exercise: Carnot Efficiency

A steam turbine takes in steam at a temperature of 400°C
and releases steam to the condenser at a temperature of
120°C.

a. What is the Carnot efficiency for this engine?
b. If the turbine takes in 500 kJ of heat in each cycle,

what is the maximum amount of work that could be
generated by the turbine in each cycle?

a. TH � 400°C ec �

� 673 K

TC � 120°C �

� 393 K

e � ? �

� 0.416 (41.6%)

b. QH � 500 kJ e � , so W � eQH

W � ? � (0.416)(500 kJ)

� 208 kJ

W

QH

280 K

673 K

673 K � 393 K

673 K

TH � TC

TH
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temperature and convert that heat completely to work.
Relying on the second law, we can show that no engine
can have a greater efficiency than a Carnot engine oper-
ating between the same two temperatures.

11.3 Refrigerators, Heat Pumps,
and Entropy
To a teenager, the automobile and the refrigerator just may
be the two most important inventions. The gasoline engine
in an automobile is a heat engine. What is a refrigerator?
In section 11.2, we talked about running a heat engine in
reverse, with the result that work was used to pump heat
from a colder to a hotter reservoir. Is this what a refrigera-
tor does? Is there a relationship between heat engines and
refrigerators?

What do refrigerators and heat pumps do?
The term refrigerator requires little explanation. We are all
familiar with refrigerators, even if we do not understand
how they function. A refrigerator keeps food cold by pump-
ing heat out of the cooler interior of the refrigerator into the
warmer room (fig. 11.8). An electric motor or gas-powered
engine does the necessary work. A refrigerator also warms
the room, as you can tell by holding your hand near the
coils on the back of the refrigerator when it is running.

Figure 11.9 shows a diagram of a heat engine run in
reverse: It is the same diagram used for heat engines, but the
directions of the arrows showing the flow of energy have
been reversed. Work W is done on the engine, heat QC is
removed from the lower-temperature reservoir, and a greater
quantity of heat QH is released to the higher-temperature
reservoir. A device that moves heat from a cooler reservoir to
a warmer reservoir by means of work supplied from some
external source is called a heat pump or a refrigerator.

The first law of thermodynamics requires that, for a
complete cycle, the heat released at the higher temperature
must equal the energy put into the engine in the form of
both heat and work. As before, the engine returns to its in-
itial condition at the end of each cycle—the internal energy
of the engine does not change. More heat is released at the
higher temperature than was taken in at the lower tem-
perature (fig. 11.9). For example, if 200 J of work are used
to move 300 J of heat from the lower-temperature reser-
voir, then 500 J of heat would be delivered to the higher-
temperature reservoir.

While a refrigerator is a heat pump, the term heat pump
usually refers to a device that heats a building by pump-
ing heat from the colder outdoors to the warmer interior
(fig. 11.10). An electric motor does the work needed to run
the pump. The amount of heat energy available to heat the
house is greater than the work supplied because QH is equal
in magnitude to the sum of the work W and the heat QC

removed from the outside air. We can get a larger amount of
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figure 11.8 A refrigerator pumps heat from the cooler
interior of the refrigerator to the warmer room. The heat
exchange coils that release heat to the room are usually on
the back side of the refrigerator.

figure 11.9 A diagram of a heat engine run in reverse. In
reverse, the heat engine becomes a heat pump or refrigerator.
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heat from the heat pump than by converting the electrical
energy directly to heat, as is done in an electric furnace.

Two sets of coils are used for heat exchange in the heat
pump—one sits outside (fig. 11.11) and removes heat from
the outside air, while the other releases heat to the air
inside the building. Many heat pumps are designed to
pump heat in either direction and can be used as air condi-
tioners in the summer. (Most air conditioners are heat
pumps that pump heat from inside a building to the warmer
exterior.) Heat pumps are most effective for heating houses
in climates where the winters are mild and the difference
between the outside temperature and inside temperature is
not too large.

A heat pump can deliver a quantity of heat to the inside
of the building that is often two to three times the amount of
electric energy supplied as work. Again, the first law of ther-
modynamics is not violated, since the extra energy is being
supplied from the outside air. The work applied to the heat
pump allows us to move thermal energy in the direction op-
posite to its natural tendency, much as a water pump moves
water uphill.

The Clausius statement of the second
law of thermodynamics
Heat normally flows from hotter objects to colder objects.
This natural tendency is the basis for another statement of the
second law of thermodynamics. Often called the Clausius
statement after its originator, Rudolf Clausius (1822–1888), it
takes the form:

Heat will not flow from a colder body to a hotter body unless
some other process is also involved.

In the case of a heat pump, the other process is the work
used to pump the heat against its usual direction of flow.

Although this statement of the second law sounds very
different from the Kelvin statement, they both express the
same fundamental law of nature. They both place limits on
what can be done with heat, and the limits in each statement
are equivalent. This can be shown by an argument similar
to the one that confirmed that no engine can have a greater
efficiency than a Carnot engine operating between the same
two temperatures. 

Figure 11.12 illustrates the argument. If it were possible
for heat to flow from the colder to the hotter reservoir without
any work, heat released by the heat engine on the right
side of the diagram could flow back to the hotter reservoir.
Some heat could then be removed from the hotter reservoir
and converted completely to work. Heat would not be
added to the cooler reservoir. This result violates the Kelvin
statement of the second law of thermodynamics, which says
that taking heat from a reservoir at a single temperature and
converting it completely to work is impossible.

A violation of the Clausius statement of the second law
is therefore a violation of the Kelvin statement. A similar
argument will show that a violation of the Kelvin state-
ment is a violation of the Clausius statement. (You may
want to try your hand at developing this argument.) These
two statements express the same fundamental law of na-
ture in two different ways.

What is entropy?
Is there something inherent in heat that leads to the limita-
tions described in the two statements of the second law of
thermodynamics? Both statements of the second law describe
processes that do not violate the first law of thermodynamics
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figure 11.10 A heat pump removes heat from the outside
air and pumps it into the warmer house.

figure 11.11 The exterior heat-exchange coils for an air-to-
air heat pump are usually located behind the house or building.
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(conservation of energy)—but apparently are not possible.
Certain things cannot be done with heat energy.

Suppose that we had a quantity of heat in a high-
temperature reservoir (perhaps just a container of hot water).
We could imagine two different ways to remove heat from
the source. First, we could simply let the heat flow through
a good heat conductor into the cooler environment, as shown
in figure 11.13a.

Second, we could use this heat to run a heat engine and do
some useful work (fig. 11.13b). If we were to use a Carnot
engine, the process is completely reversible and we have
obtained the maximum possible work from the available heat.
The first process, heat simply flowing through a conductor to
the lower-temperature reservoir, is irreversible. The system is
not in equilibrium while this heat flow takes place, and the
energy is not converted to useful work. In the irreversible
process, we lose some ability to do useful work.

Entropy is the quantity that describes the extent of this
loss. As entropy increases, we lose the ability to do work.
Entropy is sometimes defined as a measure of the disorder
of the system. The entropy of a system increases any time
the disorder or randomness of the system increases. A sys-
tem organized into two reservoirs at two distinct tempera-
tures is, in this sense, more organized than having the
energy all at a single intermediate temperature.

If we use the heat available in the hotter reservoir to run
a completely reversible Carnot engine, there is no increase
in the entropy of the system and its surroundings. We get the
maximum useful work from the available energy. In iso-
lated systems (and in the universe as well), entropy remains

constant in reversible processes but increases in irreversi-
ble processes where conditions are not in equilibrium. The
entropy of a system decreases only if it interacts with some
other system whose entropy is increased in the process.
(This happens, for example, in the growth and development
of biological organisms.) The entropy of the universe never
decreases. This statement is yet another version of the sec-
ond law of thermodynamics:

The entropy of the universe or of an isolated system can only
increase or remain constant. Its entropy cannot decrease.

The randomness of heat energy is responsible for the
limitations in the second law of thermodynamics. The en-
tropy of the universe would decrease if heat could flow by
itself from a colder to hotter body—but the Clausius state-
ment of the second law says that this cannot happen. Like-
wise, the entropy of the universe would decrease if heat at
a single temperature could be converted completely to work,
violating the Kelvin statement of the second law.

The thermal energy of a gas consists of the kinetic en-
ergy of the molecules. The velocities of these molecules are
randomly directed, however, as in figure 11.14. Only some
of them move in the proper direction to push the piston to
produce work. If the molecules all moved in the same di-
rection, we could convert their kinetic energy completely 
to work. This would be a lower-entropy (more organized)
condition, but it does not represent the normal condition 
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figure 11.12 If we assume that heat can flow
spontaneously from a colder to a hotter reservoir, the Kelvin
statement of the second law of thermodynamics is violated.
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figure 11.13 Heat can be removed from a high-
temperature source either by direct flow through a conducting
material or by being used to run a heat engine.
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for the thermal energy in a gas. The basic disorganization
of heat energy is responsible for the limitations encom-
passed by the three statements of the second law.

Like internal energy, entropy can be computed for any
state of a given system. The notion of disorder or random-
ness is at the heart of the matter. The state of my office or
of a student’s residence-hall room tends to become more
disordered. This natural tendency of entropy to increase
can only be countered by introducing energy in the form of
work to straighten things up again.

A heat pump or refrigerator is a heat engine run in
reverse: work is supplied to pump heat from a colder to
a hotter body. The Clausius statement of the second law of
thermodynamics, which is equivalent to the Kelvin state-
ment, says that heat normally flows from a hotter to a
colder body and cannot flow in the opposite direction
without some other process being involved. The limitations
on the use of heat expressed in the second law come
about because of the disorganized nature of heat energy.
Entropy is a measure of the disorder of a system. The
entropy of the universe can only increase.

11.4 Thermal Power Plants
and Energy Resources
We use electric power so routinely that most of us do not
stop to think about where that energy comes from. Con-
cerns about the greenhouse effect (see everyday phenome-
non box 10.1) and other environmental issues have recently
pushed questions about how we generate electric power
back into public debate. How is electric power generated in
your area? If hydroelectric power is not a major contribu-
tor, most of your power comes from thermal power sources
that use heat engines.

Thermodynamics plays an extremely important role in
any discussion of the use of energy. What are the most effi-
cient ways of using energy resources such as coal, oil, natu-
ral gas, nuclear energy, solar energy, or geothermal energy?

What bearing do the laws of thermodynamics and the effi-
ciency of heat engines have on these questions?

How does a thermal power plant work?
The most common way of producing electric power in this
country is a thermal power plant fueled by coal, oil, or
natural gas (fossil fuels). The heart of such a plant is a heat
engine. The fuel is burned to release heat that causes the
temperature of the working fluid (usually water and steam)
to increase. Hot steam is run through a turbine (fig. 11.15)
that turns a shaft connected to an electric generator. Elec-
tricity is then transmitted through power lines to consu-
mers (such as homes, offices, and factories).

Because the steam turbine is a heat engine, its efficiency
is inherently limited by the second law of thermodynamics
to the maximum given by the Carnot efficiency. The effi-
ciency of a real heat engine is always less than this limit
because it falls short of the ideal conditions of a Carnot en-
gine. In any real engine, there are always irreversible pro-
cesses taking place. A steam turbine generally comes closer
to the ideal, however, than the internal-combustion engines
used in automobiles. Rapid burning of gasoline-and-air
mixtures in an automobile engine are highly turbulent and
irreversible processes.

Since the maximum possible efficiency is dictated by
the temperature difference between the hot and cold reser-
voirs, heating the steam to as high a temperature as the
materials will permit is advantageous. The materials the
boiler and turbine are made from set an upper limit on the
temperatures that can be tolerated. If these materials begin
to soften or melt, the equipment will obviously deteriorate.
For most steam turbines, the upper temperature limit is
around 600°C, well below the melting point of steel. In
practice, most turbines operate at temperatures below this
limit—550°C is typical.

If a steam turbine is operating between an input temper-
ature of 600°C (873 K) and an exhaust temperature near the
boiling point of water (100°C or 373 K) where the steam
condenses to water, we can compute the maximum possible
efficiency for this turbine:

The difference between these two temperatures is 500 K.
Dividing this by the input temperature of 873 K yields a
Carnot efficiency of 0.57 or 57%. This is the ideal effi-
ciency. The actual efficiency will be somewhat lower and
usually runs between 40% and 50% for modern coal- or
oil-fired power plants.

At best, we can convert about half of the thermal energy
released in burning coal or oil to mechanical work or elec-
trical energy. The rest must be released into the environ-
ment at temperatures too low for running heat engines or
most other functions except space heating. The exhaust
side of the turbines must be cooled to achieve maximum
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figure 11.14 The random directions of gas molecules
prevent us from completely converting their kinetic energy to
useful mechanical work.
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efficiency, and the cooling water is either returned to some
body of water or run through cooling towers, where the
heat is dissipated into the atmosphere (fig. 11.16). This is
the waste heat often referred to in discussions of the en-
vironmental impact of power plants. If the waste heat is
dumped into a river, the temperature of the river will rise,
with possible effects on the fish and other wildlife.

Alternatives to fossil fuels
Nuclear power plants, discussed in chapter 19, also gener-
ate heat to run steam turbines. Because of the effects of
radiation on materials, however, it is not feasible to run the
turbines in a nuclear plant at temperatures as high as those
in fossil-fuel plants. The thermal efficiencies for nuclear
plants are somewhat lower, typically between 30% and 40%.

For equal amounts of energy generated, the amount of
heat released into the environment is somewhat larger for
a nuclear plant than for a fossil-fuel plant. On the other
hand, nuclear power plants do not release carbon dioxide
and other exhaust gases into the atmosphere and do not
contribute to the greenhouse effect. Processing and disposal
of nuclear wastes and concerns about nuclear accidents
continue to be significant issues.

Heat is also available from other sources such as geo-
thermal energy, which is heat that comes from the interior of
the Earth. Hot springs and geysers indicate the presence
of hot water near the surface of the Earth that might be
used for power production, but usually the temperature of
the water is not much greater than 200°C. In places where
steam is available from geysers, low-temperature steam tur-
bines can be run, as in northern California at the Geysers
power plant (fig. 11.17).

If the water temperature is below 200°C, steam turbines
are not effective, and some other fluid with a lower boiling
temperature than water is preferable for running a heat
engine. Isobutane has been studied as a possible working
fluid for low-temperature heat engines. The efficiency of
such an engine would be quite low, however. If water were
available at a temperature of 150°C (423 K), for example,
and cooling water was available at 20°C (293 K), the Carnot
efficiency would be 31%. In practice, the efficiency will be
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figure 11.16 The cooling towers that are a common
feature of many thermal power plants transfer heat from the
cooling water to the atmosphere.
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figure 11.15 A diagram showing the basic components of a thermal-electric power plant. Heat from the boiler generates steam,
which turns the steam turbine. The turbine does work to generate electric power in the generator.
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even less, so it is common to find efficiencies of only 20%
to 25% in proposed geothermal power plants.

Warm ocean currents are yet another source of heat. Pro-
totypes have been developed of ocean power plants that take
advantage of the temperature difference between warm
water at the surface of an ocean and cooler water drawn
from greater depths. Example box 11.3 illustrates a possible
scenario. Although the efficiency is low (6.7% in this case),
so is the cost of water warmed by the sun. It still may be
economically feasible to produce power in this manner.

The sun is an energy source with enormous potential for
development if the costs become competitive. The tem-
peratures that can be achieved with solar power depend on
the type of collection system used. The ordinary flat-plate
collector only achieves relatively low temperatures of 50°C to

100°C, but concentrating collectors that use mirrors or
lenses to focus the sunlight provide much higher tempera-
tures. Figure 11.18 shows a solar power plant in Spain, where
an array of mirrors focuses sunlight on a boiler on a central
tower. The temperatures generated are comparable to those of
fossil-fuel plants, so similar steam turbines can be used.

High-grade and low-grade heat
The temperature makes a big difference in how much use-
ful work can be extracted from heat. The second law of
thermodynamics and the related Carnot efficiency define
the limits. What effects do these factors have on our na-
tional energy policies and our day-to-day use of energy?

Clearly, heat at temperatures around 500°C or higher is
much more useful for running heat engines and producing
mechanical work or electrical energy than heat at lower
temperatures. Heat at these high temperatures is sometimes
called high-grade heat because of its potential for produc-
ing work. Even then, only 50% or less of the heat can ac-
tually be converted to work.

Heat at lower temperatures can produce work but with
considerably lower efficiency. Heat at temperatures around
100°C or lower is generally called low-grade heat. Low-
grade heat is better used for purposes like heating homes 
or buildings (space heating). Space or water heating are the
optimal uses for heat collected by flat-plate solar collectors,
and even from geothermal sources, if they are near enough
to buildings that need heat. Geothermal heat is used for
space heating in Klamath Falls, Oregon, as well as in cer-
tain other parts of the world where conditions are favorable.

Much low-grade heat, such as the low-temperature heat
released from power plants, goes to waste simply because it
is not economical to transport it to places where space heat-
ing may be needed. Nuclear power plants, for example, are
not usually built in populated areas. There are other possible
uses of low-grade heat, such as in agriculture or aquacul-
ture, but we have not gone far in developing such uses.
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figure 11.17 The Geysers power plant in California uses
geothermal energy to run steam turbines.

figure 11.18 At a solar thermal power plant near Seville,
Spain, high temperatures are achieved by focusing sunlight from a
large array of mirrors onto a boiler located at the top of the tower.

example box 11.3

Sample Exercise: What is the efficiency of an
ocean power plant?

As described in the text, a power plant can take
advantage of the temperature difference between warm
water on the surface of the ocean and the cooler water
found at greater depths. A typical surface temperature in
the tropics is 25°C, and deep water can be 5°C. What is
the Cannot efficiency for a heat engine with this
temperature difference?

TH � 25°C e �

� 298 K

TC � 5°C �

� 278 K

e � ? �

� 0.067 (6.7%)

20 K

298 K
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The main advantage of electrical energy is that it can be
easily transported through power lines to users far from the
point of generation. Electrical energy can also be readily
converted to mechanical work by electric motors. Electric
motors operate at efficiencies of 90% or greater because
they are not heat engines. The efficiency involved in pro-
ducing the electrical power in the first place, of course,
may have been considerably lower.

Electrical energy can also be converted back to heat if
desired. Electricity is used for space heating in regions
like the Pacific Northwest, where electric power has been
relatively cheap because of the extensive hydroelectric re-
sources on the Columbia River and its tributaries. The
development of these resources has been subsidized by the
federal government. Low prices encourage the use of a
high-grade form of energy for purposes that might be just
as well served by lower-grade sources.

Energy has been relatively cheap in this country and
in many other parts of the world. Continued economic devel-
opment and depletion of fossil-fuel resources will gradu-
ally change this picture. As scarcity occurs, questions of the
optimal uses of energy resources will become critical. Wise
decisions will depend on the participation of an informed,
scientifically literate citizenry.

Thermal power plants use heat engines—steam turbines—
to generate electric power. These engines are limited
by the Carnot efficiency, which depends on input and
output temperatures. The best that can be achieved is the
50% or so efficiency of fossil-fuel plants. The temperatures
that can be obtained with other energy resources dictate
the best way of using these resources. Lower temperatures
are more suitable for space heating and similar uses than
for power generation. The laws of thermodynamics set
limits on power generation.

11.5 Perpetual Motion
and Energy Frauds
The idea of perpetual motion has long fascinated inven-
tors. The lure of inventing an engine that could run without
fuel, or from some plentiful source like water, is like find-
ing gold. If such an engine could be developed and pat-
ented, the inventor would become even richer than if he or
she had discovered gold.

Is such an engine possible? The laws of thermodynam-
ics impose some limits. Since these laws are consistent
with everything that physicists know about energy and en-
gines, any claim that violates the laws of thermodynamics
should be suspect. We can analyze claims of perpetual mo-
tion or miracle engines by testing to see if they violate ei-
ther the first or second laws of thermodynamics.

Perpetual-motion machines
of the first kind
A proposed engine or machine that would violate the first
law of thermodynamics is called a perpetual-motion ma-
chine of the first kind. Since the first law of thermody-
namics involves conservation of energy, a perpetual-motion
machine of the first kind is one that puts out more energy
as work or heat than it takes in. If the machine or engine is
operating in a continuous cycle, the internal energy must
return to its initial value, and the energy output of the en-
gine must equal its energy input, as we have already seen.

In figure 11.19, the total magnitude of the work and 
heat output is greater than the magnitude of the heat input
(as represented by the width of the arrows). This could 
only happen if there was some source of energy, such as a
battery, within the engine itself. If this were so, the energy
in the battery would gradually be depleted, and the internal
energy of the engine would decrease. The engine could not
run indefinitely.

The fact that physicists reject such an engine as impossi-
ble does not keep inventors from proposing them. From
time to time, we see claims reported in newspapers and
other popular media of engines that can run indefinitely
fueled only by a gallon of water or a minuscule quantity of
gasoline. Given the sometimes high price of gasoline, such
claims have an obvious appeal and often attract investors
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figure 11.19 A perpetual-motion machine of the first kind.
The energy output exceeds the input and therefore violates the
first law of thermodynamics.
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and other interest. With your knowledge of physics, though,
you could ask the inventor some simple questions: Where
is the energy coming from? How can the machine put more
energy out than went in? Hang on to your wallet—it looks
like a poor investment.

What is a perpetual-motion machine
of the second kind?
Engines that would violate the second law of thermody-
namics without violating the first law often are a little more
subtle. Their inventors have learned how to answer the
questions in the previous paragraph. They have a source of
energy—perhaps they plan to extract heat from the atmo-
sphere or the ocean. These claims must be evaluated in
terms of the second law of thermodynamics. If the second
law is violated, the inventor has proposed a perpetual-
motion machine of the second kind (fig. 11.20).

The second law states that it is not possible to take heat
from a reservoir at a single temperature and convert it com-
pletely to work. We must have a lower-temperature reser-
voir available, and some heat must be released into that
reservoir. In addition, even if we have a lower-temperature
reservoir, the efficiency of any engine running between
the two reservoirs will be quite low if the temperature dif-
ference between the reservoirs is not great. Any claim of

efficiency greater than the Carnot efficiency (for the avail-
able temperature difference) also violates the second law
of thermodynamics.

The laws of thermodynamics are useful in evaluating an
inventor’s claims, and they also guide our attempts to build
better engines and to use energy more efficiently. Better
engines can and will be developed, and their inventors may
indeed be enriched in the process. A host of possibilities
exist that involve relatively low-grade energy sources or
other special circumstances. Engineers and scientists are
also working on developing special materials and innova-
tive designs for engines that might use even higher temper-
atures than are common in today’s fossil-fuel plants. These
efforts do not violate the laws of thermodynamics.

Most physics departments receive inquiries from local
inventors seeking endorsement or help with their schemes
for producing or using energy. The inventors are often
sincere and sometimes quite well informed. Occasionally
their ideas have merit, although they are often based on
misunderstandings of the laws of thermodynamics (see
everyday phenomenon box 11.2). Unfortunately, it is often
hard to persuade inventors that their ideas will not work,
even when they involve clear violations of the laws of ther-
modynamics.

Other cases are more clearly the work of charlatans.
Inventors who begin with good intentions sometimes dis-
cover that their ideas attract money from eager investors
even when the invention fails to work. Some inventors
have managed to raise several million dollars for the design
and testing of prototype engines. Somehow, the engines
are never quite finished, or tests are inconclusive and more
money is needed to continue the work. The inventors, in
the meantime, live quite well and find that promoting their
inventions is more lucrative than actually building and test-
ing them.

Investors beware. We know of no circumstances that vio-
late the laws of thermodynamics. The failure of repeated
attempts to violate them reinforces our belief in their valid-
ity. The laws cannot be proved, but their proven ability to
accurately describe experimental results gives physicists con-
fidence that they will continue to be useful indicators of what
is possible.

A perpetual-motion machine of the first kind violates
the first law of thermodynamics because more work is
obtained than the energy input. A perpetual-motion
machine of the second kind violates the second law of
thermodynamics either by converting heat completely to
work or by claiming an efficiency greater than the Carnot
efficiency. Physicists do not believe that either of these
options is possible, but inventors keep trying and investors
keep wasting money on such schemes. The laws of thermo-
dynamics place limits on what we can do and guide our
attempts to build better engines.
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figure 11.20 A perpetual-motion machine of the second
kind. Heat is extracted from a reservoir at a single temperature
and converted completely to work, thus violating the second law
of thermodynamics.
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A Productive Pond

The Situation. A local farmer consulted with the author
about an idea he had for generating electricity on his farm.
The farmer had a pond that he thought could be used 
to run a water wheel, which could power an electric 
generator. He brought a sketch that looked something 
like the drawing here.

The sketch showed a drain pipe at the bottom of the
pond. The farmer was aware that water would flow down
such a drain with considerable velocity. His plan was to direct
water through a pipe to the side of the pond and then up
above the pond level, where it would flow onto a water
wheel, powering the generator. The water would return to the
pond after leaving the water wheel, so there would be no
need to replenish the water supply, except to replace water
lost to evaporation or seepage.

How would you advise the farmer? Will this plan work?
Does it represent a perpetual-motion machine, and, if so, of
what kind?

The Analysis. Just by looking at the overall result, we see
that work is being obtained to turn the generator without the
input of any energy in the form of heat or work. Because
the pond returns to its initial state (with the same internal
energy), the first law of thermodynamics (or the principle
of conservation of energy) is violated by the proposal.
The farmer’s plan is a perpetual-motion machine of the 
first kind.

If we look at the mechanics in more detail, we see that
the water will indeed gain kinetic energy as it flows down the
drain. This gain in kinetic energy comes at the expense of a
loss in potential energy as the pond level is lowered. Direct-
ing the water upward causes it to regain potential energy at
the expense of kinetic energy: it will slow down. If there are
no losses due to friction, its velocity should reach zero at the
point where it reaches the original level of the pond.

In an initial surge when the valve is opened, the water
might overshoot the original pond level, but water cannot
be raised above this level in a continuous process. Eventually
the water in the vertical pipe will reach the same level as the
pond, and no water will flow. The proposal will not work.

Although the author explained these ideas to the farmer
carefully, and the farmer was an educated and intelligent
person, the farmer still was not persuaded that his idea
would not work. Because the farmer was not convinced by
the theoretical arguments, the author encouraged him to
make a small scale model before investing any money in
plumbing his pond. Models or prototypes are a good way
to test ideas and can sometimes be more convincing than
theoretical arguments. (Whether or not the farmer actually
tried out his plan was never reported to the author.)
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everyday phenomenon
box 11.2

Generator

Water turbine

A sketch of the farmer’s plan for obtaining electrical power from his
pond. Which law of thermodynamics does he propose to violate?
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Attempts to build better steam engines led to a more general
analysis of heat engines and, ultimately, to a statement of the sec-
ond law of thermodynamics. The second law explains the work-
ings of heat engines and refrigerators, and the concept of entropy.
An understanding of the laws of thermodynamics is crucial to
making wise energy choices and policy decisions.

1 Heat engines. A heat engine is any device that takes 
in heat from a high-temperature source and converts some of this
heat to useful mechanical work. In the process, some heat is al-
ways released at lower temperatures into the environment. The
efficiency of a heat engine is defined as the work output divided
by the heat input.

thought of as a measure of the disorder of a system. This disorder
is responsible for the limitations expressed in the second law. Ir-
reversible processes always increase the entropy of the universe.
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2 The second law of thermodynamics. The Kelvin
statement of the second law says that it is not possible for an en-
gine, working in a continuous cycle, to take in heat at a single
temperature and convert that heat completely to work. The maxi-
mum possible efficiency for any engine operating between two
given temperatures is that of a Carnot engine. It is always less
than 1 or 100%.

3 Refrigerators, heat pumps, and entropy. A heat
pump or refrigerator is a heat engine run in reverse—it uses work
to move heat from a low-temperature body to a hotter one. The
Clausius statement of the second law says that heat will not flow
spontaneously from a colder to a hotter body. Entropy can be

4 Thermal power plants and energy resources.
Power plants that use heat generated from coal, oil, natural gas,
nuclear fuels, geothermal sources, or the sun to produce electrical
energy are all examples of thermal power plants. Their efficiency
cannot be greater than the Carnot efficiency, so high input tem-
peratures are desirable.

5 Perpetual motion and energy frauds. Any pro-
posed device that would violate the first law of thermodynamics is
called a perpetual-motion machine of the first kind. One that
would violate the second law, but not the first, is called a perpetual-
motion machine of the second kind. Neither will work.
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* � more open-ended questions, requiring lengthier responses, suitable
for group discussion 
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. Which of these types of motors or engines are heat engines?
a. an automobile engine
b. an electric motor
c. a steam turbine
Explain your reasons for classifying or not classifying each
of these as a heat engine.

Q2. Could a simple machine such as a lever, a pulley system, or
a hydraulic jack be considered a heat engine? Explain.

Q3. In applying the first law of thermodynamics to a heat en-
gine, why is the change in the internal energy of the engine
assumed to be zero? Explain.

Q4. Is the total amount of heat released by a heat engine to the
low-temperature reservoir in one cycle ever greater than
the amount of heat taken in from the high-temperature
reservoir in one cycle? Explain.

Q5. From the perspective of the first law of thermodynamics,
is it possible for a heat engine to have an efficiency greater
than 1? Explain.

Q6. Which law of thermodynamics requires the work output of
the engine to equal the difference in the quantities of heat
taken in and released by the engine? Explain.

Q7. Is it possible for a heat engine to operate as shown in the fol-
lowing diagram? Explain, using the laws of thermodynamics.

Q8. Is it possible for a heat engine to operate as shown in 
the following diagram? Explain, using the laws of
thermodynamics.

Q9. Is it possible for a heat engine to operate as shown in
the following diagram? Explain, using the laws of
thermodynamics.

Q10. Is it possible for the efficiency of a heat engine to equal 1?
Explain.

Q11. Can a Carnot engine operate in an irreversible manner?
Explain.

Q12. Does a gasoline-burning automobile engine operate in a
reversible manner? Explain.

Q13. Which would have the greater efficiency—a Carnot
engine operating between the temperatures of 400°C and
300°C, or one operating between the temperatures of
400 K and 300 K? Explain.
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*Q14. If we want to increase the efficiency of a Carnot engine,
would it be more effective to raise the temperature of the
high-temperature reservoir by 50°C or lower the tempera-
ture of the low-temperature reservoir by 50°C? Explain.

Q15. Is a heat pump the same thing as a heat engine? Explain.

Q16. Is a heat pump essentially the same thing as a refrigera-
tor? Explain.

Q17. When a heat pump is used to heat a building, where does
the heat come from? Explain.

Q18. Is it possible to cool a closed room by leaving the door of
a refrigerator open in the room? Explain.

Q19. Is it ever possible to move heat from a cooler to a warmer
temperature? Explain.

Q20. Is it possible for a heat pump to operate as shown in the
diagram? Explain, using the laws of thermodynamics.

Q23. Which has the higher entropy, a deck of cards in which
the cards are organized by suit or a shuffled deck of
cards? Explain.

Q24. A hot cup of coffee is allowed to cool down, thus warm-
ing its surroundings. Does the entropy of the universe in-
crease in this process? Explain.

*Q25. When a substance freezes, the molecules become more
organized and the entropy decreases. Does this involve a
violation of the entropy statement of the second law of
thermodynamics? Explain.

Q26. Which would normally have the greater thermal effi-
ciency, a coal-fired power plant or a geothermal power
plant? Explain.

Q27. In what ways is a nuclear power plant similar to a coal-
fired plant? Explain.

Q28. What is the distinction between high-grade heat and low-
grade heat? Explain.

*Q29. Electric motors convert electric energy to mechanical work
at a much higher efficiency than gasoline engines can
convert heat to work. Why might it not make sense, then,
to run all of our vehicles on electric power? Where does
the electric power originate? Explain.

Q30. Is heat obtained from a flat-plate solar collector best used
for running a heat engine or for space heating? Explain.

Q31. Is an automobile engine a perpetual-motion machine?
Explain.

Q32. An engineer proposes a power plant that will extract heat
from warm surface water in the ocean, convert some of it
to work, and release the remaining heat into cooler water
at greater depths. Is this a perpetual-motion machine and,
if so, what kind? Explain.

Q33. An engineer proposes a device that will extract heat from
the atmosphere, convert some of it to work, and release the
remaining heat back into the atmosphere at the same tem-
perature as the input heat. Is this a perpetual-motion ma-
chine and, if so, what kind? Explain.

Questions 231

TH

TC QC

QH

W

TH QH

TC QC

QH 

QC

W

TH

TC

Q21. Is it possible for a heat pump to operate as shown in the
diagram? Explain, using the laws of thermodynamics.

Q22. Is it possible for a heat pump to operate as shown in the
diagram? Explain, using the laws of thermodynamics.

Q22 Diagram

Q20 Diagram

Q21 Diagram
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SP1. Suppose that a typical automobile engine operates at an ef-
ficiency of 25%. One gallon of gasoline releases approxi-
mately 150 MJ of heat when it is burned. (A megajoule,
MJ, is a million joules.)
a. Of the energy available in a gallon of gas, how much

energy can be used to do useful work in moving the
automobile and running its accessories?

b. How much heat per gallon is released to the environ-
ment in the exhaust gases and via the radiator?

c. If the car is moving at constant speed, how is the work
output of the engine used?

d. Would you expect the efficiency of the engine to be
greater on a very hot day or on a cold day? Explain.
(There may be competing effects at work.)

SP2. Suppose that a certain Carnot engine operates between the
temperatures of 500°C and 150°C and produces 30 J of
work in each complete cycle.
a. What is the efficiency of this engine?
b. How much heat does it take in from the 450°C reservoir

in each cycle?
c. How much heat is released to the 150°C reservoir in

each cycle?
d. What is the change, if any, in the internal energy of the

engine in each cycle?

232 Chapter 11 Heat Engines and the Second Law of Thermodynamics

exercises

E1. In one cycle, a heat engine takes in 1000 J of heat from
a high-temperature reservoir, releases 600 J of heat to a
lower-temperature reservoir, and does 400 J of work. What
is its efficiency?

E2. A heat engine with an efficiency of 25% does 400 J of
work in each cycle. How much heat must be supplied from
the high-temperature source in each cycle?

E3. In one cycle, a heat engine takes in 900 J of heat from a
high-temperature reservoir and releases 600 J of heat to
a lower-temperature reservoir.
a. How much work is done by the engine in each cycle?
b. What is its efficiency?

E4. A heat engine with an efficiency of 40% takes in 600 J of
heat from the high-temperature reservoir in each cycle.
a. How much work does the engine do in each cycle?
b. How much heat is released to the low-temperature

reservoir?

E5. In one cycle, a heat engine does 400 J of work and releases
500 J of heat to a lower-temperature reservoir.
a. How much heat does it take in from the higher-

temperature reservoir?
b. What is the efficiency of the engine?

E6. A Carnot engine takes in heat at a temperature of 650 K
and releases heat to a reservoir at a temperature of 350 K.
What is its efficiency?

E7. A Carnot engine takes in heat from a reservoir at 400°C
and releases heat to a lower-temperature reservoir at 150°C.
What is its efficiency?

E8. A Carnot engine operates between temperatures of 600 K
and 400 K and does 150 J of work in each cycle.
a. What is its efficiency?
b. How much heat does it take in from the higher-

temperature reservoir in each cycle?

E9. A heat pump takes in 300 J of heat from a low-temperature
reservoir in each cycle and uses 150 J of work per cycle to
move the heat to a higher-temperature reservoir. How much
heat is released to the higher-temperature reservoir in each
cycle?

E10. In each cycle of its operation, a refrigerator removes 18 J
of heat from the inside of the refrigerator and releases 30 J of
heat into the room. How much work per cycle is required
to operate this refrigerator?

E11. A typical electric refrigerator has a power rating of 400 W,
which is the rate (in J/s) at which electrical energy is sup-
plied to do the work needed to remove heat from the re-
frigerator. If the refrigerator releases heat to the room at a
rate of 900 W, at what rate (in watts) does it remove heat
from the inside of the refrigerator?

E12. A typical nuclear power plant delivers heat from the reactor
to the turbines at a temperature of 540°C. If the turbines
release heat at a temperature of 200°C, what is the maxi-
mum possible efficiency of these turbines?

E13. An ocean thermal-energy power plant takes in warm sur-
face water at a temperature of 22°C and releases heat at
10°C to cooler water drawn from deeper in the ocean. Is it
possible for this power plant to operate at an efficiency of
8%? Justify your answer.

E14. An engineer designs a heat engine using flat-plate solar
collectors. The collectors deliver heat at 70°C and the en-
gine releases heat to the surroundings at 35°C. What is the
maximum possible efficiency of this engine?

synthesis problems
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SP3. A Carnot engine operating in reverse as a heat pump moves
heat from a cold reservoir at 5°C to a warmer one at 25°C.
a. What is the efficiency of a Carnot engine operating be-

tween these two temperatures?
b. If the Carnot heat pump releases 200 J of heat into the

higher-temperature reservoir in each cycle, how much
work must be provided in each cycle?

c. How much heat is removed from the 5°C reservoir in
each cycle?

d. The performance of a refrigerator or heat pump is de-
scribed by a “coefficient of performance” defined as
K � Qc/W. What is the coefficient of performance for
our Carnot heat pump?

e. Are the temperatures used in this example appropriate
to the application of a heat pump for home heating?
Explain.

SP4. In section 11.3, we showed that a violation of the Clausius
statement of the second law of thermodynamics is a viola-
tion of the Kelvin statement. Develop an argument to show
that the reverse is also true: a violation of the Kelvin state-
ment is a violation of the Clausius statement.

SP5. Suppose that an oil-fired power plant is designed to pro-
duce 100 MW (megawatts) of electrical power. The turbine
operates between temperatures of 650°C and 240°C and
has an efficiency that is 80% of the ideal Carnot efficiency
for these temperatures.
a. What is the Carnot efficiency for these temperatures?
b. What is the efficiency of the actual oil-fired turbines?
c. How many kilowatt-hours (kW·h) of electrical energy

does the plant generate in 1 h? (The kilowatt-hour is an
energy unit equal to 1 kW of power multiplied by 1 h.)

d. How many kilowatt-hours of heat must be obtained
from the oil in each hour?

e. If one barrel of oil yields 1700 kW·h of heat, how much
oil is used by the plant each hour?

Home Experiments and Observations 233

HE1. If there is a refrigerator handy in your residence hall or
home, study the construction of the refrigerator to make
these observations:
a. What energy source (gas or electricity) provides the work

necessary to remove the heat? Can you find a power rat-
ing somewhere on the refrigerator?

b. Where are the heat-exchange coils that are used to re-
lease heat into the room? (They are usually on the back
of the refrigerator, often near the bottom.)

c. Use a thermometer to determine the temperatures inside
the refrigerator, inside the freezer compartment, near the
heat-exchange coils outside, and in the room at some
distance from the refrigerator. You should take measure-
ments at different times to see how much these temper-
atures vary.

HE2. Find a local car dealer who sells hybrid automobiles. (Honda
and Toyota are currently the best bets.) Collect literature
describing the specifications for the hybrid vehicle as well
as for other vehicles of similar size. (This information may
also be obtained on the Internet.)
a. Compare the gasoline engine size, horsepower, and esti-

mated gas mileage for the hybrid vehicle and the stan-
dard vehicle of similar size.

b. What are the voltage and current ratings for the batteries
in hybrid and standard vehicles?

c. What tradeoffs do you see in purchasing the hybrid ver-
sus the standard vehicle of similar size?

HE3. What types of power plants are used to generate electricity
in your area? Do they employ heat engines, and if so, what
is the source of heat? Are there cooling towers or other
cooling structures used to release waste heat into the atmo-
sphere? (Your local utility company should be able to pro-
vide such information.)

home experiments and observations
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235

No area of physics has had a greater impact on
the way we live than the study of electricity and mag-
netism. Using electricity and electronic devices has be-
come second nature to us now but would have been
hard to imagine 200 years ago. The invention and
design of television sets, microwave ovens, computers,
cell phones and thousands of other familiar appliances
and devices have all required an understanding of
the basic principles of electricity and magnetism.

Although the effects of magnets and static elec-
tricity had been known for a long time, our basic
knowledge of electricity and magnetism is mainly a
product of the nineteenth century. A key invention
at the turn of the century opened the door to these
developments. In 1800, the Italian scientist Alessandro
Volta (1745–1827) invented the battery. Volta’s inven-
tion grew out of the work of an Italian physi-
cian, Luigi Galvani (1737–1798), who had discovered
effects that he called animal electricity. Galvani
found that he could produce electrical effects by
probing a frog’s leg with metal scalpels.

Volta discovered that the frog was not necessary.
Two different kinds of metal separated by a suitable
chemical solution were sufficient to produce many of
the electrical effects observed by Galvani. Volta’s vol-
taic piles, which consisted of alternating plates of cop-
per and zinc separated by paper impregnated with a

chemical solution, were capable of producing sus-
tained electric currents. As often happens, this new
device made many new experiments and investiga-
tions possible.

The invention of the battery led to the discovery of
the magnetic effects of electric currents by Hans
Christian Oersted (1777–1851) in 1820. Oersted’s discov-
ery made a formal connection between electricity
and magnetism, leading to the modern term elec-
tromagnetism. Electromagnetism was the hot area of
research for physicists during the 1820s and 1830s, and
key advances were made by Ampère, Faraday, Ohm,
and Weber. In 1865, the Scottish physicist James Clerk
Maxwell (1831–1879) published a comprehensive theory
of electric and magnetic fields that brought together
the insights of many of these other scientists. Maxwell
invented the concepts of electric and magnetic fields,
ideas that proved to be tremendously productive.

Electromagnetism is still an active area of research.
Its ramifications are important in radio and televi-
sion, computers, communications, and other areas of
technology. Despite this importance, the invisibility
of the underlying phenomena makes the subject of
electromagnetism seem abstract and mysterious to
many people. The basic ideas are not difficult, though,
and can be understood by carefully examining famil-
iar phenomena.

Electricity and Magnetism

unit

Three
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chapter overview
The main purpose of this chapter is to describe and explain the
electrostatic force. We will also investigate concepts such as electric field
and electric potential. These concepts will be made more vivid by
describing and interpreting some simple experiments. Experimentation
can lead to a better understanding of electric charge, the distinction
between conductors and insulators, and many other ideas.

chapter outline
1 Effects of electric charge. What is electric charge? How is it involved

in the electrostatic force? How do objects acquire charge?

2 Conductors and insulators. How do insulating materials and
conducting materials differ? How can we test this difference? How
does charging by induction work? Why are bits of paper or Styrofoam
attracted to charged objects?

3 The electrostatic force: Coulomb’s law. What is the electrostatic force
described by Coulomb’s law? How does it depend on charge and 
distance? How is it similar to (and different from) the gravitational
force?

4 The electric field. How is the concept of electric field defined? Why is
it useful? How can we use electric field lines to help us visualize
electrostatic effects?

5 Electric potential. How is the concept of electrostatic potential
defined? How is it related to potential energy? What is voltage? How
are the concepts of electric field and electric potential related?
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Most of us have had the experience of running a
comb through our hair on a dry winter day and hearing
a crackling sound or, if the room is dark enough, even
seeing sparks. Depending on the length and looseness
of the hair, strands of it may have stood on end, as in
figure 12.1. This phenomenon is intriguing but also an-
noying. You often have to wet the comb to get your
hair to behave.

What is happening? Some force seems to be at work,
causing the individual hairs to repel one another. You
would probably identify that force as an electrostatic
force, or at least, you might say that static electricity is
the cause of your unruly hair. To name a phenomenon
is not the same as explaining it, though. Why does static
electricity occur under these conditions, and what is the
force in question?

Hair-and-comb fireworks are just one example of
electrostatic phenomena that are part of our everyday
experience. Why does a piece of plastic refuse to leave
your hand after you peeled it off a package? Why do
you get a slight shock after you walk across a carpeted
floor and touch a light switch? The phenomena range
from static cling and similar annoyances to dramatic dis-
plays of lightning in a big thunderstorm. They are famil-
iar and yet, to many of us, mysterious.

Despite its familiarity, many of us are surprisingly un-
aware of what static electricity is. People are often put off
by a fear of electric shock as well as by the abstract nature
of the subject. It need not be so. Many of the phenom-
ena can be explained with ideas accessible to all of us.

12.1 Effects of Electric Charge 237

figure 12.1 Hair sometimes seems to have a mind of its
own when combed on a dry winter day. What causes the hairs to
repel one another?

12.1 Effects of Electric Charge
What do the hair-combing example and the other phenom-
ena mentioned in the chapter introduction have in common?
The comb passing through your hair, your shoes passing
over the rug, or plastic being peeled from a box all involve
different materials rubbing against one another. Perhaps,
this rubbing is the cause of the phenomena.

How can we test such an idea? One approach would be
to collect different materials, rub them together in various
combinations, and see what we generate in the way of
sparks or other observable effects. Experiments like these
could help to establish which combinations of materials are
most effective in producing electrostatic crackles and pops.
Of course, we would also need some consistent way of
gauging the strength of these effects.

What can we learn from experiments
with pith balls?
A common way of demonstrating electrostatic effects is to
rub plastic or glass rods with different furs or fabrics. If
we rub a plastic or hard rubber rod with a piece of cat fur,
for example, we can see the hairs on the fur standing out
and snapping at one another. Like the hair-combing fire-
works, these effects are most striking on a dry winter day
when little moisture is in the air. Another piece of equip-
ment often used in these demonstrations is a small stand
to which two pith balls are attached by threads (fig. 12.2).

Pith balls are small wads of dry, paperlike material light
enough to be strongly influenced by electrostatic forces.

An interesting sequence of events happens when a plastic
rod, vigorously rubbed with cat fur on a dry day, is brought
near the pith balls. At first, the pith balls are attracted to the
rod like bits of iron to a magnet. After contacting the rod,

figure 12.2 Pith balls suspended from a small stand are
attracted to a charged plastic rod.
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and perhaps sticking to it for a few seconds, the pith balls
dance away from the rod. They are repelled by the rod at this
point and also by each other. The threads supporting the pith
balls now form an angle to the vertical, as in figure 12.3,
rather than hanging straight down.

How can we explain what has happened? A repulsive
force must be acting between the two pith balls after they
have been in contact with the rod. We might imagine that
the balls have received something (call it electric charge)
from the rod that is responsible for the force we observe.
This charge, whatever it is, was somehow generated by
rubbing the rod with the cat fur. The force that is exerted
by one stationary charge on another is called the electro-
static force.

We can observe further changes if we rub a glass rod
with a piece of synthetic fabric such as nylon. If the glass
rod is brought near the pith balls that had been charged by
the plastic rod, the pith balls are now attracted to the glass
rod. They are still repelled by the plastic rod. If we allow
the pith balls to touch the glass rod, they repeat the se-
quence of events that we observed earlier with the plastic
rod. At first, they are attracted and stick briefly to the rod.
Then, they dance away and are repelled by the rod and by
each other. If we bring the plastic rod near, we now find
that the balls are attracted to the plastic rod.

These observations complicate the picture somewhat.
Apparently, there are at least two types of charge: one gen-
erated by rubbing a plastic rod with fur and another gener-
ated by rubbing a glass rod with nylon. Could there be

more kinds of charge? Further experiments with different
materials would indicate that these two types are all that
we need to explain the effects. Other charged objects will
cause either an attraction or repulsion with the two types
of charge already identified and can be placed in one of
these two categories.

What is an electroscope?
A simple electroscope consists of two leaves of thin metal-
lic foil suspended face-to-face from a metal hook (fig. 12.4).
At one time, gold foil was used, but aluminized mylar is
now preferred. The leaves are connected by the hook to a
metal ball that protrudes from the top of the instrument.
The foil leaves are protected from air currents and other
disturbances by a glass-walled container.

If the foil leaves are uncharged, they will hang straight
down. If we bring a charged rod in contact with the metal
ball on the top, however, the leaves immediately spread
apart. They will remain spread apart even after the rod is
taken away, presumably because the leaves are now charged.

If any charged object is now brought near the metal
ball, the electroscope shows what type of charge is on the
object and gives a rough indication of how much charge is
present. If an object with the same type of charge as the
original rod is brought near the ball, the leaves will spread
farther apart. An object with the opposite charge will make
the leaves come closer together. A larger charge produces a
larger effect.

Although less dramatic than the pith balls, the electro-
scope offers several advantages for detecting the type and
strength of charge. First, the foil leaves do not dance around

238 Chapter 12 Electrostatic Phenomena

figure 12.3 Once the pith balls have moved away from the
rod, they also repel each other, indicating the presence of a
repulsive force.

figure 12.4 A simple electroscope consists of two metallic-
foil leaves suspended from a metal post inside a glass-walled
container.

FF

Metal ball
and post

Foil
leaves
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and become tangled together as pith balls often do. The
metal ball on the electroscope offers a stationary point for
testing other objects. Also, the distance the leaves move
apart or come together when a charged object is brought
near the ball gives a consistent indication of the strength of
the charge.

An electroscope gives further information about the
charging process. When we charge the plastic rod by rub-
bing it with the cat fur, the fur also is charged but with a
charge of the opposite type. We can verify this by bringing
the fur close to the ball on the electroscope after the elec-
troscope has been charged by the rod. When the fur ap-
proaches the metal ball, the leaves move closer together.
They move farther apart when the rod approaches. Similar
experiments show that the glass rod and the nylon fabric
also acquire opposite types of charge when rubbed to-
gether. Example box 12.1 provides another example of
charging by rubbing.

Benjamin Franklin’s single-fluid model
By the middle of the eighteenth century, it was well known
that there were two types of charge that produced electro-
static forces between charged objects. The forces were ei-
ther attractive or repulsive according to the simple rule:

Like charges repel each other, and unlike charges attract each
other.

There was less agreement, however, on what to call
these two types of charge. Charge-produced-on-a-rubber-
rod-when-rubbed-by-cat-fur and charge-produced-on-a-
glass-rod-when-rubbed-with-silk are unwieldy. Positive and
negative, the names we now use, were introduced by the
American statesman and scientist Benjamin Franklin (1706–
1790) around 1750. During the 1740s, Franklin had per-
formed a series of experiments on static electricity like those
we have described.

Franklin proposed that the facts, as they were known,
could be explained by the action of a single fluid that was
transferred from one object to another during charging. The
charge acquired when a surplus of this fluid was gained
was positive (�) and the charge associated with a shortage
of this fluid was negative (�) (fig. 12.5). Which of these
was which was not clear, since the fluid itself was invisible
and not otherwise detectable. Franklin arbitrarily proposed
that the charge on a glass rod when rubbed with silk (there
were no synthetic fabrics then) be called positive.

Besides simplifying the names of the two types of
charge, Franklin’s model offered a picture of what might
be happening during charging. In his model, two objects
become oppositely charged because some neutral or stable
amount of the invisible fluid is present in all objects, and
rubbing objects together transfers some of this fluid from
one object to the other. During rubbing, one object gains

12.1 Effects of Electric Charge 239

figure 12.5 Like charges repel and unlike charges attract.
The plus and minus signs were introduced in Franklin’s single-
fluid model.

Like charges Unlike charges

++

– –

F F

FF

F F
+ –

example box 12.1

Sample Question: Carpet Fireworks

Question: Why do sparks fly when we shuffle across a
carpet on a dry day and then touch a light switch?

Answer: Shuffling our feet on a carpet represents a
rubbing process between two different materials. The
soles of our shoes are often made of a rubberlike material
and the carpet fibers are usually a synthetic fabric. The
rubbing process creates a separation of charge similar to
those we have been describing using rods and fabric. The
charge that our shoes acquire can flow to other parts of
our bodies, which are good conductors.

When we touch a light switch, the charge that we
have acquired discharges producing the sparks. This is
because, when properly wired, the switch is grounded. This
means that the external parts of the switch are connected
via wires and other conductors to the Earth, which serves
as a large sink for charge. The excess charge on our
bodies is discharged to ground via the switch.
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an excess of the fluid while the other experiences a short-
age. Franklin’s model was simpler than an earlier theory
that had proposed two different substances for the two
types of charge.

Franklin’s model comes surprisingly close to our mod-
ern view of what takes place during charging. We now know
that electrons are transferred between objects when they are
rubbed together. Electrons are small, negatively charged
particles present in all atoms and, therefore, in all materi-
als. A negatively charged object has a surplus of electrons,
and a positively charged object has a shortage of elec-
trons. The atomic or chemical properties of materials dic-
tate which way the electrons flow when objects are rubbed
together.

Rubbing different materials together sometimes causes
electric charge to move from one material to the other.
This charge then produces attractive or repulsive electro-
static forces between objects. Like charges repel one
another, and unlike charges attract one another. An elec-
troscope consistently gauges the sign and strength of
charge present. Using Benjamin Franklin’s labels, there are
two types of charge, positive and negative. The positive
and negative labels originally meant a surplus or shortage
of an invisible fluid in Franklin’s model, but we now know
that negatively charged electrons are transferred during
rubbing.

12.2 Conductors and Insulators
The experiments described in section 12.1 gave us some
basic information about the electrostatic force. Different
properties of materials are also important, however, in un-
derstanding the range of electrostatic phenomena. Why were
the pith balls initially attracted to the rod, for example,

even when they were not charged? Why are the leaves in
the electroscope made of metal? The distinction between
insulators and conductors is a big piece of the puzzle.

How do insulators differ from conductors?
Suppose that you touch the electroscope with a charged
plastic or glass rod. The leaves repel one another. What
happens if you then touch the metal ball on top of the elec-
troscope with your finger? The leaves of the electroscope
immediately droop straight down. You have discharged
the electroscope by touching the ball with your finger
(fig. 12.6).

Suppose that you charge up the electroscope again.
Now, touch the metal ball on top with an uncharged rod
made of plastic or glass. There is no effect on the leaves of
the electroscope. If, however, you touch the ball with a
hand-held metal rod, the leaves immediately droop straight
down. The electroscope is discharged.

How can we explain these observations? Apparently,
both the metal rod and your finger allow charge to flow from
the leaves of the electroscope to your body. Your body is a
large neutral sink for charge. You can easily absorb the
charge on the electroscope without much change in your
overall charge. The plastic or glass rods, on the other hand,
do not seem to permit the flow of charge from the electro-
scope to your body.

The metal rod and our bodies are examples of conduc-
tors, materials through which charge can flow readily.
Plastic and glass are examples of insulators, materials that
do not ordinarily permit the flow of charge. By performing
similar experiments using the charged electroscope, we
could test many other materials. We would discover that all
metals are good conductors, while glass, plastic, and most
nonmetallic materials are good insulators. Table 12.1 lists
some examples of insulating and conducting materials.
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figure 12.6 Touching the ball on top of a charged electroscope with either your finger or a metal rod causes the
electroscope to discharge. Touching a charged electroscope with an uncharged glass rod produces no effect.

Metal Glass
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The difference in the ability of good conductors and good
insulators to conduct electric charge is amazingly large.
Charge flows much more readily through several miles of
copper wire than it does through the few inches of ceramic
material used as an insulator on electric transmission lines.

Semiconductors, are materials that are intermediate
between a good conductor and a good insulator. Silicon
is probably the most familiar example. A wooden rod
behaves like a semiconductor in discharging the
electroscope. With the appropriate amount of moisture
in the wood, the rod will cause a slow discharge of the
electroscope.

Although semiconductors are far less common than good
conductors or good insulators, their importance to modern
technology is enormous. The ability to control the level of
conduction in these materials by mixing in small amounts
of other substances has led to the development of miniatur-
ized electronic devices like transistors and integrated
circuits. The entire computer revolution has relied on the
use of these materials, mostly silicon. Chapter 21 gives a
closer look.

Charging a conductor by induction
Can you charge an object without actually touching it with
another charged object? It turns out that you can. The
process is called charging by induction, and it involves the
conducting property of metals.

Suppose that you charge a plastic rod with cat fur and
then bring the rod near a metal ball mounted on an insulat-
ing post, as in figure 12.7. The free electrons in the metal
ball will be repelled by the negatively charged rod. Free to
flow within the ball, they produce a negative charge (ex-
cess electrons) on the side opposite the rod and a positive
charge (shortage of electrons) on the side near the rod. The
overall charge of the metal ball is still zero.

To charge the ball by induction, you now touch the ball
with your finger on the side opposite the rod, still holding the
rod near, but not touching, the ball. The negative charge flows
from the ball to your body, since it is still being repelled

by the negative charge on the rod. If you now remove your
finger and then the rod (in that order), a net positive charge
will be left on the ball (fig. 12.8). You can easily test this
fact by bringing the metal ball near an electroscope that has
been given a negative charge from the plastic rod. The
leaves will come closer together when the ball charged by
induction approaches, indicating the presence of positive
charge on this ball.
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Conductors Insulators Semiconductors

copper glass silicon

silver plastic germanium

iron ceramics

gold paper

salt solution oil

acids

table 12.1

Some Common Conductors, Insulators, and
Semiconductors

figure 12.7 The negatively charged rod is brought near a
metal ball mounted on an insulating post, thus producing a
separation of charge on the ball.

figure 12.8 Touching a finger to the opposite side of the
metal ball draws off the negative charge, leaving the ball with a
net positive charge.
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In this experiment, the proper sequence of events is im-
portant for the experiment to work. The charged rod must
be held in place while the finger touches the ball on the
opposite side and is removed. Only after the finger has been
removed can the charged rod be moved away. The ball ends
up with a charge opposite to the charge on the rod. This
would also be true if we had used a positively charged
glass rod. Then, the metal ball would end up with a nega-
tive charge.

The process of charging by induction illustrates the mo-
bility of charges on a conducting object such as the metal
ball. The process will not work with a glass ball. Charging
by induction is an important process in machines used for
generating electrostatic charges, and in many other practi-
cal devices. It also explains some of the phenomena asso-
ciated with lightning storms. (See page 252.)

Why are insulators attracted
to charged objects?
In our initial experiments with the pith balls, we noted that
the pith balls were attracted to the charged rod before they
had a chance to become charged themselves (fig. 12.2). How
can we explain this phenomenon? What happens inside an
insulating object when it is brought near a charged object?

Unlike the charges in the metal ball, the electrons in the
pith ball or other insulating material are not free to migrate
through the material. Instead, they are tied to the atoms or
molecules of the material. Within an atom or molecule,
however, charges have some freedom of movement. The
distribution of charge within the atom or molecule can
change.

Without delving into details of atomic structure, we can
develop a rough picture of what happens to the charge in
atoms when an insulating material is brought near a charged
object. The basic idea is illustrated in figure 12.9, which
magnifies the pith ball and greatly exaggerates the size of
the atoms. Within each atom, a small distortion of the
charge distribution takes place. The negative charge in the
atom is attracted to the positively charged rod, and the posi-
tive charge is repelled.

Each atom has now become an electric dipole, in which
the center, or average location, of the negative charge is
separated by a slight distance from the center of the posi-
tive charge. The atom now has positive and negative poles—
hence the term dipole—and we say that the material has
become polarized. Overall, these atomic dipoles within the
insulating material produce a slight negative charge on
the surface of the pith ball near the positively charged rod
and a slight positive charge on the opposite surface. The
adjacent positive and negative charges within the material
cancel one another.

The pith ball itself then becomes an electric dipole in
the presence of the charged rod. Since the negatively charged
surface is closer to the rod than the positively charged sur-
face, it experiences a stronger electrostatic force, with the

result that the pith ball is attracted to the charged rod. At
this point, the overall charge on the pith ball is still zero.
Once the ball comes in contact with the charged rod, how-
ever, some of the charge on the rod can be transferred to
the pith ball, which becomes positively charged like the
rod. The pith balls are then repelled by the rod, as we ob-
served earlier.

The ability to become polarized is an important prop-
erty of insulating materials. Polarization explains why small
bits of paper or Styrofoam will be attracted to a charged
object such as a synthetic-fabric sweater rubbed against
some other material (fig. 12.10). Induced polarization is
also a factor in the operation of electrostatic precipitators
used to remove particles from smoke in industrial smoke
stacks. (See everyday phenomenon box 12.1.)
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figure 12.9 The negative charge in the atoms is attracted
to the positively charged glass rod, while the positive charge is
repelled. This produces a polarization of the charge in the atoms.
The size of the atoms is grossly exaggerated.
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figure 12.10 Packing “peanuts” made of plastic foam are
attracted to a charged rod.
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Cleaning Up the Smoke

The Situation. The effects of static electricity often seem to
be just a nuisance. They cause our hair to misbehave and
clothing to cling and sometimes produce annoying shocks. Do
these effects have any useful applications?

Smoke emissions from burning coal and from other indus-
trial processes (as shown in the photograph) have been a
problem ever since the industrial revolution began. These
emissions usually contain many small particles or soot, which
blackened the cities of many industrialized countries begin-
ning in the early 1800s. The problem persists, although we
have made great strides in finding ways of removing these
small particles from smoke. How is static electricity helpful in
addressing this problem?

The Analysis. Electrostatic precipitators are an important
technology for removing small particles from smokestack
emissions. The first electrostatic precipitator was patented in
1907 by Frederick Cottrell, who was then a chemistry professor
at the University of California in Berkeley. They have been used
ever since, with continuing improvements in design and variety.

The design of early precipitators consisted of a row of
highly charged wires (usually negatively charged) spaced
between positively-charged parallel conducting plates (see
diagram). The highly-charged wires cause the gas molecules
flowing through the apparatus to become ionized by gaining
electrons. The ions are attracted by induced polarization of
the particles of ash or dust in the exhaust gas and attach to
these particles, causing them to become negatively charged.
The negatively-charged ash particles are then attracted to the
positively-charged conducting plates and are removed from
the stream of gas flowing through the precipitator.

The actual design of modern precipitators is somewhat
more complex, but the basic principle remains the same. The
conducting plates are often corrugated or have protruding
fins to give them a greater surface area. If the conducting
plates were not cleaned somehow, they would quickly become
coated with ash or dust, so “rappers” must be used to vibrate
the plates at regular time intervals. This causes the ash to fall
into hoppers, which then must be emptied from time to time.

The ionized gas that is produced in the vicinity of the
highly-charged wires is called a corona. The geometry of the
wires produces a very strong electric field (see section 12.4) in
the immediate area around the wires. The situation is like that
pictured in figures 12.14 or 12.15, where the field lines become
very closely spaced near the charges. It is this very strong elec-
tric field in the vicinity of the wires that is responsible for the
ionization of the gas molecules and the resulting corona.

Electrostatic precipitators are effective in removing 
small particles from the smoke produced in metal smelters,
cement plants, power plants, and many other industrial appli-
cations. Sometimes they are also used for removing suspended
dust from the air in homes or other buildings. They are not, by
themselves, effective for removing other pollutants such as sul-
fur, mercury, or organic molecules from exhaust gases.

For these other purposes more sophisticated strategies
must be used. Many of these applications employ devices
called scrubbers. A scrubber will pass the exhaust gases
through a mist of water or other liquid (in a wet scrubber) or
fine particles in the case of a dry scrubber. Through chemical
processes, pollutants such as sulfur will be attracted to the
injected mist droplets or particles. (Sulfur is of particular 
concern in coal-burning power plants.) If a dry scrubber is
used, an electrostatic precipitator might then be used to
remove the particles holding the pollutant.

Depending upon how much money we are willing to
spend, most pollutants can be removed from exhaust gases by
the use of electrostatic precipitators and scrubbers.
However, these processes increase the cost of electric power
and industrial products and often involve some loss in 
efficiency. One pollutant that cannot be readily removed is 
carbon dioxide because it is a basic combustion product and is
in the form of a gas (see chapter 18). Carbon dioxide is a pri-
mary “greenhouse” gas associated with global warming dis-
cussed in everyday phenomenon box 10.1. Whenever we burn
carbon-based fuels such as coal, oil, and natural gas, carbon
dioxide is released into the atmosphere. The only recourse is to
pump it underground or “sequester” it in other ways.

everyday phenomenon
box 12.1
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The particle-laden exhaust gases pass through an array of parallel
collecting plates (positively charged) with the negatively-charged
wires suspended between the plates.
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Experiments in discharging an electroscope show that
different materials vary widely in their ability to allow the
flow of electric charge. Most metals are good conductors,
but glass, plastic, and many other nonmetallic materials
are poor conductors and, therefore, good insulators. A few
materials, called semiconductors, have intermediate abili-
ties to conduct charge. Conductors can be charged by
induction without actually touching the conductor to
another charged object. Insulators become polarized in
the presence of charged objects, which explains why they
are attracted to charged objects.

12.3 The Electrostatic Force:
Coulomb’s Law
Although we cannot see electric charge, we can see the ef-
fects of the forces exerted on charged objects. Pith balls
and foil leaves refuse to hang straight down when they carry
like charges. A repulsive force pushes them apart. Can we
describe this force in a quantitative way? How does it vary
with distance and quantity of charge? Is it similar in some
way to the gravitational force?

Questions such as these were actively explored by sci-
entists in the latter part of the eighteenth century. Like the
gravitational force, the electrostatic force was apparently
present even when objects were not in contact—it acted at
a distance. Although others had already speculated about
the form of the force law, the experiments of the French
scientist Charles Coulomb (1736–1806) during the 1780s
settled the matter, establishing what we now know as
Coulomb’s law.

How did Coulomb measure the
electrostatic force?
At first glance, measuring the strength of a force such
as the electrostatic force might seem like a simple exer-
cise. In reality, it is not an easy thing to do. Although much
stronger than the gravitational force between ordinary-sized
objects, the electrostatic force is still relatively weak, so
Coulomb needed to develop techniques for measuring small
forces. In addition, he was faced with the problem of defin-
ing how much charge was present, far from a trivial matter.

Coulomb’s answer to the problem of measuring weak
forces was to develop what we now call a torsion balance,
shown in figure 12.11. Two small metal balls are balanced on
an insulating rod suspended at the middle from a thin wire.
The balls and wire are contained in a glass-walled enclosure
to avoid disturbance from air currents. A force applied to
either ball perpendicular to the rod produces a torque that
causes the wire to twist. If we have previously determined
how much torque is required to produce a given angle of
twist, we have a method of measuring weak forces.

To measure the electrostatic force, we must somehow
charge one of the balls. A third ball, also charged, can then
be inserted on the end of an insulating rod (fig. 12.11). If it

has the same type of charge as the ball on the end of the
suspended rod, the two charges will repel one another, and
the resulting torque will twist the wire. By adjusting the
distance between the two charged balls, we can measure
the strength of the repulsive force at different distances.

The problem of determining the amount of charge
placed on the balls required even more ingenuity. A simple
electroscope gave only a rough indication of the quantity
of charge present, and no consistent set of units or proce-
dures for specifying quantity of charge were in use at the
time of Coulomb’s work. His solution was to develop a
system of charge division. He started with an unknown
quantity of charge on a single metal ball mounted on an in-
sulating stand, as in figure 12.12. He touched this ball to
an identical ball mounted on a similar stand. He reasoned
that the two balls would now contain equal quantities of
charge (half of the original amount on the first ball), which
was verified by bringing the balls near an electroscope.

If a third identical metal ball touched one of the first
two, the charge would again be divided equally, and these
two balls would each have one-half the charge of the ball
that did not participate in this second exchange. If several
more identical balls are available, splitting the charge can
be continued. Although this process does not provide an
absolute measure of charge, we can say with confidence
that one ball contains twice as much charge, or perhaps
four times as much charge, as another.

Coulomb used this process to test the effects of differ-
ent amounts of charge on the electrostatic force. If the

figure 12.11 A diagram of Coulomb’s torsion balance.
The degree of twist of the wire provides a measure of the
repulsive force between the two charges.

+ +

Glass enclosure

Charged balls

Thin wire

gri12117_ch12_235_256.qxd  7/16/08  3:55 AM  Page 244



Confirming Pages

balls used in splitting the charge were identical in size to
those in the torsion balance, touching one of the torsion-
balance balls with one of the others was just one more di-
vision of charge. Using these procedures, Coulomb was
able to determine how the strength of the electrostatic
force varied with the quantity of charge on each object and
the distance between the two charged objects.

What were the results of Coulomb’s
measurements?
The results of Coulomb’s work can be stated in a relation-
ship usually referred to as Coulomb’s law:

The electrostatic force between two charged objects is propor-
tional to the quantity of each of the charges and inversely
proportional to the square of the distance between the
charges, or

Here the letter q represents the quantity of charge, k is a
constant (called Coulomb’s constant) whose value depends
on the units used, and r is the distance between the centers
of the two charges.

Figure 12.13 illustrates Coulomb’s law. The forces obey
Newton’s third law—the two charges experience equal but
oppositely directed forces. The two charges shown are both
positive, so the force is repulsive, since like charges repel.
If one charge were negative and the other positive, the di-
rections of both forces would be reversed.

Although Coulomb himself used different units, we now
usually express charge in units called coulombs (C). If
distance is measured in meters, the value of Coulomb’s

F �
kq1q2

r2 .

constant turns out to be approximately k � 9 � 109 N·m2/C2.
The coulomb itself is determined by measurements involv-
ing electric current discussed in chapter 14. A force compu-
tation using Coulomb’s law is shown in example box 12.2.

The coulomb (C) is a relatively large unit of charge. At the
atomic level, the basic quantity of charge is 1.6 × 10-19C, the
magnitude of the charge on an electron (which is negative). A
pith ball might ordinarily hold a charge of about 10-10C,
which represents the absence or presence of a billion or so
(109) electrons. Had the two positive charges in example 
box 12.2 been coulomb-sized charges instead of micro-
coulombs, we would have found an enormous force.

Coulomb’s law compared to Newton’s
law of gravity
The electrostatic force has the same inverse-square depen-
dence on distance as Newton’s law of gravitation (see chap-
ter 5). If we double the distance between the two charges,
the force between the two charges falls to only one-fourth
what it was before the distance was doubled. Tripling the
distance produces a force that is one-ninth the force at
the original distance, and so forth. The strength of the in-
teraction between the two charges falls off rapidly when
the distance between them is increased.
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figure 12.12 By bringing two identical metal balls into
contact, one charged and the other one initially uncharged, equal
quantities of charge are obtained on the two balls.

figure 12.13 Two positive charges exert equal but oppositely
directed forces upon one another, according to Coulomb’s law and
Newton’s third law of motion. The force is inversely proportional to
the square of the distance r between the two charges.

–F Fr
q1

+
q2

+

example box 12.2
Sample Exercise: Calculating Electrostatic Force

Two positive charges, one 2 �C and the other 7 �C, are
separated by a distance of 20 cm. What is the magnitude of
the electrostatic force that each charge exerts upon the other?

q1 � 2 �C (1 �C � 10�6 C � 1 microcoulomb)

q2 � 7 �C

r � 20 cm � 0.2 m

F � ?

� 3.15 N

� 
0.126 N�m2

0.04 m2

� 
(9.0 � 109 N�m2/C2) (2 � 10�6 C) (7 � 10�6 C)

(0.2 m)2

F � 
kq1q2

r2
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Since the gravitational force and the electrostatic force
are two of the fundamental forces of nature, it is interesting
to compare them. How do they differ? Placing their sym-
bolic expressions side by side highlights both the similari-
ties and the differences:

An obvious difference is that the gravitational force de-
pends on the product of the masses of the two objects, and
the electrostatic force depends on the product of the charges
of the two objects. Otherwise, the forms of these two force
laws are similar.

A more subtle difference involves the direction. The grav-
itational force is always attractive. As far as we know, there is
no such thing as negative mass. The electrostatic force, on the
other hand, can be either attractive or repulsive depending on
the signs of the two charges. The rule that like charges repel
and unlike charges attract determines the direction.

Another difference has to do with the strengths of these
two forces. For objects of ordinary size, and for subatomic
particles, the gravitational force is much weaker than the
electrostatic force. At least one of the objects must have an
enormous mass (like the Earth) to produce a significant
gravitational force. For charged particles at the atomic or
subatomic level, the electrostatic force is far more impor-
tant than the much weaker gravitational force. It is the
electrostatic force that holds atoms together and binds one
atom to another in liquids and solids.

Although the basic forms of these two force laws have
been known for more than 200 years, physicists are still
trying to understand the underlying reasons for the relative
strengths of these and other fundamental forces of nature.
The search for a unified field theory that would explain the
relationships between all of the fundamental forces is a
major area of research in modern theoretical physics (see
chapter 21). Some of today’s students will undoubtedly
play important roles in this search.

Charles Coulomb designed a torsion balance to measure
the strength of the electrostatic force between two charges.
He found that the force was proportional to the size of
each charge and inversely proportional to the square
of the distance between the two charges. Coulomb’s force
law has a form very similar to Newton’s law of gravitation
describing the force between two masses. The gravita-
tional force is always attractive, however, and generally
much weaker than the electrostatic force.

12.4 The Electric Field
Coulomb’s law tells us how to find the force between any
two charged objects if the objects are small compared to
the distance between them. These forces act at a distance:

Fg � 
Gm1m2

r2  and Fe � 
kq1q2

r2 .

the charges do not have to be in contact for the force to be
exerted. Does the presence of electric charge somehow
modify the space surrounding the charge? How can we de-
scribe the effects of a large distribution of charges on some
other charge?

The concept of electric field describes the effect of such
a distribution of charges on another individual charge. The
usefulness of the idea of a field has made it a central con-
cept in modern theoretical physics. To most of us, the word
field suggests a field of wheat or a meadow filled with wild
flowers. The concept of electric field in physics is somewhat
more abstract. An example involving just a few charges
can help to introduce the ideas.

Finding the force exerted 
by several charges
Using Coulomb’s law, we can find the magnitude of the
electrostatic force between any two charged objects. If the
charged objects are small compared to the distance be-
tween them, we often call them point charges. If there are
more than two point charges, we can compute the net force
on any one of them by adding (as vectors) the forces due
to each of the other charges.

In the first part of example box 12.3, we find the force on
a charge q0 exerted by two other charges for the situation
shown, where the charge q0 lies between the charges q1 and
q2. The resulting forces are added as vectors to obtain the
net force on q0. The forces due to each of the other charges
must be computed separately using Coulomb’s law (see
example box 12.2 for details of this process).

Notice that the force F1 on the charge q0 exerted by the
charge q1 is considerably larger than the force F2 exerted
by q2, mainly because q2 is farther from q0 than q1 is. The
electrostatic force described by Coulomb’s law is inversely
proportional to the square of the distance between the two
charges. The two forces acting on q0 are in opposite direc-
tions, yielding a net force of 9 N in the direction of the
larger force.

What is an electric field?
Suppose that we wanted to know the force on some other
charge placed at the same location as q0. Would we have to
use Coulomb’s law again, find the forces due to each of
the other charges, and add them as we did in example
box 12.3? There is an easier way that involves the concept
of electric field.

Think of the charge q0 as a test charge that has been
inserted at this particular location to assess the strength
of the electrostatic effect at that point. By the nature of
Coulomb’s law, the force on this test charge will be propor-
tional to the magnitude of the charge selected. If we divide
the net force by the magnitude of the test charge, we find the
force per unit charge at this location. (See the second part
of the sample exercise in example box 12.3.) Knowing the
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force per unit charge permits us to compute the force on
any other charge placed at that same point.

Using the force per unit charge as a measure of the
strength of the electrostatic effect at some point in space
lies at the heart of the concept of electric field. In fact, we
define electric field as

The electric field at a given point in space is the electric force
per unit positive charge that would be exerted on a charge if it
were placed at that point.

It is a vector having the same direction as the force on a posi-
tive charge placed at that point.

The symbol E represents the electric field.

E � 
Fe

q

In other words, the ratio Fnet/q0 that we computed in exam-
ple box 12.3 is the magnitude of the electric field at that
point. We can then use the field to find the force on any
other charge placed at that point by multiplying the charge
by the electric field,

Fe � qE.

If the charge happens to be negative, the minus sign in-
dicates that the direction of the force on a negative charge
is opposite to the direction of the field. The direction of
the electric field at any point in space is the direction of the
force that would be exerted on a positive charge placed at
that point.

Keep in mind that the electric field and the electrostatic
force are not the same. We can talk about the field at a point
in space even if there is no charge at that point. The field
tells us the magnitude and direction of the force that would
be exerted on any charge placed at that point. There must be
a charge if there is to be a force, but the field exists regard-
less of whether there is a charge at that point or not.

The electric field can exist even in a vacuum. When we
use the field concept, we shift our focus from the interac-
tions between particles or objects to the way a charged ob-
ject affects the space surrounding it. The field concept is
not restricted to electrostatics. We can also define a gravi-
tational field or a magnetic field, as well as others.

How are electric field lines used?
The concept of electric field was formally introduced by
the Sottish physicist, James Clerk Maxwell (1831–1879),
around 1865 as part of his highly successful theory of elec-
tromagnetism. The idea had already been used informally by
Michael Faraday (1791–1867), who developed the concept of
what we now call field lines as an aid in visualizing electric
and magnetic effects. Faraday was not trained in mathemat-
ics but was a brilliant experimentalist who made good use
of mental pictures.

To illustrate field lines, we can use a positive test charge
to assess the field direction and strength at various points
around a single positive charge. We will find that the test
charge is repelled by the original positive charge wherever
we place it around that charge. If we draw lines to indicate
the direction of the force on the test charge (which is also the
direction of the field), we obtain a drawing like figure 12.14.

Figure 12.14 is only a two-dimensional slice of a three-
dimensional phenomena. The electric field lines associated
with a single positive charge radiate in all directions from
the charge. If we also adopt the convention that we always
start the lines on positive charges and end them on nega-
tive charges, the density of the field lines is proportional to
the strength of the field. The closer together the field lines
are, the stronger the field.

Field lines are a means of visualizing both the direction
and the strength of the field. Figure 12.15 shows a two-
dimensional slice of the electric field lines associated with
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example box 12.3

Sample Exercise: An Electric Field

Two point charges with charges q1 � 3 �C and
q2 � 2 �C are separated by a distance of 30 cm as shown
in the drawing. A third charge q0 � 4 �C is placed
between the initial two charges 10 cm from q1. From
Coulomb’s law, the force exerted by q1 on q0 is 10.8 N,
and the force exerted by q2 on q0 is 1.8 N.

q1 q0 q2F2 = 1.8 N
+ +

F1 = 10.8 N
+

10 cm 20 cm

a. What is the net electrostatic force acting on the
charge q0?

b. What is the electric field (force per unit charge) at
the location of the charge q0 due to the other two
charges?

a. F1 � 10.8 N to the right Fnet � F1 � F2

F2 � 1.8 N to the left � 10.8 N � 1.8 N

Fnet � ? � 9 N

Fnet � 9 N to the right

b. E � ?

� 2.25 � 106 N/C

E � 2.25 � 106 N/C to the right

� 
9 N

4 � 10�6 C

E � 
Fnet

q0
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a negative charge. Here the field lines end on the charge
and must be directed inward to indicate the proper direc-
tion for the force on a positive test charge.

As a final example, consider the field lines associated
with the electric dipole in figure 12.16. An electric dipole
is two charges of equal magnitude but opposite sign, sepa-
rated by a small distance. The field lines originate on the
positive charge and end on the negative charge. Imagine
a positive test charge placed at various points around the
dipole. Do the field lines agree with your expectations for
the correct direction of the force on the test charge? This
is the acid test for any field-line diagram.

The concept of electric field focuses our attention on
how the space surrounding an electric charge is affected
by that charge. The field is defined as the force per unit
charge that would be exerted on a test charge placed at
some point in space in the vicinity of the source charges.
The direction of the electric field is the same as the direc-
tion of the force on a positive test charge placed at that
point in space. The field is a useful concept for treating
the effects of many point charges on some other charge.
Electric field lines can be used to visualize these effects.

12.5 Electric Potential
In chapter 6, we defined the potential energy associated
with the gravitational force, as well as the potential energy
of a spring. Can we define the potential energy of a charged
particle being acted upon by an electrostatic force?

The electrostatic force is a conservative force, which
means that we can define an electrostatic potential energy.
This potential energy leads to the related concept of elec-
tric potential, often referred to simply as voltage. Voltage

figure 12.14 The direction of the electric field lines around
a positive charge can be found by imagining a positive test charge
q0 placed at various points around the source charge. The field has
the same direction as the force on a positive test charge.

figure 12.15 The electric field lines associated with a
negative charge are directed inward, as indicated by the force on
a positive test charge, q0.

figure 12.16 The electric field lines associated with two
equal but opposite-sign charges (an electric dipole).

q0

E

F

+

+

q0

E

F

+

–

– +
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is familiar because we use it to discuss batteries and house-
hold circuits. What is voltage, and how is it related to elec-
trostatic potential energy?

Finding the change in potential
energy of a charge
To see how the potential energy of a charge changes with
position, the easiest case to consider is a charged particle
moving in a uniform electric field. In a uniform field, the
electric field lines are parallel and evenly spaced. The field
does not vary in direction or strength as we move from
point to point within the region where the field exists: it is
constant within this region.

How do we go about producing a uniform electric field?
Two parallel metal plates with opposite charges, arranged
as in figure 12.17, will do the trick. If one plate is posi-
tively charged and the other has an equal negative charge,
the field lines are straight lines originating at the positive
charges and terminating on the negative charges, as shown.
You can test this conclusion yourself by thinking about the
force on a positive test charge placed between the two
plates, as we did in section 12.4.

Two conductors separated by an insulating material like
air represent a useful means of storing charge. If the two
conductors have charges of opposite sign, these charges are
held in place by the attractive electrostatic force between the
charges on the opposing plates. We call this arrangement
a capacitor, which is basically a device to store charge.
Capacitors have many applications, particularly in electric
circuits.

Suppose that we now place a positive charge in the
uniform-field region between the two plates of the parallel-
plate capacitor. This charge will experience an electrostatic
force in the direction of the electric field. It will be
attracted toward the negative charges on the bottom plate
and repelled by the positive charges on the top plate. If we
release the charge, it accelerates toward the bottom plate.
(This acceleration has nothing to do with gravity. We can
assume that the gravitational force on the charged particle
is very small compared to the electrostatic force.)

If we apply an external force to move the charge in
the opposite direction to the electric field, as in figure 12.18,
this external force does work on the charge. This work in-
creases the potential energy of the charge (see chapter 6). The
process is similar to what happens when we lift an object
against the gravitational force or pull on a bowstring doing
work against the elastic force. Doing work against a conser-
vative force increases the potential energy of the system.

To move the charge without accelerating it, the external
force must be equal in magnitude but opposite in direction
to the electrostatic force, so that the net force acting on the
charge is zero. The electrostatic force acting on the charge
is equal in magnitude to the charge times the electric field
(qE), so the external force must also have this magnitude.
The work done by the external force is qEd, the force
times the distance, and this is equal to the increase in po-
tential energy of the charge (�PE � qEd).

What we are describing here is similar to using an external
force to lift an object against the force of gravity, thus increas-
ing its gravitational potential energy (fig. 12.19). The gravita-
tional potential energy always increases when we lift an
object, but the direction of increase for the electrostatic poten-
tial energy depends on the direction of the electric field. If we
place the positively charged plate on the bottom so that the
field direction is upward, the potential energy of the positive
charge increases when we move the charge downward.

Whenever work is done to move a charged particle
against the direction that the electrostatic force would nor-
mally tend to move it, we increase its potential energy. If,
for example, we move a negatively charged particle away
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figure 12.17 Two parallel metal plates containing equal
but opposite-sign charges produce a uniform electric field in the
region between the plates.

figure 12.18 An external force F, equal in magnitude to
the electrostatic force qE, is used to move the charge q a
distance d in a uniform field.
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from a positively charged particle, we increase the poten-
tial energy of the system. Like stretching a spring, the in-
crease in potential energy can easily be converted to ki-
netic energy if we release the negative charge and allow it
to accelerate toward the positive charge.

What is electric potential?
How does electric potential or voltage relate to potential
energy? Electric potential is related to electrostatic poten-
tial energy in much the same way as electric field is related
to the electrostatic force. We can regard the positive charge
that is moved in figure 12.18 as a test charge used to deter-
mine how the potential energy varies with position. The
change in electric potential can be defined as

The change in electric potential is equal to the change in elec-
trostatic potential energy per unit of positive charge, or

The symbol V represents the electric potential (voltage).
As you can see from this equation, the units of electric

potential are those of energy per unit of charge. In the met-
ric system, this unit is called a volt (V), which is defined as
1 joule per coulomb (1 J/C � 1 V). The unit and the term
voltage suggest the symbol V commonly used for electric
potential.

Like the electric field, no charge need be present to talk
about the electric potential at some point in space. The
change in electric potential as we move from one point to
another is equal to change in potential energy per unit of
positive charge that would occur if a positive charge were
moved between these two points. In other words, to find
the change in potential energy for such a charge, we would
multiply the change in electric potential by the magnitude
of the charge, �PE � q�V.

Electric potential and potential energy are closely re-
lated, but they are not the same. If the charge q happens to

¢V � 
¢PE

q
.

be negative, its potential energy will decrease when it is
moved in the direction of increasing electric potential.

As with gravitational potential energy, it is the change
in electrostatic potential energy that is meaningful rather
than a specific value of potential energy. To state a specific
value of either electrostatic potential energy or electric po-
tential, we define a reference point at which the potential is
zero. Other values of potential energy are defined from
that position. A numerical example involving the computa-
tion of electric potential is found in example box 12.4.

Figure 12.20 illustrates the situation in example box 12.4.
The potential energy of the charge increases by 0.15 J as
the charge is moved from the bottom to the top plate of the
parallel-plate capacitor. Since the charge is positive, it can
serve as a test charge so we can compute the change in
electric potential, leading to a change in potential of 30 V.
If we chose a reference value of 0 V for the bottom plate,
the top plate would have a potential of 30 V. Halfway be-
tween the two plates, the electric potential would be 15 V.
The electric potential increases continuously from 0 V to
30 V from the bottom plate to the top plate.

How are electric potential and
electric field related?
In the case of a uniform electric field, there is a simple
relationship between the magnitude of the electric field and

figure 12.19 The increase in potential energy when a charge
q is moved against the electrostatic force is analogous to what
happens when a mass m is lifted against the gravitational force.

+

F

d

Eq

q

m

F

mg

∆PE = W = Fd

m+

example box 12.4

Sample Exercise: Finding the Electric Potential

A uniform electric field of 1000 N/C is established between
two oppositely charged metal plates. A particle with a
charge of �0.005 C is moved from the bottom (negatively
charged) plate to the top plate. (Imagine that a string is
tied to the charge and is pulling it upward.) The distance
between the plates is 3 cm.

a. What is the change in potential energy of the
charge?

b. What is the change in electric potential from the
bottom to the top plate?

a. E � 1000 N/C �PE � W � Fd

q � 0.005 C � qEd

d � 3 cm � (0.005 C)(1000 N/C)(0.03 m)

�PE � ? � 0.15 J

b. �V � ? �V �

�

� 30 V

0.15 J

0.005 C

¢PE
q
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the change in electric potential. Since �PE � qEd for this
case, and by definition the difference in electric potential is
�V � �PE/q, dividing �PE by q yields:

�V � Ed.

In figure 12.20, however, the increase in electric potential
occurs in the direction opposite to the direction of the
field, because the potential energy of a positive charge in-
creases when we move it against the field.

This simple relationship between E and �V is valid only
for a uniform field. If the field strength varies with position,
the computation is more complex, and different relation-
ships are found. In many practical situations, however, the
field is more or less uniform. In fact, since E � �V/d in
this case, we often express the value of the field strength
in units of volts per meter (V/m), which is equal to new-
tons per coulomb (N/C).

The electric potential always increases most rapidly in
the direction opposite to the electric field. For the field as-
sociated with a positive charge, for example, the electric
potential increases as you move toward the charge, and the
field lines radiate outward from the charge. Figure 12.21
depicts the electric field for a positive charge with a few
values of electric potential indicated at different distances
from the charge. The reference level in this case is defined
by setting the zero value of electric potential at an infinite
distance from the charge.

In any situation, we can always determine how the elec-
tric potential varies by thinking about what would happen
to a positive test charge being moved within the electric
field in question. The electric potential always increases as
we move toward positive charges and away from negative
charges, because the potential energy of a positive charge
increases under those conditions. A positive charge moves
toward regions of lower electric potential, decreasing its
potential energy while gaining kinetic energy, much like a
falling rock. A lightning storm (see everyday phenomenon
box 12.2) provides several striking examples of this process.

The potential energy of a positive charge increases when we
apply an external force to move the charge in a direction
opposite the electric field. The work done is equal to the
increase in potential energy. A change in electric potential
(also called voltage) is defined as the change in potential
energy per unit of charge. The electric potential of a
positive charge increases when you move it closer to other
positive charges or away from negative charges because this
increases its potential energy. The normal tendency of posi-
tive charges is to move to regions of lower electric potential.
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figure 12.20 A positive charge is moved from the bottom plate to the top plate by an external force.

Fext

3 
cm E = 1000 N/C

V = 30 V

V = 0 V

+ + + + + + + +

– – – – – – – –
+

+
5 V10 V

15 V
20 V

figure 12.21 The electric potential (represented by the
dashed lines of constant potential) increases as we move closer
to a positive charge.
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Lightning

The Situation. We have all observed the awe-inspiring
beauty and power of a good electrical storm. The flashes
of lightning, followed at varying time intervals by claps of
thunder, can be both fascinating and frightening. What is
lightning? How are thunderclouds capable of producing the
impressive electrical discharges that we see? What happens
in an electrical storm?

The Analysis. Most thunderclouds generate a separation of
charge within the cloud that produces a net positive charge
near the top of the cloud and a net negative charge near the
bottom. Highly turbulent convection taking place in the cloud
separates and transports the charge: thunderclouds consist of
rapidly rising and falling columns of air and water, with cells
of rising air often being found next to cells of falling air and
water.

The charge separation within a thundercloud produces
strong electric fields in the cloud as well as between the
cloud and the earth. Since moist soil is a reasonably good
conductor of electricity, a positive charge is induced on the
surface of the Earth below the cloud because of the negative
charge on the bottom of the cloud.

The electric field generated by this charge distribution
(pictured in the drawing) can be several thousand volts per
meter. Since the base of the cloud usually floats several
hundred meters above the Earth’s surface, the potential
difference between the cloud’s base and the Earth can easily
be several million volts! (Even during fair weather, there is
an electric field of a few hundred volts per meter in the atmo-
sphere near the Earth’s surface. This field is weaker, however,
and in the opposite direction to what is usually generated
between the cloud and the Earth in an electrical storm.)

What happens when lightning strikes? Dry air is a good
insulator, but moist air conducts electricity somewhat more

readily. Any material will conduct, however, if the voltage across
the material is large enough. The very large voltage between
the cloud’s base and the Earth creates an initial flow of charge
(called the leader) along a path that offers the best conduct-
ing properties over the shortest distance. This leader heats the
air and ionizes (removes electrons from) some of the atoms
along that path. Since the ionized atoms are charged, they
enhance the air’s ability to conduct along the path blazed
by the leader, and a much greater flow of charge can then
proceed.

The following strokes or discharges all take place along
this same conducting path in very rapid succession, each one
increasing the conductivity along the path. A very large dis-
charge or flow of charge takes place between the Earth and
the cloud in a very short period of time. The heating and ion-
ization of the air by the discharge produces the lightning that
we see. The sound wave that we hear as thunder is produced
at the same time, but takes longer to reach us because sound
travels at a much slower speed than light.

A large tree or a person standing on top of a treeless hill
provide favorable paths for a lightning discharge. Standing
under an isolated tree during a lightning storm is therefore
dangerous. Your best bet is to be inside a building or car, but
if you are outdoors, find a place that is not near the highest
conducting object in your immediate vicinity. Choose a low
(and preferably dry) spot and hunker down.

everyday phenomenon
box 12.2

Flashes of lightning illuminate the area. What is lightning, and how is
it produced?
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The charge distribution within a thundercloud induces a positive
charge on objects on the Earth directly below the cloud.

gri12117_ch12_235_256.qxd  7/16/08  3:55 AM  Page 252



Confirming Pages

Key terms 253

Curiosity about simple electrostatic phenomena led us to the
description of the electrostatic force and Coulomb’s law. The differ-
ence between conductors and insulators, and the concepts of elec-
tric field and electric potential, are also important in explaining
the variety of electrostatic phenomena that we observe.

1 Effects of electric charge. Rubbing different mate-
rials together separates a quantity that we call electric charge,
which is capable of exerting a force on other charges. There are
two types of charge called positive and negative following the
single-fluid model introduced by Benjamin Franklin. Like charges
repel and unlike charges attract.

2 Conductors and insulators. Different materials vary
widely in their ability to permit the flow of charge. These differ-
ences between conductors and insulators help to explain why
charging by induction works and why uncharged bits of paper (or
other insulators) are attracted to charged objects.

3 The electrostatic force: Coulomb’s law. By care-
ful experiments with his torsion balance, Coulomb was able to
show that the electrostatic force that two charged objects exert on
each other is proportional to the product of the two charges and
inversely proportional to the square of the distance r between the
charges.

4 The electric field. The electric field is defined as the
electric force per unit of positive test charge that would be exerted
if a charge were present at a point in space. Knowledge of the
field at some point allows us to compute the force on any charge
placed at that point. Field lines help us to visualize the electric
field.

5 Electric potential. Electric potential is defined as the
potential energy per unit of positive charge that would exist at
some point in space if a charge were present there. It is also called
voltage, and its units are volts. The change in potential energy of
a charge can be found by computing the work done to move the
charge against the electrostatic force.
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Electric charge, 238
Electrostatic force, 238
Electron, 240
Conductor, 240
Insulator, 240
Semiconductor, 241

Induction, 241
Electric dipole, 242
Polarize, 242
Coulomb’s law, 245
Electric field, 246

Field lines, 247
Capacitor, 249
Electric potential, 250
Voltage, 250
Ionize, 252
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Q15. Is the concept of torque involved in the operation of
Coulomb’s torsion balance? Explain.

Q16. If you had several identical metal balls mounted on insu-
lating stands, explain how you could obtain a quantity of
charge on one ball that is four times as large as the quan-
tity on another ball.

Q17. If the distance between two charged objects is doubled,
will the electrostatic force that one object exerts on the
other be cut in half? Explain.

Q18. If two charges are both doubled in magnitude without
changing the distance between them, will the force that
one charge exerts on the other also be doubled? Explain.

Q19. Can both the electrostatic force and the gravitational force
be either attractive or repulsive? Explain.

*Q20. Two charges, of equal magnitude but opposite sign, lie
along a line as shown in the diagram. Using arrows, indi-
cate the directions of the electric field at points A, B, C,
and D shown on the diagram.

Q21. Is it possible for an electric field to exist at some point in
space at which there is no charge? Explain.

*Q22. If we change the negative charge in the diagram for ques-
tion 20 to a positive charge of the same magnitude, what
are the directions of the electric field at points A, B, C,
and D? (Indicate with arrows.)

*Q23. Three equal positive charges are located at the corners
of a square, as in the diagram. Using arrows, indicate
the direction of the electric field at points A and B on the
diagram.

Q24. Is the electric field produced by a single positive charge a
uniform field? Explain.

Q25. If we move a positive charge toward a negative charge,
does the potential energy of the positive charge increase
or decrease? Explain.

Q26. If we move a negative charge toward a second negative
charge, does the potential energy of the first charge in-
crease or decrease? Explain.

254 Chapter 12 Electrostatic Phenomena

* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. When two different materials are rubbed together, do the
two materials acquire the same type of charge or different
types of charge? Explain how you could justify your an-
swer with a simple experiment.

Q2. Two pith balls are both charged by contact with a plastic
rod that has been rubbed by cat fur.
a. What sign will the charges on the pith balls have?

Explain.
b. Will the two pith balls attract or repel one another?

Explain.

Q3. When a glass rod is rubbed by a nylon cloth, which of
these two objects gains electrons? Explain.

Q4. Two pith balls are charged by touching one to a glass rod
that has been rubbed with a nylon cloth and the other to
the cloth itself.
a. What sign will the charge on each pith ball have?

Explain.
b. Will the two pith balls attract or repel one another?

Explain.

Q5. Do the two metal-foil leaves of an electroscope gain charges
of opposite sign when the electroscope is charged? Explain.

Q6. If you charge an electroscope with a plastic rod that has been
rubbed with cat fur, will the metal leaves of the electroscope
move farther apart or come closer together when you bring
the cat fur near the ball of the electroscope? Explain.

Q7. When you comb your hair with a plastic comb, what will the
sign be on the charge acquired by the comb? Explain. (Hint:
Compare this process to rubbing a plastic rod with cat fur.)

*Q8. Describe how Benjamin Franklin’s single-fluid model can
explain what happens when we charge a glass rod by rub-
bing it with a nylon cloth. How do we get two types of
charge from a single fluid? Explain.

Q9. If you touch the metal ball of a charged electroscope with
an uncharged glass rod held in your hand, will the electro-
scope discharge completely? Explain.

Q10. If you touch the ball of a charged electroscope with your
finger, will it discharge? What does this suggest about the
conducting properties of people? Explain.

Q11. When a metal ball is charged by induction using a nega-
tively charged plastic rod, what is the sign on the charge
acquired by the ball? Explain.

*Q12. If, when charging by induction, you remove the charged
rod from the vicinity of the metal ball before moving your
finger from the ball, what will happen? Will the ball end
up being charged? Explain.

Q13. Will bits of paper be attracted to a charged rod even if they
have no net charge? Explain.

*Q14. Why are pith balls initially attracted to a charged rod and
later repelled by the same rod, even though they have not
touched any other charged object? Explain.
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Q27. If a negative charge is moved in the same direction as the
electric field lines in some region of space, does the potential
energy of the negative charge increase or decrease? Explain.

Q28. Does the electric potential increase or decrease as we
move toward a negative charge? Explain.

Q29. Is electric potential the same as electric potential energy?
Explain.

*Q30. In the drawing for question 20, which point, B or C, will
have the higher electric potential? Explain.

Q31. Will a negatively charged particle, initially at rest in an
electric field, tend to move toward a region of lower elec-
tric potential if released? Explain.

Q32. Would you be more likely to be struck by lightning if you
stood on a platform made from a good electrical insulator
than if you stood on the ground? Explain.

Synthesis Problems 255

E1. An electron has a charge of �1.6 � 10�19 C. How many
electrons would be needed to produce a net charge of
�4.8 � 10�6 C?

E2. Two identical brass balls mounted on wooden posts ini-
tially have different amounts of charge, one �3 �C and the
other �15 �C. The balls are allowed to touch and then are
separated again. What is the final charge on each ball?

E3. Two identical steel balls mounted on wooden posts initially
have different amounts of charge, one �12 �C and the
other �4 �C. The balls are allowed to touch and then are
separated again. What is the final charge on each ball?

E4. Two charged particles exert an electrostatic force of 8 N on
each other. What will the magnitude of the electrostatic
force be if the distance between the two charges is reduced
to one-half of the original distance?

E5. Two charged particles exert an electrostatic force of 27 N
on each other. What will the magnitude of the force be if
the distance between the two particles is increased to three
times the original distance?

E6. Two positive charges, each of magnitude 4 � 10�6 C, are
located a distance of 10 cm from each other.
a. What is the magnitude of the force exerted on each charge?
b. On a drawing, indicate the directions of the forces act-

ing on each charge.

E7. A charge of �2 � 10�6 C is located 20 cm from a charge
of �4 � 10�6 C.
a. What is the magnitude of the force exerted on each charge?
b. On a drawing, indicate the directions of the forces act-

ing on each charge.

E8. An electron and a proton have charges of an equal magni-
tude but opposite sign of 1.6 � 10�19 C. If the electron and
proton in a hydrogen atom are separated by a distance of
5 � 10�11 m, what are the magnitude and direction of the
electrostatic force exerted on the electron by the proton?

E9. A uniform electric field is directed upward and has a mag-
nitude of 20 N/C. What are the magnitude and direction of
the force on a charge of �5 C placed in this field?

E10. A test charge of �4 � 10�6 C experiences a downward
electrostatic force of 12 N when placed at a certain point in
space. What are the magnitude and direction of the electric
field at this point?

E11. A �1.5 � 10�6 C test charge experiences forces from two
other nearby charges: a 12-N force due east and an 8-N
force due west. What are the magnitude and direction of
the electric field at the location of the test charge?

E12. A charge of �3 � 10�6 C is placed at a point in space
where the electric field is directed toward the right and has
a magnitude of 8.5 � 104 N/C. What are the magnitude and
direction of the electrostatic force on this charge?

E13. A charge of �0.25 C is moved from a position where the
electric potential is 10 V to a position where the electric
potential is 60 V. What is the change in potential energy of
the charge associated with this change in position?

E14. Four coulombs of positive charge flow from the �6 V posi-
tive terminal of a battery to the negative terminal at 0 V. What
is the change in potential energy of the charge?

E15. The potential energy of a �2 � 10�6 C charge decreases
from 0.06 J to 0.02 J when it is moved from point A to
point B. What is the change in electric potential between
these two points?

E16. The electric potential increases from 100 V to 500 V
from the bottom plate to the top plate of a parallel-plate
capacitor.
a. What is the magnitude of the change in potential energy

of a �5 � 10�4 C charge that is moved from the bot-
tom plate to the top plate?

b. Does the potential energy increase or decrease in this
process?

SP1. Three positive charges are located along a line, as in the
diagram. The 0.10-C charge at point A is 2 m to the left of
the 0.02-C charge at point B, and the 0.04-C charge at
point C is 1 m to the right of point B.
a. What is the magnitude of the force exerted on the 0.02-C

charge by the 0.10-C charge?
b. What is the magnitude of the force exerted on the 0.02-C

charge by the 0.04-C charge?

c. What is the net force exerted on the 0.02-C charge by
the other two charges?

d. If we regard the 0.02-C charge as a test charge used to
probe the strength of the electric field produced by the
other two charges, what are the magnitude and direction
of the electric field at point B?

exercises

synthesis problems
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a. Test your electroscope with some of the materials sug-
gested in home experiment 1.

b. Test the conductivity of different materials, as in sec-
tion 12.2.

c. Try charging a metal spoon by induction. Wrap the
handle of the spoon in a napkin, so that you will not
discharge it when you handle it. Test the charge on the
spoon with your electroscope.

home experiments and observations

HE1. The pith ball experiments described in section 12.1 can be
done with homemade equipment. Small, lightly wadded
pieces of paper or pieces of Styrofoam torn from a coffee
cup can be used in place of the pith balls. These can be
tied to pieces of thread and hung from any convenient sup-
port. Wooden pencils, plastic pens, or glass stirring rods
can be used in place of the rods, and many different kinds
of fabric are available in the form of clothing.
a. Using available materials on a dry day, test to see

which combinations of rod and fabric produce the best
charge when rubbed.

b. Repeat the experiments described in section 12.1. Can
you get both types of charge with materials available?

HE2. To extend the observations of home experiment 1, a simple
electroscope can also be constructed. Use light aluminum
foil as the leaves, which can be suspended from a paper
clip. One end of the clip can be straightened, poked
through a piece of cardboard, and rebent. Place the piece
of cardboard on top of a drinking glass or a glass jar (see
the drawing), and your electroscope is complete.

e. If the 0.02-C charge at point B is replaced by a �0.06-C
charge, what are the magnitude and direction of the
electrostatic force exerted on this new charge? (Use
the electric field value to find this force.)

SP2. Suppose that two equal positive charges lie near one
another, as shown in the diagram.
a. Using small arrows, indicate the direction of the electric

field at the labeled points on the diagram. Think about
the direction of the force that would be exerted on a
positive charge placed at each of these points.

b. By drawing an equal number of field lines emerging from
each charge, sketch the electric field lines for this distri-
bution of charge. (See the diagrams in section 12.4.)

SP3. Suppose that one of the two charges in synthesis problem 2
is twice as large as the other one. Use the procedures sug-
gested in parts a and b of synthesis problem 2 for this new
situation. (When sketching the field, there should now be
twice as many field lines emerging from the larger charge
as from the smaller charge.)

SP4. Suppose that four equal positive charges are located at the
corners of a square, as in the diagram.
a. Using small arrows, indicate the direction of the electric

field at each of the labeled points.
b. Would the magnitude of the electric field be equal to

zero at any of the labeled points? Explain.

SP5. Suppose that the top plate of a parallel-plate capacitor has
an electric potential of 0 V and the bottom plate has a po-
tential of 400 V. There is a distance of 1.2 cm between the
plates.
a. What is the change in potential energy of a charge of

�3 � 10�4 C that is moved from the bottom plate to
the top plate?

b. What is the direction of the electrostatic force exerted
on this charge when it is between the plates?

c. What is the direction of the electric field between the
plates?

d. What is the magnitude of the electric field between the
plates?
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chapter overview
The electrostatic phenomena discussed in chapter 12 involve charges that are not 
moving. We now turn to moving charges by investigating the concepts of electric circuits
and electric current. Together with electric potential (or voltage), introduced in chapter 12,
these ideas are central to understanding how simple electrical devices work. As the
chapter outline indicates, we will begin with circuits and current and then explore how
electric current is related to voltage (Ohm’s law) and to energy and power. These ideas
are then applied to household circuits.

chapter outline
1 Electric circuits and electric current. How is an electric circuit involved

in lighting a flashlight bulb? What is electric current? How does it
resemble the flow of water in a pipe?

2 Ohm’s law and resistance. What is the relationship between current
and voltage in a simple circuit? How is electric resistance defined?

3 Series and parallel circuits. How is the flow of electric current
affected by series and parallel connections in a circuit? How do we
use voltmeters and ammeters?

4 Electric energy and power. How do we apply the concepts of energy
and power to electric circuits? What units are used in discussing the
use of electric energy in our homes?

5 Alternating current and household circuits. What is alternating
current? How are electric appliances connected to household circuits,
and what safety considerations come into play?

257
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If you have the materials handy, you should try the battery-
and-bulb experiment before reading further. The delight of
figuring out how to get the bulb to light is something not
to be spoiled by reading on prematurely. Once you get it
to light (without, we hope, killing the battery), you may
wish to experiment with other configurations and try to
understand what distinguishes working arrangements
from nonworking ones. Experimenting will help to make
the concept of a circuit more vivid.

Have you ever wondered how a flashlight works? The
components are simple and familiar—a light bulb, a
couple of batteries, and a cylindrical case with a switch.
The operation of a flashlight is familiar, too. Pushing
the switch turns the light on or off. The batteries run
down and need to be replaced or recharged. Occasion-
ally, the bulb burns out and must be replaced. But what
is happening inside?

You turn electric switches on every day to produce
light, heat, sound, or to run an electric motor. In fact,
every time you start your car, you use an electric motor
(the starting motor) powered by a battery. You know
that electricity is involved in these situations, but exactly
how things work may be murky.

Suppose that you are presented with the components
of a flashlight—a bulb, a battery, and a single piece of
metal wire (fig. 13.1). Your task is to get the bulb to light.
How would you do it? What principles would guide you
in producing a working arrangement? If you have these
items handy, see if you can get the bulb to light.

This battery-and-bulb exercise presents quite a chal-
lenge to many people. Even those who quickly get the
bulb to light may not be able to explain the principles
involved. This simple example, though, is a good start to

a basic understanding of electric circuits. From the time
your clock radio comes on in the morning to turning
out the last light before going to bed, you are con-
stantly using such circuits.

258 Chapter 13 Electric Circuits

figure 13.1 A battery, a wire, and a flashlight bulb. Can
you get the bulb to light?

study hint

13.1 Electric Circuits and
Electric Current
A flashlight, an electric toaster, and the starting motor in
your car all involve electric circuits, and all use electric
current to fulfill their purposes. The concepts of a circuit
and current go hand in hand and are crucial to understand-
ing how electrical devices operate. How can we use the
battery-and-bulb exercise mentioned in the chapter intro-
duction to get a handle on these ideas?

How do we get the bulb to light?
The battery-and-bulb exercise strips the flashlight down to
its bare essentials—the bulb, the battery, and a single con-
ductor. The rest of the flashlight is necessary only to hold

it together and provide a more convenient way of switch-
ing the light on and off. How do we get the bulb to light
with just one wire?

What many people fail to recognize in trying this exper-
iment is that the light bulb has two distinct connecting
places that are electrically insulated from each other. You
have to connect to both of them. You also have to complete
a path from the light bulb to both ends of the battery. Such a
closed or complete path is called a circuit. The word cir-
cuit itself implies a closed loop.

Figure 13.2 shows three possible arrangements, the one
that works and two that do not. (Which is which?) The cir-
cuit shown in figure 13.2a is not complete. Nothing will
happen. The bulb will not light, and the wire will not get
warm. This case is an incomplete or open circuit. To be
complete, a circuit must have a closed path of conducting
elements joining the two ends of the battery. Without a
complete path, nothing happens.

Figure 13.2b shows a complete circuit, but it does not
pass through the bulb. In this arrangement, the bulb will
not light but the wire will get warm. The battery will quickly
die if the wire is left in place. In figure 13.2c, a wire runs
from the bottom of the battery to the side of the light bulb,
and the tip of the bulb rests on the other terminal of the bat-
tery. This is the arrangement that works. A complete circuit
passes through the bulb and the battery.

The circuit in a flashlight is basically the same as the
working arrangement in figure 13.2c. The bulb sits on top
of a column of two or more batteries in direct contact with
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the top battery. The side of the bulb is held within a metal
sleeve, which is insulated from the rest of the flashlight
canister. The switch connects this sleeve to the bottom of
the battery, either through the canister itself or through a
metal strip that runs to the bottom of the flashlight. Push-
ing the switch on closes the path. If you have a flashlight
handy, take it apart and see if you can determine how this
is done.

What is electric current?
Let’s take a closer look at what is happening in the arrange-
ment shown in figure 13.2c. The battery is the energy
source for this circuit (as we will discuss in more detail in
section 13.4). The battery uses energy from chemical reac-
tions to separate positive and negative charges within the
battery. The work done in this process produces an increase
in the electrostatic potential energy of the charges, which
leads to a voltage difference. Flashlight batteries typically
generate a potential difference of 1.5 volts between the
terminals.

Since there is an excess of positive charge at one end of
the battery and an excess of negative charge at the other,
these charges will tend to rejoin by flowing from one ter-
minal to the other if we provide a suitable conducting path.
These charges can flow only by an external conducting
path, however, because of opposing forces associated with
the chemical reactions inside the battery. If we simply con-
nect a metal wire to the two terminals, charge will flow
through the wire to the opposite terminal.

A flow of electric charge is an electric current. To be
more precise, current is the rate of flow:

Electric current is the rate of flow of electric charge. In symbols,

where I is the symbol for electric current, q is the charge, and
t is time. The direction of the current is defined as the direc-
tion of flow of positive charge.

The standard unit for electric current is the ampere, de-
fined as 1 coulomb per second (1 A � 1 C/s). The cou-
lomb is the unit of charge introduced in chapter 12. The
ampere is named after the French mathematician and physi-
cist André Marie Ampère (1775–1836), who made many
contributions to the theory of electromagnetism. Some of
these contributions are discussed in chapter 14. The am-
pere is often referred to informally as an “amp,” but the
correct abbreviation is A.

From the definition and its units of measurement, we see
that the size of an electric current depends on how much charge
flows in a given time. If 3 C of charge flow through a wire in a
time of 2 s, then the electric current I is � 1.5 A.

Figure 13.3 shows two views of charges flowing in a
conductor. If the charge carriers were positively charged,
their direction of motion, by definition, would be the direc-
tion of the conventional electric current (to the right, as in
figure 13.3a). In reality, the charge carriers in a metal wire

3 C
2 s

I � 
q

t
,

13.1 Electric Circuits and Electric Current 259

figure 13.2 Three possible arrangements of the battery, bulb, and wire. Which one lights the bulb, and why does
it work?

(a) (b) (c)
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are electrons, which are negatively charged. Since remov-
ing negative charges increases the net positive charge, neg-
ative charges flowing to the left produce the same effect as
positive charges flowing to the right. The direction of the
conventional electric current is to the right in figure 13.3b
also—in the opposite direction to the motion of the elec-
trons. Charge carriers are sometimes positive, such as positive
ions in a chemical solution or the holes in a semiconductor
(see chapter 21). The electric current is then in the same
direction as the motion of the charge carriers.

Nerve cells are sometimes roughly compared to wires in
a telephone system. The description of the behavior of nerve
cells in everyday phenomenon box 13.1 shows that it is not
that simple.

What limits the flow of current?
If the battery in our simple circuit is fresh, the chemical re-
actions will continue to separate charge within the battery,

260 Chapter 13 Electric Circuits

Electrical Impulses in Nerve Cells

The Situation. If you make a conscious decision to wiggle
your big toe, the big toe will quickly wiggle. Somehow a sig-
nal passes from your brain to the muscles in the toe, causing
the muscles to contract. That process happens quickly—there
is not much delay between the decision and the toe wiggle.

How does the wiggle command get from your brain to your
toes? Does the signal travel over a biological wire or cable of
some kind? Is a flow of electric charge involved similar to what
happens in the wires of a land-line telephone? We know that
that nerve cells are involved, but how do they work?

The Analysis. The study of electrical effects in nerve cells
goes back to the work of Galvani and Volta on “animal elec-
tricity” that led to the invention of the battery. It was clear
even then that an electrical process was involved. However,

this process is much more complicated than the simple flow
of charge in a wire.

The signal is transmitted through nerve cells (or neurons)
like the one pictured in the first drawing. Like any biological
cell, the main body of the neuron contains a nucleus and also
has a number of dendrites that can receive signals from other
cells. Unlike most other cells, though, neurons have a long
tail-like segment called an axon that emerges from the main
cell body. The axons can be as long as a meter or more, start-
ing perhaps in the spinal cord and terminating in your foot or
hand. At the end of the axon there are a number of thinner
filaments or nerve endings that may contact the dendrites of
other cells in junctions called synapses.

Just as in a phone system, the signal that is transmitted
involves a change in voltage. The change in voltage along the
axon of a nerve cell is transmitted very differently than that
in a metal wire, however. In fact, the primary flow of charge
in a nerve cell occurs perpendicularly to the axon rather than
along its length. To understand this we need to take a closer
look at the structure of the axon.

Any cell has a membrane that is essentially the outer cover-
ing of the cell that holds everything together. The membrane of
an axon has some unusual properties. It maintains a balance
between certain chemical ions (charged atoms) on the inside and
outside surfaces of the membrane. In its normal (resting) state,
positively charged sodium ions (Na�) are excluded from the
inside of the cell. There is a small excess of positively charged
ions (mostly potassium, K�) on the outside surface of the mem-
brane and of negatively charged ions (mostly chlorine, Cl�) on
the inside surface. This creates a voltage difference between the

everyday phenomenon
box 13.1

Dendrites

Nucleus

Nerve endings

Axon

Synapse

A neuron has a long extension called an axon, which is often much
longer relative to the rest of the cell than shown here. The nerve
endings may contact dendrites of other cells in synapses.

(continued)
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figure 13.3 Positive charges moving to the right have the
same effect as negative charges moving to the left. By definition,
the electric current is to the right in both cases.
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13.1 Electric Circuits and Electric Current 261

inside and outside surfaces of the axon. If we describe this dif-
ference as �V � Vinside � Voutside, it is typically about �70 mV,
because the inside surface is negatively charged. This voltage
difference is called the resting potential.

When the axon is stimulated by an electrical signal or
other disturbance, the membrane suddenly changes its normal
gatekeeping behavior. It briefly allows positively charged
sodium ions to rush in through the membrane, thus changing
the net charge on the inside from minus to plus near the
point of stimulation. The inside of the axon is then positively
charged, reversing the sign of the voltage difference across 

the membrane, as shown in the second drawing, creating a
positive voltage spike called the action potential.

The change in the surface charge at the point of the original
stimulation causes nearby charges to flow short distances along
the surface to counter the change. As indicated in the drawing,
positive charges on the outside surface of the membrane are
attracted to the net negative charge at the point of stimulation,
which leaves a deficit of positive charge at neighboring points
on the axon. A similar effect involving negative charges occurs
on the inside surface. The charge deficit serves as a stimulus
for the neighboring points on the axon, causing sodium ions to
rush in at these points. As a result, the action potential (voltage
spike) moves down the axon. When the voltage spike reaches
the end of the axon, it may be transmitted to another neuron
at a synapse or to a muscle cell that causes the toe to wiggle.

Once the voltage spike passes, the axon membrane then
works to restore the original balance of ions by pumping the
sodium ions back outside of the cell, but this process takes some
time. The neuron in its resting state is like a cocked gun waiting
to fire and once it fires, it needs to be reset. Exactly how the
membrane accomplishes all of this is well beyond the scope of
this simple description. It is a biochemical process involving
selective diffusion of ions across the membrane. It is a much more
involved process than the simple flow of electrons in a wire that
causes a voltage signal to propagate in a telephone cable.

How fast does the signal propagate? For longer axons, the
speed of propagation can be as high as 150 m/s. For a person
of average height, the signal can reach the toes from the brain
in a little over a hundredth of a second. This is fast enough for
most purposes in a biological organism. It is slow, though,
compared to the speed of propagation of electrical signals in a
metal wire, which can be as much as half the speed of light or
150 000 000 m/s. Even in the metal wire, the electrons travel 
relatively short distances as the voltage signal propagates.

An influx of sodium ions at the point of stimulation causes the
charge to reverse across the membrane of an axon. This creates the
action potential that moves along the axon.

Point of stimulation

Exterior

Membrane

Distance

Resting potential

Action potential

Interior

+ + – – + + + + + + + + + + +

– – + + – – – – – – – – – – –

∆V

0

�40

(mV)

�70

and the current will continue to flow. A metal wire is an
excellent conductor, however, so if we directly connect the
two terminals of the battery with a wire, creating what is
called a short circuit, a large current will flow. This will de-
plete the chemical reactants, and the battery will die after a
short time. The wire will also become quite warm as a re-
sult of the large current. To avoid this problem, we need to
place an element in our circuit (such as the light bulb) that
will provide greater resistance to the flow of charge.

If you look closely at the light bulb, you will see that
it consists of a very thin wire filament enclosed inside
the glass bulb. This filament is connected to two points
inside the bulb: one end is connected to the metal cylin-
der forming the lower sides of the bulb, and the other is
connected to a metal post in the center of the bulb’s base
(fig. 13.4). These two points are electrically insulated
from one another by a ceramic material surrounding the
center post. The thin wire filament, although metal and a

good conductor, restricts the flow of charge (the current)
because of its very small cross-sectional area.

If we force the current to flow through the light bulb, as
in figure 13.2c, a much smaller current will flow than
when the wire is connected directly between the terminals
of the battery. The bulb’s thin wire filament restricts the
amount of charge that can flow because the resistance of
the filament is much greater than the resistance of the
thicker connecting wires. The wire filament is the bottle-
neck in the circuit, and it gets very hot as we force charges
through this constriction. Its high temperature makes it
glow, and we have light.

An analogy to the flow of water
In discussing the battery-and-bulb circuit, we described an
electric current as the flow of electric charge. Since charge
is invisible, picturing the flow of charge takes a bit of
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imagination. An analogy can help us visualize what is hap-
pening here. Water flowing in a pipe is similar to electric
current flowing in a circuit.

Figure 13.5a shows a pump that pumps water from a
lower tank to a higher tank, increasing the gravitational po-
tential energy of the water (as discussed in chapter 6). The
water could remain in the higher tank indefinitely unless
we provide a means for it to flow back to the lower tank.
If we use a large pipe for this purpose, the water will flow
back very quickly. Its rate of flow (the water current) can be
measured in units of gallons per second or liters per second.
The upper tank will empty quickly unless the pump runs con-
tinuously to replace the lost water. If we place a narrow pipe
at some point in the path of the returning water, however, this
constriction limits the amount of water that will flow. The
narrow pipe provides a greater resistance to the flow of water.

In figure 13.5b, the battery corresponds to the pump.
Both produce an increase in potential energy—of water on

one hand and of charge on the other. The thick pipe is like
the connecting wires in the circuit, and the nozzle is analo-
gous to the filament in the light bulb. In fact, the water
does become warmer as it flows through the constriction in
the pipe, like the warming of the wire filament. A valve
placed at some point in the water system corresponds to
a switch in an electric circuit. Table 13.1 summarizes the
corresponding elements.

Understanding electric current may be easier if you
keep in mind its resemblance to a water current. Both can
be defined as rates of flow—of water on one hand, of
charge on the other. In an electric circuit, there must be a
continuous path of conductors (the circuit) for charge to
flow. If we break the circuit at any point, the current stops.
The water system also requires a complete loop (unless we
are continually supplying water to the upper tank from an
external source).

To get a bulb to light, or for any electric circuit to work,
there must be a closed-loop conducting path from one
terminal of the power source to the other. This closed path
is the circuit, and the rate of flow of charge around that
loop is the electric current. The filament in a light bulb
serves as a constriction in the conducting path that limits
the flow of current. The filament gets hot as charge flows

262 Chapter 13 Electric Circuits

figure 13.4 A cutaway view of a flashlight bulb. The fila-
ment is connected to the metal post at the bottom and to the
inside of the metal cylinder.

Filament

Metal sheath

Insulator

Metal contact

figure 13.5 Electric current is analogous to water flow. Which elements correspond in the two systems?

Switch

(b) 

Nozzle
constriction

Valve

Pump
(a)

Water-flow system Electric circuit

water charge

pump battery

pipes wires

narrow pipe wire filament

valve switch

pressure voltage

table 13.1

Corresponding Concepts in the Analogy between
a Water-Flow System and an Electric Circuit
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through it, thus producing light. An analogy to a water-
flow system, in which a pump replaces the battery and
water takes the place of charge, can help us visualize the
concept of current.

13.2 Ohm’s Law and Resistance
What determines the size of an electric current? In 
section 13.1, we noted that the large resistance of the wire fil-
ament restricted the flow of current. Is this the only effect, or
does the voltage of the battery also play a role? Is it possible
to predict how much current will flow in a given circuit?

How does electric current depend
on voltage?
In a water-flow system, a high pressure difference between
two points in the system will produce a large rate of water
flow or current. High pressure can be produced by raising
the storage tank to a considerable height above the point of
use—this pressure is related to the gravitational potential
energy of the water.

Likewise, a large difference in potential energy between
the charges at the two ends of a battery is associated with
a high voltage and a greater tendency for charge to flow.
The size of the electric current is related to the voltage
of the battery and to the resistance of the circuit elements.
For most components in a circuit, there is a simple relation-
ship between the current, the voltage, and the resistance
of the component that can be used to predict the magnitude of
the current. This relationship was discovered experimentally
by the German physicist Georg Ohm (1789–1854) during
the 1820s and is known as Ohm’s law:

The electric current flowing through a given portion of a cir-
cuit is equal to the voltage difference across that portion di-
vided by the resistance. In symbols,

where R is the resistance and I and V stand for current and
voltage, respectively.

In other words, the current is directly proportional to the volt-
age difference and inversely proportional to the resistance.

Ohm’s law is a statement of the experimental fact that
resistance is approximately constant for different values of
current and voltage. In section 13.1, we used the term resis-
tance in a qualitative sense as a property that restricts the
flow of current. A quantitative definition of resistance can
be obtained by using algebra to rearrange Ohm’s law:

R � 
¢V

I
.

I � 
¢V

R
,

Resistance R is the ratio of the voltage difference to the cur-
rent for a given portion of a circuit. The unit of resistance is
volts per ampere, which is called an ohm (1 ohm � 1 V/A).
The ohm is often abbreviated as �, the Greek letter capital
omega.

The resistance of a wire or other circuit element de-
pends on several factors, including the conductivity of the
material the wire is made of. A wire made of material with
high electrical conductivity will have a smaller resistance
than one made from a material of lower conductivity. The
resistance also depends on the length of the wire and its
cross-sectional area. The longer the wire, the greater its
resistance—but a thicker wire will have a smaller resistance.
Temperature also has an effect. When we heat the filament
of a light bulb, its resistance increases. This is true for any
metallic conductor.

If we know both the resistance of a given portion of a cir-
cuit and the applied voltage, the expected current can then be
found. Suppose, for example, that a 1.5-volt battery is con-
nected to a light bulb with a resistance of 20 ohms, as in 
figure 13.6. If the resistance of the battery itself is negligible,
the current can be found by applying Ohm’s law, I � �V/R.
Dividing 1.5 volts by the resistance of 20 ohms yields:

This result could be expressed as 75 milliamperes (mA).

What is the electromotive force
of a battery?
In finding the current through the 20-ohm light bulb, we
ignored the resistance of the battery itself. We also ignored the
very small resistances of the connecting wires. If the battery is
fresh, its internal resistance is small and can often be ne-
glected. The internal resistance gets larger, however, as the
battery is used and its chemical reactants are depleted. In find-
ing the current then, the total resistance of the circuit must be
considered, including the resistance of the battery. This is done
in the sample exercise in example box 13.1, using the values

I � 
1.5 V

20 �
� 0.075 A.
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20 Ω

1.5 V

figure 13.6 A simple circuit connecting a 1.5-V battery to a
20-� light bulb. What is the magnitude of the electric current?
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figure 13.7 Voltage values for the battery-and-bulb circuit,
assuming that the battery has an internal resistance of 5 �. The
current is now 60 mA.

20 Ω

1.2 V

Ι = 60 mA

1.2 V

Ι = 60 mA

1.5 V
5 Ω

shown in figure 13.7. A smaller current is obtained when the
internal resistance of the battery is taken into account.

In example box 13.1, we give the voltage of the battery
the symbol �, which stands for electromotive force. The
term itself is misleading, since it is a potential difference, or
voltage, not a force. The electromotive force is the increase
in potential energy per unit charge provided by the chemical
reactions in the battery. Its units are volts (joules/coulomb),
and it is usually denoted by �. (The concept of electromotive

force is discussed in more detail in section 13.4, where we
consider the energy aspects of circuits.)

If we measure the voltage difference across either the bat-
tery or the light bulb with a voltmeter while the bulb is oper-
ating, we obtain a value of 1.2 V, as in the second part of the
sample exercise. If we break the circuit by disconnecting the
light bulb and measure the voltage across the terminals of
the battery again, we get a reading of about 1.5 V for the bat-
tery. This value of 1.5 V, measured when there is no current
flowing through the battery, is the electromotive force of the
battery. It is the voltage of the battery when there are no
energy losses due to resistive effects within the battery.

To find the current in example box 13.1, the electromo-
tive force � of the battery is divided by the total resistance
of the circuit (I � �/R). This equation is similar to Ohm’s
law with � substituting for �V, but there is an important
difference: Ohm’s law can be applied to any portion of
a circuit. The voltage difference �V across that portion
is equal to the current times the resistance of that portion
(�V � IR). The equation involving the electromotive
force, on the other hand, is applied to the entire circuit, or
loop, and is sometimes referred to as the loop equation.

What happens when a battery dies?
As a battery gets older, its internal resistance gets larger
and larger. The total resistance of the circuit increases and
reduces the current flowing through the circuit, as pre-
dicted by the loop equation. As the current gets smaller,
the bulb becomes dimmer until finally it glows no more.
In a dead battery, the internal resistance has become so large
that the battery can no longer produce a measurable current.

Surprisingly, if this dead battery is removed from the cir-
cuit and tested with a good voltmeter, it will still give a volt-
age reading of almost 1.5 volts. How can this be? The battery
still has an electromotive force, but its internal resistance is so
large that it is no longer able to deliver any appreciable cur-
rent to an external element such as the light bulb. A good
voltmeter does not draw much current, however, so it can still
measure approximately the electromotive force of the battery.
The condition of a battery is described by its internal resis-
tance rather than by its electromotive force.

Ohm’s law says that the electric current through any part of a
circuit is proportional to the voltage difference across that
segment and inversely proportional to the resistance of that
segment. To find the current through a circuit, we divide the
electromotive force of the battery by the total resistance of
the circuit. This total resistance includes the internal resistance
of the battery itself, which gets larger as the battery weakens.

13.3 Series and Parallel Circuits
An electric current, like a meandering stream, can split into
different streams that rejoin later. Sometimes, there are
advantages to arranging a circuit so that this happens

example box 13.1

Sample Exercise: Examining a Circuit’s
Current and Voltage

A 1.5-V battery with an internal resistance of 5 � is
connected to a light bulb with a resistance of 20 � in
a simple, single-loop circuit.

a. What is the current flowing in this circuit?
b. What is the voltage difference across the light 

bulb?

a. � 1.5 V The total resistance of the circuit is:

Rbattery � 5 � R � Rbattery � Rbulb

Rbulb � 20 � � 5 � � 20 �

I � ? � 25 �

I �

�

� 0.06 A � 60 mA

b. �Vbulb � ? �V � IR

� (0.06 A)(20 �)

� 1.2 V

1.5 V

25 �

e
R

e
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rather than connecting all of the elements in a single loop.
How do we describe and analyze these different ways of
connecting circuits? Distinguishing between series and par-
allel connections is an important step of this process.

What is a series circuit?
The simple light-bulb circuit that we have been discussing is
a single-loop, or series, circuit. In a series circuit, there are
no points in the circuit where the current can branch into
side streams or secondary loops. All of the elements line up
on a single loop. The current that passes through one ele-
ment must also pass through the others, since there is
nowhere else for it to go. This can be seen in our diagram of
this circuit in figure 13.6, but it is often easier to see in the
diagrams (often called schematics) used to represent circuits.

In figure 13.8, the battery-and-bulb circuit is shown with
its schematic alongside. The symbols used to represent various

components in the schematic are standard. They will be rec-
ognized anywhere in the world where people study or use
electric circuits. The light bulb, for example is shown as a
resistance, for which the standard symbol is a zigzag line,
/\/\/\ . In this case, it appears inside a circle that represents
the glass bulb.

The lines in the schematic represent connecting wires,
which are usually drawn as straight lines even though the
wires are not likely to be straight in an actual circuit. We
generally assume that the resistances of the connecting
wires are small enough to be ignored (in comparison to
the other resistances in the circuit). The schematic shows the
components of the circuit and the connections between
them in a way that is both clear and easy to draw.

What happens if we put more light bulbs in the circuit,
in series with the others, as shown in both pictorial and
schematic form in figure 13.9? In a series combination of re-
sistances, each resistance contributes to restricting the flow
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figure 13.8 The battery-and-bulb circuit with its corresponding schematic.

Switch

Light bulb
(resistance)

Battery
+

+

figure 13.9 A series combination of three light bulbs and the corresponding schematic.
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figure 13.10 Bulbs connected in parallel, with the schematic and the water-flow analogy also shown. The current now splits
into three different paths.

Sketch
(a)

+

Schematic

(b)

Water system

A

B

of current around the loop. The total series resistance of the
combination Rs, is the sum of the individual resistances:

Rseries � R1 � R2 � R3.

This is true no matter how many resistances are combined
in series. We just add more terms to the sum if there are
more resistances.

People often think that the current somehow gets used
up in passing through the resistances in a series circuit.
This is not the case. The same current must pass through
each component much like the continuous flow of water in
a pipe. Voltage is what changes as the current flows through
the circuit. Voltage decreases by Ohm’s law (�V � IR)
as the current passes through each resistor. The total volt-
age difference across the combination is the sum of these
individual changes.

If two light bulbs are connected in series with a battery,
the current will be less than with a single bulb, because the
total series resistance is larger. The bulbs will glow less
brightly in this arrangement. If we want brighter light, we
would have to add more batteries in series to increase the
voltage. This is what is done in many flashlights (though
they usually have just one bulb).

Besides dimmer lights, there is another serious disadvan-
tage to connecting bulbs in series. When a light bulb burns

out, the filament breaks, which breaks the circuit. When
one bulb in a series circuit burns out, the others also go out,
because no current can flow around the broken loop. Usu-
ally, this is highly undesirable, particularly in a system such
as automobile lighting. It also makes it very hard to find the
burned-out bulb, as was this as in the old-fashioned strings
of Christmas-tree lights that were connected in series.

What is a parallel circuit?
Another way of connecting the bulbs that avoids these prob-
lems is shown in figure 13.10. Here, the bulbs are not all in
line around the loop. Instead, they are connected in paral-
lel with one another. Note that there is now more than one
loop in the circuit. In a parallel circuit, there are points at
which the current can branch or split up into different
paths like the meandering stream mentioned at the begin-
ning of this section. The flow divides and later rejoins.

Does the total effective resistance of the circuit increase
or decrease if we add bulbs in parallel with one another?
The water-flow analogy may help you here. Suppose that
we add pipes in parallel in a water-flow system (fig. 13.10b).
Does this increase or decrease the amount of water (the
current) flowing in the system? What does this say about
the resistance to the flow of water?
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example box 13.2

Sample Exercise: Resistance and Current of Light
Bulbs in Parallel

Two 10-� light bulbs are connected in parallel to one
another, and this combination is connected to a 6-V
battery, as shown in the schematic.

a. What is the total current flowing around the loop?
b. How much current passes through each light bulb?

a. R1 � R2 � 10 �

� 6 V

I � ?

I �

�

� 1.2 A

b. I � ? I �

(for either bulb)

�

� 0.6 A

A current of 0.6 A flows through each bulb for a total
of 1.2 A.

6 V

10 �

¢V

R

6 V

5 �

e
R

Rp � 
10 �

2
 � 5 �

� 
2

10 �

� 
1

10 �
 � 

1

10 �

e

1

Rp

 � 
1

R1

 � 
1

R2

6 V

+

10 Ω 10 Ω

6 V
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You should conclude that the flow of water is increased
when we add pipes in parallel. In effect, we are increasing
the total cross-sectional area the water flows through, there-
fore decreasing the resistance to flow. The same is true in
an electric circuit when resistances are connected in paral-
lel. Stated in terms of individual resistances, the effective
parallel resistance Rp is

To find Rp, we add the reciprocals of the individual resis-
tances and then take the reciprocal of this sum. This al-
ways yields a value that is less than any of the individual
resistances, as example box 13.2 illustrates.

In a parallel combination of resistances, the voltage dif-
ference across each resistance is the same, since they are
all connected between the same two points (points A and B
in figure 13.10). The currents, on the other hand, can be
different—they add to give the total current through the
combination. The current splits up and recombines. A por-
tion of the total current flows through each branch. This
leads to a lower total resistance and more current drawn
from the battery.

In example box 13.2, the two bulbs have equal 
resistances—equal currents flow through each. If one bulb
had a larger resistance than the other, the current would not
divide equally. Instead, a larger portion of the current would
flow through the bulb with the smaller resistance, as you
might expect. The calculations of equivalent resistance and
current would proceed just as shown in example box 13.2.

As example box 13.2 shows, the resistance of the paral-
lel combination is less than the resistance of either bulb by
itself. Parallel combinations decrease the resistance and
increase the amount of current that will flow. Increased
current causes the bulbs to burn more brightly than in a
series circuit but also depletes the batteries more quickly.
There is no free lunch: we can choose dim light and a long
lifetime or bright light and a short lifetime depending on
how we connect the bulbs to the batteries. The energy
available from the batteries is the same in either case.

Use of ammeters and voltmeters
How do we measure currents or voltage differences? You
may have used meters such as a voltmeter or ammeter to
check the electrical systems of your car or for other similar
troubleshooting.

The voltmeter is the easier of the two to use and is also
more commonly found in auto repair and other activities.
Suppose that we want to measure the voltage difference
across a light bulb in a circuit, for example. Many of the
meters available are multimeters, which measure voltage,
current, and resistance. You choose the appropriate function
and range with a switch. Figure 13.11 shows both an ana-
log multimeter that uses a needle and scale and a more
modern digital multimeter that gives a digital readout.

1

Rparallel

 � 
1

R1

 � 
1

R2

 � 
1

R3

.
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To measure voltage, the leads of the voltmeter are
placed in parallel with the bulb, as in figure 13.12. A volt-
age difference is the difference in potential energy per unit
of charge between two points in a circuit. The voltmeter
must, therefore, be connected between these two points,
regardless of what other paths for current flow exist. Given
the parallel connection, a voltmeter should have a large
resistance, so that it does not divert much current from the
component whose voltage is being measured.

Would this same type of connection work for measur-
ing current with an ammeter? Think of water flow: to mea-
sure current, which is a rate of flow, you need to insert the
gauge directly into the flow. If we were measuring water
flow, we would have to cut the pipe and insert a flow gauge
between the cut sections, so that the current being measured
flows directly through the gauge. Likewise, in measuring
electric current, we need to break the circuit and insert the
meter in series with the other components, as in figure 13.13.

Since the ammeter is inserted in series in the circuit and
must have some resistance, it will inevitably increase the
total resistance of the circuit and decrease the current. An
ammeter should have a small resistance, so that its effect on
the current is small. Because of this small resistance, using
an ammeter calls for more care than using a voltmeter. If you
place an ammeter directly across the terminals of a battery,

268 Chapter 13 Electric Circuits

figure 13.11 An analog multimeter (with needle and
separate scales) and a digital multimeter are commonly used
measuring instruments.

figure 13.12 A voltmeter is inserted in parallel with the
element whose voltage difference is being measured.

VR
+

Voltmeter
+

figure 13.13 An ammeter is inserted in series into the
circuit whose current is being measured.

ε

A

+

+

R 

Ammeter

for example, a large current will flow. This could damage the
meter and the battery.

With both ammeters and voltmeters, the positive terminal
of the meter has to be inserted in the proper direction and
connected as in figures 13.12 and 13.13. Tracing from the
positive terminal of the battery or power supply, you should
come first to the positive terminal of the meter. If you get it
backwards, the needle of the analog meter will deflect in the
wrong direction, which can damage the meter (for digital
meters this is less of a concern). The positive and negative
terminals of a meter are usually clearly marked.

The components of a circuit can be connected either
in series or in parallel, or in combinations of the two.
A series connection has no branches. The current passes
through each element in succession, and the resistance of
the combination is the sum of the individual resistances.
The current in a parallel combination splits into different
branches. The effective resistance of the combination is
less than any of the individual resistances. Voltmeters are
connected in parallel and measure the voltage difference,
but ammeters are inserted in series to measure current.

13.4 Electric Energy and Power
We have talked about batteries as sources of electrical
energy in a circuit. We also use the term power in dis-
cussing our everyday applications of electricity. Energy or
power can be used to gain more insight into the behavior of
electric circuits, just as we used these ideas in chapter 6 to
examine mechanical systems. What happens, for example,
to the energy supplied by a battery?

What energy transformations take
place in a circuit?
The analogy between electric circuits and water-flow sys-
tems can be used to good advantage here. Energy is sup-
plied to the water-flow system by the pump, which
receives its energy from some external source. Electricity,
gasoline, or the wind are energy sources commonly used
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for pumping water. The pump increases the gravitational
potential energy of the water by lifting it up to a higher
tank (fig. 13.14). As the water flows down through pipes
to a lower tank or reservoir, gravitational potential energy
is transformed into kinetic energy of the moving water.

Once the water comes to rest in the lower tank, the
kinetic energy is dissipated by frictional or viscous forces
within the water or between the water and the inside sur-
faces of the pipes and tank. Frictional forces generate heat
increasing the internal energy of the water and the sur-
rounding pipes and air. This added internal energy shows
up as an increase in the temperature of the water and its
surroundings.

An analogy can be made for the electric circuit. The
energy is supplied by the battery, which draws its energy
from the potential energy stored in its chemical reactants.
(Electric energy can also be generated from mechanical
energy, as we will see in chapter 14.) The battery, much like
the pump, increases the potential energy of electric charges as
it moves positive charges toward the positive terminal and
negative charges toward the negative terminal. When we
complete the circuit by providing an external conducting path
from the positive to the negative terminal, charge flows from
points of higher potential energy to points of lower potential
energy through the connecting wires and resistances.

As potential energy is lost, kinetic energy is gained by the
moving electrons in the electric current. In the end, this kinetic
energy is randomized by collisions with other electrons and
atoms within the resistors in the circuit. This increases the
internal energy of the resistors and connecting wires, which
again shows up as an increase in temperature. Kinetic energy
has been converted to heat through these collisions.

In both the water-flow system and the electric circuit,
the following energy transformations take place:

energy source → potential energy → kinetic energy → heat

Pipes and resistances get warm as the current flows. In elec-
tric circuits, we often use the heat for some specific pur-
pose, to light a lamp, to toast bread, or to warm our homes.

How is electric power related
to current and voltage?
The potential difference produced by a battery when there
is no current being drawn from the battery is often called
the electromotive force and is represented by the symbol �.
It is simply the potential energy per unit charge supplied by
the energy source, and its units are volts.

Since electromotive force (a voltage) represents a dif-
ference in potential energy per unit charge, multiplying
electromotive force by charge yields energy. If we multi-
ply by electric current rather than charge, we get energy
per unit time, since current is the flow of charge per unit
of time. This quantity is the power. Power is the rate of
doing work or using energy and has units of energy per
unit time. (See section 6.1.) The power supplied by any
source of electrical energy is equal to the electromotive
force times the current:

P � I.

A similar expression can be obtained for the power dissi-
pated when current passes through a resistance. We replace
the electromotive force � with the voltage difference �V
across the resistance to give P � �VI. Using Ohm’s law, the
voltage difference can be expressed as �V � IR, so power
takes the form:

P � (IR)(I ) � I 2R.

The power dissipated in the resistance R is proportional to
the square of the current I.

What is happening to the power in a simple circuit then?
The power delivered by the battery must equal the power
dissipated in the resistances in a steady-state situation. In
symbols:

�I � I 2R.

As long as the current remains constant, energy is supplied
by the battery at a steady rate and is dissipated at the same
rate in the resistances. There is no buildup of energy at any
point in the circuit. The energy or power input equals the
energy or power output (fig. 13.15): energy is conserved.

e
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figure 13.14 Energy transformations in the water-flow
system. What happens to the energy introduced by the pump?

h
Energy
source Heat

Kinetic
energy

Gravitational
potential energy

figure 13.15 The power supplied by the battery in an electric
circuit equals the power dissipated in the resistances as heat.

Heat + light

1.5 V

P =   εΙ

P =    2R Ι
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This principle of energy balance is the basis for the loop
equation (introduced in section 13.2) used in circuit analysis.
Dividing both sides of the energy-balance equation by the
current I yields � � IR, the loop equation. Conservation of
energy underlies our process of analyzing circuits. Exam-
ple box 13.3 illustrates these ideas.

How do we distribute and use
electric power?
Whenever you turn on an electric light or use an electric
appliance, you are using electric power. Usually, that power

does not come from a battery but from power lines (wires)
that deliver power from a distant generating source 
(fig. 13.16). The American inventor Thomas Alva Edison
(1847–1931) developed many electrical devices and played a
major role in promoting the use of electrical power. Edison’s
invention and refinement of the electric light bulb provided
the original incentive for creating power-distribution sys-
tems. The ease with which electric power can be transmitted
over considerable distances is one of its main advantages over
other forms of energy.

What sources of energy are involved when you use elec-
tric power? The source might be the gravitational potential
energy of water stored behind a dam. It could also be chem-
ical potential energy stored in fossil fuels such as coal, oil,
or natural gas, or the nuclear potential energy stored in ura-
nium. Like the chemical fuel in a battery, fossil and nuclear
fuels can all be depleted since they are mined from the
Earth. (What is the energy source involved in lifting the
water stored behind a dam? Can it be depleted?)

In the case of chemical or nuclear fuels, the potential
energy stored in the fuel is first converted to heat, then used
to run a heat engine, usually a steam turbine (see chapter 11).
In the case of hydroelectric power, the water stored
behind the dam is run through water turbines to convert po-
tential energy to kinetic energy. Whatever the source of
energy, power plants all use electric generators that convert
the mechanical kinetic energy produced by the turbines to
electric energy. Electric generators are the source of the
electromotive force for the power-distribution system. (How
electric generators work is discussed in chapter 14 when
Faraday’s law of electromagnetic induction is introduced.)

When you pay your electric bill, you are paying for the
amount of electric energy used during the previous month.
The unit of energy used for this purpose is the kilowatt-
hour, which is obtained by multiplying a unit of power (the
kilowatt) by a unit of time (an hour). Since a kilowatt is
1000 watts and an hour is 3600 seconds, 1 kilowatt-hour
equals 3.6 million joules. The kilowatt-hour is thus a much
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figure 13.16 Electric power is generated at a central power plant and distributed to users by power lines.

Coal

Energy
source

Energy
use Transformer

Transformer
changes 
voltage

example box 13.3

Sample Exercise: Analyzing a Circuit

What is the power dissipated in a 20-� light bulb
powered by two 1.5-V batteries in series?

� 1 � 2 � 3 V � IR

R � 20 �
I �

�

� 0.15 A

P � I 2R

� (0.15 A)2(20 �)

� 0.45 W

This can be checked by calculating the power delivered
by the batteries:

P � I

� (3 V)(0.15 A)

� 0.45 W

e

3 V

20 �

e
R

eeee
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larger unit of energy than the joule (introduced in chapter 6).
It is a convenient size, however, for the amounts of electrical
energy typically used in a home.

How much does it cost to light a 100-watt light bulb
for one day? Electric rates vary across the country, from 4
to 5 cents per kilowatt-hour to as much as 15 cents per
kilowatt-hour, but an average rate might be about 10 cents
per kilowatt-hour. If the light burns for 24 hours, the energy
used is found by multiplying the power by the time:

(100 W)(24 h) � 2400 Wh

2400 Wh � 2.4 kWh.

At 10 cents a kilowatt-hour, the cost is approximately
24 cents. This may seem like a bargain, but as anyone who
pays electric bills knows, the cost adds up quickly as the
number of appliances multiply. Many appliances require
larger amounts of power than a light bulb.

The first power-distribution systems were built late in
the nineteenth century, so our growing dependence on elec-
tric power has been a twentieth-century phenomenon. The
convenience of electric power for running appliances with-
out the noise and exhaust associated with direct use of
chemical fuels is the major reason for its wide use. Several
places in the world still lack electric power, but it is diffi-
cult for most of us to imagine life without it.

The energy transformations that take place in an electric cir-
cuit resemble a water-flow system. The power source (pump
or battery) increases the potential energy of the water or
charges. This potential energy is converted to the kinetic
energy of the current, which, in the end, is dissipated as
heat. The rate of energy use in a circuit is equal to the elec-
tromotive force of the source times the current, which must
also equal the rate at which energy is dissipated in the
resistances. Various energy sources are used to generate the
electric power used in our power-distribution systems.

13.5 Alternating Current and
Household Circuits
What kinds of circuits are involved in our daily use of elec-
tric power? Are they similar to the simple circuits that use
batteries and light bulbs? You probably know that the cur-
rent we draw from a wall outlet is alternating current (ac)
rather than direct current (dc). What is the distinction
between these kinds of current? Can we use the same ideas
employed in discussing simple battery-and-bulb circuits to
describe household circuits that use alternating current?

How does alternating current differ
from direct current?
Direct current implies that the current flows in a single
direction from the positive terminal of a battery or power

supply to the negative terminal. This is the normal result
when a battery is used. Alternating current, on the other
hand, continually reverses its direction—it flows first in one
direction, then in the other, and then back again. The alter-
nating current used in North America goes through 60 back-
and-forth cycles each second, so its frequency is 60 cycles
per second or 60 hertz (Hz).

A galvanometer is an ammeter designed so that the
needle will deflect in either direction depending on the
direction of the current. If we place a galvanometer in an
alternating-current circuit, the needle would fly back and
forth rapidly—assuming that the meter could actually keep
up with the changes. Since simple galvanometers cannot
respond to such swift changes, the usual result is that the
needle vibrates but remains centered on zero. The average
value of an ordinary alternating current is zero.

An oscilloscope is an electronic instrument that plots
electric voltage as it varies with time. We can use an oscil-
loscope to measure a current by displaying the voltage dif-
ference across a resistance in the circuit (�V � IR). For an
alternating current, the resulting graph would look like
figure 13.17. On this graph, positive values of current rep-
resent one direction of flow, and negative values of current
represent the opposite direction. This curve is called a
sinusoidal curve because it is described by a trigonometric
function, the sine. We met a similar curve earlier in our
description of simple harmonic motion in chapter 6.

An alternating current’s continually changing direction
makes little difference for many electrical applications. In a
light bulb, for example, the heating effect of the charges
moving through the filament does not depend on the direc-
tion the charges are moving. Many electrical appliances
make use of this heating effect (light bulbs, stoves, hair
dryers, toasters, electric heaters, and so on). The operation
of a toaster is described in everyday phenomenon box 13.2.

Certain applications, such as electric motors, do depend
on the kind of current used. We can design motors that
operate on direct current, and we can also design (more
easily) motors that operate on alternating current. A dc
motor may not operate on alternating current, though, and
an ac motor may not operate on direct current, depending
upon the design. (See everyday phenomenon box 14.1.)

What is the effective current or voltage?
Since the average value of an alternating current is zero,
how can we characterize the size of an alternating current?
Because the power dissipated in a resistance is proportional
to the square of the current, it makes sense to use an aver-
age of the squared current as a measure. (Squaring a nega-
tive number yields a positive value.) To find an effective
current, then, we first square the current, average this value
over time, and take the square root of the result.* For a
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*The effective current is sometimes called rms current for root-mean-
square given this method of calculation.
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The Hidden Switch in Your Toaster

The Situation. Have you ever thought about why the toast
suddenly pops up when you are toasting bread in an electric
toaster? Or why an electric coffeemaker turns on and off to
keep the coffee warm? Where is the switch in these circuits?

Many appliances with heating elements also use some
kind of thermostat. A thermostat is a temperature-sensitive
switch that breaks a circuit when the temperature reaches a
certain point. How does a simple thermostat work, and where
might we find it in the toaster?

The Analysis. If you take apart a toaster or coffeemaker
(making sure that it is unplugged first!) and trace the wires
inside the appliance, you will usually find a strip or band
of metal that is part of the circuit. This strip is most often
located near the entering wires, at a point where it can sense
the heat generated by the heating coils of the appliance.
Although simple in appearance, this special strip of metal
and its connections make up the thermostat.

The special strip of metal is a bimetallic strip made up
of two kinds of metal bonded together along their length.
Because different metals expand at different rates as their
temperature increases, the heating of the appliance will cause
one side of the bimetallic strip to grow longer than the other
side. Since the two metals are bonded together, this differ-
ential rate of expansion causes the strip to bend, as in the
drawing. The metal with the larger rate of expansion lies on
the outside of the curve, and the metal with the smaller rate
of expansion lies on the inside, thus compensating for the
greater length of the metal with the larger rate of expansion.

It is not hard to see how such a device is used as a
switch. If we make the strip part of the electric circuit, it can
make contact with a metal tab in its unbent state and then
pull away and break the circuit as it warms up and bends,
as in the drawing. In a toaster, the strip is often part of
a mechanical release system. When the toaster handle is
pushed down, a ratchet holds it in place against the tension
of a spring. The bending of the bimetallic strip releases the
ratchet, causing the toast to pop up at the same time that
the electric circuit is broken.

In devices like room thermostats, where greater sensitivity
to small temperature changes is required, the bimetallic strip
is usually bent into a coil. This allows for a much longer strip
to be used in a small space. It also provides a convenient
method for adjusting the set point of the thermostat. A knob
or dial allows us to loosen or tighten the coil, resetting the
temperature at which changes caused by heating will break
the circuit.

This simple physical effect involving different rates of
thermal expansion of different metals is used extensively in
electric appliances. There are probably applications that have
not yet been invented. Perhaps you could dream up a new
one and obtain the patent.

everyday phenomenon
box 13.2

Toasters, electric heaters, and coffeemakers are among the appliances
that contain thermostats. How do their thermostats work?

Contact

Adjustment 
knob

Heating coil

Bimetallic 
strip

A bimetallic strip bends when heated because the two metals
have different rates of thermal expansion. The bending of the strip
makes or breaks a circuit.
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sinusoidal variation with time, this process yields an effec-
tive current approximately seven-tenths (more accurately,
0.707) of the peak value of the current (fig. 13.17).

If the variation of the voltage across an electrical outlet is
plotted against time, we get another sinusoidal curve
(fig. 13.18). The effective value of this voltage, obtained in
the same manner as for the current, is typically between 110
and 120 volts in North America. The standard household
power supplied in North America is provided at 115 volts, 60
hertz ac. The standard in Europe is 220 volts, 50 hertz ac, so
electric appliances with electric motors (such as electric
shavers or hair dryers) may require adapters to function prop-
erly in different places.

We can use these values of effective current and effec-
tive voltage to analyze alternating-current circuits and
to compute values of electric power as we did for direct-
current circuits. (See example box 13.4.)

How are household circuits wired?
Suppose that you plug an appliance into an electrical outlet.
Does this create a series circuit or a parallel circuit with
other appliances? Does the voltage available depend on
what else is connected to the same circuit? These are prac-
tical questions with everyday implications.

Household circuits are always wired in parallel to assure
that different appliances can be added to or removed from
the circuit without affecting the voltage available to each
(fig. 13.19). Usually, several outlets are wired as part of the
same circuit. Each time you plug in another appliance, you
create another loop in the parallel circuit.

As you add more appliances, the total current drawn
from the circuit increases, because the total effective resis-
tance of the circuit decreases when resistances are added
in parallel. Too large a current could cause the wires to

13.5 Alternating Current and Household Circuits 273

figure 13.17 Electric current plotted as a function of time for an alternating current. The effective current Ieff is 0.707
times the peak current Ip.

figure 13.18 Household voltage plotted against time. The peak voltage is about 160 V if the effective voltage is 115 V.
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example box 13.4

Sample Exercise: Light-Bulb Physics

A 60-W light bulb is designed to operate on 120 V ac.
a. What is the effective current drawn by the bulb?
b. What is the resistance of the bulb’s filament?

a. P � 60 W P � I�V

�Veffective � 120 V

Ieffective � ?
I �

�

� 0.5 A

b. R � ? From Ohm’s law:

�V � IR

R �

�

� 240 �

120 V

0.5 A

¢Veffective

Ieffective

60 W

120 V

P

¢V

overheat. To protect against overheating, we add a fuse or
circuit breaker in series with one leg of the circuit. If the
current gets too large, the fuse will blow or the circuit
breaker will trip. The entire circuit is disrupted, and no
current will flow to any of the attached appliances.

The current or power rating of an appliance indicates the
maximum current normally used by that appliance. A 60-watt
light bulb will draw just half an ampere, as in the sample
exercise in example box 13.4. Since a typical household 

circuit is fused at 15 to 20 A, several 60-watt bulbs could be
turned on without blowing the fuse.

A toaster or a hair dryer, on the other hand, needs 
much more current than the typical light bulb. A toaster
will often draw as much as 5 to 10 amperes by itself and
can cause problems if connected to the same circuit as
another appliance with a heating element. You will find
current or power ratings printed somewhere on the appli-
ance. Table 13.2 gives some typical values. Except where

274 Chapter 13 Electric Circuits

figure 13.19 A typical household circuit may have several appliances connected in parallel with one another.
A fuse or circuit breaker is in series with one leg of the circuit.

Fuse

To
main
line

Appliance Power (W) Current (A)

stove 6000 (220 V) 27

clothes dryer 5400 (220 V) 25

water heater 4500 (220 V) 20

clothes washer 1200 10

dishwasher 1200 10

electric iron 1100 9

coffeemaker 1000 8

toaster 850 7

hair dryer 650 5

food processor 500 4

large fan 240 2

color television 100 0.8

small fan 50 0.4

personal computer 45 0.4

clock radio 12 0.1

These values vary, depending on the size and design of a particular
appliance.

table 13.2

Power and Current Ratings of Some Common
Appliances
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otherwise indicated, an effective line voltage of 120 V is
used to compute the current from the power ratings in this
table. Appliances with larger power requirements like
stoves, clothes dryers, and water heaters are usually con-
nected to a separate 220-V line.

As you can see from table 13.2, appliances with heating
elements require more power than appliances, such as fans
or food processors, that use power mainly to run an electric
motor. Electronic devices such as televisions or radios re-
quire even less power. It is a good idea to check the power
or current rating of appliances and to be aware of what
other appliances are present when you plug a toaster or
similar appliance into a new location. If a toaster drawing 7 A
and a coffeemaker drawing 8 A are in use on the same
circuit as a dishwasher drawing 10 A, you may blow a fuse
or trip the circuit breaker.

You do not have to be an electrician to grasp the basics of
household circuits. The fuse or breaker box in your house
should indicate where each circuit is located in the house and
the value of the current limit of the fuse or circuit breaker.

Replacing a fuse or resetting a breaker is a routine operation
that all of us may need to do. Understanding the ideas pre-
sented in this chapter will help us use household appliances
safely.

Direct current flows in a single direction, but alternating
current flows back and forth, changing its direction contin-
ually. Because the average values of alternating current
and voltage are zero, we describe the magnitudes of these
quantities by using the effective current or voltage. House-
hold circuits operate on 115 V, 60 Hz ac in North America.
When an appliance is plugged into an outlet, it connects
in parallel with other appliances on that circuit. A fuse or
circuit breaker in one leg of the circuit limits the total
current that can flow in that circuit. You should be aware
of the current requirements when several appliances are
operating on the same circuit, particularly if the appliances
have heating elements.

Summary 275

Starting with the simple example of lighting a flashlight bulb, we
introduced the concepts of electric circuit, electric current, and
electric resistance. Ohm’s law and the relationship between power
and current were also used to analyze series and parallel connec-
tions and some basic features of household circuits.

1 Electric circuits and electric current. An electric
circuit is a closed conducting path around which charge can flow.
The rate of flow of charge is called electric current. It has units
of charge per unit of time, or amperes.

3 Series and parallel circuits. When elements are con-
nected in line so that the current that flows through one must also
flow through the others, the elements are connected in series.
When the current can branch into different paths, the elements are
connected in parallel. The equivalent resistance of a parallel
combination is less than any of its components.

+
+

+
+

=
 q
tΙ _

2 Ohm’s law and resistance. Resistance is the prop-
erty of a circuit element that opposes the flow of current. Ohm’s
law states that the current that flows through an element is pro-
portional to the voltage difference across that element and
inversely proportional to the resistance.

R

∆V

= ∆V
R

Ι

R1

R2

R3

R1 R2 R3

Rseries = R1 + R2 + R3

1
Rparallel

______ = 1
R1

__ + 1
R2

__ + 1
R3

__

summary
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* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. Two arrangements of a battery, bulb, and wire are shown
below. Which of the two arrangements, if either, will light
the bulb? Explain.

Q2. Suppose that you have two wires, a battery, and a bulb. One
of the wires is already in place in each of the arrangements
shown in the next column. Indicate with a drawing where

4 Electric energy and power. Since voltage is poten-
tial energy per unit charge, multiplying a voltage difference by
charge yields energy. Since current is the rate of flow of charge,
multiplying a voltage difference by current yields power, the rate
of energy use. The power supplied by a source must equal the
power dissipated in the resistances.

5 Alternating current and household circuits.
Household circuits use alternating current, which is continually
reversing its direction, unlike direct current, which flows in one
direction only. When we plug in appliances, we connect them in
parallel with other appliances on the same circuit. The fuse or cir-
cuit breaker used to limit the current is in series with one leg of
the circuit.

you would place the second wire to get the bulb to light.
Explain your decision in each case.

Q3. In a simple battery-and-bulb circuit, is the electric current
that enters the bulb on the side nearer to the positive termi-
nal of the battery larger than the current that leaves the
bulb on the opposite side? Explain.

Q4. Are electric current and electric charge the same thing?
Explain.

276 Chapter 13 Electric Circuits

Circuit, 258
Electric current, 259
Ohm’s law, 263
Resistance, 263

Conductivity, 263
Electromotive force, 264
Series circuit, 265
Parallel circuit, 266

Direct current, 271
Alternating current, 271
Sinusoidal (sine) curve, 271

1.5 V
P =    2R Ι

P =   εΙ

P =     =  2RεΙ Ι

Ι

 eff = 0.707   pΙ Ι

Ι eff Ι p

t
0

(a) (b)

1.5 V

1.5
V

key terms

questions

(b)(a)

1.5 V1.5 V

Q1 Diagram

Q2 Diagram
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Q10. If we decrease the potential difference across a resistance
in a circuit, will the current flowing through that resis-
tance increase, remain the same, or decrease? Explain.

Q11. A dead battery will still indicate a voltage when a good
voltmeter is connected across the terminals. Can the bat-
tery still be used to light a light bulb? Explain.

Q12. When a battery is being used in a circuit, will the voltage
across its terminals be less than that measured when there
is no current being drawn from the battery? Explain.

Q13. Two resistors are connected in series with a battery as
shown in the diagram. R1 is less than R2.
a. Which of the two resistors, if either, has the greater

current flowing through it? Explain.
b. Which of the two resistors, if either, has the greatest

voltage difference across it? Explain.

Questions 277

Wood block

1.5 V

*Q6. Consider the circuit shown. Could we increase the bright-
ness of the bulb by connecting a wire between points A and
B? Explain.

*Q7. Two circuit diagrams are shown. Which one, if either, will
cause the light bulb to light? Explain your analysis of each
case.

Q8. Suppose that we use an uncoated metal clamp to hold the
wires in place in the battery-and-bulb circuit shown. Will
this be effective in keeping the bulb burning brightly?
Explain.

Q9. Consider the two signs shown, located in different physics
labs. Which of the two would be reason for greater cau-
tion? Explain.

B

A

ε

(b)

1.5 V

1.5 V

Open
switch

(a)

1.5 V

Danger!
100,000 �

Danger!
10,000 V

R1

R2ε

R3

ε R1 R2

Q14. In the circuit shown below, R1, R2, and R3 are three resistors
of different values. R3 is greater than R2, and R2 is greater
than R1. � is the electromotive force of the battery whose
internal resistance is negligible. Which of the three resistors
has the greatest current flowing through it? Explain.

Q5. Consider the circuit shown, where the wires are connected
to either side of a wooden block as well as to the light bulb.
Will the bulb light in this arrangement? Explain.

Q5 Diagram

Q6 Diagram

Q7 Diagram

Q9 Diagram

Q14–Q16 Diagram

Q13 Diagram

Q8 Diagram
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*Q15. In the circuit shown in question 14, which of the three
resistors, if any, has the largest voltage difference across
it? Explain.

*Q16. If we disconnect R2 from the rest of the circuit shown in
the diagram for question 14, will the current through R3

increase, decrease, or remain the same? Explain.

Q17. When current passes through a series combination of
resistors, does the current get smaller as it goes through
each successive resistor in the combination? Explain.

Q18. In the circuit shown, the circle with a V in it represents a
voltmeter. Which of the following statements is correct?
Explain.
a. The voltmeter is in the correct position for measuring

the voltage difference across R.
b. No current will flow through the meter, so it will have

no effect.
c. The meter will draw a large current.

Q20. Which will normally have the larger resistance, a voltmeter
or an ammeter? Explain.

Q21. Is electric energy the same as electric power? Explain.

Q22. If the current through a certain resistance is doubled, does
the power dissipated in that resistor also double? Explain.

Q23. Does the power being delivered by a battery depend on the
resistance of the circuit connected to the battery? Explain.

Q24. What energy source increases the potential energy of the
water behind the dam of a hydroelectric power plant?
Explain.

*Q25. Does a battery connected to an electric motor represent a
perpetual-motion machine (see chapter 11)? Explain.

Q26. In using a dc voltmeter, it is important to connect the posi-
tive terminal of the meter in the correct direction in the cir-
cuit relative to the positive terminal of the battery. Is this
likely to be true for the use of an ac voltmeter? Explain.

Q27. Which of these appliances is most likely to cause an over-
load problem when connected to a circuit that already has
other appliances drawing current from it: an electric shaver,
a coffeemaker, or a television set? Explain.

Q28. Would it make sense to connect a fuse or circuit breaker
in parallel with other elements in a circuit? Explain.

Q29. Suppose that the appliances connected to a household
circuit were connected in series rather than in parallel. What
disadvantages would there be to this arrangement? Explain.

Q30. How does a bimetallic strip break a circuit when things
heat up? Explain.

278 Chapter 13 Electric Circuits

R A

+
+

ε

R V

+
+ε

E1. A charge of 30 C passes at a steady rate through a resistor
in a time of 5 s. What is the current through the resistor?

E2. A current of 2.5 A flows through a battery for 1 min. How
much charge passes through the battery in that time?

E3. A 24-� resistor in a circuit has a voltage difference of 6 V
across its leads. What is the current through this resistor?

E4. A current of 1.5 A is flowing through a resistance of 18 �.
What is the voltage difference across this resistance?

E5. A current of 0.6 A flows through a resistor with a voltage
difference of 120 V across it. What is the resistance of this
resistor?

E6. Three 20-� resistors are connected in series to a 6-V bat-
tery of negligible internal resistance.
a. What is the current flowing through each resistor?
b. What is the voltage difference across each resistor?

E7. A 40-� resistor and a 60-� resistor are connected in series
to a 12-V battery.
a. What is the current flowing through each resistor?
b. What is the voltage difference across each resistor?

E8. In the circuit shown, the 1-� resistance is the internal
resistance of the battery and can be considered to be in
series, as shown, with the battery and the 9-� load.
a. What is the current flowing through the 9-� resistor?
b. What is the voltage difference across the 9-� resistor?

9 Ω

3 V

1 Ω

+

exercises

Q19. In the circuit shown, the circle with an A in it represents an
ammeter. Which of these statements is correct? Comment
on each.
a. The meter is in the correct position for measuring the

current through R.
b. No current will flow through the meter, so it will have

no effect.
c. The meter will draw a significant current from the

battery.

Q18 Diagram

Q19 Diagram

E8 Diagram
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E13. A 9-V battery in a simple circuit produces a current of
1.5 A through the circuit. How much power is being deliv-
ered by the battery?

E14. A 30-� resistor has a voltage difference of 3 V across its
leads.
a. What is the current through the resistor?
b. What is the power being dissipated in this resistor?

E15. A 60-W light bulb operates on an effective ac voltage of
110 V.
a. What is the effective current through the light bulb?
b. From Ohm’s law, what is the resistance of the light

bulb?

E16. A toaster draws a current of 7 A when it is connected to a
110-V ac line.
a. What is the power consumption of this toaster?
b. What is the resistance of the heating element in the

toaster?

E17. A clothes dryer uses 5500 W of power when connected to a
220-V ac line. How much current does the dryer draw from
the line? 

Synthesis Problems 279

E9. Three resistors are connected to a 6-V battery as shown.
The internal resistance of the battery is negligible.
a. What is the current through the 15-� resistance?
b. Does this same current flow through the 25-� resistance?
c. What is the voltage difference across the 20-� resistance?

15 Ω

25 Ω

6 V
+

20 Ω

E10. Two resistors, each having a resistance of 8 �, are con-
nected in parallel. What is the equivalent resistance of this
combination?

E11. Three resistors of 3 �, 6 �, and 2 � are connected in par-
allel with one another. What is the equivalent resistance of
this combination?

E12. Three identical resistances, each 24 �, are connected in
parallel with one another as shown. The combination is
connected to a 12-V battery whose internal resistance
is negligible.
a. What is the equivalent resistance of this parallel

combination?
b. What is the total current through the combination?
c. How much current flows through each resistor in the

combination?

24 Ω12 V 24 Ω 24 Ω
+

SP1. In the circuit shown, the internal resistance of the battery
can be considered negligible.
a. What is the equivalent resistance of the two-resistor par-

allel combination?
b. What is the total current flowing through the battery?
c. What is the current flowing through the 6-� resistor?
d. What is the power dissipated in the 8-� resistor?
e. Is the current flowing through the 8-� resistor greater or

less than that flowing through the 6-� resistor? Explain.

SP3. In the circuit shown, the 6-V battery is opposing the 9-V
battery as they are positioned. The total voltage of the two
batteries will be found by subtracting.
a. What is the current flowing around the circuit?
b. What is the voltage difference across the 20-� resistor?
c. What is the power delivered by the 9-V battery?
d. Is the 6-V battery discharging or charging in this

arrangement?

6 Ω 12 Ω

8 Ω

1.5 V
+

synthesis problems

SP2. Three 30-� light bulbs are connected in parallel to a 1.5-V
battery with negligible internal resistance.
a. What is the current flowing through the battery?
b. What is the current flowing through each bulb?
c. If one bulb burns out, does the brightness of the other

two bulbs change? Explain.

50 Ω

20 Ω

9 V 6 V
+ +

E9 Diagram

E12 Diagram

SP1 Diagram
SP3 Diagram
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SP5. A 600-W toaster, a 1200-W iron, and a 500-W food pro-
cessor are all connected to the same 115-V household
circuit, fused at 15 A.
a. What is the current drawn by each of these appliances?
b. If these appliances are all turned on at the same time,

will there be a problem? Explain.
c. What is the resistance of the heating element in the iron?

280 Chapter 13 Electric Circuits

A B

3 Ω 3 Ω

3 Ω 3 Ω

3 Ω 3 Ω

HE1. If you have a flashlight handy, you have a working example
of a simple battery-and-bulb circuit.
a. Open the flashlight and remove the batteries and bulb.

Can you see how the switch operates? What makes con-
tact when the switch is closed? Sketch the switch to
make this clear.

b. How are the connections made to the bulb in the
flashlight?

c. Leaving the bulb in its socket, can you get it to light by
using external wires to make connections to the batter-
ies? Sketch the arrangement that works.

HE2. If you have two flashlight bulbs, a flashlight battery, and
some wires available, you can try your hand at building
your own series and parallel circuits. The wires can be
looped around the side of the bulb to hold the bulbs, and
the contact with the base may be made to any metal object
to which you can touch another wire. The bulb sockets
from a flashlight may be useful here.
a. Construct a circuit with the two bulbs in series with one

another and with the battery. Note the brightness of the
bulbs when they are lit. (They may barely be glowing if
you are using just one battery.)

b. Now construct a circuit with the two bulbs in parallel
with one another. Note the brightness of the bulbs in
this case.

c. Construct a circuit with just one bulb and compare the
brightness of the bulb in this situation to the brightness
noted in parts a and b.

HE3. Some light bulbs are designed to operate at three different
brightness levels. Locate such a bulb either in your home or
residence hall, or in a local store.
a. Unscrew the bulb from the socket and examine the base

of the bulb. Sketch carefully the points at which electri-
cal contact can be made with the base of the bulb.

b. Unplug the lamp and examine the socket. How does it
make electrical contact with the bulb? (If you do not
have such a lamp handy, your local hardware store will
have three-way sockets for sale that you can examine.)

c. If you can see inside the bulb, how many filaments can
you identify?

d. Develop an explanation for how the bulb can produce
three different brightness levels depending upon the
switch position.

HE4. Locate all of the electrical appliances that you use in your
residence-hall room or in a single room in your house.
a. Can you find current or power ratings on these appli-

ances? What are they?
b. Even if power ratings cannot be found for each device,

can you guess (with the help of table 13.2) approximately
how much current each appliance is likely to draw? Rank
the appliances in order from the one likely to draw the
most current to the one that would draw the least.

c. Is there likely to be a problem if all of the appliances
are turned on at the same time on a single circuit fused
at 20 A?

home experiments and observations

SP4 Diagram

SP4. In the combination of 3-� resistors shown in the diagram,
there are two different parallel combinations that, in turn,
are in series with the middle resistor.
a. What is the resistance of each of the two parallel

combinations?
b. What is the total equivalent resistance between points A

and B?
c. If there is a voltage difference of 6 V between points A

and B, what is the current flowing through the entire
combination?

d. What is the current flowing through each of the resistors
in the three-resistor parallel combination?
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chapter

Magnets and
Electromagnetism

14
chapter overview
After a description of the behavior of magnets that builds on similarities
to the electrostatic force, we will explore the relationship between
electric currents and magnetic forces. We then introduce Faraday’s law,
which describes how electric currents can be generated by interaction
with magnetic fields (electromagnetic induction). Our main objectives
will be to get a grasp of the nature of magnetic forces and fields and of
Faraday’s law of electromagnetic induction.

chapter outline
1 Magnets and the magnetic force. What are the poles of a magnet?

How is the magnetic force similar to the electrostatic force? Why does
a compass work, and what is the nature of the Earth’s magnetic field?

2 Magnetic effects of electric currents. What is the relationship
between electric currents and magnetic forces and fields? How can we
describe the magnetic force in terms of moving charges?

3 Magnetic effects of current loops. What are the magnetic
characteristics of current loops? In what way is a loop of electric
current like a bar magnet?

4 Faraday’s law: Electromagnetic induction. How can electric currents be
produced using magnetic fields? What is Faraday’s law of
electromagnetic induction?

5 Generators and transformers. How can Faraday’s law be used to
explain how electric generators and transformers work? What role do
these devices play in the production and transmission of electric
power?
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14.1 Magnets and the Magnetic Force
If you gather up a few magnets from around the home or
office (fig. 14.2), you can establish basic facts about their
behavior with some simple experiments. You probably
already know that magnets attract paper clips, nails, or any
metallic item made of iron or steel. They do not attract
items made of silver, copper, or aluminum or most non-
metallic materials. Magnets also attract each other but
only if the ends are properly aligned. If the ends are not
properly aligned, the force between them is repulsive
rather than attractive.

The three common magnetic elements are the metals iron,
cobalt, and nickel. The small magnets for sticking things to
refrigerator doors or metal cabinets are alloys of iron, with
other elements added to obtain desired properties. The first
known magnets were a form of iron ore called magnetite,
which occurs naturally and is often weakly magnetized. The
existence of magnetite was known in antiquity, and its prop-
erties had long been a source of curiosity and amusement.

What are magnetic poles?
If you look closely at some of the magnets in your collec-
tion, you may find their ends labeled with the letters N and

S for north and south. If we explored the origin of these
labels, we would discover that they originally stood for
north-seeking and south-seeking. If you suspend a simple
bar magnet by a thread tied around its middle and allow it
to turn freely about the point of suspension, it eventually
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that the electrostatic force and the magnetic force are
really just different aspects of one fundamental electro-
magnetic force.

Our understanding of the relationships between elec-
tricity and magnetism has led to numerous inventions
that play enormous roles in modern technology. These
include electric motors, electric generators, transform-
ers, and many other devices.

figure 14.1 A child playing with magnet-backed letters
that stick to the refrigerator door. What is the force that holds
the letters to the door?

figure 14.2 A collection of magnets. Where are the poles
likely to be found on each magnet?

Do you remember playing with refrigerator magnets
as a child? Plastic letters and figures, backed with small
magnets, can be arranged at your pleasure on the re-
frigerator door. They stick to the steel door because of
the magnets, a fact that you have accepted since you
were four years old or so. They are a wonderful teach-
ing tool as well as a plaything, since the letters can be
arranged to spell simple words (fig. 14.1).

Because of such toys, we are generally more famil-
iar with magnetic forces than with electrostatic forces.
We have played with small horseshoe magnets and
compasses—maybe even with simple electromagnets
made from a steel nail, some wire, and a battery. We
know that there is a force that attracts some types of
metal but not others to magnets. Like the gravita-
tional force and the electrostatic force, this force acts
even when the objects are not in direct contact with
one another.

Although the magnetic force is familiar, it can also
seem mysterious. Beyond these simple facts just listed,
your understanding of the magnetic force is likely to be
limited. In what ways is it like the electrostatic force, and
how does it differ? On a more fundamental level, is there
a relationship between electrical effects and magnetism?
Our mention of electromagnets hints at such a connection.

There is indeed a connection between electric cur-
rents and magnetic forces. These relationships were dis-
covered in the early nineteenth century and culminated
in a theory of electromagnetism developed during the
1860s by the Scottish physicist James Clerk Maxwell. In
the early part of the twentieth century, it became clear
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figure 14.4 Ring magnets levitating on a
vertical wooden rod. The rod keeps the magnets
from flying off to the side.

figure 14.5 Thin iron filings can
be used to visualize the magnetic field
around a simple bar magnet.

14.1 Magnets and the Magnetic Force 283

Coulomb made his measurements with magnets by sub-
stituting long, thin bar magnets for the metal balls in his tor-
sion balance (see section 12.3). The magnets have to be long
so that the opposite poles are far enough away from the point
of measurement that their effect on the force can be ignored.

Coulomb’s experiments showed that the magnetic force
between two poles decreases with the square of the distance
between the two poles, just as the electrostatic force does.
The force is also proportional to a quantity called the pole

figure 14.3 Unlike poles attract one another, and like poles
repel one another.
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comes to rest with one end pointing approximately north-
ward. This is the end or magnetic pole that we label N; the
other is then labeled S.

If your magnets are labeled in this manner, you will
quickly discover that the opposite poles of two magnets at-
tract one another. The north pole of one attracts the south pole
of the other. If you hold the magnets firmly in each hand and
bring two north poles near one another, you can feel a repul-
sive force pushing them apart. The same is true of two south
poles. In fact, if one of the magnets is lying on the table and
you try to bring two like poles together, the magnet on
the table will suddenly flip around so that the opposite pole
comes into contact with the pole of the approaching magnet.

These simple observations can be summarized in a rule
that you probably first learned as part of a science unit in
grade school (fig. 14.3):

Like poles repel one another, and unlike poles attract one
another.

There is an obvious similarity here to the rules for the
electrostatic forces between like and unlike charges. (See
section 12.1.) The rule for magnets, however, was known well
before the electrostatic rule.

It is fun to play with magnets, chasing them around with
each other. Small disk or ring magnets usually have their
poles on opposite sides of the disk. If you bring a small bar
magnet nearby with like poles facing each other, the disk may
hop away or do a quick flip and attach itself to the bar mag-
net. Sometimes the flip is so quick that it is difficult to see. If
the magnets are shaped like small rings, you can get them to
levitate easily on a thin wooden post, as shown in figure 14.4.

Some magnets seem to have more than two poles: there
may be a south and north pole somewhere in the middle of
the magnet. Iron filings sprinkled on a piece of paper lying
on top of the magnet will show where its poles are. The
filings will group most densely near the poles (fig. 14.5).

The magnetic force and Coulomb’s law
The similarity between the behavior of magnetic poles and
electrostatic charges goes well beyond the rules for attraction
and repulsion. If we attempt to measure how the force that
two poles exert on one another varies with distance or pole
strength, we find a behavior similar to Coulomb’s law for the
electrostatic force. In fact, Coulomb himself made the initial
measurements and first stated the force law for magnets.
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strength of each pole. Some magnets are stronger than oth-
ers, and the magnitude of the force exerted by one magnet
on the other depends on the pole strength of both magnets.

Can we associate field lines with magnets?
A magnet is always at least a magnetic dipole: we cannot
completely isolate a single magnetic pole. A dipole con-
sists of two opposite poles separated by some distance. Al-
though there can be more than two poles, apparently there
can never be fewer than two. Physicists have invested con-
siderable effort looking for magnetic monopoles (particles
consisting of a single isolated magnetic pole), but there is
no conclusive evidence that they exist. Breaking a magnetic
dipole in half always produces two dipoles.

In this one respect, then, magnetic poles are not similar
to electric charges. Positive and negative charges can be iso-
lated. Electric dipoles do exist, consisting of equal but oppo-
site charges separated by a small distance, as in figure 14.6.
The electric field lines produced by an electric dipole origi-
nate on the positive charge and end on the negative charge.

Does a magnetic dipole have similar field lines? We can
indeed define a magnetic field whose field lines for a mag-
netic dipole are similar to the electric field lines for an
electric dipole. (The definition of magnetic field is consid-
ered in more detail in section 14.2.) The magnetic field
lines emerge from the north pole of the dipole and go into
the south pole (fig. 14.6). Unlike electric field lines, how-
ever, the magnetic field lines do not end—they form contin-
uous loops. You can make this pattern visible by sprinkling
iron filings on a piece of paper covering a bar magnet. The
filings line up in the direction of the field.

If we place an electric dipole in an electric field pro-
duced by other charges, the dipole will line up with this

field. The forces acting on each charge in the dipole com-
bine to produce a torque on the dipole that turns it toward
the direction of the field (fig. 14.7). Similarly, a magnetic
dipole lines up with an externally produced magnetic field.
This is why iron filings line up with the field lines around
a magnet. The filings become magnetized in the presence
of the field—each one becomes a small magnetic dipole.

Is the Earth a magnet?
A compass needle is a magnetic dipole. The first compasses
were made by balancing a thin crystal of magnetite on a sup-
port so that it could turn freely. As you are aware, the north
(or north-seeking) pole of the magnet will point north, al-
though not exactly due north. The invention of the compass
became a tremendous aid to ocean navigation in the early
Renaissance. Before then, sailors were unable to navigate on
cloudy days or nights when they could not see the sun or stars.

Is the Earth a magnet? What kind of magnetic field is the
compass needle responding to? The compass was invented by
the Chinese, but an English physician named William Gilbert
(1540–1603) was the first to study these phenomena thor-
oughly. Gilbert suggested that the Earth behaves like a large
magnet. You can picture the magnetic field produced by the
Earth by imagining that inside the Earth there is a large bar
magnet oriented as shown in figure 14.8. (Do not take this
picture literally. It is merely a device for describing the field.)

Since unlike poles attract, the south pole of the Earth’s
magnet must point in a northerly direction. The north-
seeking pole of the compass aligns itself northward along
the field lines produced by the Earth. The axis of the
Earth’s magnetic field, though, is not aligned exactly with
the Earth’s axis of rotation. Since the rotational axis defines
geographic or true north, the compass needle does not point
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figure 14.6 Magnetic field lines produced by a magnetic dipole form a pattern similar to the electric field lines produced by an
electric dipole. However, the magnetic field lines form continuous loops.
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exactly north at most locations. On the east coast of the
United States, magnetic north is a few degrees to the west
of true north, while on the west coast it is several degrees
to the east of true north. Somewhere in the middle of the
United States, magnetic north and true north are identical.
The precise location of this line varies slowly with time.

We do not know exactly how the Earth’s magnetic field
is produced, although models have been developed that ac-
count for many of its features. Most of these models as-
sume that electric currents associated with the motion of
fluids in the Earth’s core are responsible. But what do elec-
tric currents have to do with magnetic fields?

Simple magnets have two poles, usually labeled north and
south, which obey force rules like those for electric charges.
Like poles repel and unlike poles attract, and the force
exerted by one on another is inversely proportional to the
square of the distance between them. As far as we know,
isolated magnetic monopoles do not exist: the simplest
magnet is a dipole. Magnetic field lines for a magnetic
dipole form a pattern similar to the electric field lines
for an electric dipole. The Earth itself resembles a large
magnetic dipole with its south magnetic pole pointing
more or less northward.

14.2 Magnetic Effects of
Electric Currents
The invention of the battery by Volta in 1800 made it pos-
sible to produce steady electric currents for the first time.
Previously, currents could be produced only as rapid dis-
charges of charge accumulated in electrostatic experiments.
Connecting a long, thin wire across the terminals of Volta’s
battery permitted a much steadier flow of charge. Scien-
tists were then able to study electric currents in ways not
previously possible.

The similarities between magnetic and electrostatic ef-
fects discussed in section 14.1 led scientists to suspect that a
direct connection between electricity and magnetism might
exist. The same people were often involved in the study of
both areas. William Gilbert explored electrostatic effects
as well as magnetism, and Charles Coulomb measured the
force law for both magnetic poles and electric charges.
Twenty years after the invention of the battery, a striking
discovery was made by the Danish scientist Hans Christian
Oersted (1777–1851).

An unexpected effect
Oersted’s initial discovery of the magnetic effect of an elec-
tric current was made during a lecture demonstration in
1820. Demonstrations often fail to go exactly as planned,
but this is one case when failure was fortuitous. Oersted
was showing the effects of electric currents and happened
to have a compass handy. He noticed that the compass nee-
dle deflected when he completed a circuit consisting of a
long wire and a battery.

Oersted had used a compass near a current-carrying
wire before but had not noticed any effect. Other scientists
had also looked for such effects without success, so the de-
flection of the compass needle during Oersted’s lecture
was unexpected. Not wishing to make a fool of himself in
front of his students, he decided to explore the situation
more carefully after the lecture was over. He found a re-
producible effect on the compass needle as long as the cur-
rent was sufficiently strong and the compass and wire were
situated in certain ways.

figure 14.7 A magnetic dipole lines up with an externally
produced magnetic field just as an electric dipole lines up with
an electric field.
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figure 14.8 The magnetic field of the Earth can be pictured
by imagining a bar magnet inside the Earth (there is not, of
course), oriented as shown here.
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The strange directional aspects of this newly discovered
effect may explain why it had not been observed earlier. To
get the maximum effect with a horizontal wire, the wire
must be oriented along a north-south line (along which the
compass needle would point in the absence of current).
When the current is turned on, the needle deflects away
from north (fig. 14.9). Apparently, the magnetic field pro-
duced by the current in the wire is perpendicular to the di-
rection of the current.

Further study by Oersted and others showed that the mag-
netic field lines produced by a straight, current-carrying
wire form circles centered on the wire. Oersted did not talk
about field lines but about the direction that the compass
needle pointed at various locations. When he placed the
compass below the wire, the needle deflected in the oppo-
site direction from what it did when it was above the wire.
A simple right-hand rule describes the direction of the
field. If you imagine holding the wire in your right hand
with your thumb pointing in the direction of the electric
current, your fingers curl around the wire in the direction
of the magnetic field lines (fig. 14.10).

Not surprisingly, the effect gets weaker as the compass
is moved away from the wire. A current of a few amperes is
needed to get a large deflection of the compass needle even
when the compass is just a few centimeters from the wire.
Early batteries were not capable of sustaining large currents.
This limitation, together with the unexpected direction of
the effect, probably delayed its discovery.

The magnetic force on a current-carrying wire
If we can produce magnetic fields with electric currents, do
currents behave like magnets in other respects? Does an elec-
tric current experience a magnetic force in the presence of a
magnet or another current-carrying wire? This question was
explored by many scientists who were excited by Oersted’s
discovery, including André Marie Ampère in France.

Ampère discovered that there is indeed a force exerted
on one current-carrying wire by another. He carefully dem-
onstrated that this force is related to the magnetic effect
discovered by Oersted and cannot be explained as an elec-
trostatic effect. A current-carrying wire is usually electrically

neutral, with no net positive or negative charge. Ampère
measured the strength of the magnetic force between two
parallel current-carrying wires and studied how it varies with
the distance between the wires and the amount of current
flowing in each (fig. 14.11).

Ampère’s experiments showed that the magnetic force
between two parallel wires is proportional to the two cur-
rents (I1 and I2) and inversely proportional to the distance r
between the two wires. We usually state this relationship as

where the constant k� is equal to 1 � 10�7 N/A2, and F/l
represents the force per unit length of the wire. The longer
the wires, the greater the force. The force exerted by one
wire on the other is attractive when the currents are flow-
ing in the same direction and repulsive when the currents
are flowing in opposite directions.

The strangely simple value of the constant k� is no acci-
dent. We define the unit of current, the ampere, by using this

F

l
 � 

2k¿ I1I2

r
 ,
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figure 14.9 With the wire oriented along a north-south
line, the compass needle deflects away from this line when there
is current flowing in the wire.

figure 14.11 Two parallel current-carrying wires exert an
attractive force on each other when the two currents are in the
same direction and a repulsive force on each other when the two
currents are in opposite directions.

figure 14.10 The right-hand rule gives the direction of the
magnetic field lines that encircle a current-carrying wire. The
thumb points in the direction of the current and the fingers curl
in the direction of the field lines.
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the magnetic field. In symbols, we write this as F � qvB,
where q is the charge, v is the velocity of the charge, and
B is the strength of the magnetic field. For this relation-
ship to be valid, however, the velocity must be perpendicu-
lar to the field. The charge need not be confined in a wire,
however.

This expression for the magnetic force actually defines
the magnitude of the magnetic field. Dividing by q and v, it
can be put in the form

where v� stands for the component of the velocity that is
perpendicular to the field. From this definition, the unit
of magnetic field is equal to 1 newton per ampere-meter
(N/A�m), which is now called a tesla (T).

Just as electric field is the electrostatic force per unit of
charge, the magnetic field is the magnetic force per unit
of charge and unit of velocity. If the velocity of the charge
is zero, there is no magnetic force, but the magnetic field
may still be present. The magnetic field is the force per unit
charge and unit velocity that would be exerted if a moving
charge is present with its velocity perpendicular to the
magnetic field.

What is the direction of the magnetic
force on a moving charge?
Another right-hand rule, illustrated in figure 14.13, is often
used to describe the direction of the magnetic force on a
moving charge. If you point the index finger of your right
hand in the direction of the velocity of a positive charge,
and the middle finger in the direction of the magnetic field,
the thumb points in the direction of the magnetic force
on the moving charge. This force is always perpendicular
to both the velocity and the field direction. The force on
a negative charge is in the opposite direction of a positive
charge moving in the same direction.

B � 
F

qv�
  
,

figure 14.12 The magnetic force exerted on the moving
charges of an electric current is perpendicular to both the velocity
of the charges and to the magnetic field.

figure 14.13 If the index finger of the right hand points in
the direction of the velocity of the charge, and the middle finger
in the direction of the magnetic field, the thumb indicates the
direction of the magnetic force acting on a positive charge.
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relationship and measuring the force between two current-
carrying wires:

One ampere (A) is the amount of current flowing in each of
two parallel wires separated by a distance of 1 meter that pro-
duces a force per unit length on each wire of 2 � 10�7 N/m
(newtons per meter).

The ampere is the basic unit of electromagnetism. It is stan-
dardized by making measurements of the magnetic force be-
tween two wires. The coulomb is defined from the ampere.
Since current is defined as charge per unit time (I � q/t),
charge is the product of current multiplied by time (q � It).
Therefore, 1 coulomb equals 1 ampere-second (1 C � 1 A�s).

The magnetic force on a moving charge
What, then, is the basic nature of the magnetic force? Magnetic
forces are exerted by magnets on other magnets (section 14.1),
by magnets on current-carrying wires, and by current-carrying
wires on each other. Since electric current is the flow of elec-
tric charge, we apparently obtain magnetic forces when charges
are moving. Is the motion of charge somehow a fundamental
criterion for magnetic forces to exist? Ampère also addressed
this question during the 1820s.

Think about the direction of the force exerted by one
current-carrying wire on another: this force is perpendicu-
lar to the direction of the current. Since the direction of
electric current is the direction of flow of positive charge,
we might suppose that a magnetic force is exerted on the
moving charges in the wire. This force must be perpendi-
cular to the velocity of the charges to be consistent with
the observed force on a given wire (fig. 14.12).

The magnetic force on a current-carrying wire has its
maximum value when the wire is perpendicular to the di-
rection of the magnetic field. All these facts suggest that a
magnetic force is exerted on a moving charge. This force
is proportional to the quantity of the charge and the velocity
of the moving charge (which are related to the current
for the charges flowing in the wire) and to the strength of
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Because the magnetic force on a moving charge is per-
pendicular to the velocity of the charge, this force does no
work on the charge and cannot increase its kinetic energy.
The resulting acceleration of the charge is a centripetal ac-
celeration that changes the direction of the charge’s veloc-
ity. If the charge is moving in a direction perpendicular to
a uniform magnetic field, the magnetic force will bend
the path of the charged particle into a circle. The radius
of the circle is determined by the mass and speed of the
particle and can be found by applying Newton’s second law.
(See synthesis problem 2.)

Since the direction of electric current is the same as the
flow of positive charge, the right-hand rule used to find
the direction of the force on a moving charge can also be
used to describe the direction of the force on a current-
carrying wire. In this case, the index finger points in the
direction of the current and the middle finger and the thumb
have the same meanings as before.

The magnetic force on a segment of wire can be expressed
in terms of the magnetic field as F � IlB, where I is the cur-
rent, l is the length of the segment of wire, and B is the
strength of the magnetic field (see example box 14.1). The
direction of the current must be perpendicular to the field for
this expression to be valid. This expression is merely another
way of writing the relationship F � qvB. The product of the
charge times the velocity (qv) is replaced by the product of
the current times the length of the segment of wire (Il ).

The magnetic force is exerted by moving charges on
one another. Since electric currents are moving charges,
we can also say that the magnetic force is a force exerted
by electric currents on one another, and we can always re-
place the product qv with the product Il in expressions in-
volving magnetic fields or forces.

Oersted discovered that, when properly oriented, an electric
current can cause a deflection of a compass needle. Follow-
ing up on this discovery, Ampère showed that a magnetic
force is exerted on one current-carrying wire by another.

Since an electric current consists of moving charges, the
size of a magnetic field can be defined as the force per unit
charge per unit velocity of the charge, provided that the
velocity is perpendicular to the magnetic field.

14.3 Magnetic Effects of Current Loops
Up to this point, the current-carrying wires that we have
considered have been straight, although they must bend
somewhere to complete an electric circuit. Many applica-
tions of electromagnetism involve loops of wire. Wire coils
are used in electromagnets, electric motors, electric gener-
ators, transformers, and a host of other applications.

What happens when we bend a current-carrying wire into
a coil? What does the magnetic field look like, and how is
the coil affected by other magnetic fields? The intense ex-
perimental activity of the 1820s following Oersted’s dis-
covery explored these questions. Ampère, as well as many
other scientists, was active in this work.

The magnetic field of a current loop
As discussed in section 14.2, the magnetic field lines around
a straight wire form circles centered on the wire. Imagine
the process of bending such a wire into a circular loop: what
happens to the field lines? Very near the wire, the field
lines presumably are still circles. Toward the center of the
loop, however, the field contributions produced by different
segments of the wire are all approximately in the same
direction. They add to give a strong field at the center.

The resulting field is depicted in figure 14.14. The field
lines are close together near the center of the loop, indicating
a strong field. The field is also strong near the wire itself.
Farther from the loop, the field weakens, as should be
expected. Like the field lines for a straight wire, the mag-
netic field lines for the current loop curve around until they
meet themselves, forming closed loops.
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figure 14.14 When a current-carrying wire is bent into a
circular loop, the magnetic fields produced by different segments of
the wire add to produce a strong field near the center of the loop.
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example box 14.1

Sample Exercise: Magnetic Force

A straight wire with a length of 15 cm carries a current
of 4 A. The wire is oriented perpendicularly to a magnetic
field with a magnitude of 0.5 T. What is the size of the
magnetic force exerted on the wire?

l � 15 cm � 0.15 m F � IlB

I � 4 A � (4 A)(0.15 m)(0.5 T)

B � 0.5 T � 0.3 N

(The direction of this force will be perpendicular to both
the current in the wire and to the magnetic field, as
described by the right-hand rule in figure 14.13.)
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Note that the field shown in figure 14.14 resembles the
field of a bar magnet (fig. 14.6). In fact, if the bar magnet
is short enough, as in figure 14.15, the field patterns are
identical. We might conclude that a current loop is a mag-
netic dipole, because its field is the same as the more
familiar dipole, the bar magnet.

Is there a magnetic torque
on a current loop?
The similarity between a current loop and a bar magnet goes
beyond the fields produced. If you place a current loop in
an external field, it experiences a torque, just as a bar mag-
net would if it were not initially aligned with the field. It is
possible to use a loop or several loops of current-carrying
wire as a compass needle, because its axis (perpendicular
to the plane of the loop) would line up with an external
field, just as a normal compass needle does.

We can see the origin of the torque on a current loop
most readily by considering a loop in the form of a rectan-
gle, as in figure 14.16. Each segment of the rectangular loop
is a straight wire, and the force on each segment is given
by the expression F � IlB, introduced in section 14.2. The
directions of the forces are given by the right-hand rule in
figure 14.13. Limber up your right hand, and verify the
force directions in the diagram.

Each of the four sides of the loop in figure 14.16 ex-
periences a magnetic force. The forces on the two ends of
the loop (F1 and F2) produce no torque about the center
of the loop, because their lines of action pass through the
center of the loop. Their lever arms about any axis passing
through the center of the loop are zero, and they produce
no torque about the center. (See chapter 8 for a discussion
of torque and rotational motion.)

The forces on the other two sides (F3 and F4) have lines
of action that do not pass through the center of the loop,

provided that the plane of the loop is not perpendicular to
the external magnetic field. From the diagram, we see that
these two forces combine to produce a torque that tends to
rotate the loop about the axis shown, so that its plane ends
up perpendicular to the magnetic field.

Since the magnetic forces on the loop segments are pro-
portional to the electric current flowing around the loop,
the magnitude of the torque on the loop is also proportional
to the current. This fact makes the torque on a current-
carrying coil useful for measuring electric current. Most
simple ammeters have a coil of wire with a needle attached to
it at their center. A permanent magnet provides the magnetic

figure 14.15 The magnetic field produced by a current loop is identical to one produced by a short bar magnet
(a magnetic dipole).

figure 14.16 The forces on each segment of a current-
carrying rectangular loop of wire combine to produce a torque
that tends to rotate the coil until its plane is perpendicular to the
external magnetic field.
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noticed that iron filings are attracted to a current-carrying
copper wire much as they are to a magnet. Following a
suggestion by Ampère, he found that the effect is enhanced
if the wire is wound into the shape of a helix or coil. An
even larger effect is obtained, however, if the coil is wound
around a steel needle or nail. The ability to attract iron fil-
ings in this case is better than most natural magnets.

Arago showed that his simple electromagnet had a north
pole and a south pole like those of a bar magnet. In fact, the
magnetic field of a bar magnet is identical to one produced by
an electromagnet of the same length and strength. This simi-
larity led Ampère to suggest that the source of the magnetism
in a naturally magnetic material like magnetite is current
loops in the atoms that make up the material. If, for some rea-
son, these atomic current loops all line up with one another
and lock into those positions, a permanent magnet results.

In Ampère’s day, nothing was known about the struc-
ture of atoms. Atomic structure was not understood until the
beginning of the twentieth century, almost a hundred years
later. Even so, Ampère’s theory is remarkably close to our
modern view of what happens in ferromagnetic metals like
iron, nickel, and cobalt and their alloys. We now know that
the current loops are associated with the spins of the electrons
in the atoms. Only in the latter half of the twentieth century
have we understood why these spins tend to stay aligned in
ferromagnetic materials but not in other materials.

Within ten years of Oersted’s initial discovery of the mag-
netic effect of an electric current in 1820, many of the phe-
nomena of electromagnetism had been thoroughly explored
and described. Ampère was the leader in much of this work,
and he was also responsible for developing the mathematical
theory relating the magnetic forces on current-carrying wires
and coils. His theory relating the magnetism in natural mag-
nets to atomic current loops completed the link between elec-
tricity and magnetism. Magnetic effects can all be regarded as
the action of electric currents—or moving charges.
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figure 14.17 A simple ammeter consists of a coil of wire, a
permanent magnet, and a restoring spring to return the needle to
zero when there is no current flowing through the coil.

figure 14.18 A current-carrying coil of wire produces a
magnetic field greater than a single loop and is proportional in
strength to the number of loops in the coil.
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field, and a spring returns the needle to zero when there is
no current (fig. 14.17).

This torque is also the basis of operation for electric
motors. To keep the coil turning, however, the current in the
coil must reverse directions every half turn. Otherwise,
the coil would come to rest with the plane of its loop perpen-
dicular to the external magnetic field. An alternating current
is well suited to operating electric motors, but we can also
design motors that operate on direct current (see everyday
phenomenon box 14.1). Electric motors are found every-
where, from the starting motor in your car to the motors in
kitchen appliances, vacuum cleaners, washers and dryers, and
electric shavers.

How do we make an electromagnet?
We have been talking about single loops of current and
coils, which are several loops, all wound in the same direc-
tion. When we add several loops to form a coil, is the mag-
netic field stronger than for a single loop? What effect do
we get by winding a coil of wire on an iron or steel core?

We can readily conclude that the magnetic field pro-
duced by a coil of wire will be stronger than one produced
by a single loop carrying the same current. The magnetic
fields produced by each loop are all in the same direction
near the axis of the coil, and thus they add. The resulting
field strength is proportional to the number of turns N that
are wound on the coil (fig. 14.18). The torque on the coil,
when placed in an external field, is also proportional to
both the current and the number of turns in the coil.

The effectiveness of a coil of wire as a magnet was dis-
covered by the French scientist Dominique-François Arago
(1786–1853) soon after Oersted’s discovery. Arago first
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Direct-Current Motors

The Situation. As a child, you may have built a simple direct-
current motor that ran on flashlight batteries. Inexpensive kits
are available, and building motors is a common science activ-
ity in the middle grades. How does a direct-current motor work?
How can we keep the rotor moving in the same direction
without using an alternating-current power source? How can
we vary the speed of the motor?

The Analysis. There are many ways to build a dc motor, but
the simplest ones usually take the form illustrated in the
drawing. A coil of wire is wound on a rotor mounted so that
it can rotate between the pole faces of a permanent horse-
shoe magnet. The coil is connected to a battery by sliding
contacts that come up on either side of a split ring mounted
on the axle of the rotor.

Viewing the rotor as an electromagnet is a straightforward
way to understand how the motor works. The south pole of
the rotor is attracted to the north pole of the horseshoe mag-
net, causing the rotor to turn. When the rotor reaches the
position where these two poles are closest, the current through
the rotor is reversed. The contacts from the battery cross the
gap between the two half-rings of the split ring attached to
the coil, so that opposite ends of the coil are now connected
to the positive and negative terminals of the battery.

This reversal in current makes the polarity of the electro-
magnet reverse. What had been the south pole becomes the
north pole and vice versa. As its momentum carries the rotor  

past the vertical position, its newly created north pole will
now be attracted to the south pole of the horseshoe magnet,
causing the rotor to continue to turn in the same direction
that it had been moving. The torque on the rotor comes from
the attraction of opposite poles of the two magnets, the rotor
electromagnet and the permanent horseshoe magnet. Every
half-turn, the poles of the electromagnet flip due to the effect
of the split-ring contacts.

This split-ring arrangement is a crucial feature of direct-
current motors and is called a split-ring commutator. It consists
of two half-circle metal bands, each connected to one end of
the coil, mounted on an insulating cylinder. The metal half-
rings make sliding contact with fixed-position metal strips or
brushes on either side of the cylinder. An alternating-current
motor does not need a split-ring commutator because the
current reverses direction every half-cycle.

Although we have viewed the rotor as an electromagnet,
we could also view the torque on the rotor as a result of the
magnetic forces on current elements on either side of the coil
(see figure 14.16 in section 14.3). When the current in the
coil reverses direction, these forces also reverse direction,
so that the torque can be maintained in the appropriate
direction.

The speed of a dc motor is related to the applied voltage,
a convenience in situations where a variable-speed motor is
needed. At first glance, this voltage dependence might not
seem surprising, but its explanation actually follows from
Faraday’s law (section 14.4) rather than Ohm’s law. If you
compare our description of a motor to the description of the
generator in section 14.5, you may be struck by the similarity
of these two devices. In fact, we could use a motor as a gen-
erator if we supplied mechanical energy from an external
source to turn the rotor. This happens when a hybrid car is
braking as described in everyday phenomenon box 11.1.

Because a motor behaves like a generator, there is a “back”
voltage induced in the coil of the rotor due to Faraday’s law
and the changing magnetic flux through the coil. The mag-
nitude of this induced voltage increases as the rotational
velocity of the coil increases, just as in a generator. A larger
voltage from the power source is required to overcome the
larger back voltage induced as the rotational velocity of
the rotor increases. To reach higher speeds, therefore, the
applied voltage must be increased. An alternating-current
motor usually runs at a fixed speed, but the speed of a
direct-current motor can be continuously varied if we vary
the voltage of the power supplied to the motor.

everyday phenomenon
box 14.1

1.5 V

Brushes

S

N

Coil

Split ring

A simple dc motor consists of a wire-wound rotor mounted on an
axle between the pole faces of a permanent magnet. The split ring
causes the current to reverse directions every half turn.
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figure 14.19 The magnetic field produced by the primary
coil was channeled through the secondary coil by the iron ring
used in one of Faraday’s experiments.

on an iron core (fig. 14.19) rather than on a wooden cylinder.
Faraday wound two coils on either side of a welded iron ring.
One coil, the primary, was connected to a battery, the other,
the secondary, to his galvanometer. Again, the galvanometer
needle deflected in one direction when the primary circuit
was closed by making contact with the battery and in the
opposite direction when the primary circuit was broken.

No current was detected in the secondary coil when
there was a steady current in the primary coil. Only if
this primary current was changing as the circuit was
completed or broken was a deflection noted. The strength
of the deflection was proportional to the number of turns
of wire wound on the secondary coil and to the strength
of the battery used with the primary coil. Faraday began
to formulate the idea that an electric current could be
induced by magnetic effects that change with time, rather
than by the steady-state presence of a magnet or electric
current.

Faraday pursued this idea with many other experiments.
One of these involved moving a permanent bar magnet in and
out of a hollow helical coil of wire attached to a galvanometer

292 Chapter 14 Magnets and Electromagnetism

figure 14.20 A magnet moved in or out of a helical coil of
wire produces an electric current in the coil.

N

o
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The magnetic field of a single loop of wire carrying an
electric current is identical to one of a short bar magnet or
magnetic dipole. Like a bar magnet, a current loop also expe-
riences a torque when placed in an externally produced
magnetic field. This torque is the basis of operation of simple
electric meters and electric motors. The effect is enhanced if
we wind the wire into a coil and is greater still if we place
an iron core in the center of the coil. A coil wound around an
iron core becomes an electromagnet if we run a current
through the coil. Natural magnets can be thought of as con-
sisting of self-aligned current loops associated with the spins
of electrons in the atoms of the magnetic material.

14.4 Faraday’s Law: Electromagnetic
Induction
The work of Oersted, Ampère, and others firmly established
that magnetic forces are associated with electric currents.
Using the field concept introduced by Maxwell, we now say
that an electric current produces a magnetic field. What
about the reverse? Can magnetic fields produce an electric
current?

The English scientist, Michael Faraday, got his start in
science as an assistant to the English chemist Sir Humphry
Davy. Davy’s primary interest, and much of Faraday’s early
work, was on the chemical action of electric currents, or
electrolysis. Later, Faraday began a series of experiments to
explore the possibility of producing an electric current
from magnetic effects.

What did Faraday’s experiments show?
Faraday was aware that the magnetic effects of electric cur-
rent are enhanced by coils, so he started his experiments
by winding two unconnected coils of wire on the same
wooden cylinder. One coil was connected to a battery and the
other coil to a galvanometer. (A galvanometer measures both
the direction and the size of an electric current.) Faraday
wanted to see whether he could detect a current in the coil
connected to the galvanometer when a current was flowing in
the other coil connected to the battery.

The results of these first experiments were negative: no cur-
rent was detected in the second coil. Undeterred, Faraday 
persisted by winding longer and longer coils. Finally, with coils
of about 200 feet of copper wire, he noticed an effect. There
was still no evidence of a steady current in the second coil, but
there was a very brief and feeble deflection of the galvanome-
ter needle when he connected the first coil to the battery. There
was another momentary deflection in the opposite direction
when he broke contact with the battery.

Faraday had not expected this effect, but experimentalists
cannot be choosy about results. Through further experiments,
Faraday found that he could get a considerably stronger de-
flection (although still momentary) if he wound both coils

Primary 
coil

Galvanometer

Battery

B

Ι

Secondary
coil

gri12117_ch14_281-304.qxd  7/21/08  10:17 PM  Page 292



Confirming Pages

14.4 Faraday’s Law: Electromagnetic Induction 293

We can now make a quantitative statement of Faraday’s
law that summarizes the results of his experiments:

A voltage (electromotive force) is induced in a circuit when
there is a changing magnetic flux passing through the circuit.
The induced voltage is equal to the rate of change of the mag-
netic flux. In symbols,

The rate of change of flux is found by dividing the change
in flux �� by the time t required to produce this change.
The process of inducing a voltage as described in Faraday’s
law is called electromagnetic induction.

The more rapidly the magnetic flux through the circuit
changes, the larger the induced voltage, which can be read-
ily observed in the experiment involving the moving mag-
net. If we move the magnet in and out of the coil quickly,
we get larger deflections of the galvanometer needle than
if we move it more slowly. The magnetic flux passing
through a coil of wire runs through each loop in the coil,
so the total flux through a coil is equal to the number of
turns of wire in the coil times the flux through each turn,
or � � NBA. (Think about professional basketball to re-
member this expression.) The more turns of wire in the coil,
the larger the induced voltage.

A coil of wire can be used to assess the strength of a mag-
netic field. The magnetic flux through the coil can be quickly
reduced to zero by either removing the coil from the field or
by giving it a quarter turn so the field lines lie parallel to the
plane of the coil. If we know the time required to make this
change, we can find the strength of the magnetic field by
measuring the induced voltage. The application of Faraday’s
law in example box 14.2 reverses this procedure by predict-
ing the induced voltage from a known magnetic field.

Lenz’s law
Can we predict the direction of the induced current in
the coil? The rule for doing so, Lenz’s law, goes hand in
hand with Faraday’s law and is credited to Heinrich Lenz
(1804–1865):

The direction of the induced current generated by a changing
magnetic flux produces a magnetic field that opposes the
change in the original magnetic flux.

If the magnetic flux decreases with time, the magnetic
field produced by the induced current will be in the same
direction as the original external field, thus opposing the
decrease. On the other hand, if the magnetic flux increases
with time, the magnetic field produced by the induced cur-
rent will be in the opposite direction to the original exter-
nal field, thus opposing the increase.

e � 
¢�

t
.

figure 14.21 The magnetic flux through the loop of wire
has its maximum value when the field lines are perpendicular to
the plane of the loop. It is zero when the field lines are parallel
to the plane of the loop and do not cross the plane.

Φ = BA

B

B

Φ = 0

A A

(fig. 14.20). When the magnet moved in, the galvanometer
needle deflected in one direction. When the magnet moved
out, the needle deflected in the opposite direction. When the
magnet was not moving, no deflection resulted. This is an
easy effect to demonstrate with equipment available in most
physics labs.

Faraday’s law
The results of all of Faraday’s experiments indicate that an
electric current is induced in a coil or circuit when the
magnetic field passing through that circuit is changing. Be-
cause the amount of current flowing in the secondary cir-
cuit depends on the resistance of that circuit, we generally
express these results in terms of the induced voltage rather
than the current. To construct a quantitative statement to
describe this effect, however, we need somehow to define
how much of the magnetic field passes through the circuit.
This latter problem was solved by introducing the concept
of magnetic flux. The magnetic flux is related to the num-
ber of magnetic field lines passing through the area bounded
by the loop of wire. For a simple loop of wire lying in
a plane perpendicular to the magnetic field, the magnetic
flux is the product of the magnetic field B and the area A
bounded by the loop (fig. 14.21). In symbols, the flux defi-
nition takes the form

� � BA.

The Greek letter � (phi) is the standard symbol used for flux.
We must place an important qualification on this defini-

tion. Maximum flux is obtained when the field lines pass
through the circuit in a direction perpendicular to the plane
of the circuit. If the field lines are parallel to this plane,
there is no flux because the field lines do not pass through
the circuit (fig. 14.21). To take this fact into account, we
use only the component of B that is perpendicular to the
plane of the loop to calculate the flux.
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arms it could be felt. If it could be felt just at the fingers,
it was not very strong—one that could be felt at the elbows
was obviously stronger. You can get a much stronger shock
when you connect the wires of an electromagnet to a bat-
tery than when you touch the terminals of the battery di-
rectly with your fingers.

Henry had discovered self-induction. The changing
magnetic flux through a coil of wire produced when the
coil is connected or disconnected from the battery pro-
duces an induced voltage in the same coil. The induced
current in the coil and its associated magnetic field oppose
the changing magnetic flux. The magnitude of the induced
voltage is described by Faraday’s law and is proportional
to the number of turns in the coil and to the rate of change
of current in the coil. The voltage induced when the circuit
is broken can be several times larger than the voltage of
the battery itself.

Self-induction has many applications. Coils of wire are
used in circuits to smooth out changes in current. The volt-
age induced when the current is increasing causes the change
to take place more slowly than it would without the coil.
This induced back voltage opposes the voltage difference
that is producing the increase in current. An inductor or
coil effectively adds electrical inertia to the system, which
reduces rapid changes in current. (See everyday phenome-
non box 14.2 for an application of this effect.) Induction
coils are also used to generate large voltage pulses such as
those needed to power the spark plugs in an automobile.

294 Chapter 14 Magnets and Electromagnetism

figure 14.22 The induced current in the loop of wire
produces an upward magnetic field inside the loop that opposes
the increase in the downward field associated with the moving
magnet.

Motion of magnet

v

Binduced 

induced 

Bmagnet

S

N

Ι

example box 14.2

Sample Exercise: How Much Voltage Is Induced?

A coil of wire with 50 turns has a uniform magnetic field
of 0.4 T passing through the coil perpendicular to its
plane. The coil encloses an area of 0.03 m2. If the flux
through the coil is reduced to zero by removing it from the
field in a time of 0.25 second, what is the induced voltage
in the coil?

N � 50 turns The initial flux through the coil is:

B � 0.4 T � � NBA

A � 0.03 m2 � (50)(0.40 T)(0.03 m2)

t � 0.25 s � 0.60 T·m2

The induced voltage is equal to the rate of change
of flux:

� �

�

� 2.4 V

(0.60 	�m2 � 0)

(0.25 s)

¢�

t

Lenz’s law is illustrated in figure 14.22. When the magnet
moves into the coil and the flux increases with time,
the induced current is in a counterclockwise direction in the
coil. The magnetic field produced by this induced current is
upward through the area bounded by the coil, thus oppos-
ing the increase in the downward field associated with 
the moving magnet. Lenz’s law also explains why the 
galvanometer needle deflected in opposite directions when
Faraday closed or opened the primary circuit in his experiments.

What is self-induction?
Faraday first reported the results of his discoveries on
electromagnetic induction in 1831. One year later, the
discovery of a related effect was reported by Joseph Henry
(1797–1878), who was working at Princeton University in
the United States. Henry was experimenting with electro-
magnets when he noticed that the spark or shock obtained
when an electromagnet was connected to a battery was
larger than one obtained by touching the terminals of the
battery with an uncoiled wire. The biggest sparks were
obtained when the circuit was broken.

Henry explored this phenomenon in more detail. He
found that a long wire yields a larger spark than a short
wire and that coiling the wire into a helix yields an even
larger spark. If the wire is wound on a steel nail to make an
electromagnet, the effect is larger still. He roughly cali-
brated the strength of the shock by noting how far up his
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Vehicle Sensors at Traffic Lights

The Situation. When you approach a traffic light in your car,
you probably often notice a circular or diamond-shaped line
in the pavement as shown in the photograph. You may be
aware that this pattern in the pavement has something to do
with causing the traffic light to change. If your car is not posi-
tioned over this pattern, the light may not change.

How does this detector work? What lies underneath the
pattern in the pavement? Why are these patterns becoming
more and more common in traffic control applications?

The Analysis. The pattern in the pavement conceals a large
loop of wire with multiple turns. This loop or coil is an inductor. It
is usually placed in the pavement after the paving is completed.
A saw is used to cut a circular or diamond-shaped groove in the
pavement and the coil is laid in this groove. A rubberlike sealing
compound is then used to cover the wire loop.

The wire-loop inductor is part of a circuit. The rest of this
circuit is usually located somewhere on the side of the road.
You may see a line in the pavement that contains wires lead-
ing to this circuit or they may have been put in place before
the paving was completed. The circuit containing the inductor
is connected to the timing controls for the traffic light as
shown in the diagram.

How is this wire loop involved in detecting the presence
of your car? When your car is located over the loop, the steel
in the frame of your car increases the magnetic field being
produced by the current in the coil. The effect is similar to
that of placing a piece of iron inside the coil of an electro-
magnet. The presence of the iron strengthens the magnetic
field, thus increasing the inductance of the coil. Iron is a
component of steel, which is used extensively in the frames 
of automobiles or trucks. Any metal will have some effect

everyday phenomenon
box 14.2

The circular pattern in the pavement indicates the presence of a
vehicle sensor. How does this sensor work?

Sensor
circuitry

Traffic-
light

controller

The wire loop in the pavement is part of a sensor circuit that sends a
signal to the traffic-light timing controls.

on the inductance, though, due to its ability to conduct an
induced current.

Since the wire loop is part of an electric circuit, the change
in inductance will affect the behavior of the circuit. There are
many possible circuit designs that could be used to convert
this change in inductance to a signal that controls the traffic
light. For example, the inductor could be part of an oscillating
circuit whose frequency depends upon the value of the induc-
tance. This change in frequency can be used to signal other
circuitry that a vehicle is present.

Depending upon how the controls for the traffic light are
programmed, the signal indicating the presence of a vehicle
will cause the light to change, perhaps after a short delay.
Additional detectors farther back from the intersection can
indicate how many vehicles are present. This information can
be used to determine how long the light should remain green
for a turn lane or side road.

These inductive detectors have become very common for
managing the flow of traffic. If traffic is heavy in all directions
at all times, then a simple timer system is used to control the
traffic lights. If the traffic patterns vary with time of day and
other factors, then the detectors can be used to optimize the
timing of the lights to the current traffic conditions. If there is
no traffic on a side road, for example, there is no point in stop-
ping the traffic on a more major street or highway. If we can
increase the efficiency of traffic flow using such techniques, we
can save energy, reduce driver frustration, and decrease the
need for more expensive highway-building solutions.
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figure 14.23 A simple generator consists of a coil of wire
that generates an electric current when turned between the pole
faces of permanent magnets.

Michael Faraday discovered that an electric current can be
induced in a coil of wire when the magnetic field passing
through that coil is changing. Faraday’s law states that
the induced voltage in the coil is equal to the rate of
change of the magnetic flux through the coil. Magnetic
flux is defined as the magnetic field times the area
enclosed by the coil. Lenz’s law says that the direction
of the induced current generates a magnetic field that
opposes the change in the original magnetic flux. Joseph
Henry discovered the related effect of self-induction, in
which a voltage is induced in the same coil that is pro-
ducing the changing magnetic flux.

14.5 Generators and Transformers
Our everyday use of electric power is so commonplace that
we do not usually stop to think about where the energy
comes from or how it is generated. We know that it comes
to us through overhead or underground wires and that it
powers our appliances, lights our homes and offices, and
sometimes heats or cools our homes. We may also be
aware of the transformers visible on utility poles and in
electric substations.

Electric generators and transformers both play crucial
roles in the production and use of electric power. Both are
based on Faraday’s law of electromagnetic induction. How
do they work, and what roles do they play in the power-
distribution system?

How does an electric generator work?
We have already mentioned the use of electric generators
in our discussion of energy resources in chapter 11. The
basic function of a generator is to convert mechanical en-
ergy, which might be obtained from a water turbine at a
dam or a steam turbine in a power plant, to electrical en-
ergy. How is this done? How is Faraday’s law involved
in describing how a generator works?

A simple electric generator is shown in figure 14.23.
Mechanical energy supplied by turning the crank rotates
the coil of wire located between the pole faces of perma-
nent magnets. The magnetic flux through the plane of the
coil has its maximum value when this plane is perpendicu-
lar to the magnetic field lines passing between the poles of
the magnets. As the coil is turned to a position where the
plane of the coil is parallel to the field lines, the flux be-
comes zero. If we continue to turn the coil past this point,
the field lines pass through the coil in the direction oppo-
site to the initial direction (relative to the coil).

The coil’s rotation causes the magnetic flux passing
through the coil to change continuously from a maximum
in one direction, to zero, to a maximum in the opposite
direction, and so on, as shown in the upper graph of fig-
ure 14.24. By Faraday’s law, a voltage is induced in the coil

because of this changing magnetic flux. The magnitude of
the induced voltage depends on the rate of change of the
magnetic flux and on factors associated with the magnet
and coil that determine the size of the maximum magnetic
flux. The faster the coil is turned, the larger the maximum
value of the induced voltage, since increased speed causes
the magnetic flux to change more rapidly.

Figure 14.24 shows graphs of the continuously varying
magnetic flux and the induced voltage plotted against time.
If the axle of the coil is turned at a steady rate, we get a
smooth variation of the flux, as in the top graph. Below the
flux graph, the graph of the induced voltage is plotted on
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figure 14.24 Graphs of the magnetic flux � and induced
voltage � for an electric generator, plotted on the same time
scale.
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the same time scale. By Faraday’s law, induced voltage is
equal to the rate of change of magnetic flux, so its maxi-
mum values occur where the slope of the flux curve is the
greatest, and its zero values occur where the flux is mo-
mentarily not changing (zero slope). The resulting curve
for the induced voltage has the same shape as for the flux
but is shifted relative to the flux curve.

As the graphs show, the voltage that is normally produced
by a generator is an alternating voltage: this is one reason
that we use alternating current in our power-distribution
system. For power production, the rotational velocity of the
generator coils must be maintained at a specific value to
produce the 60-Hz (60-cycles/s) alternating current that is
the standard frequency in the United States.

The electric generators used in power plants resemble
the simple one we have described here. Usually, they have
more than one coil, and the magnets are electromagnets
rather than permanent magnets, but the principle of opera-
tion is the same. There is also an electric generator in your
car—the electric power generated keeps the battery charged,
operates the lights, and powers other electrical systems.

What does a transformer do?
Another advantage of alternating current in power distribu-
tion is that transformers can change the voltage. Trans-
formers are familiar sights. You see them on utility poles,
at electrical substations, and as voltage adapters for low-
voltage devices like model electric trains (fig. 14.25). Their
function is to adjust the voltage up or down to suit the needs
of a particular application.

Some of Faraday’s early experiments involved prototypes
of the modern transformer. His apparatus with primary and
secondary coils wound on either side an iron ring (fig. 14.19)
is an example of a simple transformer. By Faraday’s law, a
voltage will be induced in the secondary coil if the current
(and the associated magnetic field) of the primary coil is

changing: that condition is present if we power the primary
coil with an alternating-current source (fig. 14.26).

What determines the size of the change in voltage that a
transformer can produce? A simple relationship follows
from Faraday’s law. The voltage induced on the secondary
coil is proportional to the number of turns on the second-
ary coil, since the number of turns determines the total
magnetic flux passing through this coil. The induced volt-
age is also proportional to the voltage on the primary coil,
since this determines the size of the primary current and its
associated magnetic field. The induced voltage is inversely
proportional, however, to the number of turns on the pri-
mary coil.

Stated in symbols, this relationship takes the form

where N1 and N2 are the number of turns of wire on the
primary and secondary coils, and �V1 and �V2 are the
associated voltages. This relationship is often written as
the proportion

The ratio of the number of turns on the two coils deter-
mines the ratio of the voltages.

Self-induction is the reason that the voltage induced on
the secondary coil is inversely proportional to the number
of turns on the primary coil. The more turns on the primary
coil, the harder it is to produce a rapid change in current in
the primary coil because of the back voltage produced by
self-induction. This effect limits the current and the size of

¢V2
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 � 
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figure 14.25 Transformers on utility poles and at electrical
substations are familiar sights. Smaller ones are common
components of electrical devices.

figure 14.26 An alternating voltage applied to the primary
coil of a transformer produces a changing magnetic flux, which
induces a voltage in the secondary coil.
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the magnetic field produced by the primary coil, which lim-
its the magnetic flux passing through the secondary coil.

Suppose that you want to run an electric train at 12 volts, but
the electric power provided at the wall socket is 120 volts. You
need a transformer with ten times as many turns on the primary
coil as on the secondary coil, which yields a voltage in the sec-
ondary coil 1⁄10 of the primary coil, or 12 volts. A television set
needs much higher voltages than 120 volts to power the picture
tube, so we use a transformer with many more turns on the sec-
ondary than on the primary. (See also example box 14.3.)

If the output voltage is higher than the input voltage, are
we somehow getting more power out of the transformer than
what we put in? The answer, of course, is no. The power
delivered to the secondary circuit is always less than, or at
best equal to, the power provided to the primary coil. Since
electrical power can be expressed as the product of the volt-
age times the current, conservation of energy provides a sec-
ond relationship useful for analyzing transformers:

�V2I2 
 �V1I1.

A high-output voltage is associated with a low-output cur-
rent. The output power does not exceed the input power.
If we are stepping down to a smaller voltage in the secondary
circuit, the secondary current can be larger than what was
provided to the primary coil, but the power cannot exceed
that provided to the primary coil.

Transformers and power distribution
High voltages are desirable for long-distance transmission of
electric power. The higher the voltage, the lower the current

for a given amount of power transmitted. Since the heat losses
caused when current flows through a resistance are related
most directly to the current (P � I 2R), smaller currents mean
less energy lost to resistive heating in the transmission wires.
Transmission voltages as high as 230 kV (230 kilovolts or
230 000 volts) are not unusual.

Such high voltages are not safe or convenient for power
distribution in a city or for use in homes or buildings.
Transformers at electrical substations reduce the voltage
to 7200 volts for distribution in town. Transformers on
utility poles or partially underground lower this voltage
further to 220 to 240 volts for entry into buildings. This
ac voltage can be split inside the building to yield the 110
volts commonly used for household circuits, while keep-
ing 220 volts available for stoves, dryers, and electric
heating.

The original electrical distribution system in the United
States was a 110-volt direct-current system designed in 1882
by Thomas Edison for a portion of New York City. There
was controversy for several years afterward about whether
direct-current or alternating-current systems were the most
appropriate for the delivery of electric power. In the end,
the proponents of the ac system prevailed. The abilities to
transmit electrical power at high voltages and to use trans-
formers to step these voltages down at the point of use were
major reasons for this choice.

Direct current is occasionally used to transmit power
over large distances because it does not lose energy by ra-
diation of electromagnetic waves. Radiation is a drawback
of alternating current. The power line acts as an antenna that
radiates electromagnetic waves when the current is oscil-
lating (see section 16.1). 

A transformer works best with alternating current.
Faraday’s law requires that magnetic flux change for there
to be an induced voltage. If we tried to use a transformer
with a battery or other dc source, we would have to con-
tinually make and break the primary circuit somehow to
induce a voltage in the secondary circuit. There are means
of accomplishing this, but they add to the complexity and
cost of a system and are less efficient than using alternat-
ing current.

Electric generators convert mechanical energy to electrical
energy by rotating a coil through a magnetic field, thus
inducing a voltage due to the changing magnetic flux.
Transformers adjust voltages up or down by passing a
changing magnetic field produced by an alternating
current in a primary coil through a secondary coil. By
Faraday’s law, this induces a voltage in the secondary coil.
The operation of generators and transformers is based
on Faraday’s law, and both play major roles in power-
distribution systems.

298 Chapter 14 Magnets and Electromagnetism

example box 14.3

Sample Exercise: A Step-Up Transformer

A transformer connected to a 120-V ac line is to supply
9600 V for a neon sign.

a. What is the ratio of secondary to primary turns of
the transformer?
b. If the transformer consisted of 275 primary windings,
how many secondary windings would there be?

a.

The ratio of secondary to primary
turns would be 80.

b.

N2 � 80 � 275 � 22,000

N2 � ?
if  

N2

N1

� 80    then   N2 � 80 � N1
N1� 275

N2

N1

� ?

¢V2 � 9600V
¢V2

¢V1

�
N2

N1

�
9600V

120V
� 80

¢V1 � 120V
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The discovery that magnetic forces are associated with electric
currents unified the study of electricity and magnetism in the
early part of the nineteenth century. The fundamental nature of
magnetism was shown to be due to the motion of electric charges.
Electric currents can be produced by changing magnetic fields, as
described by Faraday’s law.

1 Magnets and the magnetic force. Like electro-
static forces, the magnetic force between the poles of two mag-
nets obeys Coulomb’s law and the rule that like poles repel and
unlike poles attract. The Earth itself behaves like a large magnet
with its south pole pointing northward.

F
S N

–F
NS

F

Ι

B

F

v

+ B

F =   lBΙ

F = qvB

Ι

N

S

B B
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t
_ε =

B

A

S N
v

summary

2 Magnetic effects of electric currents. Oersted’s
discovery that magnetic effects are associated with electric
currents led to the description of the magnetic field of a current-
carrying wire. A magnetic force is exerted on either a current-
carrying wire or a moving charge when they are located in a
magnetic field.

4 Faraday’s law: Electromagnetic induction. Faraday
discovered that a voltage is induced in a circuit equal to the rate
of change of magnetic flux passing through the circuit (Faraday’s
law). Magnetic flux is equal to the product of the magnetic field
and the area bounded by the circuit when the field lines are per-
pendicular to the plane of the loop. Lenz’s law describes the
direction of the induced current: the current opposes the change
producing it.

5 Generators and transformers. A generator con-
verts mechanical energy to electrical energy by electromagnetic
induction and naturally produces an alternating current. Trans-
formers are used to adjust alternating voltages up and down.
Faraday’s law is the basic principle of operation for both of these
devices, and both are commonly used in our power-distribution
system.

Magnetic pole, 283
Magnetic dipole, 284
Magnetic monopole, 284
Magnetic force, 287
Magnetic field, 287

Electromagnet, 290
Magnetic flux, 293
Faraday’s law, 293
Electromagnetic induction, 293

Lenz’s law, 293
Self-induction, 294
Generator, 296
Transformer, 297

key terms

3 Magnetic effects of current loops. A current-
carrying loop of wire produces a magnetic field identical to the
field of a short bar magnet. Current loops and coils are magnetic
dipoles, and the magnetism of natural magnets can be attributed to
atomic current loops. A magnetic torque exerted on a current loop
in an external field is similar to that exerted on a bar magnet.
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*Q18. If the rectangular loop of wire shown in question 17 were
oriented so that the plane of the loop is parallel to the
magnetic field lines, would there be a net torque acting
on the loop? Explain.

Q19. Since the magnetic fields of a coil of wire and a bar mag-
net are identical, are there loops of current inside natural
magnetic materials like iron or cobalt? Explain.

Q20. In what respect is a simple ammeter designed to measure
electric current like an electric motor? Explain.

Q21. Does an ac motor require a split-ring commutator to
work? Explain.

Q22. If Faraday wound enough turns of wire on the secondary
coil of his iron ring, would he have found that a large
steady-state current in the primary coil induced a current
in the secondary coil? Explain.

Q23. Is a magnetic flux the same as a magnetic field? Explain.

*Q24. A horizontal loop of wire has a magnetic field passing up-
ward through the plane of the loop. If this magnetic field
increases with time, is the direction of the induced current

300 Chapter 14 Magnets and Electromagnetism

B

Ι

questions

* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. The north pole of a hand-held bar magnet is brought near
the north pole of a second bar magnet lying on a table.
How will the second magnet tend to move? Explain.

Q2. If the distance between the south poles of two long bar
magnets is reduced to half its original value, will the force
between these poles be doubled? Explain.

Q3. In what respects is the force between two magnetic poles
similar to the force between two charged particles? Explain.

Q4. Is it possible for a bar magnet to have just one pole? Explain.

Q5. Does a compass needle always point directly northward in
the absence of other nearby magnets or currents? Explain.

*Q6. If we regard the Earth as magnet, does its magnetic north
pole coincide with its geographic north pole? What defines
the position of the geographic north pole? Explain.

Q7. We visualized the magnetic field of the Earth by imagin-
ing that there is a bar magnet inside the Earth (fig. 14.8).
Why did we draw this magnet with its south pole pointing
north? Explain.

Q8. A horizontal wire is oriented along a north-south line, and
a compass is placed above it. Will the needle of the com-
pass deflect when a current flows through the wire, and if
so, in what direction? Explain.

Q9. A horizontal wire is oriented along an east-west line, and a
compass is placed above it. Will the needle of the compass
deflect when a current flows through the wire from east to
west, and if so, in what direction? Explain.

Q10. Is the force exerted by one current-carrying wire on another
due to electrostatic effects or to magnetic effects? Explain.

Q11. A uniform magnetic field is directed horizontally toward
the north, and a positive charge is moving west through
this field. Is there a magnetic force on this charge, and if
so, in what direction? Explain.

Q12. A positively charged particle is momentarily at rest in a
uniform magnetic field. Is there a magnetic force acting on
this particle? Explain.

Q13. If a uniform magnetic field is directed horizontally to-
ward the east, and a negative charge is moving east through
this field, is there a magnetic force on this charge, and if so,
in what direction? Explain.

Q14. Why does the magnetic force on a current-carrying seg-
ment of wire behave like one on a positive charge travel-
ing in the same direction as the current? Explain.

Q15. If we look down at the top of a circular loop of wire
whose plane is horizontal and that carries a current in the
clockwise direction, what is the direction of the magnetic
field at the center of the circle? Explain.

Q16. If we were to represent the current loop of question 15 as
a bar magnet or magnetic dipole, in what direction would
the north pole be pointing? Explain.

*Q17. A current-carrying rectangular loop of wire is placed in
an external magnetic field with the directions of the cur-
rent and field as shown in the diagram. In what direction
will this loop tend to rotate as a result of the magnetic
torque exerted on it? Explain.

Q17 Diagram
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Q28. Does a simple generator produce a steady direct current?
Explain.

Q29. A simple generator and a simple electric motor have very
similar designs. Do they have the same function? Explain.

Q30. Can a transformer be used, as shown in the diagram
below, to step up the voltage of a battery? Explain.

E1. Two long bar magnets lying on a table with their south
poles facing one another exert a force of 10 N on each
other. If the distance between these two poles is doubled,
what is the new value of this force?

E2. Two long parallel wires, each carrying a current of 4 A,
lie a distance of 10 cm from each other. What is the mag-
netic force per unit length exerted by one wire on the
other?

E3. If the distance between the two wires in exercise 2 is
tripled, how does the force per unit length change?

E4. Two parallel wires, each carrying a current of 2 A, exert a
force per unit length on each other of 1.6 � 10�5 N/m.
What is the distance between the wires?

E5. A wire carries a current of 4 A. How much charge flows
past a point on the wire in a time of 5 s?

E6. A particle with a charge of 0.06 C is moving at right angles
to a uniform magnetic field with a strength of 0.5 T. The
velocity of the charge is 600 m/s. What is the magnitude of
the magnetic force exerted on the particle?

E7. A straight segment of wire has a length of 10 cm and car-
ries a current of 5 A. It is oriented at right angles to a

magnetic field of 0.6 T. What is the magnitude of the
magnetic force on this segment of wire?

E8. The magnetic force on a 30-cm straight segment of wire
carrying a current of 5 A is 6 N. What is the magnitude
of the component of magnetic field perpendicular to 
the wire?

E9. A coil of wire with 80 turns has a cross-sectional area
of 0.04 m2. A magnetic field of 0.6 T passes through the
coil. What is the total magnetic flux passing through 
the coil?

E10. A loop of wire enclosing an area of 0.03 m2 has a magnetic
field passing through its plane at an angle to the plane. The
component of the field perpendicular to the plane is 0.4 T,
and the component parallel to the plane is 0.6 T. What is
the magnetic flux through this coil?

E11. The magnetic flux through a coil of wire changes from
6 T�m2 to zero in a time of 0.25 s. What is the magnitude of
the average voltage induced in the coil during this change?

E12. A coil of wire with 60 turns and a cross-sectional area of
0.02 m2 lies with its plane perpendicular to a magnetic
field of magnitude 1.5 T. The coil is rapidly removed from
the magnetic field in a time of 0.2 s.

ε R
+

exercises

clockwise or counterclockwise (viewed from above) as pre-
dicted by Lenz’s law? Explain.

Q25. Two coils of wire are identical except that coil A has twice
as many turns of wire as coil B. If a magnetic field increases
with time at the same rate through both coils, which coil (if
either) has the larger induced voltage? Explain.

*Q26. Suppose that the magnetic flux through a coil of wire
varies with time, as shown in the graph. Using the same
time scale, sketch a graph showing how the induced volt-
age varies with time. Where does the induced voltage
have its largest magnitude? Explain.

1 2 3 4 5 t (s)

Φ

Q31. By stepping up the voltage of an alternating-current
source using a transformer, can we increase the amount
of electrical energy drawn from the source? Explain.

Q30 Diagram

Q26 Diagram

Q27. If the magnetic field produced by the magnets in a gener-
ator is constant, does the magnetic flux through the gen-
erator coil change when it is turning? Explain.
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Ι Ι = 10 A= 5 A

5 cm

v

+ B

synthesis problems

SP1. Two long parallel wires carry currents of 5 A and 10 A in
opposite directions as shown in the diagram below. The
distance between the wires is 5 cm.
a. What is the magnitude of the force per unit length

exerted by one wire on the other?
b. What are the directions of the forces on each wire?
c. What is the total force exerted on a 30-cm length of the

10-A wire?
d. From this force, compute the strength of the magnetic

field produced by the 5-A wire at the position of the
10-A wire (F � IlB).

e. What is the direction of the magnetic field produced by
the 5-A wire at the position of the 10-A wire?

SP3. A rectangular coil of wire has dimensions of 3 cm by 6 cm
and is wound with 60 turns of wire. It is turned between
the pole faces of a horseshoe magnet that produces an
approximately uniform field of 0.4 T, so that sometimes the
plane of the coil is perpendicular to the field and some-
times it is parallel to the field.
a. What is the area bounded by the rectangular coil?
b. What is the maximum value of the total magnetic flux

that passes through the coil as it is turned?
c. What is the minimum value of the total flux through the

coil as it turns?
d. If the coil makes one complete turn each second and

turns at a uniform rate, what is the time involved in
changing the flux from the maximum value to the mini-
mum value?

e. What is the average value of the voltage generated in
the coil as it passes from the maximum to the minimum
value of flux?

SP1 Diagram

SP2 Diagram

a. What is the initial magnetic flux through the coil?
b. What is the average value of the voltage induced in 

the coil?

E13. A transformer has 15 turns of wire in its primary coil and
60 turns on its secondary coil.
a. Is this a step-up or step-down transformer?
b. If an alternating voltage with an effective voltage of

110 V is applied to the primary, what is the effective
voltage induced in the secondary?

E14. If 6 A of current are supplied to the primary coil of the
transformer in exercise 13, what is the effective current in
the secondary coil?

E15. A step-down transformer is to be used to convert an ac
voltage of 120 V to 6 V to power an electric train. If there
are 300 turns in the primary coil, how many turns should
there be in the secondary coil?

E16. A step-up transformer is designed to produce 1380 V from
a 115-V ac source. If there are 400 turns on the secondary
coil, how many turns should be wound on the primary coil?

SP2. A small metal ball with a charge of �0.05 C and a mass of
25 g (0.025 kg) enters a region where there is a magnetic
field of 0.5 T. The ball is traveling with a velocity of 200 m/s
in a direction perpendicular to the magnetic field, as shown
in the diagram.
a. What is the magnitude of the magnetic force acting on

the ball?

b. What is the direction of the magnetic force exerted on
the ball when it is at the position shown?

c. Will this force change the magnitude of the velocity of
the ball? Explain.

d. From Newton’s second law, what is the magnitude of
the acceleration of the charged ball?

e. Since centripetal acceleration is equal to v2/r, what is
the radius of the curve the ball will move through under
the influence of the magnetic force?
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HE1. Look around your home or residence hall to see how many
magnets you can find. Small packages of magnets can often
be found in variety stores or hardware stores for hanging
tools or other uses.
a. If you have a bar magnet, find its north-seeking pole by

suspending it from a string and seeing which end points
north.

b. Use this magnet, or another one whose north and south
poles can be identified, to find the poles of your other
magnets and label them north or south with a crayon.

c. Verify that two like poles repel and two unlike poles at-
tract for any combination of your available magnets.

d. Try to determine which of your various magnets is the
strongest by seeing over what distance it will attract a
paper clip or other small steel item. (The largest mag-
net may not be the strongest!)

HE2. If you have a small compass, you can use it to explore the
magnetic field of magnets and currents. The compass nee-
dle will always point in the direction of the net magnetic
field, wherever it is located.

a. Using the compass near a bar or horseshoe magnet,
find out how far you must move the compass from the
magnet before the field of the magnet is no longer no-
ticeable and the compass needle simply points north.

b. Bringing the compass close to the magnet, determine
the direction of the magnetic field at various points
around the magnet. Make a sketch showing the direc-
tion of the field at selected points around the magnet.

HE3. Using a long insulated wire, wrap several turns (as many
as 50 to 100) around a large steel nail. If the free ends of
the wire are connected to a flashlight battery, you have an
electromagnet. (To avoid depleting the battery, do not leave
the wire connected to the battery very long.)
a. Compare the strength of your electromagnet to some of

the permanent magnets you may have available. (At
what distance can each pick up a paper clip?)

b. Note whether you see a spark when you break the con-
nection between the electromagnet and the battery. Do
you get the same effect with an uncoiled length of wire?

home experiments and observations

SP4. A transformer is designed to step down line voltage of 110 V
to 22 V. The primary coil has 400 turns of wire.
a. How many turns of wire should there be on the second-

ary coil?
b. If the current in the primary coil is 5 A, what is maxi-

mum possible current in the secondary coil?

c. If the transformer gets warm during operation, will the
current in the secondary coil equal the value computed
in part b? Explain.
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Isaac Newton is best known for his pioneering work
in mechanics, but he also wrote a major treatise on
optics. In this work, he explained many aspects of the
behavior of light by assuming that light consisted of
a stream of invisible particles. Reflection, refraction,
and the splitting of light into its component colors
by a prism could all be explained by this model.

A Dutch contemporary of Newton, Christian Huygens
(1629–1695), held an opposing view. He assumed
that light was a wave and he successfully explained
the same phenomena treated by Newton. For the
next one hundred years, these two views competed
for acceptance, but because of Newton’s prestige,
the particle view was more widely held.

In 1800, a British physician, Thomas Young (1773– 1829),
performed his famous double-slit experiment, which
demonstrated interference effects involving light.
Interference is a wave phenomenon, so Young’s
experiment tipped the scales in favor of a wave model
of light. During the next fifty years, physicists and
mathematicians developed a detailed mathematical
description of the behavior of waves and successfully
explained many new features of light interference. In
1865, James Clerk Maxwell predicted the existence of
electromagnetic waves having the same velocity as

light. This suggested that light was an electromag-
netic wave and reinforced the wave model of light
by describing the nature of these waves.

Wave motion is now recognized as a universal fea-
ture of a wide range of phenomena. Sound waves,
light waves, waves on springs and ropes, water waves,
seismic waves (involved in earthquakes), and gravita-
tional waves are actively studied. The theory of quan-
tum mechanics, developed in the twentieth century,
even applies wave concepts to particles such as elec-
trons. Reflection, refraction, and interference, which
we explore in chapters 15, 16, and 17, are all charac-
teristic of wave motion.

Ironically, developments in the twentieth century
have shown that light sometimes demonstrates
particle-like behavior. We now view a light wave as
consisting of a stream of photons, particles of light
having some characteristics of waves. Although 
this concept differs from Newton’s particle model, 
Newton may be partially vindicated by these more
recent developments. Light (or any wave motion) can
exhibit both wave and particle-like behavior, and
conversely, any particle has wavelike features. Waves
are everywhere—they have become a central theme
in physics.

Wave Motion and Optics

unit

Four
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chapter overview
Our main objective in this chapter is to investigate the basic nature of
waves and their properties. The properties of waves include speed,
wavelength, period, and frequency and the phenomena of reflection,
interference, and energy transmission, too. We will examine a few types
of wave motion in more detail, including waves on a string and sound
waves. We will also explore features of musical sound waves.

chapter outline
1 Wave pulses and periodic waves. How do wave pulses travel along a

spring or rope? What distinguishes a longitudinal pulse from a
transverse pulse? How are wave pulses related to longer periodic
waves?

2 Waves on a rope. What are the general features of a simple wave
traveling on a rope? How are the wave’s properties of frequency,
period, wavelength, and speed related to one another? What factors
influence the wave speed?

3 Interference and standing waves. What happens when two or more
waves combine? What do we mean by interference? What is a
standing wave, and how is it produced?

4 Sound waves. What are sound waves? How are they produced? How
do the musical properties of pitch and harmonics relate to the wave
properties of sound?

5 The physics of music. How can we analyze the sound waves produced
by musical instruments? Why are some combinations of frequencies
harmonious and others dissonant?

306
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Making Waves
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If you have ever visited a beach at an ocean or large lake,
you have probably delighted in the idle pastime of watch-
ing the waves come in. A cliff or some other high spot is a
good vantage point for this amusement. From such a
height, you can track a single wave crest as it moves in and
finally breaks on the shore (fig. 15.1). Because of their reg-
ularity, watching waves can be relaxing, even hypnotic.

As you watched the waves, you may have been struck
by a curious aspect of their behavior. Although the
water seems to move toward the shore, no water accu-
mulates on the beach. What is happening then—what is
actually moving? Is this apparent motion of the water
somehow deceiving us?

If you stand in the surf and let the waves break over
you, you certainly get the sense that the waves are car-
rying energy. A big wave can knock you over or carry
you along. A person on a surfboard can achieve a large
velocity by riding the crest of a wave. The kinetic energy
gained in this manner comes from the wave.

Although the behavior of water waves near the shore
is complex, water waves exhibit many of the general fea-
tures associated with wave motions of all types. Light,
sound, radio waves, and waves on guitar strings are all
examples of wave motion that have much in common

with the waves we observe at the beach. Wave motion
has implications for all areas of physics, including atomic
and nuclear physics. An enormous range of phenomena
can be explained in terms of waves.

15.1 Wave Pulses and Periodic Waves 307

figure 15.1 The waves move in and break on the shore.
Why does the water not accumulate there?

15.1 Wave Pulses and Periodic Waves
Although water waves have characteristics that are com-
mon to any wave motion, the details of their motion are
often quite complex, particularly near a beach. That com-
plexity adds to their beauty and allure, but for a beginning
discussion of the nature of waves, we need a simpler ex-
ample. A Slinky, that toy spring that walks down stairs, is
an ideal medium for studying simple waves.

The original Slinkies were made of metal, but plastic
ones are also available now. They are standard equipment
in most physics storerooms, but you may have one left over
from your childhood or that you can borrow from a younger
acquaintance. Having your own Slinky handy can help you
develop a feeling for wave phenomena. What kinds of
waves can you generate with the Slinky?

How do wave pulses travel down a Slinky?
If a Slinky is laid out on a smooth table with one end held
motionless, you can easily produce a single traveling pulse
on the Slinky. With the Slinky slightly stretched, move the
free end back and forth once along the axis of the Slinky.
As you do so, you will see a disturbance move from the
free end of the Slinky to the fixed end (fig. 15.2).

The motion of the wave pulse created in this manner is
easy to see. The pulse travels down the Slinky and may be
reflected at the fixed end and come back toward its starting
point before dying out. But what is actually moving? The
pulse moves through the Slinky, and portions of the Slinky
move as the pulse passes through them. After the pulse dies

out, though, the Slinky is exactly where it was before the
pulse began. The Slinky itself has gone nowhere.

A closer look at what is happening within the Slinky
can clarify the basic features of the pulse. Moving one end
of the Slinky back and forth as in figure 15.2 creates a
local compression where the rings of the spring are closer
together than in the rest of the Slinky. This region of com-
pression moves along the Slinky and constitutes the pulse
that you see. Individual loops of the spring move back and
forth as this region of compression goes by.

Some general features of wave motion
A pulse in a Slinky shows some general features of wave
motion. The wave or pulse moves through the medium (in
this case, the Slinky) but the medium itself goes nowhere.
Water waves move toward the beach, but water does not

v

figure 15.2 With one end of the Slinky fixed, a simple
forward and back motion of the other end produces a traveling
pulse.
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accumulate. What moves is a disturbance within the me-
dium, which may be a local compression, a sideways dis-
placement, or some other kind of local change in the state
of the medium. The disturbance moves with a definite veloc-
ity determined by properties of the medium.

In a Slinky, the speed of the pulse is determined partly
by the tension in the Slinky. You can easily confirm this
if you stretch the Slinky by different amounts and note
the changes in the pulse velocity. The pulse travels faster
when the Slinky is highly stretched than when it is only
slightly stretched. The other factor that determines the
pulse speed for the Slinky is the mass of the spring: for
the same tension, a pulse travels more slowly on a steel

Slinky than on a plastic one because the mass for a given
length of the spring is greater for steel than for plastic.

Transmission of energy through the medium is another
general feature of wave motion. The work done in mov-
ing one end of the Slinky increases both the potential
energy of the spring and the kinetic energy of individual
loops. This region of higher energy then moves along the
Slinky and reaches the opposite end. There, the energy
could be used to ring a bell or to perform other types
of work. Energy carried by water waves does substantial
work over time in eroding and shaping a shoreline. See
everyday phenomenon box 15.1. Energy transmission is an
extremely important aspect of any wave motion.

308 Chapter 15 Making Waves

Electric Power from Waves

The Situation. Anyone who has watched ocean waves in
stormy weather is struck by the awesome power that they
possess. Even on a relatively calm day, the waves continuously
move sand and batter any rocks in the vicinity (see photograph).
Waves and wind constantly reshape the shoreline.

Is it possible to somehow harness the energy associated
with ocean waves? Could we generate electric power from
this readily available source of energy? Why do we not see
wave-power generating plants along our coasts?

The Analysis. Ocean waves do indeed carry energy in the
form of the kinetic energy of moving water. This energy is
not highly concentrated; it is spread over large areas. Also,
the velocities involved in the motion of the water are not
very large. These factors, together with the corrosive effects
of salt water, make the design of an economically viable
wave-power generator a challenging problem. Given our
need for sources of electric power 
that do not burn fossil fuels, several different possible 

everyday phenomenon
box 15.1

(continued)
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15.1 Wave Pulses and Periodic Waves 309

designs of wave-power generators have been proposed in
recent years.

Away from the shore, the water near the surface moves
mostly up and down under the influence of the waves, with
some forward roll in the direction of the wave motion. A boat
or other floating object will bob up and down as the waves
pass by. Most proposals for wave-power generators involve
capturing this energy at some distance from the shore rather
than near the beach.

One of the most promising designs involves a buoy teth-
ered to the ocean floor. The buoy has a built-in electric gener-
ator that moves in a linear fashion, as shown in the diagram.
At the center of the buoy is a long magnet that is tied to the
ocean floor via the tether so that it cannot move up and 

down. The floating portion of the buoy contains a large coil of
wire centered on the magnet. This coil moves up and down as
the waves move past the buoy.

As was discussed in chapter 14, a magnet moving through
a coil of wire will generate a voltage described by Faraday’s
law. The size of this voltage depends upon the strength of the
magnetic field and the number of turns of wire in the coil.
The stronger the magnet and the larger the coil, the greater
the voltage. The direction of this voltage and the resulting
electric current reverses when the motion of the buoy
changes from up to down.

The electric generators described in section 14.5
involved rotational motion of the coil of wire. In most
power plants, the generator is driven by a turbine that
rotates at high speed. This naturally produces an alternating
current that by convention in the United States has a fre-
quency of 60 Hz. The up and down motion of the wave-
driven buoy has a much lower frequency, however. For this
reason, it is proposed that the current generated by the
buoy be converted to direct current for transmission to the
shore. (This process is called rectification and it is not
difficult to do.)

The direct current would be transmitted by cables that
run down the tether of the buoy to the ocean floor, and
from there, to the shore. On shore there would be a power
station that would receive the current from several buoys
in a wave-generator “park”. At this station, the direct cur-
rent would be converted to 60-Hz alternating current so
that it can be transmitted over the electric power grid.
Again, the circuitry needed to convert direct current to
alternating current is standard equipment used in many
other applications.

The linear-generator buoys just described are currently
being tested off the coast of Oregon. Variations on this idea
as well as other concepts are being tested at various other
places around the world. Whether or not these ideas prove to
be economically viable remains to be seen, but there is a
good chance that wave power will be a reality in the near
future.

How do longitudinal and transverse
waves differ?
The wave pulse that we have described in the Slinky is
called a longitudinal wave. In a longitudinal wave, the dis-
placement or disturbance in the medium is parallel to the
direction of travel of the wave or pulse. In the Slinky,
the loops of the spring move back and forth along the axis
of the Slinky, and the pulse also travels along this axis.

You can also produce a transverse wave on a Slinky or
spring. In a transverse wave, the disturbance or displacement

is perpendicular to the direction the wave is traveling 
(fig. 15.3). If you move your hand back and forth perpen-
dicular to the axis of the spring, you create a transverse
pulse. This works best with a Slinky when it is highly
stretched. A long thin spring is actually more effective than a
Slinky for producing transverse pulses or waves. Like the
longitudinal pulse, the transverse pulse moves down the
spring and also transmits energy along the spring.

Waves on a rope, discussed in section 15.2, are gener-
ally transverse, as are electromagnetic waves, which will
be discussed in the first section of chapter 16. Polarization

Frame
attached
to coil and
buoy walls

Cable carrying
electric current

Shaft anchored
to sea floor

Sealed
buoy

Magnet
attached
to shaft

A simplified diagram of a proposed wave-power generator. A coil of
wire attached to the floating buoy moves up and down over a mag-
net tethered to the ocean floor.
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effects (section 16.5) are associated with transverse waves
but not longitudinal waves. Sound waves (section 15.4) are
longitudinal and are similar in many ways to longitudinal
waves on a Slinky. Water waves have both longitudinal and
transverse properties.

What is a periodic wave?
Up to this point, we have discussed single wave pulses on
a Slinky. If instead of moving your hand back and forth
just once, you continue to produce pulses, you will send a
series of longitudinal pulses down the Slinky. If equal time
intervals separate the pulses, you produce a periodic wave
on the Slinky (fig. 15.4).

The time between pulses is called the period of the
wave and is often represented by the symbol T. The fre-
quency is the number of pulses or cycles per unit of time
and is equal to the reciprocal of the period:

where the symbol f represents the frequency.
The same symbols and meanings were given to these

quantities in chapter 6 (section 6.5) when we discussed sim-
ple harmonic motion. The unit of frequency is the hertz (Hz)
where 1 Hz � 1 cycle per second. (See example box 15.1.)

As the pulses move down the Slinky, they are spaced at
regular distance intervals if they have been created at regu-
lar time intervals. The distance between the same points on

f � 
1

T
 ,

successive pulses is called the wavelength. This distance
is shown in figure 15.4 and is labeled with the Greek letter
�, lambda, the commonly used symbol for wavelength.

A pulse in a periodic wave travels a distance of one wave-
length in a time equal to one period before the next pulse
is created. The speed of the wave can be expressed in terms
of these quantities. The speed is equal to one wavelength
(the distance traveled between pulses) divided by one 
period (the time between pulses), or

The last portion of this equality is true because the fre-
quency f is equal to 1/T , the reciprocal of the period. These
ideas are illustrated in example box 15.1.

This relationship is valid for any periodic wave and is
useful for finding the frequency or wavelength when one

v � 
�

T
 � f �,
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Transverse

Longitudinal

v

v

figure 15.3 In a longitudinal pulse, the disturbance is
parallel to the direction of travel. In a transverse pulse, the
disturbance is perpendicular to the direction of travel.

figure 15.4 A series of pulses produced at regular time
intervals generates a periodic wave on the Slinky. The wavelength
� is the distance between corresponding points on adjacent pulses.

v
λ

example box 15.1

Sample Exercise: Waves on a Slinky

A longitudinal wave traveling on a Slinky has a period of
0.25 s and a wavelength of 30 cm.

a. What is the frequency of the wave?
b. What is the speed of the wave?

a.

b.

� 120 cm/s

� (4 Hz) (30 cm)

v � f �� � 30 cm

� 4 Hz

� 
1

0.25 s

f � 
1

T
T � 0.25 s
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of these quantities is known. The wave speed depends only on
the properties of the medium. Often, the speed is known
from other considerations: the speed of electromagnetic
waves (section 16.1) in free space, for example, has a fixed
value (the speed of light) that is independent of wavelength
or frequency. The relationship between speed, wavelength,
and frequency will be illustrated many times in the following
sections.

A wave pulse is a disturbance that moves through some
medium while the medium itself goes nowhere. If we
move the end of a Slinky back and forth along its axis,
we create a longitudinal pulse whose disturbance is an
area of compression on the spring. If we wave the end
of the Slinky up and down in a direction perpendicular
to its axis, we create a transverse pulse. A periodic wave
consists of several pulses spaced at regular intervals in
time (the period) and space (the wavelength). The fre-
quency is the reciprocal of the period, and the pulse
speed is equal to the frequency times the wavelength.

15.2 Waves on a Rope
Imagine a heavy rope tied at one end to a wall or post. If
you moved the free end of the rope up and down, you
could create either a transverse wave pulse or a periodic
transverse wave that would travel down the rope toward its
fixed end. The situation is the same as producing a trans-
verse wave on a Slinky or spring: think of the rope as a
very stiff spring.

What does the wave look like as it travels down the
rope? In this case, the disturbance is a vertical displace-
ment of the rope from its straight-line position. This dis-
turbance is easy to visualize and graph, which is why the
study of this type of wave is so useful for understanding
wave phenomena.

What does the graph of the
wave look like?
Suppose that we give the end of the rope an up-and-down
motion, producing a pulse like the one depicted in figure 15.5.
The right edge of this pulse corresponds to the beginning of
the motion. The left edge is the end of that motion. Like the
pulse on the Slinky, this disturbance travels down the rope. In
this case, however, the picture of the rope can be thought of as
a graph, with the vertical axis representing the vertical dis-
placement y of the rope, and the horizontal axis the horizontal
position x of a point on the rope.

A single picture of the pulse on the rope does not tell
the whole story—it is like a snapshot showing the displace-
ment of the rope at only one instant in time. The pulse is
moving, so at some later time the pulse will be farther down
the rope at a different horizontal position. We would have to
draw a series of graphs at different times to represent this.
The pulse may gradually decrease in size because of fric-
tional effects, but the shape remains basically the same as
the pulse moves along the rope.

If, instead of giving the rope just one up-and-down mo-
tion, you repeat a series of identical pulses at regular time
intervals, you might produce a periodic wave like the one

15.2 Waves on a Rope 311

figure 15.6 A periodic wave moving along a stretched rope. The distance between pulses is the
wavelength �.

λ
v

figure 15.5 At any instant a transverse pulse moves along
a stretched rope, the shape of the rope can be thought of as a
graph of the vertical displacement of the rope plotted against
horizontal position.

y

x

v
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shown in figure 15.6. The wavelength � (shown on the
graph) is the distance covered by one complete cycle of
the wave. This wave pattern moves to the right along the
rope, retaining its shape, just as the single pulse did. When
the leading edge of the wave reaches the fixed end of the
rope, it will be reflected and start to move back toward
your hand. As this happens, the reflected wave interferes
with the wave still traveling toward the right, and the pic-
ture becomes more complex.

The shape of the wave in figure 15.6 depends on the
exact motion of the hand or other oscillator generating
the wave. The wave could be much more complex than the
shape shown. One particularly simple shape plays an im-
portant role in the analysis of wave motion. If you move
your hand up and down smoothly in simple harmonic mo-
tion, the displacement of this end of the rope will vary
sinusoidally with time, as discussed in chapter 6. The result-
ing periodic wave also has a sinusoidal form, and we call it
a harmonic wave (fig. 15.7).

Like other waves, the sinusoidal wave shown in figure
15.7 travels along the rope until it is reflected at the fixed
end. If you move the end of the rope carefully, you can
produce a wave that looks like the one shown in figure
15.7. The individual segments of a rope or spring tend to
move with simple harmonic motion, because the restoring
force pulling the rope back toward the center line is
roughly proportional to its distance from the center line.
This was the condition for simple harmonic motion dis-
cussed in chapter 6.

Harmonic waves play an important role in the discussion
of wave motion for another reason—it turns out that any peri-
odic wave can be represented as a sum of harmonic waves
with different wavelengths and frequencies. We call this
Fourier, or harmonic analysis, which is the process of break-
ing a complex wave down into its simple harmonic compo-
nents (see section 15.5). Harmonic waves can be thought of
as building blocks of more complex waves.

What determines the speed
of a wave on a rope?
Like the waves on a Slinky, the waves on a string or rope
move along the rope with a speed independent of the shape
or frequency of the pulses. What determines this speed? To
answer this question, we need to think about what causes
the disturbance to propagate along the rope. Why do the
pulses move?

If we picture just a single pulse moving along the rope,
we note that segments of the rope lying in front of this
pulse are at rest before the pulse gets there. Something
must cause these segments to accelerate as the pulse ap-
proaches. The reason the pulse moves is that lifting the
rope causes the rope’s tension (which is a force acting
along the line of the rope) to acquire an upward component.
This upward component acts on the segment of the rope
to the right of the raised portion, as in figure 15.8. The
resulting upward force causes this next segment to accel-
erate upward, and so on down the rope.
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figure 15.7 A harmonic wave results when the end of the rope is moved up and down in simple harmonic motion.

v

figure 15.8 As the raised portion of a pulse approaches
a given point on the rope, the tension in the rope acquires an
upward component. This causes the next segment to accelerate
upward.

Tx

T

Ty
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The speed of the pulse depends on the rate of acceleration
of succeeding segments of the rope—the faster they can be
started moving, the more rapidly the pulse moves down the
rope. By Newton’s second law, this acceleration is propor-
tional to the magnitude of the net force, and inversely propor-
tional to the mass of the segment (a � Fnet/m). The tension in
the rope provides the accelerating force, so a larger tension
produces a larger acceleration. The acceleration is also re-
lated to the mass of the segment—a greater mass produces a
smaller acceleration. These ideas suggest that the speed of a
pulse on the rope will increase with the tension in the rope
and decrease with the mass per unit of length of the rope.

Actually the square of the speed is directly related
to the ratio of the tension to the mass per unit of length,
v2 � F/�, so the expression for the wave speed involves a
square root:

where F is the magnitude of the tension in the rope 
(a force), and � is the Greek letter mu often used to repre-
sent mass per unit of length. This quantity is found by divid-
ing the total mass of the rope by its length, or � � m/L.

If you increase the tension by pulling harder on the
rope, you can expect the wave speed to get larger, just as it
did for the Slinky. On the other hand, a thick rope, with a
large mass per unit of length, will produce a slower wave
speed than a lighter rope. For this reason, a heavy rope is
more effective for demonstrating wave motion than a light
string. The waves move too swiftly on a light string for us
to follow them visually.

What determines the frequency
and wavelength of the wave?
The expression relating the wave speed to the frequency
and wavelength (v � f �, from section 15.1) is useful for
predicting what wavelength will result for a wave on a
rope. As we have just seen, the speed depends on the ten-
sion and the mass per unit of length. Once these quantities
have been fixed, the wave speed is constant but the fre-
quency and wavelength may vary. A given frequency will
determine the wavelength, and vice versa.

These ideas are demonstrated in example box 15.2.
The numerical values in this example are realistic for pro-
ducing waves that can be followed visually. The assumed
tension of 50 N should be large enough to keep the heavy
rope from sagging too much while also producing a rela-
tively slow wave speed. The wave frequency is determined
by the frequency of motion of your hand. This frequency is 4
cycles per second (Hz) in example box 15.2, which gives a
wavelength of 3.95 meters. Since this is almost 4 meters,

v � BF
�

 ,
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example box 15.2

Sample Exercise: Making Waves

A rope has an overall length of 10 m and a total mass of
2 kg. The rope is stretched with a tension of 50 N. One
end of the rope is fixed, and the other is moved up and
down with a frequency of 4 Hz.

a. What is the speed of waves on this rope?
b. What is the wavelength for the frequency of 4 Hz?

a. L � 10 m � �

m � 2 kg

F � 50 N
� 0.2 kg/m (mass per unit of length)

v � ? v �

�

�

� 15.8 m/s

b. f � 4 Hz v � f �

� � ?
� �

�

� 3.95 m

15.8 m /s

4 Hz

v

f

2250 m2/s2

B 50 N

0.2 kg /m

B F
�

m

L
 � 

2 kg

10 m

two-and-a-half complete cycles of the wave will fit along the
10-meter length of the rope. Lower frequencies would result
in longer wavelengths, higher frequencies in shorter wave-
lengths.

With a wave speed of almost 16 m/s, it takes less than a
second for a pulse to travel the 10-meter length of the rope.
To observe these waves, you would need to look quickly,
because within a second the wave will reach the fixed end
of the rope and be reflected. This reflected wave will inter-
fere with the wave still traveling in the original direction.
You would need either a longer rope or some means of
damping out the reflected wave if you wanted a more
leisurely view.

The real advantage of waves on a rope is the ease with
which we can picture them graphically and get a physical
sense of how they are produced. In lecture or laboratory
demonstrations, a long but not very stiff spring is often used
instead of the rope to provide a larger mass per unit of
length and a slower wave speed.
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A snapshot of a wave moving on a rope is like a graph
showing the vertical displacement of the rope plotted
against position. This picture shows the wave at only one
instant in time, however, because the wave pattern is mov-
ing. The speed of the wave increases with increasing tension
and decreases with increasing mass per unit of length of
the rope. The frequency is determined by how rapidly you
move your hand. Along with the speed, frequency deter-
mines the wavelength.

15.3 Interference and Standing Waves
When a wave on a rope reaches the fixed end of the rope,
it is reflected and travels in the opposite direction back to-
ward your hand. If only a single pulse is involved, you can
see the returning pulse quite clearly. If the wave is a longer
periodic wave, though, the reflected wave interferes with
the incoming wave. The resulting pattern becomes more
complex and confusing.

When waves of water approach a beach, waves reflected
at the beach interfere with those coming in and create a more
complex pattern than the waves at some distance from the
beach. This process, in which two or more waves combine,
is called interference. What happens when waves interfere?
Can we predict what the resulting wave pattern will be?

How do two waves on a rope combine?
Waves on a rope give examples of interference that are easy
to visualize and useful in highlighting the basic concepts.
Imagine a rope that consists of two identical segments
smoothly spliced to form a single rope of the same mass
per unit length as the original two segments (fig. 15.9). If
you hold one segment in your left hand and the other in the
right, you can generate waves on each segment that will
combine when they reach the junction.

If you move both hands up and down in the same way,
the waves generated on each segment of the rope should be
identical. What happens when they reach the junction? Since
each wave by itself would generate a disturbance equal to

its own height, we might assume that the combined effect of
the two waves will produce a wave with the same frequency
and wavelength but twice the height of the initial two
waves. In fact, this is what happens: the double-height wave
proceeds down the single rope to the right of the splice.

The idea that we can find the total effect when two or
more waves interfere by simply adding their individual dis-
placements is called the principle of superposition:

When two or more waves combine, the resulting disturbance or
displacement is equal to the sum of the individual disturbances.

This principle is valid for most types of wave motion. In
some situations, the resulting disturbance might be so large
that the medium in which the wave is traveling cannot
fully respond. The net disturbance in this case is less than
what the principle of superposition predicts. For most situ-
ations, however, the principle of superposition holds. It is
the basis for analyzing all interference phenomena.

When two waves are moving the same way at the
same time, as in figure 15.9, they are said to be in phase.
When they reach the junction, both waves are going up
or down at the same time. We can, however, produce
waves that are not in phase with one another. If you
move the two segments so that one is going up while the
other is going down, for example, the two resulting
waves are said to be completely out of phase with one
another (fig. 15.10). What happens in this situation? If
the two waves have the same height, the principle of
superposition predicts that the net disturbance will be
zero. When the displacements of the two waves are added
at the junction, the displacement of one is positive (up)
while the other is negative (down), and they cancel one
another. The sum is always zero, and no wave is propa-
gated beyond the junction.

The result of adding two or more waves depends on their
phases as well as on their amplitude or height. The two sit-
uations that we have depicted with the spliced rope are the
extremes—in one case, the waves are completely in phase,
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figure 15.9 Identical waves, traveling on two identical
ropes that are spliced together, combine to produce a larger wave.

Splice

figure 15.10 Two waves, exactly out of phase in their
up-and-down motions, combine to produce no net disturbance
on the rope beyond the splice.

Splice
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and in the other, they are completely out of phase. In the
first case, we get complete addition, or constructive inter-
ference. In the other, we get complete cancellation, or de-
structive interference. It is also possible for the two waves
to be neither completely in phase nor out of phase but some-
where in between. In these situations, the resulting wave
has a height somewhere between zero and the sum of the
two initial heights.

What is a standing wave?
Although it is difficult to get two waves traveling in the
same direction on separate ropes to combine, interference
of two or more waves traveling in the same direction is
quite common for water waves, sound waves, or light
waves. The difference in phase between the waves deter-
mines whether the interference will be constructive,
destructive, or somewhere in between, just like the waves
on the rope. What does often occur with waves on ropes or
strings is the interference of two waves traveling in oppo-
site directions, which happens when the waves are
reflected at a fixed support. How do the waves combine in
this situation?

Figure 15.11 shows two waves of the same height and
wavelength traveling in opposite directions on a string. We
can apply the principle of superposition by selecting differ-
ent points on the string and considering how these two
waves add at different times. At point A, for example, the
two waves will cancel each other at all times. One wave is
positive, while the other is negative by an equal amount at
all times as the two waves approach this point from oppo-
site sides. At this point, the string will not oscillate at all.

If we move one-quarter of a wavelength in either direc-
tion from point A, we see a very different result. At point
B, for example, both waves will be in phase at all times as
they approach from opposite sides. When one is positive,
so is the other, and so on. At this point, the two waves
always add, producing a displacement twice that of each
wave by itself.

What is notable about these two points is that they re-
main fixed in space along the string. Point A, at which there
is no motion, is called a node. There are nodes at regular
intervals along the string, separated by half the wavelength
of the two traveling waves. You can confirm this by mov-
ing half a wavelength in either direction from point A and
seeing that the two waves cancel at these points also. These
nodes do not move.

The same is true for points such as B, where the waves
add to yield a large height or amplitude. These points are
called antinodes, and they are also found at fixed locations
separated by half a wavelength along the string. The result-
ing pattern is shown in figure 15.12, which shows the string
position at several different times. The two waves traveling
in opposite directions produce a fixed pattern with regu-
larly spaced nodes and antinodes. At the antinodes, the string

is oscillating with a large amplitude. At the nodes, it is not
moving at all. At points between the nodes and antinodes,
the amplitude has intermediate values.

This pattern of oscillation of the string is called a stand-
ing wave because the pattern does not move. The two waves
that produce this pattern are moving in opposite directions.
They interfere, however, in a way that produces a standing
or fixed pattern. Standing waves can be observed for all
types of wave motion and always involve the interference
of waves traveling in opposite directions. The interference
of a reflected wave with an incoming wave is usually how
this happens.
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figure 15.11 Two waves of the same amplitude and
wavelength are shown traveling in opposite directions on a
string. The  middle drawing shows the two strings at a time a
quarter period after the upper drawing and the bottom drawing
a half period after the upper drawing. A node results at point A
and an antinode at point B when the waves combine.

figure 15.12 The pattern produced by two waves traveling
in opposite directions in figure 15.11 is called a standing wave.
(The position of the string is shown at several different times.)
The distance between adjacent nodes or antinodes is half the
wavelength of the original waves.
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What determines the frequency
of a wave on a guitar string?
The author plays the guitar and has found much enjoyment
over the years in generating standing waves on strings. A
guitar, a piano, and any other stringed instrument is made
of strings or wires of different weights that are fixed at both
ends, with tuning pegs to adjust the tension. A wave gener-
ated by plucking the string is reflected back and forth on
the string, producing a standing wave.

The frequency of the sound wave produced by the string
equals the string’s frequency of oscillation, and this fre-
quency is related to the musical pitch that we hear. Pitch is
a musical term meaning how high or low a tone sounds. A
higher frequency represents a higher-pitched note. What
conditions determine the frequency of the guitar string?
How are standing waves involved?

The standing wave on a plucked guitar string has nodes
at both ends. The string is fixed at both ends and cannot
oscillate at these points. The simplest standing wave is one
with nodes at either end and an antinode in the middle
(fig. 15.13a). This standing wave usually results when the
string is plucked. Since the distance between nodes is half

the wavelength of the waves interfering to produce the
standing wave, the wavelength of these interfering waves
must be twice the length of the string (2L) in this case.

This simplest standing wave is called the fundamental
wave, or the first harmonic (fig. 15.13a). The wavelength
of the interfering waves is determined by the length of the
string. The frequency can be found from the relationship
between speed, frequency, and wavelength, v � f�. The
speed is determined by the tension in the string F, and the
mass per unit of length of the string � as discussed in sec-
tion 15.2.

The frequency of the fundamental wave is given by:

A string with a longer length L will result in a lower fre-
quency, which is why the bass strings on a piano are
much longer than the treble strings. On a guitar, you can
change the effective length of the strings by fretting them;
that is, by placing your finger firmly on the string along
the neck of the guitar. Shortening the effective length of
the string produces a higher frequency and a higher-
pitched tone.

Other factors that affect the frequency are the tension
in the string and the mass per unit length of the string,
which together determine the wave speed. A higher ten-
sion leads to a higher wave speed and a higher frequency.
You can easily confirm this by tightening a tuning peg on
a guitar. A heavier string, on the other hand, produces a
lower wave speed and a lower frequency. The bass strings
on a steel-string guitar or piano are made by wrapping
wire around a core wire to produce a larger mass per unit
of length.

Although the fundamental frequency for a guitar string
dominates if you just pluck the string near the middle, you
can also produce the other two patterns shown in figure
15.13, as well as patterns with even more nodes. To produce
the second harmonic, for example, you touch the string
lightly at the midpoint at the same time that you pluck the
string. This creates the pattern shown in figure 15.13b, with
nodes at the center and at either end. The wavelength of the
interfering waves for this pattern is equal to the length L of
the string. Since this wavelength is half the fundamental,
the resulting frequency is twice the fundamental, as shown
in example box 15.3. Musically, the pitch produced by dou-
bling the frequency is an octave above the fundamental (see
section 15.5).

If you touch the string lightly at a position one-third the
length of the string from one end, you get the pattern in fig-
ure 15.13c, which has four nodes (counting those at either
end) and three antinodes. The resulting frequency is three
times the fundamental and 3⁄2 that of the second harmonic.
Musically, this is not a complete octave above the second
harmonic but rather an interval called a fifth above that
pitch.

f � 
n

�
 � 

n

2L
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figure 15.13 The first three harmonics are the three
simplest standing-wave patterns that can be generated on a
guitar string fixed at both ends. String positions are shown at
several different times.
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Guitars are common fixtures in many residence-hall
rooms. If you have one handy, try generating some of these
harmonics and noting the pitch that results. It requires no
particular skill as a musician and will help to clarify these
ideas. If you look closely at the string, you can see the
standing wave patterns (fig. 15.14). The patterns are often
easier to see when illuminated by a fluorescent light.

When two or more waves combine, their disturbances add
according to the principle of superposition. If they are in
phase, the resulting interference is constructive. If they are
completely out of phase, the waves cancel one another
and the interference is destructive. If the waves are travel-
ing in opposite directions, this interference produces a
standing-wave pattern with fixed positions for the nodes
and antinodes. This is what happens on a guitar string.
The length of the string and the form of the standing-
wave pattern determine the wavelength. The wavelength
determines the frequency, since the wave speed is set by
the tension and mass of the string.

15.4 Sound Waves
Sound waves can be generated by an oscillating string on a
guitar or piano, but you certainly can think of many other
ways of producing such waves. Firing a pistol, using your

voice, or banging on a metal pot with a stick will all do the
job. Small children are experts at finding ways of generat-
ing sound waves—the louder the better.

Since sound waves reach our ears, they must be able to
travel through air. How do they travel through air? How
fast do they travel? Can they interfere like waves on a
string to form standing waves?

What is the nature of a sound wave?
If you look closely at one of the speakers used in your
stereo system or car radio, you will see a mechanism like
that shown in figure 15.15. A flexible, cardboard-like mate-
rial (the diaphragm) is mounted in front of a permanent
magnet fixed to the housing of the speaker. A coil of wire
is attached to the base of the diaphragm so that it is cen-
tered on the end of the permanent magnet. An oscillating
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figure 15.14 The strings on a steel-string guitar have
different weights. The top bass string has been plucked, producing
a blur near the middle where the amplitude is greatest.

figure 15.15 An oscillating current applied to the coil of
wire attached to the diaphragm of a speaker makes the diaphragm
oscillate as it is attracted to or repulsed by the magnet, generating
a sound wave.

Wire coil

Magnet

Diaphragm

Sine-wave
generator

S

example box 15.3

Sample Exercise: Waves and Harmonics

A guitar string has a mass of 4 g, a length of 74 cm, and a
tension of 400 N. These values produce a wave speed of
274 m/s.

a. What is its fundamental frequency?
b. What is the frequency of the second harmonic?

a. L � 74 cm � 0.74 m

v � 274 m/s

� � 2L

f1 � ?
� 185 Hz

b. � � L

f2 � ?

� 370 Hz

(Notice that  f2 � 2 f1.)

� 
274 m /s

0.74 m

f2 � 
n

�2

 � 
n

L

� 
274 m /s

1.48 m

f1 � 
n

�1

 � 
n

2L
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current applied to the wire coil causes it to behave as an
electromagnet, alternately attracted to and repelled by the
permanent magnet. The diaphragm then oscillates with
the same frequency as the applied electrical current.

What effect does the oscillating diaphragm have on
nearby air? As the diaphragm moves forward, it com-
presses the air in front of it. As it moves backward, it pro-
duces a region of lower pressure. The compressed region,
in turn, pushes against air in front of it, increasing the
pressure there. This region of increased pressure propagates
through the air, as do the regions of reduced pressure. The
disturbance could take the form of a single pulse, but if
the diaphragm is moving back and forth repeatedly, it pro-
duces a continuous periodic wave consisting of pressure
variations.

This wave of pressure variations is a sound wave. In
the regions of elevated pressure, the molecules in the air
are closer together, on the average, than they are in the re-
gions of reduced pressure. Figure 15.16 shows a sound wave
with the variations in air density exaggerated. Below the
picture of the wave is a graph of pressure versus position.
For a simple harmonic wave, this pressure graph has a
simple sinusoidal form. To complete the illustration, imag-
ine that the whole pattern is moving away from the source,
where new regions of elevated and reduced pressure are
being constantly generated.

The molecules making up air are in constant motion in
all directions, as is true in any gas. Besides random motion,
however, there must be a back-and-forth motion of the mole-

cules along the line of the wave’s path to create the regions
of higher and lower density. A sound wave is therefore a
longitudinal wave. The displacement of the molecules is
parallel to the direction of propagation of the wave, much
like on a Slinky when one end is moved back and forth.
The coils of the Slinky move back and forth along the
direction of propagation just as the molecules in the air 
do, and there are moving regions of increased density 
(compression) in the Slinky just as in the air.

What determines the speed of sound?
How fast do sound waves travel, and what factors deter-
mine the speed of sound? The first half of this question
turns out to be easier to answer than the second. In room-
temperature air, sound waves travel with a speed of ap-
proximately 340 m/s (1100 ft/s) or roughly 750 MPH. If
you have ever watched from a distance as someone pounds
a nail, you probably have noticed that the sound reaches
your ear a split second after you see the collision of ham-
mer and nail. If you stand at the finish line of a 100-meter
dash, you see the flash of the starter’s pistol before you
hear the shot. Sound travels quickly but not nearly as fast
as light (see section 16.1).

Similarly, you hear a clap of thunder a few seconds after
you see the flash of lightning. Since light travels extremely
fast, the light flash reaches you almost instantaneously.
The sound wave, on the other hand, takes about 3 seconds
to cover 1 kilometer (or 5 seconds to cover 1 mile), given
the value for the speed of sound just stated. Counting sec-
onds between the flash and the thunder tells you how far
away the lightning strike happened (fig. 15.17). If the flash
and the thunder clap occur almost simultaneously, you
may be in trouble!

The factors that determine the speed of sound are re-
lated to how rapidly one molecule transmits changes in ve-
locity to nearby molecules to propagate the wave. In air,
temperature is a major factor since air molecules have higher
average velocities at higher temperatures and collide more
frequently. An increase in temperature of 10°C increases
the speed of sound by about 6 m/s.

For gases other than air, the masses of the molecules or
atoms make a difference in the speed of propagation. Hy-
drogen or helium molecules, with their small mass, are
easier to accelerate than the nitrogen or oxygen molecules
that are the main ingredients of air. The speed of sound in
hydrogen is almost four times larger than in air for similar
pressures and temperatures.

Sound waves can also travel through liquids and solids,
often with considerably higher speeds than for gases. The
speed of sound in water, for example, is four to five times
faster than in air. Molecules of water are much closer to-
gether than molecules in a gas, so the propagation of a
wave does not depend on random collisions. Sound travels
even more rapidly through a steel bar or other metals in
which the atoms are rigidly bound within a crystal lattice.
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figure 15.16 Variations in air pressure (and density) move
through the air in a sound wave. The graph shows pressure
plotted against position.
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Sound waves in rock or metal generally have speeds four
to five times faster than in water and fifteen to twenty times
faster than in air.

If someone strikes a long steel rail with a hammer at
one end and you listen for the sound at the other end, you
may hear two bangs. The first one comes to you through the
steel rail itself and reaches your ear a moment before the sec-
ond one, which comes through the air. The actual difference
in time will depend on how far you are from the hammer
blow. Motion of the source or observer can also affect what
we hear, as is described in everyday phenomenon box 15.2.

Making music with soft-drink bottles
Can we observe interference phenomena such as standing
waves in sound waves? We can indeed—playing many
musical instruments depends on creating standing waves in a
tube or pipe. An organ pipe, a clarinet barrel, and the sev-
eral meters of metal tubing in a sousaphone all serve that
purpose. A soft-drink bottle is the handiest example for ob-
serving this phenomenon.

If you place your lips near the edge of a soft-drink bot-
tle, as in figure 15.18, and blow softly across the opening,
the sound wave reflected from the bottom of the bottle
interferes with the incoming wave to produce a standing
wave in the bottle. Since the bottle is closed at one end,
there should be a displacement node at the bottom of the
bottle. (A displacement node is one where there is no

longitudinal motion of the air.) On the other hand, we ex-
pect a displacement antinode somewhere near the open-
ing of the bottle, since that is where we are exciting the
oscillation.

The simplest standing wave that can exist in a pipe open
at one end varies in displacement amplitude like the one
plotted in figure 15.19a. The curved line is a graph of the
displacement amplitude plotted against position. It is
a measure of how far the molecules move back and forth
on the average. There is a node at the closed end and an
antinode near the open end. Since there is just a quarter-
wavelength distance between a node and an antinode, the
wavelength of the sound waves interfering to form this
standing wave must be approximately four times the length
of the tube.

We can determine the frequency of this standing wave
from the speed of sound in air (about 340 m/s) and the
wavelength. For a tube 25 cm in length (more or less
the length of a 16-oz soft-drink bottle), the wavelength
of the interfering sound waves is about 1 meter (4 L). Since
f � v/�, this should produce a frequency of

Since a soft-drink bottle is not a simple pipe with straight
sides, the frequency produced by a bottle may differ from
this estimate.

f � 
340 m /s

1 m
 � 340 Hz .
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figure 15.17 Timing the interval between a lightning flash
and the associated clap of thunder provides an estimate of your
distance from the lightning strike. figure 15.18 Placing your lower lip at the rim of a soft-

drink bottle and blowing softly across the opening produces a
standing wave in the bottle.
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A Moving Car Horn and the Doppler Effect

The Situation. We have all had the experience of standing
near a busy street and hearing someone lean on their car
horn as they are going by. If you remember how that sounds
and try to mimic the sound, you will hum at one pitch to
represent the car horn as it is nearing you and then at a
lower pitch after the car has passed. In other words, you hear
a lower-frequency sound wave after the car has passed than
when it is approaching, as in the drawing.

Does the frequency of the sound wave produced by the
car horn actually change? This hardly seems likely. Something
about the motion of the car and the horn must affect the fre-
quency of the pitch that we hear. How can we explain this
change in frequency?

The Analysis. The top half of the second diagram shows the
wave crests or wavefronts of the car horn when the car is not
moving. Each curve represents a surface along which air pres-
sure is at its maximum in the pressure variations associated
with the sound wave. The distance between these curves is
the wavelength of the sound wave. The wavelength is deter-
mined by the frequency of the horn and the speed of sound
in air. The wave speed dictates how far a crest will move in a
given time, while the frequency of the horn determines when
the next crest will appear.

The frequency that we hear is equal to the rate at which
the wave crests reach our ear, which is determined by the dis-
tance between the wave crests (the wavelength) and by the
wave speed. You can think of these wave crests as impinging
on your ear in much the same way that water waves wash
up on the shore. The greater the speed, the greater the rate
at which the wave crests reach your ear. The longer the wave-
length, however, the smaller the rate (frequency) at which
they reach the ear (v � f �, or f � v /�).

What happens when the horn is moving? The lower portion
of the diagram shows the case in which the horn is moving

toward the observer. Between the time that one crest and
the next are emitted by the horn, the horn has moved a
short distance. As the diagram shows, this movement shortens
the distance between successive wave crests. Even though the
horn is still emitting the same frequency as before, the wave-
length of the sound wave traveling toward the observer is
now shorter.

Because the wavelength of the waves traveling toward
the observer is shorter than what is produced by the station-
ary horn, the wave crests now reach your ear at a higher rate.
There is less distance between wave crests, but the waves are
still moving at the same speed as before. The higher rate at
which the wave crests reach your ear is detected by the ear
as a higher frequency. The frequency of the horn that you hear
when the horn is moving toward you is higher than what you
hear when the horn is stationary. This change in the detected
frequency of a wave resulting from the motion of either the
source or the observer is called the Doppler effect.

Using similar reasoning, you can see that the wavelength
in air will get longer if the horn is moving away from you. A
longer wavelength will produce a lower frequency as detected
by the observer. For the moving car, the frequency that you
hear as the car is approaching is higher than the natural fre-
quency of the horn and what you hear as the car is receding
from you is lower than the natural frequency.

There is also a Doppler effect if the observer is moving
relative to the air in which the wave is traveling. If the obser-
ver is moving toward the wave source, he or she will intersect
wave crests more rapidly than if stationary and detect a higher
frequency than the natural frequency. A receding observer
detects a lower frequency. The Doppler effect occurs for light
and other types of wave motion as well, but it is most familiar
in the common experience of listening to moving vehicles.

everyday phenomenon
box 15.2

f

t
x

Pitch

v v

The pitch of the car horn seems to change from higher to lower as
the car passes.

Stationary
source

Moving
source

Observer

 v

Wavefronts for a stationary car horn (top) and for one that is moving
toward the observer (bottom). Motion of the source changes the
wavelength on both sides of the source.
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With some practice, you can generate higher harmonics
than the simplest, or fundamental, frequency. Figure 15.19b
shows the standing-wave pattern for the next highest har-
monic. This one has an antinode near the opening and
another antinode and two nodes within the tube. Since
three-fourths of the wavelength is contained within the
tube, the wavelengths of the interfering waves should be
approximately four-thirds the length of the tube, or about
33 cm in a 25-cm tube. The frequency of the sound waves
generated for this harmonic is then about 1020 Hz (340 m/s
divided by 0.33 m). This frequency is three times the fun-
damental frequency and corresponds to a tone in the next
octave.

Similar reasoning can be used to predict the frequencies
of higher harmonics. We can also analyze the standing-
wave patterns produced in a tube open at both ends or in
one closed at both ends. The actual tone produced by a
bottle or a musical instrument is usually a mixture of the
various possible harmonics. The mix determines the qual-
ity or richness of the resulting sound waves.

Standing waves are one type of interference that is read-
ily observable with sound waves. Sound waves traveling in
the same direction can also interfere, producing either con-
structive or destructive interference, depending on the phase
relationship between the interfering waves. “Dead spots”
in auditoriums are sometimes produced by destructive 

interference. The acoustic design of concert halls is a com-
plex art that must take interference into account.

Waves of sound produced by musicians’ tubes and strings
may wash upon our ears. These sound waves are longi-
tudinal waves involving regions of compression and
decompression in the air. The air molecules must move
back and forth along the axis of the wave to produce
these changes. Sound waves can interfere like other
waves. The tones produced by wind instruments or soft-
drink bottles involve standing waves of sound.

15.5 The Physics of Music
In sections 15.3 and 15.4, we discussed standing waves
formed on a guitar string and in a pipe closed at one end.
The length of the string or pipe determined the frequencies
that are produced, and these frequencies are related to our
perception of musical pitch. These ideas relating physics
and music were known in antiquity.

There is a lot more to the physics of musical sounds
than this, however. For example, why does the same note
played on a clarinet sound very different from that played
on a trumpet or almost any other musical instrument? Why
do you get different-sounding notes when we pluck a gui-
tar string at different points? Why do certain combinations
of notes (chords) sound better than others?

The concept of harmonic or frequency analysis plays a
big role in understanding many of these issues. Determin-
ing the mix of frequencies present in a note played by a
musical instrument can explain the quality of the tone pro-
duced. The relationships between the different frequencies
or harmonics explains why different notes played together
sound harmonious. Cultural factors also play a big role in
our appreciation of music. Heavy metal may sound good to
some, but others will prefer Bach.

What is harmonic analysis?
Recall the different standing waves that we could generate
on a guitar string discussed in section 15.3. The first har-
monic or fundamental had nodes at either end and an
antinode at the middle of the string. The second harmonic had
two lobes (the areas of oscillation between adjacent nodes)
with an additional node at the center of the string. The third
harmonic had three lobes with two nodes along the string
in addition to the two at either end, and so on. Each of
these harmonics has a different frequency, which are sim-
ple ratios of the fundamental.

If we simply pluck the string with a pick or finger some-
where along the string, it turns out that we do not get just
a single harmonic. Instead there will be a mix of different
standing-wave modes or harmonics. If we can somehow
determine the amplitude of each of the harmonics that make
up the complex standing wave on the string, we have then
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figure 15.19 The standing-wave patterns for the first three
harmonics are shown for a tube open at one end and closed at
the other. The curves represent the amplitude of back-and-forth
molecular motion at each point in the tube.
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*A frequency analysis of this sort is also called a Fourier analysis, after
the French mathematical physicist Jean-Baptiste Fourier (1768–1830),
who developed the mathematical techniques involved.

performed a frequency or harmonic analysis. The two
terms mean the same thing.*

In the case of a guitar string, the results of performing a
harmonic analysis can be somewhat surprising. We usually
pluck the string about a quarter of the way up from the
bridge, where the string effectively terminates. The second
harmonic ( f2 � 2f1) has an antinode at this position, so the
second harmonic is strongly stimulated. The fundamental is
not so strongly stimulated since its antinode is at the mid-
dle of the string. For an acoustic guitar, the body of the
guitar also determines which harmonics will be reinforced
when the sound wave is generated. The resulting mix of
harmonics might look like that pictured in figure 15.20.

Each peak in the graph in figure 15.20 represents a
different harmonic. The height of the peak represents the
amplitude of that harmonic. Such a graph can be easily gen-
erated with equipment and computer software available in
most physics departments. Notice that the second and third
harmonics are stronger than the fundamental. Interestingly,
when we pluck the string in this manner we still identify
the pitch associated with this mix of harmonics as being
that of the fundamental, not the second or third harmon-
ics. Our ears and brains perform their own analysis and
interpretation.

If we pluck the string much nearer to the bridge, we get
a different mix of harmonics. The tone quality is also very
different—the sound can be described as twangy. A fre-
quency analysis would show a lot of higher harmonics
(figure 15.21) because these have antinodes nearer to the
bridge. The amplitude of the second and third harmonics

may be much reduced. We still interpret the pitch of the
note as being that of the fundamental, but the note sounds
different. This twangy sound is often used in country and
western music.

Different musical instruments generate tones that have
very different harmonic mixes or graphs. A trumpet usu-
ally produces a lot of higher harmonics in its frequency
spectrum. It is these higher harmonics that give it a
“bright” or “brassy” sound. A flute, on the other hand, can
be played such that the fundamental dominates the fre-
quency spectrum with almost no higher harmonics being
present. This yields the very “pure” tone that we associate
with the flute. How the instrument is played can also have
a large effect on the harmonics produced. If you have
access to the equipment and software needed to generate a
harmonic spectrum, it can be fun to test these ideas with
different musical instruments (including your voice).

How are musical intervals defined?
We noted in section 15.3 that doubling the frequency of a
note (going from the first to the second harmonic) pro-
duces a change in pitch that we call an octave jump. The
word octave has as its root the number eight. In Western
music, we have traditionally used an eight-tone musical
scale. When learning to sing, we identify the eight tones in
the scale by the syllables do, re, mi, fa, sol, la, ti, do
(fig. 15.22). The two dos at either end are an octave apart.

If you play or sing two notes an octave apart, they sound
very similar. In fact, we often have difficulty telling the dif-
ference between the notes. This is partly due to the fact that,
except for the fundamental of the lower note, two notes an
octave apart have most of the same higher harmonics pres-
ent when played on the same instrument. In identifying the
note, our ears and brains use these higher harmonics.
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figure 15.20 When a guitar string is plucked in the usual
position, the second and third harmonics often dominate the
harmonic spectrum. f1 is the frequency of the first harmonic.

figure 15.21 When a guitar string is plucked near the
bridge, many higher harmonics are present in the harmonic
spectrum. This results in a twangy sound.
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When we play the third harmonic on a guitar, the fre-
quency is three times the fundamental frequency, but only
3⁄2 times the second harmonic. We call the musical interval
between the second and third harmonics a fifth. In singing,
this is the difference between do and sol, the first and fifth
notes in the eight-tone scale. It is the interval between the
first pair of notes and the second pair of notes in the tune
“Twinkle, Twinkle, Little Star.”

The fourth harmonic has a frequency four times the funda-
mental frequency and thus twice that of the second harmonic.
It is an octave above the second harmonic and two octaves
above the fundamental. The third and fourth harmonics have
the frequency ratio 4⁄3 and this is the interval between sol and
the do at the top of the scale. This interval is called a fourth,
which is also the interval between do and fa, the first and
fourth notes on the scale. (See example box 15.4.)

The fifth harmonic has a frequency five times the funda-
mental, but only 5⁄4 times the fourth harmonic. The musi-
cal interval between the fourth and fifth harmonics is called
a major third. In singing, it is the interval between do and
mi, the first and third notes in the scale. Other intervals can
be defined in a similar manner.

The other three notes in the scale can also be defined as
simple frequency ratios of other notes in the scale. (See
synthesis problem 5.) Ti is a musical third above sol (5⁄4),
re is a musical fourth below sol (3⁄4), and la is a musical
third above fa (5⁄4). All of the notes in the scale can there-
fore be related to length ratios of a stretched string on an
instrument like a guitar. The role of these length ratios in
music was recognized by the Greek mathematician Pythag-
oras as early as 530 B.C., although Pythagoras limited him-
self to the octave and the fifth in building his scale.

There is a problem, however, with tuning a guitar or par-
ticularly a piano in this way. Although the instrument may
sound great in one key—that for which it was tuned—it
will sound terrible in others. Thus if we tune the piano so
that the ratios are all correct (called just tuning) when we
start our scale on middle C ( f � 264 Hz for just tuning),

the ratios will not be correct if we start our scale on the
next note up (called D). So unless you want to play your
piano in just one key, you need to compromise on the ra-
tios between the notes. The most common compromise is
called equally-tempered tuning. In this method of tuning,
the ratios are all approximately correct, but not perfect, for
any key. The ratios between adjacent half steps on the
scale are all identical, however, so the scales sound correct
regardless of where you start. (See synthesis problem 4.)

Table 15.1 shows the frequencies for both equally-
tempered tuning and just tuning for a C scale. Both are
based upon the standard 440 Hz frequency for A above
middle C. The equally-tempered scale shows the sharps ( � )
and flats ( �), which together with the notes of the major
scale make up a scale consisting of 12 equal-ratio half
steps. The frequency ratio of each note to that of the pre-
ceding half step is 1.05946, which is the twelfth root of
two (12�2). Multiplied by itself 12 times it equals 2, which
is the appropriate ratio for a full octave. We have not
shown the frequencies for the sharps and flats for just tun-
ing. In some versions of just tuning, the flat can have a dif-
ferent frequency than the sharp of the note just below—for
example, A-flat (A �) might have a different frequency than
G-sharp (G � ).

Historically, many physicists and mathematicians have
been involved in debates over the ideal tuning method.
Pythagoras, Ptolemy, Kepler, and Galileo all contributed
ideas. Claudius Ptolemy, who is primarily known for his
geocentric model of the solar system, was instrumental in
the introduction of just tuning. Galileo’s father, Vincenzo
Galilei, was a music theorist. Galileo himself was actively
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figure 15.22 For a C-major scale beginning and ending on
C, the eight notes of the scale are all played on the white keys
of a piano.

C D E F G A B C

do re mi fa sol la ti do

example box 15.4

Sample Exercise: Determining Frequencies
for Different Intervals

A C-major scale begins with do on middle C having a
frequency of approximately 264 Hz. Assuming that they
have been tuned to the perfect ratios for the intervals in
question, what should the frequency be for these notes:

a. sol (G)?
b. fa (F)?
c. do at the top of the scale (high C)?

a. Sol is a fifth above do with a ratio of 3⁄2.

f � (264 Hz) � 396 Hz

b. Fa is a fourth above do with a ratio of 4⁄3.

f � (264 Hz) � 352 Hz

c. From do to the next higher do is an octave, which
doubles the frequency.

f � 2(264 Hz) � 528 Hz

4
3

3
2
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involved in these issues at the time that equal temperament
was being proposed and debated. Equal temperament now
dominates for tuning pianos and we have become used to
the compromises involved.

Why do some combinations of notes
sound harmonious?
Why do some notes sound pleasing to us when played to-
gether, while others do not? The issue is partly cultural, but
there is also a physical basis for what we call harmony.
Not surprisingly, it can be partly explained by the harmon-
ics present in the notes.

For example, if we play the notes do and sol together, the
sound is pleasing to most people. These two notes sound
like they belong together, even for people from different cul-
tures. Remember that when you play or sing any note, the
resulting sound will usually contain higher harmonics of
the fundamental frequency. Because of the simple frequency
ratio between these two notes a fifth apart, many of these
higher harmonics will be the same. The third harmonic
for do, for example, is identical to the second harmonic for
sol. They reinforce one another in the higher harmonics.

If we add two more notes to yield the major chord do,
mi, sol, do, the sound is even more harmonious. Once again,
there is strong overlap of the higher harmonics in these notes.
The same is true for many other simple chords. On a piano
or a guitar, we make strong use of chords such as these to
build our musical structures. In a band or chorus, different
instruments or voices provide the notes in the chords.

Some notes do not sound good together, at least to peo-
ple accustomed to classical music. If we play a do and a re
together, for example, the sound is dissonant. Although a

lack of strong overlap in higher harmonics can partly ex-
plain the harsh sound that results, another physical phe-
nomenon called beats is at work.

When two waves of different frequencies are combined,
they interfere. Because their frequencies differ, they come
in and out of phase with one another as time progresses.
When they are in phase, the combined wave has a large
amplitude. When they are out of phase, the amplitude is
much smaller. This fluctuation in amplitude of the com-
bined wave is called beats (fig. 15.23).

The frequency of the variation in amplitude (called the
beat frequency) is equal to the difference in frequency of
the two waves. If the two notes are very close in frequency,
the beat frequency is slow enough to be heard as a varia-
tion in amplitude. In other words, you can hear the sound
getting louder and softer in a repetitive wah-wah pattern.
This effect can be useful in tuning one instrument to an-
other. When the beats become very slow or disappear alto-
gether, the two instruments are in tune. (Beats are also
very useful in tuning the double strings on a mandolin or
twelve-string guitar.)

When the two notes differ by a full step on the scale, as
with do and re, the beat frequency is rapid enough that we
hear a harsh buzz. This buzz produces, what for many of us,
is an unpleasant sound. In modern music, however, this dis-
sonant sound is sometimes used to produce desired effects.

As the difference in frequency becomes even larger, the
beat frequency can sometimes be heard as a separate tone.
The pitch of this tone corresponds to the beat frequency.
For example, if we play do and sol together, the beat fre-
quency is

3
2 f � f � 1

2 f
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Equal Temperament Just Tuning

Note f (Hz) Ratios Note f (Hz) Frequency Ratios

C 261.6
1.05946

C (do) 264.0

C � (D �) 277.2
1.05946

9/8

D 293.7
1.05946

D (re) 297.0 5/4

D � (E �) 311.1
1.05946

4/3

E 329.6
1.05946

E (mi ) 330.0
3/2

F 349.2
1.05946

F (fa) 352.0
4/3

F � (G �) 370.0
1.05946

6/5

G 392.0
1.05946

G (sol) 396.0 5/4

G � (A �) 415.3
1.05946

A 440.0
1.05946

A (la) 440.0 5/4

A � (B �) 466.2
1.05946

4/3

B 493.9
1.05946

B (ti ) 495.0
6/5

C 523.3 C (do) 528.0

table 15.1

Frequencies and Ratios for Different Tuning Methods
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A wave is a moving disturbance that propagates energy through a
medium. Water waves, waves on a Slinky, waves on a string or
rope, and sound waves all share features like reflection and inter-
ference, which are common to any wave motion. These waves
differ in the type of medium involved, the nature of the distur-
bance that is propagating, and in the wave speed. Standing waves
and harmonic analysis play an important role in the physics of
music.

1 Wave pulses and periodic waves. Basic features
of wave motion can be demonstrated on a Slinky, including sin-
gle pulses as well as continuous waves. For longitudinal waves,
the disturbance is along the line of travel. For transverse waves, it
is perpendicular to the direction of travel. The wave speed is equal
to the frequency times the wavelength of the wave.

depends on the tension in the rope and the mass per unit of length
(� � m/L) of the rope.

Summary 325

where f is the frequency of the lower note, do. A note with
a frequency one-half that of do is an octave below do, so it
fits nicely within a chord containing do and sol. Thus beats
can help to explain the richness of the harmony that we get
when we play major chords.

There is much more to the physics of music than these
basic ideas. The acoustics of a good concert hall, for example,

involves wave interference, reflection, sound absorption,
and many other effects. A good musician develops a dis-
criminating “ear,” and can detect and identify musical
intervals and chords much more readily than an untrained
person, but most of us have had enough exposure to music
to appreciate the effects produced. Playing around with a
guitar or piano can demonstrate many of the ideas we have
just discussed.

The frequency of a sound wave is associated with its
musical pitch. When we play a note on a musical instru-
ment the sound will contain the fundamental frequency
as well as higher harmonics with frequencies that are
integer multiples of the fundamental. A harmonic analy-
sis of the sound determines the amplitude of each of the
frequencies present. Harmonics play an important role in
defining the musical intervals in the scale used in West-
ern music. Different combinations of these notes sound
harmonious when the higher harmonics in the notes
reinforce one another as they do in a major chord. Two
notes of different frequency interfere to produce a beat
frequency equal to the difference in frequency between
the two notes. The beat frequency also plays a role in
whether the combination of two notes will be pleasing
or dissonant.

figure 15.23 The two waves with slightly different
frequency in the top drawing interfere to produce the beats
shown in the lower drawing. The two waves come in and out 
of phase as time progresses.

1 Beat

y1

y1 + y2

y2y

t

t

y

λ

v

v = f λ

v

_F
µv =

2 Waves on a rope. Transverse waves can be generated
on a rope or string. If the end of the rope is moved in simple har-
monic motion, the wave has a sinusoidal shape. The wave speed

3 Interference and standing waves. When two or
more waves combine, the disturbances add to form a new wave.
The interference can be constructive, producing a larger ampli-
tude if the waves are in phase, or it can be destructive, producing
a smaller or zero amplitude if they are out of phase. Two waves
traveling in opposite directions produce a standing wave.

summary
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5 The physics of music. Harmonic analysis shows that
musical notes played by most instruments contain a mix of higher
harmonics along with the fundamental frequency. Musical scales
and intervals are based upon the ratios between these higher har-
monics. Combinations of notes sound harmonious when the higher
harmonics overlap. When two notes are too close in pitch, beats
can produce a dissonant buzz.

* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. A wave pulse is transmitted down a Slinky, but the Slinky
itself does not change position. Does a transfer of energy
take place in this process? Explain.

Q2. Waves are traveling in an eastward direction on a lake. Is
the water in the lake necessarily moving in that direction?
Explain.

Q3. A slowly moving engine bumps into a string of coupled
railroad cars standing on a siding. A wave pulse is trans-
mitted down the string of cars as each one bumps into the
next one. Is this wave transverse or longitudinal? Explain.

Q4. A wave can be propagated on a blanket by holding adja-
cent corners in your hands and moving the end of the
blanket up and down. Is this wave transverse or longitudi-
nal? Explain.

Q5. If you increase the frequency with which you are moving
the end of a Slinky back and forth, does the wavelength
of the wave on the Slinky increase or decrease? Explain.

Q6. If you increase the speed of a wave on a Slinky by increas-
ing the tension but keep the same frequency of back-and-
forth motion, does the wavelength increase or decrease?
Explain.

Q7. Is it possible to produce a transverse wave on a Slinky?
Explain.

*Q8. At sporting events the crowd sometimes generates a “wave”
that propagates around the stadium. Is this wave transverse
or longitudinal? What causes the wave to travel through
the crowd? Explain.

*Q9. Is it possible to produce a longitudinal wave on a rope?
Explain.

326 Chapter 15 Making Waves

Wave pulse, 307
Periodic wave, 310
Wavelength, 310
Harmonic wave, 312
Interference, 314
Principle of superposition, 314

Node, 315
Antinode, 315
Standing wave, 315
Pitch, 316
Sound wave, 318

Doppler effect, 320
Harmonic analysis, 322
Just tuning, 323
Equally-tempered, 323
Beats, 324

4 Sound waves. Sound waves are longitudinal waves
involving the propagation of pressure variations through air or
other media. The speed of sound is about 340 m/s in room-
temperature air. Standing sound waves can be formed in pipes
or soft-drink bottles. The length of the pipe determines the wave-
length and the frequency of the various harmonics.
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questions
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Q10. Suppose that we double the mass per unit of length of a
rope by twining two ropes together. What effect does this
have on the speed of a wave on this rope? Explain.

Q11. What force causes individual segments of a rope to acceler-
ate when a transverse pulse travels down the rope? Explain.

Q12. Why is it easier to observe transverse waves on a heavy
rope than on a light string? Explain.

Q13. Suppose that we increase the tension in a rope, keeping
the frequency of oscillation of the end of the rope the
same. What effect does this have on the wavelength of the
wave produced? Explain.

Q14. Is it possible for two waves traveling in the same direc-
tion to produce a wave (when they interfere) that has a
smaller height (amplitude) than either of the individual
waves? Explain.

Q15. Two ropes are joined smoothly to form a single rope,
which is attached to a wall. If the ends of the two ropes
are moved up and down in phase, but one rope is half
a wavelength longer than the other to the point where
they join, will the interference of the two waves when they
join be constructive or destructive? Explain.

*Q16. When two waves on separate ropes reach the spliced
junction out of phase with one another, they interfere de-
structively producing no wave beyond the splice. What
happens then to the energy carried by the waves? Will
there by reflected waves? Explain.

Q17. We can form standing waves on a rope attached to a wall
by moving the opposite end of the rope up and down at
an appropriate frequency. Where does the second wave
come from that interferes with the initial wave to form
the standing wave? Explain.

Q18. A standing wave is produced on a string fixed at both
ends so that there is a node in the middle as well as at ei-
ther end. Will the frequency of this wave be greater than,
equal to, or less than the frequency of the fundamental
frequency, which has nodes only at the ends? Explain.

Q19. Is the distance between the antinodes of a standing wave
equal to the wavelength of the two waves that interfere to
form the standing wave? Explain.

Q20. If we increase the tension of a guitar string, what effect
does this have on the frequency and wavelength of the fun-
damental standing wave formed on that string? Explain.

Q21. If we wrap a second wire around a guitar string to in-
crease its mass, what effect does this have on the fre-
quency and wavelength of the fundamental standing wave
formed on that string? Explain.

Q22. Why is it much easier to produce longitudinal waves trav-
eling in air than it is to produce transverse waves? Explain.

Q23. Is it possible for sound to travel through a steel bar?
Explain.

Q24. Suppose that we increase the temperature of the air through
which a sound wave is traveling.
a. What effect does this have on the speed of the sound

wave? Explain.
b. For a given frequency, what effect does increasing the

temperature have on the wavelength of the sound wave?
Explain.

Q25. If the temperature in an organ pipe increases above room
temperature, thereby increasing the speed of sound waves
in the pipe but not affecting the length of pipe signifi-
cantly, what effect does this have on the frequency of the
standing waves produced by this pipe? Explain.

Q26. Is the wavelength of the fundamental standing wave in a
tube open at both ends greater than, equal to, or less than
the wavelength for the fundamental wave in a tube open at
just one end? Explain.

Q27. A band playing on a flat-bed truck is approaching you
rapidly near the end of a parade. Will you hear the same
pitch for the various instruments as someone down the
street who has already been passed by the truck? Explain.

Q28. Is it possible for sound waves to travel through a vac-
uum? Explain.

Q29. When you pluck a guitar string, are you likely to get a
sound wave containing just a single frequency? Explain.

*Q30. Why is the second harmonic of a plucked guitar string
likely to be stronger than the first harmonic or fundamental
when the string is plucked in the usual position? Explain.

Q31. What are we measuring when we perform a harmonic
analysis of a sound wave? Explain.

Q32. How is the musical interval that we call a fifth related to
the third harmonic of a plucked string? Explain.

Q33. Why do two notes an octave apart sound so much alike?
Explain.

*Q34. Frequency and pitch are related, but are they the same
thing? When we identify a note as having a certain pitch,
is it likely to contain a single frequency? How does per-
ceived pitch differ for someone who cannot carry a tune
from that for a trained musician? Discuss.

Q35. Two notes close together on the scale such as do and re
produce a buzz when played together. What is the source
of this buzz? Explain.

Exercises 327

E1. Suppose that water waves coming into a dock have a ve-
locity of 1.2 m/s and a wavelength of 2.4 m. With what
frequency do these waves meet the dock?

E2. Suppose that water waves have a wavelength of 2.4 m and
a period of 1.6 s. What is the velocity of these waves?

E3. A longitudinal wave on a Slinky has a frequency of 5 Hz and
a speed of 2.0 m/s. What is the wavelength of this wave?

exercises
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6 m

E4. A wave on a rope is shown in the diagram.
a. What is the wavelength of this wave?
b. If the frequency of the wave is 2 Hz, what is the wave

speed?

E5. A wave on a string has a speed of 12 m/s and a period of
0.4 s.
a. What is the frequency of the wave?
b. What is the wavelength of the wave?

E6. Suppose that a guitar string has a length of 0.8 m, a mass
of 0.12 kg, and a tension of 135 N.
a. What is the mass per unit of length of this string?
b. What is the speed of a wave on this string?

E7. A string with a length of 0.8 m is fixed at both ends.
a. What is the longest possible wavelength for the travel-

ing waves that can interfere to form a standing wave on
this string?

b. If waves travel with a speed of 120 m/s on this string, what
is the frequency associated with this longest wavelength?

E8. Suppose that the string in exercise 7 is plucked so that
there are two nodes along the string in addition to those at
either end. What is the wavelength of the interfering waves
for this mode?

E9. Sound waves have a speed of 340 m/s in room-temperature
air. What is the wavelength of the sound waves for the mu-
sical tone concert A, which has a frequency of 440 Hz?

E10. What is the frequency of a sound wave with a wavelength
of 0.85 m traveling in room-temperature air (v � 340 m/s)?

E11. An organ pipe closed at one end and open at the other has
a length of 0.5 m.
a. What is the longest possible wavelength for the inter-

fering sound waves that can form a standing wave in
this pipe?

b. What is the frequency associated with this standing wave
if the speed of sound is 340 m/s?

E12. Suppose that we start a major scale on concert A, which is
defined to have a frequency of 440 Hz. If we call this fre-
quency do, what is ideal-ratio frequency of
a. mi?
b. sol?

E13. If sol on a given scale has a frequency of 396 Hz, what is
the ideal-ratio frequency of do at the bottom of this scale?

E14. In just tuning, the ratio for a major third is 5⁄4. In equally-
tempered tuning the ratio is 1.260. If we start a scale on
a frequency of 440 Hz for do, what is the difference in
frequency for mi (a major third above do) on an equally-
tempered piano and a justly-tuned piano?

E15. If do has a frequency of 263 Hz and re a frequency of
323 Hz, what is the beat frequency produced when these
two notes are played together?

E16. If one guitar string is tuned to a frequency of 440 Hz and a
string on another guitar produces 6 beats per second when
played together with the first string, what are the possible
frequencies of the second string?

E17. What is the beat frequency that results when an 880-Hz
note is played with a 660-Hz note? If this beat frequency is
heard as a musical tone, how is this tone related to the
original two notes? What are the intervals?

SP1. A certain rope has a length of 8 m and a mass of 2.4 kg. It
is fixed at one end and held taut at the other with a tension
of 30 N. The end of the rope is moved up and down with a
frequency of 2.5 Hz.
a. What is the mass per unit of length of the rope?
b. What is the speed of waves on this rope?
c. What is the wavelength of waves on this rope having a

frequency of 2.5 Hz?
d. How many complete cycles of these waves will fit on

the rope?
e. How long does it take for the leading edge of the waves

to reach the other end of the rope and start coming back?

SP2. A guitar string has an overall length of 1.25 m and a total
mass of 40 g (0.04 kg) before it is strung on the guitar.
Once on the guitar, however, there is a distance of 64 cm
between its fixed end points. It is tightened to a tension of
720 N.
a. What is the mass per unit of length of this string?
b. What is the wave speed for waves on the tightened

string?

c. What is the wavelength of the traveling waves that in-
terfere to form the fundamental standing wave (nodes
just at either end) for this string?

d. What is the frequency of the fundamental wave?
e. What are the wavelength and frequency of the next har-

monic (with a node in the middle of the string)?

SP3. A pipe that is open at both ends will form standing waves,
if properly excited, with antinodes near both ends of the
pipe. Suppose we have an open pipe 40 cm in length.
a. Sketch the standing-wave pattern for the fundamental

standing wave for this pipe. (There will be a node in the
middle and antinodes at either end.)

b. What is the wavelength of the sound waves that inter-
fere to form the fundamental wave?

c. If the speed of sound in air is 340 m/s, what is the fre-
quency of this sound wave?

d. If the air temperature increases so that the speed of sound
is now 350 m/s, by how much does the frequency change?

e. Sketch the standing-wave pattern and find the wave-
length and frequency for the next harmonic in this pipe.

synthesis problems

E4 Diagram
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SP4. For standard tuning, concert A is defined to have a frequency
of 440 Hz. On a piano, A is five white keys above C, but
9 half steps above C counting both the white and black keys.
(See fig. 15.22.) A full octave consists of 12 half steps
(semitones). In equally-tempered tuning, each half step has
the ratio of 1.0595 above the preceding step. (This ratio is
the 12th root of 2.0.)
a. What is the frequency of A-flat, one half step below A

for equal temperament?
b. Working down, find the frequency of each succeeding

half step until you get down to C. (Carry your computa-
tions to four figures, to avoid rounding errors. For each
half step, divide by 1.0595.)

c. In just tuning, middle C has a frequency of 264 Hz.
How does your result in part b compare to this value?

d. Working up, find the frequency of C above concert A in
equal temperament. Is this frequency twice that ob-
tained in part b for middle C?

SP5. Using the procedure outlined in section 15.5 where the ideal
ratios for a justly-tuned scale are described, find the fre-
quencies for all of the white keys between middle C
(264 Hz) and the C above middle C (a C-major scale). If
you have worked synthesis problem 4, compare the fre-
quencies for just tuning to those for equal temperament.
a. G (sol) is a fifth above C (3⁄ 2).
b. F ( fa) is a fourth above C (4⁄ 3).
c. E (mi) is a major third above C (5⁄4).
d. B (ti) is a major third above G (sol).
e. D (re) is a fourth below G (sol).
f. A (la) is a major third above F ( fa).

Home Experiments and Observations 329

HE1. If you have access to a Slinky, either through a younger
brother or sister or through your local physics lab, try pro-
ducing some of the effects described in section 15.1.
a. Can you estimate the speed of single longitudinal pulses

produced on the Slinky?
b. How does this speed change as the Slinky is stretched?
c. Does a transverse pulse travel with the same speed as a

longitudinal pulse?
d. Can you produce a continuous longitudinal wave on the

Slinky?

HE2. Water waves can be created easily by moving your hand in
a bathtub or other small pool of water. The wave crests can
be directly observed.
a. Try moving your hand at different frequencies. How

does the wavelength vary with frequency?
b. Can you estimate the speed of a wave pulse?
c. By using both hands, two waves can be created that

come together and interfere. If you move your hands in
unison, you should observe constructive interference
along the center line between the two waves. What ef-
fect does this have on the wave that you observe along
the center line?

d. Can you produce destructive interference by moving
your hands so that one is going up while the other 
is going down? Describe what happens when you
attempt this.

HE3. Empty a soft-drink bottle and practice blowing over the
opening as described in section 15.4 until you are able to
produce a consistent tone.
a. How does the pitch of this tone vary if you put water

in the bottle? What is the relationship of the pitch when
the bottle is half-filled to when it is empty?

b. Try producing higher harmonics by blowing harder and
reducing the opening in your lips. (This is easy for a
flute player but takes some practice for other mortals.)

How is the pitch of a higher harmonic related to the
pitch of the fundamental?

c. By filling eight bottles to different levels, you can pro-
duce all the notes of a one-octave scale. Gather a few
friends and try playing “Three Blind Mice” or some
other simple tune.

HE4. If you have access to a guitar, try generating some of the
higher harmonics using the technique discussed in section
15.3.
a. How many higher harmonics can you produce? Do the

locations of dots on the neck of the guitar provide guid-
ance on where to place your finger?

b. Try plucking the guitar in the usual fashion and also
much nearer to the bridge. Can you hear higher har-
monics in the tone produced? How does the tone differ
in these two situations?

c. If you have access to harmonic analysis equipment in
your physics lab, compare the harmonic spectrum pro-
duced by plucking a string in the two positions de-
scribed in part b.

HE5. If you have never played a piano, a lot can be learned by
sitting down at a keyboard and trying a few scales and
intervals.
a. Play a C-major scale as illustrated in figure 15.22.
b. Play a D-major scale, beginning and ending on D.

Which black keys did you have to use to make the scale
sound right?

c. Play a G-major scale beginning and ending on G. Which
black keys did you use?

d. Play a major chord (do, mi, sol, do) starting on the dif-
ferent notes listed in parts a, b, and c as well as others.
Which keys on the piano did you use?

e. Play C in several different octaves. Do these notes all
sound similar? Can you hear different harmonics?

home experiments and observations
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chapter overview
What is light, what are its properties, and how can we explain the rich
array of color phenomena that are a part of our everyday experience?
Starting from the recognition that light is a form of electromagnetic
wave, we explore its behavior, including the properties of absorption,
selective reflection, interference, diffraction, and polarization. Our
perception of color is affected by all of these processes.

chapter outline
1 Electromagnetic waves. What are electromagnetic waves and how

are they produced? What is light? In what ways are radio waves and
light waves alike, and how do they differ?

2 Wavelength and color. How is color related to wavelength? How do
we perceive color? How do the processes of selective reflection,
absorption, and scattering determine the colors that we see? Why is
the sky blue?

3 Interference of light waves. How did Young’s double-slit interference
experiment demonstrate that light is a wave? What is thin-film
interference? How can we explain the interference colors that we see
on oil slicks and other thin films?

4 Diffraction and gratings. What is diffraction? How does diffraction
limit our ability to see fine detail? What are diffraction gratings, and
how are they used to measure wavelengths?

5 Polarized light. What is polarized light? How is polarization produced
and how can we tell whether light is polarized? What is birefringence,
and how can it produce color phenomena?
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Have you ever wondered why our world appears so
colorful to us? Light is certainly involved in what we see,
but what is light? Why do soap films appear so multicol-
ored and why is the sky blue? All of these phenomena
are related to the wave nature of light.

All of us have played with soap bubbles at some point
in our lives. You may have also been fascinated with soap
films in the metal loop that is often used to create bub-
bles. If you hold the loop still, the film will settle into a
pattern of colored bands (fig. 16.1). As you watch these
bands, the colors change until finally the film breaks.

How do we explain this? The colorful behavior of
soap films and bubbles, as well as many other phenom-
ena involving color, involves interference of light waves.
Many ideas regarding waves, including interference,
were introduced in chapter 15, but light waves provide
some surprising and interesting examples of these ideas.

Light is an electromagnetic wave, so we will have to
explore what that means. Light waves can be reflected,
refracted, polarized, scattered, and absorbed. They also
can interfere with one another to produce some strik-
ing effects. Reflection and refraction can be described
in terms of ray optics as we will see in chapter 17. Ray
optics describes the behavior of lenses and mirrors,
which are used to make many optical instruments such
as microscopes and telescopes.

This chapter will focus on aspects of light that are di-
rectly dependent on the wave properties of light. Wave

optics describes interference and diffraction phenomena
as well as properties such as absorption, scattering, and
polarization. All of these phenomena are involved in pro-
ducing the colors that we see.

16.1 Electromagnetic Waves 331

figure 16.1 A soap film viewed in reflected light displays
striking interference colors.

16.1 Electromagnetic Waves
What do light, radio waves, microwaves, and X rays have
in common? They are all forms of electromagnetic waves.
Together they represent an enormous range of phenomena
that have become extremely important in our modern tech-
nological world.

The prediction of the existence of electromagnetic waves
and a description of their nature was first published by James
Clerk Maxwell in 1865. Maxwell was an enormously tal-
ented theoretical physicist who made important contribu-
tions in many areas of physics including electromagnetism,
thermodynamics, the kinetic theory of gases, color vision,
and astronomy. He is best known, however, for his treatise
on electric and magnetic fields, which we have already
mentioned. His description of electromagnetic waves, with
a prediction of their speed, was just one feature of this
work.

What is an electromagnetic wave?
To understand electromagnetic waves, we need to review
the concepts of electric field and magnetic field. Both fields
can be produced by charged particles. Motion of the charge
is necessary to generate a magnetic field, but an electric
field is present regardless of whether the charge is moving.
These fields are a property of the space around the charges

and are useful for predicting the forces on other charges, as
discussed in chapters 12 and 14.

Suppose that charge is flowing up and down in two
lengths of wire connected to an alternating-current source,
as in figure 16.2. If the current reverses direction rapidly
enough, an alternating current will flow in this arrangement
even though it appears to be an open circuit. Charge of one
sign will begin to accumulate in the wires, but before the
accumulated charge gets too large, the current reverses,
the charge flows back, and the opposite-sign charge begins
to build. We thus have both a changing amount of charge
and a changing electric current in the wires.

The magnetic fields generated by this arrangement can
be depicted by circular field lines centered on the wires,
as shown. This field, however, is constantly changing in
both magnitude and direction as the current changes. From
Faraday’s law, Maxwell knew that a changing magnetic field
would generate a voltage in a circuit whose plane is per-
pendicular to the magnetic field lines. A voltage implies an
electric field, and even in the absence of a circuit, a changing
magnetic field will generate an electric field at any point in
space where the magnetic field is changing.

Thus, we expect a changing electric field to be generated
by the changing magnetic field, according to Faraday’s
law. Maxwell saw a symmetry in the behavior of electric
and magnetic fields: a changing electric field also gener-
ates a magnetic field. Maxwell predicted this phenomenon
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in his equations describing the behavior of electric and
magnetic fields. Experimental measurements confirmed its
existence.

Maxwell realized that a wave involving these fields could
propagate through space. A changing magnetic field produces
a changing electric field, which, in turn, produces a changing
magnetic field, and so on. In a vacuum, the process can go on
indefinitely and affect charged particles at much greater dis-
tances from the source than would be possible with static
fields generated by nonchanging currents or charges. This is
how an electromagnetic wave is produced. (In a more general
sense, any accelerated change creates an electromagnetic
wave.) The wires in figure 16.2 serve as a transmitting
antenna for the waves. A second antenna can be used to
detect the waves.

Although Maxwell predicted the existence of such waves
in 1865, the first experiment to produce and detect them
with electric circuits was performed by Heinrich Hertz
(1857–1894) in 1888. Hertz’s original antennas were circu-
lar loops of wire instead of straight wires, but he also used
straight wires in later work. He could detect a wave pro-
duced by the source circuit with another circuit at a con-
siderable distance from the source. Hertz discovered radio
waves by doing these experiments.

Figure 16.3 presents a closer look at the nature of sim-
ple electromagnetic waves. If the magnetic field is in the
horizontal plane, as in figure 16.2, the electric field gener-
ated by the changing magnetic field is in the vertical direc-
tion. These two fields are perpendicular to each other, and
they are also perpendicular to the direction of travel away
from the source antenna. Electromagnetic waves are there-
fore transverse waves. The magnitudes of the electric and
magnetic fields are pictured here as varying sinusoidally—
and in phase with one another—but more complex patterns
are also possible.

Like the other types of waves that we have studied, the
sinusoidal wave pattern moves. Figure 16.3 shows the field
magnitudes and directions at a single instant in time and
along only one line in space. The same kind of variation
occurs in all directions perpendicular to the antenna. As the
sinusoidal pattern moves, the field values at any point in space
alternately increase and decrease. As the fields go through
zero, they change direction and begin to increase in the op-
posite direction. These coordinated changes of the electric
and magnetic fields make up the electromagnetic wave.

What is the speed of electromagnetic waves?
In predicting the existence of electromagnetic waves from
his theory of electric and magnetic fields, Maxwell could
also predict their speed. The speed of these waves in a vac-
uum can be computed from just two constants, the Cou-
lomb constant k in Coulomb’s law and the magnetic force
constant k� in Ampère’s expression for the force between
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figure 16.2 A rapidly alternating electric current in the
wires generates magnetic fields whose direction and magnitude
change with time.

figure 16.3 The time-varying electric and magnetic fields in an electromagnetic wave are in directions perpendicular to each other
as well as to the wave speed.
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two current-carrying wires. Maxwell’s theory predicted
that the wave speed should be equal to the square root of
the ratio of these two numbers ( ), which yields
a value of 3 � 108 m/s, or 300 million meters per second.

The striking fact about this value, other than its incredi-
ble size, is that it corresponded with the known value of
the speed of light. The speed of light had been accurately
measured by different scientists not too many years before
Maxwell’s work. This coincidence led Maxwell to suggest
that light itself was a form of electromagnetic wave—the
first direct connection between the fields of optics and
electromagnetism.

Measuring the speed of light was no easy task in
Maxwell’s day. Galileo was one of the first to attempt a mea-
surement 250 years earlier. He sent an assistant with a
shuttered lantern to a distant hill with instructions to open
his lantern when he first saw the light from a similar lan-
tern operated by Galileo. Galileo planned to measure the
time required for the light to travel to his assistant and
back. This attempt was doomed to failure. The reaction
times involved in opening the lanterns were much greater
than the actual time of flight for the beam of light.

Although astronomers had made estimates of the speed
of light, the first successful land-based measurement was
made by Armand-Hippolyte Fizeau (1819–1896) in 1849.
He used a toothed-wheel apparatus like the one pictured in
figure 16.4. A light beam passes through the gap between
the teeth of the rotating wheel and is reflected from a dis-
tant mirror. The beam will be blocked on its return if the
wheel has rotated just far enough so that a tooth is in
the place where the gap had been. By measuring the rota-
tional speed of the wheel and knowing the distance that the
light beam traveled to get back to the wheel, Fizeau could
calculate the speed of light.

The speed of Fizeau’s wheel allowed a tooth to move
into the former position of a gap in less than 1⁄10 000 of a
second. Even at that rate, he had to place his reflecting
mirror at a distance more than 8 kilometers (about 5 miles)
from the wheel. Knowing that the light beam traveled more
than 10 miles in less than 1⁄10 000 of a second in Fizeau’s
experiment may give you some appreciation of the enor-
mous magnitude of the speed of light.

v � 2k/k¿

The speed of light is an important constant of nature, so
we give it its own symbol, c, its value in a vacuum. This
value is now defined as c � 2.99792458 � 108 m/s, very
close to the 3 � 108 m/s value that we usually quote and
remember. Light (and other forms of electromagnetic wave)
travel somewhat more slowly in other media like glass or
water, but the speed of electromagnetic waves in air is very
close to their speed in a vacuum.

Are there different kinds of
electromagnetic waves?
We have already noted that both radio waves and light waves
are electromagnetic waves. Are they the same, or do they
differ in some significant respect? The main difference be-
tween radio waves and light waves lies in their wavelengths
and frequencies. Radio waves have long wavelengths, sev-
eral meters or more, but light waves have very short wave-
lengths, less than a micron (one-millionth of a meter).

Since different types of electromagnetic waves all travel
with the same speed in a vacuum (and also in air, approxi-
mately), their frequencies are related to their wavelengths
by the relationship v � f�, where the speed v is equal to c.
The frequencies for typical wavelengths of radio waves
and light waves are computed in example box 16.1. With
their shorter wavelengths, light waves have much higher
frequencies than radio waves.

If the frequency is known, we can also use the relation-
ship between wavelength and frequency to compute the
wavelength. An AM radio station broadcasting at a fre-
quency of 600 kilohertz produces radio waves with a wave-
length of 500 m, which we find by dividing the speed of
light by the frequency (� � c/f ). Radio waves in the AM
band have very long wavelengths.

Figure 16.5 shows the wavelength and frequency bands
for various parts of the electromagnetic spectrum. The
waves in different parts of this spectrum differ not only in
their wavelength and frequency but also in how they are
generated and what materials they will travel through.
X rays, for example, will pass through materials that are
opaque to visible light. Radio waves will also pass through
walls that light cannot penetrate.

16.1 Electromagnetic Waves 333

figure 16.4 A diagram of Fizeau’s toothed-wheel apparatus for measuring the speed of light. As the rapidly spinning wheel turns a
small fraction of a revolution, the returning light beam is blocked by a tooth on the wheel.
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Light wavelengths are associated with color and range
from roughly 3.8 � 10�7 m at the violet end of the visible
spectrum to 7.5 � 10�7 m at the red end. The colors change
progressively from violet through blue, green, yellow,
orange, and red as the wavelengths lengthen. Electromag-
netic waves with wavelengths somewhat longer than the red

end of the visible spectrum are called infrared light, and
waves with shorter wavelengths than the violet end are called
ultraviolet light. Although X rays and gamma rays have
even shorter wavelengths than ultraviolet light, they too are
electromagnetic waves.

Electromagnetic waves undergo interference phenomena
like other kinds of waves. Interference of light can produce
striking effects, some of which are discussed in section
16.3. Radio waves reflected from belts of charged particles
in the atmosphere can interfere with those coming directly
from the transmitter, causing the station to fade in and out.

How different types of electromagnetic waves are pro-
duced varies enormously for the different parts of the spec-
trum, but they all involve accelerated charged particles. The
accelerated charges can be in an oscillating electrical circuit
as in radio waves, or within atoms as in light, X rays, and
gamma rays. Like any warm body, your body is radiating
electromagnetic waves in the infrared part of the spectrum.
In this case, oscillating atoms within the molecules of your
skin serve as the antennas.

Maxwell’s theory of electric and magnetic fields predicted
that a wave involving these fields could be propagated
through a vacuum. We call these waves electromagnetic
waves. Their speed in a vacuum is approximately 300 million
meters per second, as predicted by Maxwell. Since this 
value was known to be the speed of light, light was
identified as an electromagnetic wave, along with radio
waves, microwaves, X rays, and gamma rays, which were
discovered after Maxwell’s work. Various kinds of electro-
magnetic waves differ from one another in their wave-
lengths and frequencies, and in how they are generated.
They all are waves, however, and they exhibit the general
properties of wave motion.
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figure 16.5 The electromagnetic wave spectrum. Both wavelengths and frequencies are shown for different parts of the spectrum.
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example box 16.1

Sample Exercise: Frequencies of Two Kinds
of Electromagnetic Waves

What are the frequencies of
a. radio waves with a wavelength of 10 m?
b. light waves with a wavelength of 6 � 10�7 m?

a. � � 10 m v � f � � c

v � c � 3 � 108 m/s

f � ?
f �

�

� 3 � 107 Hz

b. � � 6 � 10�7 m f �

f � ?

� 5 � 1014 Hz

The frequency of light waves is over 10 million times
larger than the frequency of the 10-m radio waves.

� 
3 � 108 m/s

6 � 10�7 m

c

�

3 � 108 m/s

10 m

c

�
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16.2 Wavelength and Color
We live in a colorful world, and we learn to distinguish col-
ors when we are in preschool. How do we do this? What
causes different objects to have different colors? Why is
the sky blue? These phenomena are related to the wave-
length of light, to the properties of different materials, and
to how we see. In this section, we will explore a variety of
aspects of color and color vision.

Does light consist of different colors?
If you have ever played with a prism, you are aware that a
prism can produce a rainbow of color. If we allow a beam
of white light from a small light bulb or from the sun to
strike a prism, the prism will bend the beam. The emerging
beam does not appear white, however. Instead it is multi-
colored with violet light appearing on one side of the
emerging beam and red light on the other end. In between,
we find blue, green, yellow, and orange.

One of the first people to study this phenomenon sys-
tematically was Isaac Newton. Newton is best known for
his work in mechanics, but he also did extensive work in
optics. In one experiment, he produced a narrow beam of
sunlight by passing it through a hole in his window shade.
He passed this beam through a glass prism and displayed
the colorful spectrum of light that we have just described.
This seemed to demonstrate that white light had within it
light of different colors.

Newton did not stop with that observation, however. He
passed the light emerging from the prism through a second
identical prism that was inverted relative to the first prism
(fig. 16.6). The light emerging from the second prism was
white like the original sunbeam. The different colors when
recombined produced white light. These studies of Newton
demonstrated that white light was a mixture of different
colored components.

We now know that the different colors of light that
Newton observed are associated with the wavelength of
light. As mentioned in section 16.1, violet light has shorter
wavelengths than red light with the other colors of the

spectrum having intermediate values. These wavelengths
can be measured by interference experiments that we will
describe in sections 16.3 and 16.4. The wavelengths are
extremely short, however, and it is not surprising that 
Newton was not convinced that they existed. The wave-
lengths of visible light are roughly one-hundredth the
diameter of a human hair!

We usually express the wavelengths of visible light in
nanometers (nm). One nanometer is equal to 10�9 meters or
one-billionth of a meter. The wavelengths of visible light
range from 380 nm on the violet end of the visible spec-
trum to 750 nm on the red end. Table 16.1 shows approx-
imate wavelength ranges for the different colors of the
visible spectrum.

How do our eyes distinguish different colors?
Even though the wavelengths of visible light are
extremely short, our visual systems can readily distin-
guish different colors. Our eyes are the front end of our
visual system, but our brains are also heavily involved in
how we see. Figure 16.7 shows a simplified diagram of
some of the structures of the eye.
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figure 16.6 Newton showed that white light from the sun,
after being split into different colors by one prism, could be
recombined by a second prism to form white light again.

figure 16.7 Light entering the eye is focused by the cornea
and accommodating lens to form an image on the retina. The
retina contains light-sensitive cells that send signals to the brain
via the optic nerve.

Hole in shade
Screen

Color Wavelength (nm)

violet 380–440

blue 440–490

green 490–560

yellow 560–590

orange 590–620

red 620–750

table 16.1

Colors Associated with Different Wavelengths
of Light

Accommodating
lens

Cornea

Iris

Optic
nerve

Retina
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Light is focused by the cornea and crystalline lens onto
the retina. The retina is made up of light-sensitive cells of
two types: rods and cones. The cones are concentrated near
the center of the retina in an area called the fovea and are
responsible for our daylight and color vision. The rods
are distributed throughout the retina and are responsible
for our nighttime and peripheral vision. The rods do not
provide any information on color—we are color blind at
night or in other low-light conditions.

The cones dominate our vision in well-lit conditions
and provide us with our ability to see fine detail as well as
color. There are actually three types of cones: S cones,
M cones, and L cones that are sensitive to light in different
parts of the spectrum. The S cones are most sensitive to the
shorter (hence S) wavelengths, the M cones to medium
wavelengths, and the L cones to longer wavelengths (fig.
16.8). The sensitivity ranges overlap, however, so that light
near the middle of the visible spectrum will stimulate all
three cone types.

How do we identify different colors, then? Suppose light
of 650-nm wavelength enters our eyes. From the cone sen-
sitivity curves, we can see that this light will stimulate the
L cones more strongly than the M cones, which in turn are
stimulated much more than the S cones. From childhood
experience in identifying colors, we have learned to identify
this mix of signals as the color red. In a similar fashion,
light of 450 nm will stimulate the S cones most strongly,
and we identify that color as blue.

Light of 580-nm wavelength stimulates both the M and
L cones strongly, and we identify this color as yellow. How-
ever, a mixture of red light and green light will produce a
similar response, and we will also perceive this mixture as
yellow. This is essentially the process underlying additive
color mixing. Combining the three primary colors blue,
green, and red in different amounts can produce responses
in our brains corresponding to all of the colors we are used

to identifying. Red and green produce yellow, blue and green
produce cyan (blue-green), and blue and red produce ma-
genta as shown in figure 16.9.

Combining all three primary colors in appropriate
amounts produces a response that we identify as white.
This is true despite the fact that all of the wavelengths that
make up the white light of the sun may not be present. We
perceive white, though, because the cones are being stimu-
lated in a similar proportion to the response that sunlight
produces. When light levels are very low compared to the
background, we see black, which is essentially the absence
of light.

Why do objects have different colors?
Why does a blue dress appear blue or a green shirt green?
Most objects are not producers of light; they merely reflect
or scatter light coming from other sources. The color that
we perceive depends on the wavelengths present in the
light source as well as on the manner in which the object
reflects or scatters the light.

The color mixing done by artists on their palette is an-
other way of producing different colors. The pigments
used in paints or dyes used on fabrics work by selective
absorption. By this we mean that they absorb some wave-
lengths of light more than others. When light is absorbed,
the energy contained in the light wave is converted to other
forms of energy, usually thermal energy. The object doing
the absorbing becomes warmer.
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figure 16.8 The three different types of cones are sensitive
to different wavelengths of light, but their ranges overlap.

figure 16.9 Additive color mixing is demonstrated by
projecting blue, green, and red light from separate projectors
onto overlapping circles on a screen.
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The selective absorption of light is a subtractive process
that can also be used to produce a complete range of col-
ors. Suppose that we illuminate a blue-green (also called
cyan) book with an incandescent light bulb. An incandes-
cent lamp produces light by heating a tungsten filament to
a very high temperature causing it to glow. A continuous
range of wavelengths results, similar to the white light pro-
duced by the sun but usually containing a higher intensity
of light in the red end of the spectrum.

When this light strikes the book, a number of things can
happen. If the book cover is glossy, some of the light un-
dergoes specular reflection (fig. 16.10). Specular reflection
is mirrorlike; the light is reflected in a specific direction
defined by the law of reflection. (The law of reflection and
the behavior of mirrors are discussed in chapter 17.) Light
that is reflected in this manner will usually appear as a
white glare, the color of the light bulb.

The rest of the light will be reflected diffusely, meaning
that it is reflected in all directions. This may be due to the
surface being somewhat rough, but it also results from pen-
etration of the light a small distance into the surface of the
book as shown in figure 16.10. When this happens, some
of the light may be selectively absorbed by particles of
pigment in the surface coating. If the book appears blue-
green, the pigments are selectively absorbing red light,
leaving an excess of blue and green wavelengths in the dif-
fusely reflected light. The pigments are subtracting some
wavelengths coming from the white light source producing
an altered mix of wavelengths in the reflected light.

Subtractive color mixing has its own set of rules. In
color printing, three primary pigments are used: cyan, yel-
low, and magenta. (Black ink is also used to darken some
colors.) Cyan (blue-green) absorbs strongly in the red por-
tion of the spectrum, but transmits and reflects blue and
green wavelengths. The yellow pigments absorb in the blue,
but transmit and reflect green and red. Magenta absorbs at
intermediate wavelengths, but transmits and reflects blue
and red.

When light is reflected from a surface coated with just
one of these pigments, we see the colors appropriate to
that pigment: cyan, yellow, or magenta. If we mix these
pigments, however, we can get a complete range of colors.
For example, if we mix cyan and yellow pigments, both
blue and red light are absorbed (fig. 16.11), allowing only
intermediate wavelengths to be transmitted. This results in
green light being strongly reflected. Likewise, cyan and
magenta produce blue, and yellow and magenta produce
red. These resulting colors (green, red, and blue) are the
three primary colors for additive color mixing, which gen-
erate the responses in our eyes described earlier.

There is much more to color perception than this basic
discussion can cover. Adding white reduces the saturation
of the color producing pink from red, for example. The
wavelengths present in the light source illuminating an
object will affect the perceived color. Although the details
may be complex, the same basic phenomena are at work in
all of these effects. Different mixes of wavelengths stimu-
late the different cones in the retina by different amounts,
and our brains identify that response as a certain color. (See
everyday phenomenon box 16.1 for some related color
effects.)

The white light coming from the sun is actually a mixture
of light of different wavelengths. This was first demon-
strated by Isaac Newton using two prisms to first separate
sunlight into a spectrum of different colors and then to
recombine these into white light with the second prism.
Three different types of light-sensitive cells (called cones)
in the retina of our eye allow us to distinguish different
colors. The light reaching our eyes consists of mixtures of
wavelengths that determine the color we perceive. The
rules of color addition and subtraction are based on how
these different mixtures stimulate the three types of 
cones.
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figure 16.10 Specular reflection obeys the law of
reflection with all colors reflected equally. In diffuse reflection,
light rays penetrate a short distance and some wavelengths are
absorbed.

figure 16.11 Subtractive color mixing is demonstrated by
overlaying yellow, magenta, and cyan pigments used in color
printing.
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16.3 Interference of Light Waves
During the seventeenth and eighteenth centuries, scientists
debated whether light was a wave phenomenon or a stream
of particles. Most of the known effects could be explained
by either model. Interference, however, is inherently a wave
effect. The question would be settled if interference effects
involving light could be produced.

In 1800, a British physician, Thomas Young, performed
his famous double-slit experiment demonstrating interfer-
ence of light. Why did it take this long for light interference
to be recognized? The very short wavelengths of visible
light make the effects subtle and difficult to observe. Once
this difficulty was recognized, the door was opened for a
series of predictions and experiments that firmly established
that light is a wave.

Young’s double-slit experiment
In any interference experiment, we need at least two waves
that have a consistent phase relationship with one another,

like the two waves on the ropes discussed in chapter 15.
The phase of ordinary light waves is continually changing,
however, so we need to start with an isolated light wave
and split it into two or more parts to meet this condition.
Young accomplished this by passing a light beam through
two narrow, closely spaced slits.

A diagram of Young’s arrangement is shown in figure
16.12. Light from the source first passes through a single
slit to isolate a small portion of the beam. This light then
strikes the double slit, and light passing through the two
slits is viewed on a screen to the right of the slits. Young
made his double slits by depositing carbon black on a
microscope slide and inscribing two fine lines in this black
layer with a thin knife or razor. To be effective for visible
light, the spacing of the two slits should be less than a
millimeter.

What determines whether the light waves coming from
the two slits will interfere constructively or destructively?
At the point where the center line between the two slits
meets the screen, the two light waves have traveled equal
distances from each slit. The two waves were in phase
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Why Is the Sky Blue?

The Situation. “Mommy, why is the sky blue?” This is a
question almost any parent is likely to hear from their child
at some point. Related questions such as “Why is there a sky?”
or “Why is the sun red at sunset?” can also stymie parents.

We know that light coming directly from the sun appears
white at midday. It contains a continuous mix of visible wave-
lengths peaking in the green-yellow portion of the spectrum.
Why do we see a blue sky, then? What causes the spectacular
oranges and reds that we see at sunset? These phenomena
are all related to a process called scattering.

The Analysis. Before we consider the color of the sky, we
should ask why we see a sky at all. Where is the light coming
from? Skylight comes from the sun, but it is scattered out of
the direct beam of sunlight. Scattering can be described as
a process in which light is absorbed by small particles in the
atmosphere and quickly re-emitted at the same wavelength.
The scattered light travels in a different direction from that of
the incident light, though.

If there were no atmosphere, then there would be no scat-
tering. In this case the sky would appear black, the absence
of light. The Earth does have an atmosphere that extends a
few miles beyond Earth’s surface. This atmosphere consists
primarily of molecules of nitrogen and oxygen as well as 
smaller quantities of other gases. In addition there are often 
particles of smoke, volcanic ash, or other particulate matter.

These particles are very small, but still considerably larger
than individual gas molecules.

It is scattering by the gas molecules that is primarily
responsible for the blue sky. When the particles doing the
scattering are smaller than the wavelength of light, the process
is called Rayleigh scattering, named after Lord Rayleigh (William
Thompson). Rayleigh scattering depends upon the wavelength—
shorter wavelengths are scattered much more effectively than
longer wavelengths.

We can think of the molecules as tiny antennas. Since
gas molecules consist of charged particles (chapter 18),
when an electromagnetic wave strikes the molecules, these
charges will oscillate at the frequency of the wave. Just as
radio waves are produced by oscillating electric currents, the
scattered light wave is produced by oscillating currents in
the gas molecules. This process is most efficient when the
wavelength of the wave is approximately the same size as
the antenna. Since gas molecules are just a few nanometers
in size, and the wavelengths of visible light are a few hun-
dred nanometers, the scattering process is not very efficient.
It is more efficient, however, for the shortest wavelengths—
those in the blue region of the visible spectrum.

This is why the sky is blue. Blue light is scattered out of the
direct beam from the sun more effectively than red or inter-
mediate wavelengths. To reach our eyes, it must be scattered
again, perhaps several times, as shown in the first drawing.

everyday phenomenon
box 16.1

(continued)
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When we see the sky, we are not looking directly at the sun
(which would be painful). We are seeing light that has been
scattered multiple times, which concentrates the shorter blue
and violet wavelengths in the light that reaches our eyes.
Since the spectrum of sunlight contains more blue than violet,
and our eyes respond more strongly to blue wavelengths than
to violet, the color we identify is blue.

Why does sunlight appear orange or red near sunset or
sunrise? The light reaching our eyes from the direct beam of

the sun at sunset travels a much longer distance through the
atmosphere than it does at midday, as shown in the second
drawing. Since the blue light and intermediate wavelengths
are scattered out of the beam more effectively than red light,
the direct beam is left with predominately red wavelengths.
The closer the sun gets to the horizon, the redder the sun
appears.

Scattering can also occur from larger particles such as
water droplets in clouds. Water droplets are usually larger
than the wavelengths of visible light. In this case, the amount
of scattering does not depend strongly on the wavelength.
Light scattered from clouds therefore appears white or gray.
All wavelengths are equally scattered and the resulting color
is the same as the incoming sunlight, but less intense.

Beam from 
the sun

Short wavelengths are scattered from the direct beam from the sun
at midday more effectively than longer wavelengths. These scattered
waves produce the blue sky.

Beam from 
the sun

At sunset, light from the sun travels farther through the atmosphere
than at midday. The shorter wavelengths are scattered out of the
beam leaving the longer red wavelengths.

initially, since they came from a single wave. Having trav-
eled equal distances to reach the center point, they are still
in phase when they strike the screen. They interfere con-
structively and produce a bright spot or line at the center of
the screen.

What about other points on the screen? The two waves
reaching points on either side of the center line have trav-
eled unequal distances, which means that they may no
longer be in phase with one another. Because it takes more
time to travel a longer distance, when they reach the screen,
the wave traveling the longer distance is at a different point
in its cycle than the one traveling the shorter distance. If
the difference in distance is just half a wavelength, the two
waves will be half a cycle out of phase, and destructive in-
terference results (fig. 16.13). This produces a dark spot or
line on the screen.

Suppose that the distances traveled by the two waves dif-
fer by a full wavelength. The waves are then back in phase,
since a full-cycle difference brings the wave oscillation
back to the initial stage in its cycle. Differences in the dis-
tance traveled of one wavelength, two wavelengths, three

wavelengths, and so on, produce constructive interference
and bright lines on the screen. At positions halfway be-
tween the bright lines, the waves are half a cycle out of
phase, so destructive interference produces dark lines at
those points.

The resulting interference pattern of alternating bright
and dark lines on the screen is called a fringe pattern. If
monochromatic (single-wavelength) light is used, this pat-
tern can extend to several fringes. If white light (which
consists of a mixture of wavelengths) is used, the pattern is
visible for only one or two fringes on either side of the
center, because the different wavelengths produce construc-
tive interference at different points on the screen. (Why is
this so?) Although limited in extent, the fringes are colored
and display a visually striking result.

What determines the spacing of the fringes?
We can predict the positions of the bright and dark fringes on
the screen by knowing the wavelength of the light and the
geometry of figure 16.13. The path difference between 
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the two waves is the critical quantity. If the screen is not too
close to the double slit, the path difference can be found from
the geometry of the drawing and is given approximately by

path difference

where d is the distance between the centers of the slits, y is
the distance from the center point on the screen, and x
is the distance between the screen and the slits. As indi-
cated earlier, if this path difference is equal to an integer
times the wavelength, constructive interference results (see
example box 16.2).

As the result in example box 16.2 indicates, the second
bright fringe from the center is only 2.5 mm from the cen-
ter of the screen, for a slit separation of half a millimeter.
The first bright fringe from the center would be found at

� d 
y

x
 ,

half this distance, or only 1.25 mm from the center. These
fringes are very closely spaced, which can make them diffi-
cult to see. A smaller slit spacing d yields a larger fringe
separation, as you can see from the equation for y in ex-
ample box 16.2. In Young’s day, considerable experimental
ingenuity was needed to produce slit spacings as small as
half a millimeter. Today, we can do this readily by using
photographic reduction and other techniques.

What is thin-film interference?
If you have ever observed bands of different colors on
a soap film or on the oil slick on a parking lot puddle,
you have observed thin-film interference. How do these
colors arise? Light waves reflected from the top and bot-
tom surfaces of the film interfere to produce these effects.
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figure 16.13 When the path difference between the two waves is equal to half a
wavelength, the two waves arrive at the screen half a cycle out of phase, producing
destructive interference.

Double 
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Path difference =    λ
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slit

Light
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screen
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d
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figure 16.12 Light from the source passes through a single slit before striking the
double slit in Young’s experiment. Interference fringes are observed on the screen. (The
spacings of the double slit and the fringes are exaggerated in this drawing.)
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Figure 16.14 shows a very thin film of oil lying on top
of a water puddle. In order to be effective, the film must be
no thicker than a few wavelengths of light. The underlying
water is assumed to be much thicker (often several mil-
limeters) than the oil film, which is a fraction of a micro-
meter. Two waves are shown being reflected from the film,
one from the top surface and the other from the bottom
surface. When these two waves reach our eyes, the one re-
flected from the bottom of the film has traveled slightly
farther than that reflected from the top. Just as with the
double-slit experiment, this path difference will cause a
difference in phase between the two waves.

Since the two reflected waves are almost perpendicular
to the surface of the film, the difference in distance trav-
eled will be twice the thickness of the film. The wave re-
flected from the bottom surface passes through the film
twice. The effect of this path difference is related to the
wavelength of light in the film, which is shorter in the film
than it is in air. (The wavelength in the film is given by
�/n, where n is the index of refraction of the film, dis-
cussed in chapter 17, and � is the wavelength in air.)

The phase difference between the two reflected waves
depends upon how many wavelengths farther the wave
reflected from the bottom surface has traveled. If, for
example, the wave reflected from the bottom surface
travels a half wavelength farther than the wave reflected

from the top surface, then the two waves would be out of
phase, and we would expect to observe destructive inter-
ference.*

Why do we see different colors? The interference condi-
tion depends on the thickness of the film and on the wave-
length of the light. Some wavelengths may interfere
destructively while others interfere constructively (or some-
where in between). If the thickness of the oil film is such
that we have destructive interference for wavelengths near
the middle of the spectrum (green-yellow), then those
wavelengths will be missing and we will see a mixture of
blue and red (magenta). If, on the other hand, the thickness
is such that we get destructive interference for red light, the
film will appear blue-green. The usual rules of color addi-
tion apply.

The colors that are reflected by the oil film will thus de-
pend upon the thickness of the film. As the thickness
changes, the color will change (fig. 16.15). The path differ-
ence between the two reflected waves also depends upon
the angle of the incoming and reflected light. If light is in-
cident on the film from multiple angles, the colors will
change with viewing angle as the path difference changes.

There are many other ways of producing thin-film inter-
ference. Soap bubbles and soap films can produce colorful
displays. The thin film in this case is a soap-water solution
with air on either side. Figure 16.1 shows a soap film
viewed in reflected light where the different colors form
horizontal bands. The bands are produced by gravity—the
film is thicker near the bottom of the loop than near the top.
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figure 16.14 Two waves interfere after reflection from a
thin film of oil lying on water. One wave is reflected from the top
surface of the film and the other from the bottom surface.

*This is true if there are no other factors affecting the phase of the wave.
The reflection process itself sometimes changes the phase, so this effect
must also be taken into account in a complete analysis.

example box 16.2

Sample Exercise: Working with the
Double-Slit Experiment

Red light with a wavelength of 630 nm strikes a double
slit with a spacing of 0.5 mm. If the interference pattern
is observed on a screen located 1 m from the double slit,
how far from the center of the screen is the second bright
line from the central (zeroth) bright line?

� � 630 nm � 6.3 � 10�7 m

d � 0.5 mm � 5 � 10�4 m

x � 1 m

y � ?

rearranging this expression yields:

y �

�

� 0.0025 m � 2.5 mm

2(6.3 � 10�7 m)(1 m)

(5 � 10�4 m)

2�x

d

Since we are
interested in the
second bright fringe
from the center, the
path difference is:

d 
y

x
 � 2�
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When the soap film gets extremely thin (just before it
breaks), the path difference between the two surfaces should
approach zero. In this case, we would expect the light waves
reflected from the two surfaces to be in phase producing a
bright reflection. Instead, however, the film appears quite
dark for this condition, indicating destructive interference.
The two waves are out of phase because of a phase differ-
ence introduced by the reflection process itself—the wave
reflected from the top surface is shifted in phase by a half
cycle, while that reflected from the bottom surface is not.
The path difference between the two waves produces no
phase change, but the reflection process does. This occurs
whenever the medium on either side of the film is the same
(air in this case), as well as in some other circumstances.

The thin film in some cases can be air. This happens when
we place one glass plate on top of another. If the plates are
flat and clean, this leaves a very thin film of air between
the two plates. As the thickness of the air film varies we
see alternating light and dark fringes (fig. 16.16). The
color of these fringes depends on the nature of the light
source as well as on the thickness of the film and the angle
of view. Thin-film interference is also involved in the anti-
reflection coating on eyeglasses as is described in every-
day phenomenon box 16.2.

Interference is observed for many different types of waves
and light is no exception. The wave nature of light was
first established by the double-slit interference experiment
performed by Thomas Young. If the two waves coming
from the two slits travel different distances, they may
arrive at the screen either in or out of phase. If the path
difference is an integer number of wavelengths, the waves
are in phase and we get a bright fringe. If the path difference

is a half-integer number of wavelengths, we get dark
fringes. Light reflected from the two surfaces of a thin film
will also travel different distances. This produces the color-
ful interference effects observed on soap films, oil films, or
the air film between two glass plates.

16.4 Diffraction and Gratings
If you looked closely at a double-slit interference pattern
like that described in section 16.3, you might notice that
the bright fringes are not all equally bright. Going out from
the center of the pattern, the fringes become less bright
and seem to fade in and out. This effect is due to another
aspect of interference that we usually label diffraction.
Diffraction involves interference of light coming from dif-
ferent parts of the same slit or opening.

How does a single slit diffract light?
Diffraction from a single slit is the easiest to describe. If
we replace the double slit shown in figure 16.12 with a
sufficiently narrow single slit, a pattern like that shown in
figure 16.17 results. A series of dark and light fringes lie
on either side of a bright central fringe.

The bright central fringe is not surprising. Light waves
reaching the center of the screen from different parts of
the slit will travel roughly the same distance. They will
therefore reach the screen in phase with one another and
interfere constructively. They add together to yield the bright
fringe that we see.

Explaining the other fringes calls for a more elaborate
analysis. We can think of the two dark fringes on either side
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figure 16.15 The colorful fringes from oil films are a
common sight in parking lots and streets. The different colors
result from changes in thickness of the film or from differing
angles of view.

figure 16.16 Colored interference fringes are produced
by light reflected from an air film between two glass plates.
Each colored band represents a different thickness of the film.
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of the central fringe as arising from light coming from the
two halves of the slit. If the light coming from the bottom
half of the slit travels half a wavelength farther than that
coming from the top half, these waves will interfere de-
structively (fig. 16.18). This produces a dark fringe at the
point on the screen for which this condition holds.

A more complete argument involves dividing the slit
into several segments. For fringes farther from the center of
the pattern, this procedure is necessary to understand the
results. Moving out from the center of the pattern, light
coming from different segments of the slit comes in and
out of phase producing the fringes that we see. The different
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Antireflection Coatings on Eyeglasses

The Situation. When you select new eyeglasses, your op-
tometrist or optician will show you a variety of lens and
frame styles. They are also likely to recommend that you order
antireflection (AR) coatings on your lenses. They tell you that
this will help you see better in low-light or night driving con-
ditions. You will also look better because people will be able
to see your eyes without the distracting interference of reflec-
tions from the lenses.

How do these coatings work? How is it possible to reduce
the amount of light that is reflected by glass or plastic lenses?
Thin-film interference provides the answers.

The Analysis. When light strikes the surface of a glass or
plastic lens, some light is inevitably reflected. For the types
of glass and plastic used in spectacle lens, approximately
4% of the incident light is reflected at each surface (front and
back) when the light comes in perpendicular to the surface.
When the light comes in at an angle, the amount of light
reflected is even larger.

We therefore lose at least 8% of the incoming light with
uncoated lenses. These reflections can be distracting to people
you are talking to, since your eyes are an important part of
interpersonal communication. The reflections also reduce
the amount of light that reaches your retina in low-light
conditions.

An antireflection coating is designed to reduce these
reflections. A thin film of transparent material is deposited on
both surfaces of the lens. The film must be hard and durable,
which limits our selection of the materials that will work.
Magnesium fluoride is often used for glass lenses.

The thickness of the film must be carefully controlled.
The film is designed to produce destructive interference for
reflected light at wavelengths near the middle of the visible
spectrum. For a single-layer coating, we use a film that is just
a quarter of a wavelength thick. (The wavelength in question
is that inside the thin film, which is somewhat shorter than
the wavelength in air.) If the design wavelength is 550 nm
(in air), the appropriate thickness of the film would be about
100 nm, which is very thin indeed. This is equal to one ten-
thousandth of a millimeter!

Because the wave reflected from the bottom surface of
the film travels through the film twice, the quarter-wavelength
thickness results in a half-wavelength path difference between
the waves reflected from the top and bottom surfaces. This
produces destructive interference for the design wavelength.
If the two reflected waves were equal in amplitude, the
destructive interference would be total and there would be
no light reflected at that wavelength. In practice, this condi-
tion cannot be achieved and there will still be a small amount
of reflected light.

The coating is most effective for wavelengths near the
middle of the visible spectrum. At the red or blue ends of
the spectrum, the condition for destructive interference is not
met, so we get stronger reflections at either end of the spec-
trum. The eye is not as sensitive there, however, so these
reflections are less noticeable. It does result in the lens having
a purplish appearance when viewed in reflected light.

Better results can be achieved by using multiple layers of
thin films made from different materials rather than a single
layer. The more layers used, the more expensive the process,
however. The coatings now available for spectacle lenses are
usually multiple-layer coatings. Besides the additional cost,
the disadvantage of antireflection coatings is that they scratch
and show dirt more readily than noncoated lenses. The buyer
must decide whether the advantages of reduced reflections
outweigh the disadvantages.

everyday phenomenon
box 16.2

Can you tell which of the two lenses in these eyeglasses has the
antireflection coating?

gri12117_ch16_330-354.qxd  7/21/08  10:13 PM  Page 343



Confirming Pages

waves are never all in phase at the same point, though, as
they were at the center of the pattern, so the central fringe
is much brighter than the secondary bright fringes on either
side of the center.

For the first dark fringe on either side of the center, the
path difference between light coming from the two halves
of the slit is half a wavelength. This requires that the path
difference for light coming from the top and bottom edges
of the slit be a full wavelength as indicated in figure 16.18.
From the same geometry used to describe the double-slit
pattern, the position y of the first dark fringe is then given
by

y �

where w is the width of the slit and, as before, � is the wave-
length of the light and x is the distance to the screen. (See
example box 16.3.)

� x
w

 ,

This result is important because it describes the width 
of the central bright fringe. This width is 2y where y is the
distance from the center of the screen to the first dark
fringe on either side. As the width w of the slit decreases,
the breadth 2y of the central maximum increases. Thus as
the slit is narrowed, the diffraction pattern spreads out. A
beam of light cannot be narrowed indefinitely by passing it
through increasingly narrow slits. For a very narrow slit,
the central bright fringe is much broader than the slit itself.
Light is bent by diffraction into regions that we would ex-
pect to be shadowed.
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figure 16.17 The diffraction pattern for a narrow single slit has a series of light and dark fringes on either side of a bright central
fringe.

figure 16.18 When the path difference between light
coming from the top half of the slit and that coming from the
bottom half is �, a dark line appears in the single-slit diffraction
pattern.

1
2

Light
waves

Dark line in the
diffraction pattern

λ

w

λ
1
–
2

x

y

example box 16.3

Sample Exercise: How Broad Is the Central Fringe
of a Single Slit?

Light with a wavelength of 550 nm strikes a single slit that
is 0.4 mm wide. The diffraction pattern produced by the
slit is observed on a wall a distance of 3.0 m from the slit.

a. What is the distance from the center of the pattern
to the first dark fringe?

b. How wide is the central bright fringe of this
diffraction pattern?

a. � � 550 nm y �

w � 0.4 mm

x � 3.0 m �

� 0.0041 m � 4.1 mm

b. 2y � ? 2y � 2(4.1 mm) � 8.2 mm

The central bright fringe extends out to the first dark
fringe on either side, so its width is just twice y.

(5.50 � 10�7 m) (3.0 m)

0.4 � 10�3  m

�x

w
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How is light diffracted by other shapes?
You have probably observed diffraction effects without
being aware of it. If you look at a star or a distant street-
light through a window screen, you will observe a diffrac-
tion pattern similar to that shown in figure 16.19. A 
window screen has multiple square openings, but figure
16.19 shows the diffraction pattern produced by just a sin-
gle square opening in an otherwise opaque object. If we 
replaced the single slit described earlier with a square aper-
ture, this is what we would see on the screen.

The explanation of the square-opening pattern is similar
to the reasoning we used for the single slit. The pattern
varies in two dimensions, however, rather than just one
dimension, so the explanation is more involved. A rec-
tangular opening would produce a similar pattern, but the
spacing of the bright spots would be different in the hori-
zontal direction than in the vertical direction. The nar-
rower dimension of the rectangular opening would produce
broader spacing of the diffraction spots.

The openings or apertures in most optical instruments
such as telescopes, microscopes, or our eyes are circular
rather than square or rectangular. The diffraction pattern pro-
duced by a circular aperture is shown in figure 16.20. This
bull’s-eye pattern can be produced by poking a small hole in
a piece of aluminum foil with a pin. If we then illuminate
the hole with a laser pointer or other bright light source,
we can see the ringed diffraction pattern on the wall.

Just as with the single slit, the breadth of the central
bright spot increases as we decrease the diameter of the

pinhole. This implies that if we make the aperture of our
instrument too small in diameter, light from pointlike 
objects such as stars will be spread out due to diffraction
effects. This will produce fuzzy images and will cause
nearby stars to blur into one another. We then say that these
stars are not resolved by our telescope. For this reason, we
generally use large mirrors for the opening element of
high-quality telescopes. Telescopes will be described more
fully in chapter 17.

The pupils of your eyes can vary in size depending on
light levels. At high light levels, when our pupils are small
in diameter, diffraction effects can limit our visual acuity.
A small pupil spreads the light from point objects into larger
blur circles due to diffraction. Our ability to see fine detail
may actually improve at somewhat lower light levels that
allow a larger pupil size.

We also see diffraction effects produced by our pupils
when we look at stars. Instead of looking like points, the stars
often appear to have little spikes of light radiating out from
the center. These spikes are produced by diffraction from
straight-edge segments of our otherwise circular pupils.
These straight edges produce effects that are more similar
to those of a single slit than those of a circular aperture.

What is a diffraction grating?
A diffraction grating is a multiple-slit interference device
useful for viewing the color spectrum of a light source.
Although the term diffraction is used in the name, it would
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figure 16.19 The diffraction pattern produced by a square
opening has an array of bright spots. A longer exposure would
show more off-axis spots.

figure 16.20 The diffraction pattern produced by a circular
opening has a bright central spot surrounded by a series of
dimmer rings.
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be more appropriate to call these devices interference grat-
ings. The primary effect is that of interference of light 
coming from different slits. Although the terms interference
and diffraction are sometimes interchangeable, we usually
use interference when referring to effects of separate slits or
openings and diffraction for effects from a single opening.

When you increase the number of slits in an interfer-
ence experiment, an interesting pattern emerges. If the spac-
ing of the slits remains the same, the bright fringes 
become brighter and more narrow as the number of slits 
increases. At the same time, a few much dimmer fringes are
seen in between the primary bright fringes. For example, if
we have four slits, there are two secondary dimmer fringes
lying between each pair of bright fringes. In general, the
number of dimmer fringes is given by N � 2, where N is
the number of slits. Ten slits would have eight secondary
dimmer fringes between each pair of bright fringes.

As we continue to increase the number of slits, these
dimmer secondary fringes become very dim, while the bright
fringes become very narrow. A diffraction grating has a very
large number of slits very closely spaced. A good grating
may have several hundred slits in the space of just 1 mm.
Precision machines have been designed to produce these
closely spaced slits or lines needed for producing high-
quality gratings. Nowadays, good gratings can be made
much more simply using lasers and holographic techniques.
(See everyday phenomenon box 21.1.)

The condition for locating the bright fringes produced
by a diffraction grating is essentially the same as that in-
troduced for the double slit. If the distance between adja-
cent fringes is d, then just as for the double slit, the path
difference between waves coming from adjacent slits is
d·(y/x), where y is the distance from the center of the view-
ing screen and x is the distance from the grating to the
viewing screen. Whenever this path difference is equal to
an integer multiple of the light wavelength, we get a strong
bright fringe for that wavelength. This condition can be ex-
pressed* as

d  
y

x
� m� ,

where m is an integer having possible values 0, �1, �2,
�3, etc.

Since the condition locating the fringes depends on the
wavelength of the light, different wavelengths will appear
at different points on the screen for a given order, m. Thus
passing light through a diffraction grating will spread the
light into its spectrum of colors (fig. 16.21). A good grat-
ing produces a wider separation of colors than a prism and
also allows direct computation of the wavelength from the
condition for interference.

Diffraction gratings are used to separate and measure
the wavelengths of light in instruments we call spectrome-
ters. They are a common piece of apparatus in chemistry
and physics laboratories. Holographically produced grat-
ings are now also seen in many novelty products including
“space glasses” and reflective gift wrappings. The colorful
effects that we see when viewing a compact disc (CD) are
also a grating phenomena. The disc contains a continuous
spiral track that circles the disc from the inside to the out-
side. Adjacent turns of this spiral track are very closely
spaced and act as a reflecting diffraction grating.

Diffraction involves the interference of light waves coming
from different parts of the same opening. Diffraction from
a single slit produces a bright central fringe with a series
of weaker dark and light fringes on either side of the
broader central fringe. A circular aperture produces a
bull’s-eye pattern. Making the aperture smaller causes
the diffraction pattern to spread out, frustrating efforts to
narrow a beam of light. A diffraction grating is a multiple-
slit interference device that allows us to separate and
measure wavelengths of light.

16.5 Polarized Light
Many of us have used polarizing sunglasses or camera fil-
ters to reduce glare and darken the sky. How do these work?
You may have also worn special polarizing glasses to view
a 3-D video or movie. In this case, your two eyes are re-
ceiving light with different directions of polarization.

What do we mean when we talk about polarization of
light? How does polarized light differ from ordinary light?
To answer these questions, we need to revisit the nature of
electromagnetic waves.
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figure 16.21 A diffraction grating produces a colorful spectrum from a white-light source. The
second-order spectrum (m � 2) spreads out more than the first-order spectrum (m � 1).

*This condition is only valid for relatively small angles from the center 
of the screen. For larger angles we must use a more precise condition in-
volving the sine of an angle � to a point on the screen. The exact condition
is d sin � � m�. For small angles, sin � � y/x.

m = 2 m = 1 m = 0 m = 1 m = 2
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What is polarized light?
Take a look at the electromagnetic wave pictured in figure
16.3 in section 16.1. Light is an electromagnetic wave con-
sisting of oscillating electric and magnetic fields. The wave
pictured in figure 16.3 is actually polarized. The oscillating
electric field vector is in the vertical plane in this diagram,
and the magnetic field is horizontal.

This is not the only possibility, however. We could have
pictured the electric field oscillating in the horizontal di-
rection with the magnetic field in the vertical plane. Or, we
could have pictured the electric field oscillating at some
angle to the horizontal. These choices would all represent
different directions of polarization. To define the direction
of polarization of a light wave, we specify the direction of
oscillation of the electric field vector. Figure 16.22 pictures
different states of polarization. In these diagrams, the light
wave is coming straight out of the page toward you. The
electric field vector is represented by a two-headed green
arrow because it is oscillating back and forth as the wave
progresses.

How does unpolarized light differ from polarized light?
The last diagram in figure 16.22 represents unpolarized
light. The electric field vector in this case is shown point-
ing in several different directions. (In reality, there are an
infinite number of possible directions.) Unpolarized light
is a mixture of many waves having different orientations
for the electric field oscillations. Light coming from an
ordinary light bulb is unpolarized. In order to produce polar-
ized light, something must occur to select just one direction
of field oscillation from these multiple possibilities.

Light or other electromagnetic waves are not the only
type of wave that can be polarized. Any transverse wave,
including waves on a rope or guitar string, can be polarized.

If you wave a rope up and down to produce a traveling
wave on the rope, you have produced a vertically polar-
ized wave. If you wave it back and forth in a horizontal
plane, you produce a horizontally polarized wave. If you
move your hand in random directions, you produce an un-
polarized wave.

How do we produce polarized light?
The most common way of producing polarized light is with
a polarizing filter (sometimes called a Polaroid after the orig-
inal manufacturer). The early polarizing filters employed
dichroic crystals. These were special materials that absorbed
light with one direction of polarization, while transmit-
ting light with the perpendicular direction of polarization.
The trick in manufacturing the filter was to get a large
number of these small crystals all lined up in the same
direction.

Later processes used special polymers (plastics) to make
polarizing filters. By stretching these polymers in the manu-
facturing process, they become dichroic. The stretching pro-
cess also assures that the molecules are all aligned in the
same direction. Modern polarizing filters are made in this
manner. Polarizing filters are routinely available at camera
stores, but also as polarizing sunglasses.

What happens when unpolarized light passes through a
polarizing filter? Does it only let through that tiny fraction
of light that happens to have the correct orientation of the
electric field? Remember that electric fields are vectors.
The polarizing filter selects that portion or component of
each electric field vector that has the appropriate orienta-
tion. Figure 16.23 illustrates this process. The component
of the electric field vector that gets through is the one in
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figure 16.22 The electric field vector oscillates in a single
direction for polarized light. Unpolarized light has random
directions of oscillation.

figure 16.23 A polarizing filter selects the components of
the electric field vector that are in the direction of the
transmission axis of the filter.

Polarized in different directions

Unpolarized

Axis of
transmission
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the direction of the transmission axis of the filter. The
component perpendicular to this axis is absorbed.

An ideal polarizing filter therefore transmits 50% of an
unpolarized light beam. The light that emerges is polarized
with the electric field in the direction of the transmission
axis of the filter. In practice, somewhat less than 50% of the
light makes it through the filter because some absorption
takes place even in the direction of the transmission axis.

How can we tell whether a beam of light is polarized or
not? We place a polarizing filter in the path of the beam
and then rotate the filter. If the intensity of the transmitted
light varies as we rotate the filter, then we know that the
beam is either partially or completely polarized. If the inten-
sity becomes effectively zero for one orientation of the filter,
then the light beam being analyzed is completely polarized.

Why do we use polarizing sunglasses?
There are various ways in which light can become polar-
ized without passing it through a polarizing filter. Reflec-
tion from a smooth surface of a transparent material such as
glass or water can produce polarization, for example. When
sunlight is reflected from a lake surface at just the right
angle, the reflected wave can be completely polarized.

Figure 16.24 pictures light striking a lake surface at the
polarizing angle. The light coming in is unpolarized as is
represented by the arrows both perpendicular to the page
(dots) and those lying in the plane of the drawing. When the
angle between the reflected wave and the transmitted wave
is a right angle (90°), the reflected wave is completely po-
larized, with the direction of polarization perpendicular to
the page (dots) and parallel to the surface of the lake. For
water, the polarizing angle is approximately 37° above the
horizontal.

How can polarizing sunglasses help? Light reflected from
a lake surface will produce a strong glare that can be quite
annoying for boaters or water skiers. Since this light is

strongly polarized when the sun is at or near the polarizing
angle, polarizing sunglasses can virtually eliminate this
glare. Because the reflected light is polarized horizontally,
we want the transmission axis of our sunglasses to be ver-
tical. Even when the sun is not at the polarizing angle, the
reflected light is partially polarized so the sunglasses will
still help.

Polarizing sunglasses can help reduce glare from sun-
light reflected by a wet road surface or a polished car
hood. They can also help skiers experiencing glare from
sunlight reflected from snow. Even skylight is polarized,
although here the process involves scattering rather than
reflection (see everyday phenomenon box 16.1). It turns
out that skylight is partially polarized with the electric
field direction horizontal, so polarizing filters make the sky
appear darker. This is the primary reason they are used in
photography.

What is birefringence?
Many interesting and colorful effects of polarized light are
related to the phenomenon of birefringence. Birefringence
is also called double refraction. Calcite crystals are usually
used to demonstrate the effect.

If you draw a small dot on a piece of paper and view
this dot through a calcite crystal, you will see two dots
rather than one. This is the origin of the term double re-
fraction. One of the two dots that we see obeys the ordi-
nary rules of refraction (light bending), which are discussed
in chapter 17. The light wave associated with this dot (called
the ordinary wave) passes straight through the crystal.

The wave associated with the second dot is called the
extraordinary wave, and it does not obey the usual rules of
refraction. Instead, the amount of light bending for this
wave depends upon the direction of the light beam relative
to the crystal lattice. The extraordinary wave does not pass
straight through the crystal, and thus this dot appears to be
offset from the other dot. The photograph in figure 16.25
shows a series of straight lines viewed through a calcite crys-
tal. Each line appears to be doubled due to birefringence.

A simple test using a polarizing filter demonstrates that
the two waves associated with the two dots (or lines) are
polarized at right angles to each other. If we view the two
lines through the filter, and rotate the filter slowly about
our line of sight, first one line disappears. As we continue
to rotate the filter an additional 90°, the second line dis-
appears while the first one reappears. The direction of
polarization must have something to do with the double-
refraction effect.

How can we explain these effects? A calcite crystal is
an example of an anisotropic crystal. Quartz and many
other crystals are also anisotropic. In an isotropic crystal,
where the atoms are arranged is a simple array (often
cubic), light travels through the crystal in the same manner
in all directions. Anisotropic crystals have more complicated
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figure 16.24 Unpolarized light incident on a water surface
at 37° above the horizontal. The reflected wave is completely
polarized with the electric field parallel to the water surface.

37°
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arrangements of the atoms in the crystal lattice. This causes
light to travel with different velocities in different direc-
tions. The direction of polarization also affects how light
travels through an anisotropic crystal.

If two polarizing filters are placed with their trans-
mission axes perpendicular to one another, no light gets
through. The light passing through one filter emerges po-
larized, and that direction of polarization is completely
blocked by the second filter with its axis at 90° to the first
one. However, if we put a piece of birefringent material
between the two filters, some light usually gets through.
The birefringent material modifies the state of polarization
of the light.

The degree to which the polarization of the light is
changed depends upon the thickness of the material and
also on the wavelength of the light. For this reason, placing
thin pieces of birefringent material between two crossed
(axes at 90°) polarizing filters will often produce a colorful
display. A full analysis of the resulting colors is complex,
but the colored bands give a clear indication that the in-
serted material is indeed birefringent.

Plastic materials provide interesting applications of these
phenomena. Although plastics (polymers) are not crystal-
line, stressing a plastic by compressing it or pulling on it
will often produce birefringence. Engineers sometimes ana-
lyze a structure they are designing by first building a small
plastic model of the structure. When forces are applied to

the structure, they can then see where the stress is greatest
by placing the plastic model between crossed polarizers
and viewing the resulting patterns (fig. 16.26).

Light is polarized if the electric vector is oscillating in only
one direction rather than in random directions. We can
produce polarized light by passing unpolarized light
through a polarizing filter. The filter transmits light with
one direction of polarization and absorbs light polarized 
at 90° to the transmission axis. Reflection of light from a
smooth surface of water, glass, or plastic will also produce
complete or partial polarization of the reflected beam.
Polarized sunglasses are designed to block the reflected
beam, thus reducing glare. Light with different polari-
zations travels with different velocities when passing
through a birefringent material. This causes colorful dis-
plays when the birefringent material is viewed through
crossed polarizers.

16.5 Polarized Light 349

figure 16.25 Lines are doubled when viewed through a
calcite crystal. This effect is called double refraction or
birefringence.

figure 16.26 A plastic lens being compressed between two
clamps shows stress birefringence when viewed between crossed
polarizers.
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Light is an electromagnetic wave having very short wavelengths.
The wave properties of light are responsible for many phenomena
that produce colorful effects. Absorption, scattering, interference,
diffraction, and polarization effects are all explained in terms of
waves. Our color vision provides us with the ability to appreciate
these phenomena.

1 Electromagnetic waves. James Clerk Maxwell pre-
dicted the existence of electromagnetic waves from his theory
of electromagnetism. Oscillating electric charges produce varia-
tions in electric and magnetic fields that propagate through space
with a speed of 3 � 108 m/s. Radio waves, microwaves, light, and
X rays are all forms of electromagnetic waves.

2 Wavelength and color. Different colors are associ-
ated with different wavelengths of light. Three types of cones in
the retina of our eye are sensitive to different ranges of wavelength.
The combined responses of these cones define the color that we
see and explain the rules of additive and subtractive color mixing.

3 Interference of light waves. Just as with other types
of wave, two or more light waves can interfere constructively or
destructively depending upon their relative phases. Thomas Young’s
double-slit experiment was the first to conclusively demonstrate
interference of light. Interference of light waves reflected from
thin films such as soap film produce colorful effects.

4 Diffraction and gratings. Interference of light com-
ing from different parts of the same opening is called diffraction.
Light diffracted by a single slit produces a bright central spot of
light with dimmer spots of light on either side of the center. More
complex diffraction patterns are produced by square or circular
apertures. Diffraction gratings use interference from multiple slits
to separate and measure wavelengths of light.

5 Polarized light. A polarized light wave has the elec-
tric field oscillating in just a single direction, but the electric field
in an unpolarized wave oscillates in random directions. Light can
be polarized by passing it through a polarizing filter or by reflect-
ing it from a smooth surface of water, glass, or plastic. Birefrin-
gence effects are the result of light with different polarizations
traveling with different speeds in an anisotropic crystal or a piece
of stressed plastic.

350 Chapter 16 Light Waves and Color
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* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. What characteristic of the electromagnetic waves pre-
dicted by Maxwell’s theory led him to suggest that light
might be an electromagnetic wave? Explain.

Q2. Is the electric field associated with an electromagnetic
wave constant in time? Explain.

Q3. Is it possible for an electromagnetic wave to travel
through a vacuum? Explain.

Q4. For which of the following characteristics—speed, wave-
length, and frequency—is light similar to microwaves, and
for which does it differ? Explain.

Q5. A starter’s pistol is fired at the beginning of a race. If you
are at the other end of the track, which will you perceive
first, the sound of the pistol or the flash associated with 
its firing? Explain.

Q6. What is the color of light with a wavelength of 470 nm?
Explain.

Q7. Do the L cones in the retina of the eye respond to just a
single wavelength? Explain.

Q8. If we combine red light and green light in equal propor-
tions, what color do we see? Explain.

Q9. A certain pigment absorbs green light, while reflecting
blue and red wavelengths. If a surface coated with this
pigment is illuminated by white light, what is the color of
the light reflected from this surface? Explain.

*Q10. A color TV uses red, green, and blue phosphors to pro-
duce the colors that we see. In printing, however, we use
magenta, yellow, and cyan as the primary colors. How do
these two situations differ? Explain.

Q11. Skylight is produced by scattering of light from the direct
beam coming from the sun. Why is the color of the sky
different from the color of the light of the sun itself?
Explain.

Q12. Two waves interfere to form fringes in Young’s double-
slit experiment. Do these two waves come from the same
light source? Explain.

Q13. If two waves start out in phase with one another, but one
wave travels half a wavelength farther than the other be-
fore they come together, will the waves be in phase or out
of phase when they combine? Explain.

Q14. If two waves start out in phase with one another, but one
wave travels two wavelengths farther than the other be-
fore they come together, will the waves be in phase or out
of phase when they combine? Explain.

Q15. When light is reflected from a thin film of oil on a water
puddle, the colors we see are produced by interference.
What two waves are interfering in this situation?

Q16. Thin-film interference occurs when one clean glass plate
is placed on top of another glass plate. What does the thin
film consist of in this case? Explain.

*Q17. Suppose that white light is reflected from a thin soap 
film. If the thickness is such that destructive interference 
is occurring for red light, what color will the film appear
to be when viewed in reflected light? Explain.

Q18. An antireflection coating on eyeglasses employs a thin-
film coating on the lenses. If the coating is designed 
properly, does light reflected from the film undergo con-
structive or destructive interference? Explain.

Q19. Is diffraction the same as interference? Explain.

*Q20. A light beam passes through a slit and forms a spot of
light on a screen at some distance from the slit. Can we
make this spot of light as small as we wish by making the
slit very narrow? What happens in this process? Explain.

Q21. What is the usual function of a diffraction grating? Explain.

Q22. Suppose that light consisting of just two wavelengths,
one blue and the other green, is passed through a diffrac-
tion grating. Which of these two colors will lie farther
from the center of the screen in the first-order (m � 1)
spectrum produced by the grating? Explain.

Q23. How does polarized light differ from unpolarized light?
Explain.

Q24. Can a wave on a guitar string be polarized? Explain.

Q25. If you pass an unpolarized light beam through a polariz-
ing filter, will the light beam emerging from the filter be
weaker or stronger than the incoming beam? Explain.

Questions 351
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Q26. Besides passing light through a polarizing filter, is there
any other way that unpolarized light can become polarized?
Explain.

Q27. If you use polarized sunglasses to eliminate glare from
water surfaces, should the axis of transmission of the po-
larizer in the sunglasses be oriented in the vertical direc-
tion or in the horizontal direction? Explain.

Q28. A double image of a dot is seen when viewing the dot
through a calcite crystal. Is there any difference in the po-
larization of the light associated with these two images?
Explain.

Q29. Birefringence is associated with anisotropic crystals but
plastics are not usually crystalline. Is there any way in
which a plastic material can exhibit birefringence? Explain.

352 Chapter 16 Light Waves and Color

E1. Microwaves used in laboratory experiments often have a
wavelength of about 1 cm. What is the frequency of these
waves?

E2. What is the wavelength of the radio waves from a station
broadcasting at 600 kilohertz?

E3. What is the frequency of green light waves with a wave-
length of 520 nm?

E4. X rays often have a wavelength of about 10�10 m. What is
the frequency of such waves?

E5. Light with a wavelength of 500 nm (5 � 10�7 m) is incident
upon a double slit with a separation of 0.4 mm (4 � 10�4 m).
A screen is located 2.0 m from the double slit. At what dis-
tance from the center of the screen will the first bright
fringe beyond the center fringe appear?

E6. For the same conditions described in exercise 5, at what
distance from the center of the screen will the second dark
fringe appear?

E7. A green fringe produced by double-slit interference lies
2.2 cm from the center of a screen placed 1.2 m from the
double slit. If the screen is moved back so that it is now a
distance of 3.6 m from the double slit, how far from the
center of the screen will this green fringe lie?

E8. Light of 600 nm is reflected from a thin film of air be-
tween two glass plates. The thickness of the film is 1.5 �m
(1500 nm).
a. How much farther does the light reflected from the bot-

tom surface of the film travel than that reflected from
the top surface?

b. How many wavelengths of light does this represent?

E9. An antireflection coating is designed with a thickness of a
quarter of the wavelength of the light traveling in the film.
a. How many wavelengths farther does the light reflected

from the bottom surface of the coating travel than that
reflected from the top surface?

b. Does this produce constructive or destructive interference?

E10. Light with a wavelength of 600 nm (6 � 10�7 m) strikes a
single slit that is 0.5 mm (5 � 10�4 m) wide. The diffrac-
tion pattern produced by the slit is observed on a wall a
distance of 2.0 m from the slit.
a. What is the distance from the center of the pattern to 

the first dark fringe?
b. How wide is the central bright fringe of this diffraction

pattern?

E11. When illuminated with light of 500 nm (5 � 10�7 m), the
first dark fringe produced by a single slit lies a distance of
1.2 cm from the center of the screen placed 4.0 m from the
slit. How wide is the slit?

E12. A diffraction grating has 1000 slits or lines ruled in a space
of 1.6 cm. What is the distance d between adjacent slits?

E13. Light of 546 nm (5.46 � 10�7 m) wavelength from a mer-
cury lamp passes through a diffraction grating with a spac-
ing between adjacent slits of 0.005 mm (5 � 10�6 m). A
screen is located a distance of 2.5 m from the grating.
a. How far from the center of the screen will the first-

order bright fringe lie?
b. How far from the center of the screen will the second-

order bright fringe lie?

E14. When passed through a diffraction grating with a slit spac-
ing of 0.004 mm (4 � 10�6 m), the first-order fringe for
light of a single wavelength lies a distance of 29 cm from
the center of a screen located 2.0 m from the grating. What
is the wavelength of the light?

exercises
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HE1. If you have access to a color ink jet printer, print a color
test pattern with the printer. View the test pattern through a
strong magnifying glass.
a. Can you see the individual colored dots that form the

colors on the page? Which of the colors in the test pat-
tern appear to be made up of just single colored dots?

b. With the help of the magnifying glass, describe how the
other colors in the test pattern are produced.

c. Use the magnifying glass to observe the lines on the
screen of a color television set (with the set turned off!).
What colors do you observe? How do these colors dif-
fer from those used in color printing?

HE2. It is a simple matter to produce soap films that demon-
strate thin-film interference phenomena. Place a few drops
of liquid dish-washing detergent in a shallow bowl and add
enough water to form a reasonably fluid solution. Bend a

piece of wire into a closed loop, leaving a small length to
serve as a handle. (Alternatively, you can purchase bubble-
making solution with the wire loop included for a very
small cost.)
a. Dip the loop in the soap solution to form a soap film 

in the plane of the loop. Reflect light from a desk 
lamp from the film. Describe the colored patterns that
you see.

b. If you hold the loop in a vertical plane, the colors
should settle into a pattern of horizontal bands. Sketch
the bands that you see indicating both their color and
width. Explain why we get horizontal bands.

c. Try illuminating your soap film first with a frosted in-
candescent lamp and then with a fluorescent lamp. De-
scribe the differences that you see.

Home Experiments and Observations 353

synthesis problems

SP1. The visible spectrum of colors ranges from approximately
380 nm in wavelength at the violet end to 750 nm at the far
red end.
a. What are the frequencies associated with these two

wavelengths?
b. When light passes into glass, the speed of light is

reduced to v � c/n where n is called the index of
refraction. For many types of glass or plastic, n is
approximately 1.5. What is the approximate speed of
light in glass?

c. If the frequency of light does not change when light
enters glass, the wavelength must change to account
for the reduction in speed. What are the wavelengths for
the two ends of the visible spectrum in glass?

SP2. Light with a wavelength of 600 nm (6 � 10�7 m) passes
through two slits separated by just 0.03 mm (3 � 10�5 m).
A fringe pattern is observed on a screen placed 1.2 m from
the double slit.
a. How far from the center of the screen will the first bright

fringe appear on either side of the central fringe?
b. Where will the second bright fringe appear on either

side?
c. At what distance from the center of the screen will the

first dark fringe appear on either side?
d. Sketch a diagram showing the positions of the seven

central bright fringes (the center fringe and three fringes
on either side of the center fringe). Clearly indicate the
distance of each fringe from the center of the screen.

SP3. Standing waves (see section 15.3) can be formed by reflect-
ing light from a mirror and allowing the reflected wave to

interfere with the incoming wave. Suppose that we do so
using light with a wavelength of 500 nm (5 � 10�7 m). As-
sume that there is a node at the mirror surface.
a. How far from the mirror will the first antinode lie?
b. What is the separation distance between adjacent anti-

nodes (right fringes) as we move away from the mirror?
c. Will it be easy to observe the dark and bright fringes as-

sociated with the nodes and antinodes of the standing
wave? Explain.

SP4. A soap film has an index of refraction (see synthesis  prob-
lem 1) of n � 1.333. This implies that the wavelength of
light in the film is shorter than in air by a factor of 1/n. The
index of refraction of air is approximately 1.0, so there is
little difference between the wavelength in air and that in a
vacuum.
a. If light with an air or vacuum wavelength of 600 nm

enters a soap film, what is the wavelength of this light
in the film?

b. If the film is 900 nm thick, how many wavelengths far-
ther does the wave reflected from the bottom surface of
the film travel than that reflected from the top?

c. Would you be surprised to find that this thickness pro-
duces destructive interference for reflected light?*

* The two waves are out of phase because of a phase difference intro-
duced by the reflection process itself—the wave reflected from the top
surface is shifted in phase, while that reflected from the bottom surface
is not. The path difference between the two waves produces no phase
change, but the reflection process does.

home experiments and observations
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HE3. Find two flat glass plates (microscope slides will work
nicely). Wipe the glass plates clean and place one on top of
the other. View the plates in reflected light from the over-
head lighting in your room.
a. Describe the pattern of light and dark fringes that you

see. Are there any colors associated with these fringes?
b. Place a very thin object such as a human hair between

the two plates near one end. Does this change the fringe
pattern? Can you explain the pattern that you see?

HE4. View a distant point light source (such as a distant street-
light or a bright star) at night through a window screen.
a. Sketch the appearance of the light when viewed through

the screen. How does this differ from the appearance
of the light when viewed directly (not looking through
the screen)?

b. Contrast your observations with the square-aperture
pattern pictured in figure 16.19. What similarities and
differences can be identified?

HE5. Locate two polarizing filters. (Your physics instructor is prob-
ably your best source. Most sunglasses are not polarizers.)
a. View the blue sky through one polarizer while rotating

the polarizer around your line of sight. What changes in
intensity do you observe?

b. Place one polarizer on top of the other and rotate one of
them. When the polarizers are crossed (axes at 90°), no
light should get through. How does the transmitted light
vary as you rotate the second polarizer?

c. Place various plastic items (rulers, protractors, plastic
spectacle lenses, etc.) between crossed polarizers. De-
scribe the patterns that you observe.

HE6. Find a laser pointer and a couple pieces of aluminum foil.
a. Take a piece of the aluminum foil, pierce a small hole in

it with a pin, and observe the pattern you see when shin-
ing a laser pointer through the hole. Describe the pattern.

b. Make a different size hole and compare the pattern you
see. Describe the differences.

354 Chapter 16 Light Waves and Color
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Light and Image
Formation

17
chapter overview
Our main goal in this chapter is to provide an understanding of the laws
of reflection and refraction and how they are used to explain image
formation. To do this, we will need to discuss the relationship between
waves and rays and to show how rays can be traced to define and locate
images. In the process of exploring image formation, we will examine
the behavior of mirrors and lenses and the workings of simple optical
instruments such as cameras, magnifiers, microscopes, and telescopes.

chapter outline
1 Reflection and image formation. What is the relationship between

rays and waves? What is the law of reflection, and how are images
formed by a plane mirror?

2 Refraction of light. How does the law of refraction describe the
bending of light rays when they pass from one medium to another?
How can we explain the separation of colors by a prism?

3 Lenses and image formation. How can the law of refraction explain
image formation by simple lenses? How do positive lenses differ from
negative lenses?

4 Focusing light with curved mirrors. How can curved mirrors be used
to focus light? How do concave mirrors differ from convex mirrors in
their image-forming properties?

5 Eyeglasses, microscopes, and telescopes. How do eyeglasses help us
to see better? How can lenses and mirrors be combined to produce
microscopes and telescopes? 
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Have you ever looked in a mirror and wondered how
you are able to stare yourself in the face? How does that
early-morning, mussed-up face pretending to be you
appear behind the glass plate (fig. 17.1)? You know that
you are seeing an image that, depending on the quality
of the mirror, may or may not be an accurate reflection of
reality. You are free to believe what you wish.

You may also wear eyeglasses, and you probably have
used optical instruments that incorporate lenses like
binoculars, overhead projectors, and microscopes. Im-
ages formed by mirrors involve the reflection of light.
Images formed by lenses involve the refraction or bend-
ing of light. Both reflection and refraction are at work
in producing rainbows.

In chapter 16, we introduced the idea that light is an
electromagnetic wave and described the general fea-
tures of these waves. How are such waves involved in
the formation of images in a mirror, by a slide projector,
or in your eye itself? What are the basic principles of
image formation? Can we predict where the images will
be formed and how they will appear?

Such questions lie in the realm of geometric optics, in
which we describe the behavior of light waves by using
rays that are perpendicular to the wavefronts. The laws
of reflection and refraction are the basic principles of

geometric optics. They allow us to trace the paths of
light rays, and to predict how and where images will be
formed. Physical optics (chapter 16) treats phenomena
such as interference and diffraction, which involve the
wave aspects of light more directly.

356 Chapter 17 Light and Image Formation

figure 17.1 An early-morning look in the mirror. How does
that discouraging image get there?

17.1 Reflection and Image Formation
How is your image in the bathroom mirror produced? You
know that light is involved somehow, as you can easily ver-
ify by turning off the bathroom light. If the room is com-
pletely dark, the image disappears, only to reappear instantly
when the light is turned back on. Light waves from the bath-
room light must bounce off your face, travel from there to
the mirror, and then reflect back to your eyes. How does
this process create the image that we see?

How are light rays related to wavefronts?
If we consider just one point on your face and trace what
happens to the waves that are reflected from that point, we
get a clearer idea of what is happening. Since the skin on
your face is somewhat rough (at least on a microscopic
scale), light that reaches your face is reflected or scattered
in all directions from any given point. The tip of your nose,
for example, behaves as though it were a source of light
waves that spread out uniformly from that point (fig. 17.2).
These waves are like the ripples that spread on a pond
when a rock is dropped into the water.

The light waves scattered from your face are electro-
magnetic waves, not waves of water, but they have crests
(where the electric and magnetic fields are the strongest)
that move outward from the source point just as water
waves do. If we connect the points on the wave that are all

at the same point in their cycle, we define a wavefront. We
often choose the crest of the wave (the point of maximum
positive amplitude) for this purpose, since it is clearly visi-
ble in water waves. The next wavefront behind the leading
one is the next point at which the waves are at their crest,
and it is separated from the previous wavefront by a dis-
tance of one wavelength, as in figure 17.3. For light waves,
these wavefronts move away from the source point at the
speed of light.

figure 17.2 Any point on your face acts as a secondary
source of light rays that are reflected in all directions from that
point.
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We could describe almost everything that happens to
these waves by tracing what happens to the wavefronts. It
is easier, however, to examine their behavior using rays
perpendicular to the wavefronts. If the waves are traveling
in the same medium (air, for example), the wavefronts
move forward uniformly and the resulting rays are straight
lines (fig. 17.3). These rays are easier to draw than the
curved wavefronts and can be traced more readily.

Since each point on your face scatters light in all direc-
tions, these points act as sources of diverging light rays, as in
figure 17.2. The light rays travel from your face to the mir-
ror, where they are reflected in a predictable manner because
of the smoothness of the mirror. Your eyes are receiving light
from the light bulb, but that light has been reflected by both
your face and the mirror before getting back to your eyes.

What is the law of reflection?
What happens when light rays and wavefronts strike a
smooth reflecting surface like a flat mirror? The waves
are reflected, and after reflection, they travel away from
the mirror with the same speed that they had before
reflection. Figure 17.4 depicts this process for plane
wavefronts (no curvature) that are approaching the plane
mirror at an angle rather than head-on.

Since the wavefronts approach the mirror at an angle,
some parts of the wavefront are reflected sooner than others

(fig. 17.4). These wavefronts now travel away from the
mirror with the same spacing and speed but in a new direc-
tion. The angle between the wavefront and the mirror is the
same, however, for the emerging wave. Because the out-
going wavefronts travel at the same speed and cover the
same distance in a given time as the incoming waves, this
produces equal angles between the wavefronts and the sur-
face of the mirror.

This result is usually stated using rays. The angle that
a ray makes to a line drawn perpendicular to the surface
is the same angle that the wavefront makes to the surface of
the mirror. Using the word normal to mean perpendicular
(as in chapter 4 when we discussed normal forces), we call
the line drawn perpendicular to the surface of the mirror the
surface normal. The equal angles the wavefronts make
to the mirror dictate that the angle the reflected ray makes
to the surface normal is equal to the angle that the incom-
ing, or incident, ray makes to the surface normal (fig 17.4).

What we have just described is the law of reflection,
which can be stated concisely as

When light is reflected from a smooth reflecting surface, the
angle the reflected ray makes with the surface normal is equal
to the angle the incident ray makes with the surface normal.

In other words, the angle of reflection (�r in figure 17.4) is
equal to the angle of incidence (�i ). The reflected ray also
lies within the plane defined by the incident ray and the
surface normal. It does not deviate in or out of the plane of
the page in our diagram.

17.1 Reflection and Image Formation 357

figure 17.3 Light rays are drawn so that they are
everywhere perpendicular to the wavefronts. If the waves travel
with uniform speed, the rays are straight lines.

figure 17.4 Plane light waves approaching a mirror at an
angle travel with the same speed both before and after striking
the mirror. The angle of reflection equals the angle of incidence.

λ

θr

θi

Surface
normal
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How are images formed by a plane mirror?
How can the law of reflection help us to explain how an
image is formed in a plane mirror? What happens to the
light rays that are scattered from your nose? Tracing these
rays from their origin at the nose and following them
through reflection from the mirror using the law of reflec-
tion shows what happens to individual rays (fig. 17.5).

If we extend the reflected rays backward from the mir-
ror, they intersect at a point behind the mirror, as shown.
As your eye collects a small bundle of reflected rays, it
perceives an image that appears to lie at this point of inter-
section. In other words, as far as your eye can tell, these
light rays are coming from that point. You see the tip of
your nose as lying behind the mirror. The same argument
holds for any other point on your face—they all seem to lie
behind the mirror.

Using simple geometry, you can see that the distance of
this image behind the mirror (measured from the mirror
surface) is equal to the distance of the original object from
the front of the mirror. These equal distances follow from the
law of reflection, as figure 17.6 illustrates. Here we have
taken just two rays coming from the top of a candle and
traced them as before. The ray that comes into the mirror
in the horizontal direction and perpendicular to the mirror is
reflected back along the same line. The angle of incidence
for this ray is zero—so is the angle of reflection.

The other ray is shown as being reflected from a point
on the mirror even with the base of the candle. This ray is
reflected at an angle equal to its angle of incidence. When
these two rays are extended backward, their intersection
locates the image position. Any other rays traced from the top
of the candle would also appear to come from this point. The
two rays shown form identical triangles on either side of the
mirror (fig. 17.6). Since the angles are equal, and the short
side of both triangles is equal to the height of the candle, the
long sides of these identical triangles must also be equal. The

image is therefore located behind the mirror at an image dis-
tance, i, equal to the object distance, o, of the candle from the
front of the mirror.

Since we all have access to plane mirrors, you can ver-
ify some of these ideas by observing your own image and
images of other objects as you move before the mirror. The
mirror does not have to be as tall as you, for example, for
you to see your entire height. Do you see more of you as you
move toward the mirror or away from the mirror? What
about other objects? Where must you be positioned to see
various other objects in the room? Can you explain these
observations by the law of reflection and by which rays
reach your eyes?

The image formed by a plane mirror is called a virtual
image because the light never actually passes through the
point where the image is located. In fact, the light never
gets behind the mirror at all—it just appears to come from
points behind the mirror as it is reflected. The image can
also be characterized as being upright (right side up) and as
having the same size as the object (not magnified). There is
a reversal, however, of right and left: what appears to be
the right hand of your mirror image is actually the image of
your left hand, and vice versa. Take another look. You see
such images every day, but you probably have not given
them much thought.

Light rays are drawn perpendicular to the wavefronts.
Tracing these rays often provides an easier way of seeing
what happens to light than following the wavefronts
themselves. The law of reflection states that when light is
reflected from a smooth reflecting surface, the angle of
reflection equals the angle of incidence (both measured
from the surface normal). The image formed by a plane
mirror lies at the point from which the light rays appear
to be diverging after reflection, which is as far behind the
mirror as the object is in front of the mirror.

358 Chapter 17 Light and Image Formation

figure 17.5 A few rays are traced from the tip of the nose
to show their reflection from the mirror. They diverge after
reflection as though they were coming from a point behind the
mirror.

figure 17.6 Two light rays coming from the top of the
candle appear to diverge after reflection from a point as far
behind the mirror as the candle is in front of the mirror.

h h

io

θi
θr = θiθr
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17.2 Refraction of Light
The most familiar images are those formed by plane mir-
rors. Images can be formed in other ways, though, with
prisms, lenses, or maybe just a tank of water. These exam-
ples all involve substances that are transparent to visible
light. What happens to light rays when they encounter the
surface of a transparent object? Why do we get misleading
impressions about the location of underwater objects? The
law of refraction helps us answer these questions.

What is the law of refraction?
Suppose that light waves encounter a plane surface of a
piece of glass after traveling initially through air. What
happens to these waves as they pass into the glass and con-
tinue traveling through the glass? Experimental measure-
ments have shown that the speed of light in glass or water
is less than the speed of light in a vacuum or air. (The
speed of light in air is very close to its speed in a vacuum.)
The distance between wavefronts (the wavelength) will be
shorter in glass or water than in air (fig. 17.7), since the
waves travel a smaller distance in one cycle given their
smaller speed.

The difference in the speed of light in different sub-
stances is usually described by a quantity called the index
of refraction, represented by the symbol n. The index of
refraction is defined as the ratio of the speed of light c in a
vacuum to the speed of light v in some substance, n � c/v.
The speed of light v in the substance is then related to the
speed of light c in a vacuum by

n �
c
n

.

In other words, to find the speed of light in some trans-
parent material, we divide the speed of light in a vacuum
(c � 3 � 108 m/s) by the index of refraction of that mate-
rial. Typical values for the index of refraction of glass are
between 1.5 and 1.6, so the speed of light in glass is ap-
proximately two-thirds the speed of light in air.

What effect does this reduction in speed and wavelength
have on the direction of light rays as they pass into glass?
If we consider wavefronts and their corresponding rays ap-
proaching the surface at an angle, as in figure 17.8, we can
see that the rays will bend as the waves pass from air to
glass. The bending occurs because the wavefronts do not
travel as far in one cycle in the glass as they do in air. As
the diagram shows, the wavefront halfway into the glass
travels a smaller distance in glass than it does in air, caus-
ing it to bend in the middle. Thus, the ray, which is per-
pendicular to the wavefront, is also bent. The situation is
like a marching band marching onto a muddy field at an
angle to the edge of the field. The rows bend as their speed
is reduced by the mud.

The amount of bending depends on the angle of inci-
dence and on the indices of refraction of the materials
involved, which determine the change in speed. A larger dif-
ference in speed will produce a greater difference in how far
the wavefronts travel in the two substances. A larger differ-
ence in indices of refraction of the two substances therefore
produces a larger bend in the wavefront and ray.
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figure 17.7 The wavelength of light waves traveling from
air into glass is shorter in the glass than in air because of the
smaller speed of light waves in glass.

figure 17.8 Wavefronts approaching a glass surface at an
angle to the surface are bent as they pass into the glass. The
angle of refraction, �2, is less than the angle of incidence, �1. (n2

is larger than n1.)

n1

n2
λ2

λ1
n1

n2

d2 = λ2

θ1

θ2

d1 = λ1
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The bending described by the law of refraction can be
stated in qualitative* terms as:

When light passes from one transparent medium to another,
the rays are bent toward the surface normal (the axis drawn
perpendicular to the surface) if the speed of light is smaller in
the second medium than in the first. The rays are bent away
from this axis if the speed of light in the second medium is
greater than in the first.

If the angles are small, the quantitative statement of the
law of refraction takes a simple form. For small angles,
the sine function is proportional to the angle itself, so

n1�1 � n2�2.

The product of the index of refraction of the first medium
times the angle of incidence is approximately equal to the
product of the index of refraction of the second medium
times the angle of refraction. As the index of refraction of
the second medium increases, the angle of refraction must
decrease, which means that the ray is bent closer to the
axis (the surface normal) for larger indices of refraction.

For light waves traveling from glass to air, the bending
is in the opposite direction: the rays are bent away from the
surface normal, according to the law of refraction. Simply
reversing the directions of the rays and wavefronts in fig-
ure 17.8 will make this clear. The increase in speed as the
wave travels from glass to air causes the ray to bend away
from the axis.

Why do underwater objects appear
to be closer than they are?
The bending of light rays at the interface of two transpar-
ent substances is responsible for some deceptive appear-
ances. Suppose, for example, that you are standing on a
bridge over a stream looking down at a fish. Water has an
index of refraction of about 1.33, and air has an index of
refraction of approximately 1. Light traveling from the fish
to your eyes is bent away from the surface normal, as in
figure 17.9.

This bending of the light rays coming from the fish
causes them to diverge more strongly in air than when they
were traveling in the water. If we extend these rays back-
wards, we see that they now appear to come from a point
closer to the surface of the water than their actual point of
origin (fig. 17.9). Since this is true for any point on the
fish, the fish appears to be closer to the surface than it

actually is. If you were attempting to shoot the fish (illegal
in most places), you would likely miss unless you were
shooting straight down.

The apparent distance of the fish beneath the surface can
be predicted from the law of refraction if we know the
actual distance. The argument involves some geometry and
the assumption that the angles of incidence and refraction
are small. We find that the apparent distance as seen from
the air (the image distance i) is related to the actual dis-
tance under water (the object distance o) and the indices of
refraction by

where the index of refraction of the second medium n2 is
that of air (na � 1) and the index of the first medium n1 is
that of water (nw � 1.33). The image distance is therefore
less than the actual distance, as figure 17.9 clearly illus-
trates. If the fish is actually 1 m below the surface, its
apparent distance below the surface will be

This apparent location of the fish is the position of the
image of the fish. Light rays scattered from the fish seem
to come from this point rather than from the actual posi-
tion of the fish. We see a virtual image, like the image seen
in a mirror, since the light rays do not actually pass through
the image position. They only appear to come from that
point. If instead we view an object in air from underwater, the

i � 1 m a 1

1.33
b � 0.75 m.

i � o an2

n1
b .
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figure 17.9 Light rays coming from the fish are bent as
they pass from the water to air, so that the rays appear to
diverge from a point closer to the surface.

n1

n2

i

o

*The law of refraction is stated quantitatively using the trigonometric func-
tion, the sine, which will only be familiar if you have some background in
trigonometry. It is usually written in symbolic form as n1sin �1 � n2sin �2,
where n1 and n2 are the indices of refraction of the two media, and �1 and
�2 are the angle of incidence and the angle of refraction (fig. 17.8).
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figure 17.10 When viewed from above, a straw appears to
bend when part of it is above water and the rest below. Viewed
from the side, the straw is magnified.

image appears farther away from the water surface than the
actual object position (example box 17.1).

The misleading position of objects viewed underwater
is something we observe daily but often fail to notice sim-
ply because the experience is so common. A straight stick
or rod seems to bend or break if part of it is above water
and the rest below. When viewed from the top, each point
of the underwater object appears to lie closer to the surface
than its actual distance. A straw or spoon in a glass of
water or other beverage likewise appears to bend, as in fig-
ure 17.10. We are used to the deception and seldom give it
a second thought.

example box 17.1

Sample Exercise: Viewing an Object from
Underwater

A girl swimming underwater views a dragonfly hovering
over her in the air. The dragonfly appears to be about
60 cm above the water surface. What is the actual height
of the dragonfly above the water?

Since the object (the dragonfly) is in air, the light is
traveling initially in air, so:

(The object is actually closer to the water surface than it
appears to be.)

� 45 cm 

� 60 cm 
1

1.33

i � 60 cm

n2 � 1.33

i � o 
n2

n1
n1 � 1.00

Total internal reflection
Another interesting phenomenon occurs when light rays
travel from either water or glass to air. As we have already
indicated, the light rays bend away from the axis as they
pass into the medium with the lower index of refraction
(air in these examples). What happens, though, if the rays
are bent so much that the angle of refraction is 90°? The
angle of refraction cannot be any larger and still result in
rays passing into the second medium.

This situation is depicted in figure 17.11. As the angle
of incidence for rays traveling in the glass gets larger, so
does the angle of refraction (ray 1). Ultimately, we reach
the point at which the angle of refraction is 90° (ray 2).
At this point, the refracted ray would just skim the surface
as it emerged from the glass. For any angle of incidence

n1

n2

n1 > n2

1

n1

n2

θc

n1 > n2

Predicted
direction of
refracted ray
for ray 2

2 2

2
θc n1

n2

n1 > n2

3 3

figure 17.11 When light travels from glass to air, the angle of incidence that would produce an angle of refraction of 90° (ray 2) is
called the critical angle �c. Rays incident at equal or greater angles than �c are totally reflected.

o � i 
n1

n2
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figure 17.12 A prism cut with two 45° angles can be used
as a mirror, since the light is totally reflected.

90° 45°

45°
45°

45°

Rainbows

The Situation. Figure 1.1 in chapter 1 is a photograph of a
rainbow. We have all seen such sights and been awed by
their beauty. We know that rainbows occur when the sun is
shining and it is raining nearby. If conditions are right, we can
see an entire semicircular arc of color with red on the outside
and violet on the inside. Sometimes we can also see a fainter
bow of color forming a secondary arc outside of the primary
one. The colors in the secondary rainbow are in reverse order
of those in the primary rainbow, as the photo shows.

How is a rainbow formed? What conditions are necessary
for observing a rainbow? Where should we look? Can the
laws of reflection and refraction be used to explain this

phenomenon? We can now address these questions, some of
which were first raised in chapter 1.

The Analysis. The secret to understanding the rainbow lies
in considering what happens to light rays when they enter
a raindrop, as in the first drawing. When a light ray strikes
the first surface of the raindrop, some of it is refracted into the
drop. Since the amount of bending depends on the index of
refraction, which depends on the wavelength of the light,
blue light is bent more than red light at this first surface. This
effect is the same as the dispersion that occurs when light
passes through a prism.

everyday phenomenon
box 17.1

The primary rainbow has red on the outside and violet on the inside.
The secondary rainbow, sometimes visible, has the colors reversed.

White light

Red

Blue

Raindrop

Light rays entering a raindrop are refracted by different amounts at
the first surface, reflected at the back surface, and refracted again as
they leave.

(continued)

inside the glass larger than this angle (ray 3), the ray does
not escape the glass at all—it is reflected instead. The
angle of incidence for which the angle of refraction is
90° is called the critical angle �c.* Rays incident at angles
greater than the critical angle are reflected back inside the
glass and obey the law of reflection rather than the law of
refraction.

This phenomenon is called total internal reflection. For
angles equal to or greater than the critical angle, 100% of
the light is reflected inside the material with the larger index
of refraction. Under these conditions, the glass-air interface
makes an excellent mirror. For glass with an index of refrac-
tion of 1.5, the critical angle is approximately 42°. Glasses
with larger indices of refraction have even smaller critical
angles. A prism cut with two 45° angles, as in figure 17.12,
can be used as a reflector. Light incident perpendicular to

*From the law of refraction, sin �c � n2/n1 where n2 must be less than n1

for the expression to be valid.
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more than red light, and the intermediate wavelengths associ-
ated with the colors green, yellow, and orange are bent by
intermediate amounts.

When light passes through a prism at an angle, the light
is bent as it enters the prism and again as it leaves. The
minimum deflection of the light occurs when it passes
through the prism symmetrically, as in figure 17.13. The
rays bend toward the surface normal as they enter the
prism and away from the normal at the second surface,
consistent with the law of refraction. Since the index of re-
fraction varies for different wavelengths, the violet and
blue rays are bent the most and lie at the bottom of the re-
sulting spectrum of colors, as figure 17.14 shows.

This variation of index of refraction with wavelength is
called dispersion, and it exists for all transparent materi-
als including water, glass, and clear plastics. Dispersion is
responsible for the colors that you see when light passes
through a fish tank or around the edges of a lens, as in an
overhead projector. It is also responsible for the beautiful
displays of color seen in rainbows, as explained in every-
day phenomenon box 17.1.

17.2 Refraction of Light 363

the first surface strikes the long surface at an angle of inci-
dence of 45°, which is greater than the critical angle. It is
totally reflected at this surface, so the surface acts as a
plane mirror.

How do prisms bend light, and what
is dispersion?
You know that white light can be separated into different
colors by a prism, producing an effect like a rainbow. How
do we get the colors of the rainbow when we start with or-
dinary white light?

The index of refraction of a material varies with the
wavelength of light: different wavelengths are bent by differ-
ent amounts. The wavelength, in turn, is associated with the
color that we perceive as discussed in chapter 16. Red light,
at one end of the visible spectrum, has longer wavelengths
and lower frequencies than violet light, at the opposite end
of the spectrum. The index of refraction for violet or blue
light is greater than for red light for most types of glass and
other transparent substances like water. Blue light is bent

After being refracted at the first surface, the light rays
travel through the drop and strike its back surface, where
they are partially reflected. Some of the light passes out of
the drop, and some is reflected back toward the front surface
as shown. At the front surface, the rays are refracted again,
causing more dispersion as the rays leave the drop.

It may seem paradoxical that red light, which is bent the
least in the refractions, is actually diverted through a larger
angle than blue light in its overall path through and back out
of the raindrop. The reason can be understood from the first
drawing. The smaller bending at the first surface causes the
red rays to strike the back surface of the drop at a greater
angle of incidence than for the violet rays. The red rays are
reflected through a greater angle, according to the law of
reflection. This larger angle of reflection dominates in deter-
mining the overall deflection of the ray.

When we view a rainbow, the sun must be behind us, since
we are observing reflected rays. We see different colors at dif-
ferent points in the sky because, for a given color, the raindrops
must be at the appropriate height for the light rays to reach
our eyes. Since red rays are deviated the most, we see red light
reflected from raindrops at the top of the rainbow or at the
greatest angle from the center of the arc. Violet light comes to
us from raindrops lying at smaller angles. The other colors lie in
between, producing the colorful arc that we see.

The secondary rainbow, which is usually much fainter than
the primary rainbow, is produced by a double reflection inside
the raindrops, as the second drawing shows. Light rays enter-
ing near the bottom of the first surface of the drop may strike
the back surface at a large enough angle of incidence to be

reflected twice before getting out of the drop. The light rays
cross over in this case and are deviated through larger
overall angles than any of the colors in the primary bow.
For this reason, the secondary bow is seen outside the arc
of the primary bow. Blue light is bent through a larger
angle than red light so blue light lies at the top of the sec-
ondary rainbow.

The sun must be reasonably low in the sky for either the
primary or secondary rainbow to be observed. During the
summer, a late afternoon shower usually provides the best
opportunity for viewing a rainbow. Rainbows can be seen
at almost any time during the day from a high vantage
point such as an airplane, however, and sometimes make a
complete circle rather than just an arc. If you can under-
stand why this is so, you have mastered the explanations
provided here.

Sunlight

Red

Raindrop

Blue

Light rays entering near the bottom of the first surface of a raindrop
may be reflected twice before reemerging. These rays produce the
secondary rainbow.
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figure 17.14 White light incident on one side of the prism
emerges as a spectrum of different colors because of dispersion.

figure 17.15 Parallel light rays passing through a simple
convex lens are bent toward the axis so that they all pass
approximately through the focal point F. A lens has two focal
points, one on either side.

F F

ƒ ƒ

Light rays are bent when they pass from one transparent
substance to another because the speed of light changes
at the boundary between the two substances. The law
of refraction describes how much bending occurs and
whether the bending is toward or away from the surface
normal. Because of this bending, the image of an under-
water object appears to lie closer to the surface of the
water than the actual position of the object. For light trav-
eling initially inside glass or water, there is a critical angle
of incidence beyond which the light is totally reflected
rather than being refracted. The index of refraction varies
with wavelength, producing the dispersion of colors that
we see when light passes through a prism.

17.3 Lenses and Image Formation
We encounter the images formed by mirrors daily and sel-
dom give them a second thought. We may be even less
aware of the images formed by lenses, although many of

us have lenses hanging on our noses or sitting on our eye-
balls in the form of corrective eyeglasses or contact lenses.
We also encounter lenses in cameras, overhead projectors,
opera glasses, and simple magnifying glasses.

How do lenses form images? Lenses are usually made
of glass or plastic, so the law of refraction governs their
behavior. The bending of light rays as they pass through a
lens is responsible for the size and nature of the images
formed. We can understand the basics of this process by
tracing what happens to just a few of these rays.

Tracing rays through a positive lens
A lens shaped so that both sides are spherical surfaces with
the convex sides facing out is pictured in figure 17.15. 
According to the law of refraction, the light rays are bent to-
ward the surface normal at the first surface (going from air to
glass) and away from the surface normal at the second sur-
face (going from glass to air). If both surfaces are convex, as
shown, each of these refractions bends the ray toward the axis
(a line passing through the center of the lens and perpendicu-
lar to the lens). Such a lens causes light rays to converge. A
converging lens is called a positive lens.

The easiest way to see that the light will bend as pic-
tured in figure 17.15 is to imagine that each section of the
lens behaves like a prism. The prism angle (the angle be-
tween the two sides) becomes larger toward the top of the
lens so that light coming through the lens near the top is
bent more than light passing through near the middle. Be-
cause the prism effect gets stronger farther from the axis,
light rays coming in parallel to the axis are bent by dif-
ferent amounts as they pass through the lens. This causes
them to all pass approximately through a single point F
on the opposite side of the lens, which we call the focal
point. The focal point is the point where rays traveling
parallel to the axis when they enter the lens are focused
after leaving the lens.

The distance from the center of the lens to the focal
point is called the focal length f. Focal length is a property

figure 17.13 Light rays passing through a prism are bent at
both surfaces, with blue light being bent more strongly than red.

Incident
white light

Red

Blue

Surface
normals

Yellow
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of the lens that depends on how strongly the surfaces are
curved and on the index of refraction of the lens material.
There is also a focal point a distance f on the other side of
the lens associated with parallel light rays coming from the
opposite direction. Since the paths of rays are reversible,
rays that diverge from either focal point and pass through
the lens will emerge parallel to the axis.

How can we use ray-tracing techniques to show how im-
ages are formed by such a lens? The process is illustrated in
figure 17.16 for an object lying beyond the focal point of
the lens. Three rays (labeled on the diagram) are traced, tak-
ing advantage of the properties of the focal points:

1. A ray coming from the top of the object traveling
parallel to the axis is bent so that it passes through
the focal point on the far side of the lens.

2. A ray coming through the focal point on the near side
emerges parallel to the axis.

3. A ray coming in through the center of the lens is un-
deviated and passes through the lens without being bent.

The sides of the lens near the center are parallel (like a win-
dow pane), which is why ray 3 is not bent. When tracing
rays, we usually show the bending taking place at a verti-
cal line through the center of the lens.

The image lies on the opposite side of the lens from the
object in figure 17.16 and is a real image, since the light
rays pass through the image point. Light rays diverging
from the object are converged by the lens to this image
point. If you placed a screen at that point, you would see
the upside-down (inverted) image on the screen. When a
slide projector is used, the slides must be inserted upside
down to produce upright images on the screen.

How is the image distance related
to the object distance?
Can we predict where an image will be found for a given
location of an object? One way to do so is to carefully
trace the rays, as we have already illustrated. Using trian-
gle relationships and the law of refraction, we can also

develop a quantitative relationship between the object dis-
tance o, the image distance i, and the focal length f of a
lens. (These distances are all measured from the center of
the lens.) The relationship involves the reciprocals of these
distances—the reciprocal of the object distance plus the re-
ciprocal of the image distance is equal to the reciprocal of
the focal length. Stated in symbols,

In the case in figure 17.16, these distances are all posi-
tive quantities. In the most frequently used sign conven-
tion, object and image distances for real objects or images
are positive, but the image distance for a virtual image
is negative. The focal length is positive for a converging
(positive) lens, one that bends the rays toward the axis, and
is negative for a diverging (negative) lens, one that bends
the rays away from the axis.

The geometry of figure 17.16 can also be used to find a
relationship between the magnification of the image m and
the object and image distances. Magnification is defined
as the ratio of the image height hi to the object height ho, or

The sign in this equation indicates whether the image is
upright or inverted. A negative magnification represents an
inverted image, as is the case when the image and object
distances are both positive (fig. 17.16). Depending on the
object and image distances, the image can be either magni-
fied or reduced in size.

If the object lies “inside” the focal point (closer to the
lens) of a positive lens, we can get a virtual image with a
positive magnification, as in figure 17.17. In this case, the
image distance is a negative quantity, since it is associated
with a virtual image. Light rays appear to diverge from the

m � 
hi

ho

 � � 
i
o

 .

1
o

 � 
1

i
 � 

1

f
 .

figure 17.16 Three rays can be traced from the top of an
object through a positive lens to locate the image. If the object is
beyond the focal point, an inverted real image is formed on the
opposite side of the lens.
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o
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F

figure 17.17 A magnified virtual image is formed when
the object lies inside the focal point of a positive lens. The
emerging light rays appear to diverge from a point behind the
object.
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example box 17.2

Sample Exercise: A Virtual Magnified Image

An object 2 cm in height lies 10 cm to the left of a
positive lens with a focal length of 20 cm.

a. Where is the image located?
b. What is its magnification?

a. f � �20 cm

o � �10 cm

i � ?

i � �20 cm

The image lies 20 cm to the left of the lens, on the same
side as the object (fig. 17.17).

b. m � ? m � �

� �

� �2

The image is magnified to twice the height of the object as
shown in figure 17.17. It is upright, since the magnification
is positive.

�20 cm

10 cm

i
o

� � 
1

20 cm

� 
1

20 cm
 � 

2

20 cm

� 
1

20 cm
 � 

1

10 cm

1

i
 � 

1

f
 � 

1
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1
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figure 17.18 Light rays traveling parallel to the axis are
bent away from the axis by a negative lens so that they appear
to diverge from a common focal point F.

F F

ƒ

image point but do not actually pass through this point. A
virtual image lies on the side of the lens from which the
light is coming, the left side in this case. This situation is
dealt with in example box 17.2.

When we view the image of an object placed inside the
focal point of a positive lens, we are using the lens as a
magnifying glass. The image is magnified, but it also lies
behind the object, farther from our eyes. This greater dis-
tance makes it easier for us to focus on the image than on
the object itself. This is an advantage, particularly for older
people who have lost the ability to accommodate their
focus to view objects that are close to their eyes.

Tracing rays through negative lenses
As we have seen, a simple convex lens is a positive, con-
verging lens—it bends light rays toward the axis. What
happens if we change the direction of the curvature of the
lens surfaces so that they are concave rather than convex?

If we imagine that each section of the lens behaves like a
prism (as discussed on page 356), these prism sections are
upside down compared to the convex lens. As you can see
in figure 17.18, these prism sections bend light rays away
from the axis rather than toward it. The lens is therefore a
diverging or negative lens.

Light rays coming in parallel to the axis are bent away
from the axis by the negative lens so that they all appear to
be diverging from a common point F, the focal point 
(fig. 17.18). This point is one of two focal points of the
negative lens. The other lies on the opposite side at the
same distance from the center of the lens as the first one.
Light coming in toward the focal point on the far side of
the lens is bent so that it comes out parallel to the axis. As
mentioned earlier, the focal length f of a negative lens is
defined as a negative quantity.

We can trace the same three rays that we traced for the
positive lens to locate an image for the negative lens, as in
figure 17.19. The ray coming from the top of the object
parallel to the axis (ray 1) is bent away from the axis in this
case, so that it appears to come from the focal point on the
near side of the lens. A ray coming in toward the focal
point on the far side (ray 2) is bent to come out parallel to
the axis. Ray 3 passes through the center of the lens unde-
viated, as before.

The resulting image lies on the same side of the lens as
the object and is upright and reduced in size (fig. 17.19).
This can be verified by using the object-image distance
formula, treating the focal length as a negative quantity.
The image is virtual because the rays appear to come from
the image point but do not (except for the undeviated ray)
actually pass through that point. This is true regardless of
the object distance—a negative lens used by itself always
forms a virtual image smaller than the object.
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If you hold a negative lens near a printed page and
view the page through the lens, the letters will appear
smaller than their actual size. Distinguishing a negative
lens from a positive lens is easy: one makes the print
smaller and the other (the positive lens) magnifies the
print when held close to the page. If you move the posi-
tive lens away from the page, the image disappears when
you reach a distance equal to the focal length and then
reappears upside down.

A positive lens converges light toward the axis. If the
incoming rays are parallel to the axis, they converge
approximately to a single point, the focal point. The prop-
erties of the focal points can be used to trace rays to
locate and characterize the images formed. The distance 
of the focal points from a thin lens is called the focal
length, which can be used to find the image position for
any given object position. A negative lens diverges light
rays and always forms a reduced-in-size virtual image of
a real object. The object-image distance formula and the
associated ray-tracing techniques can be used to find and
describe the images formed by both positive and negative
lenses.

17.4 Focusing Light with
Curved Mirrors
Most of us have had the experience of using a shaving or
makeup mirror that magnifies features on your face. This
experience can be even more disconcerting early in the
morning than that provided by an ordinary mirror. What is
going on here? How is the magnification accomplished?

Magnifying mirrors involve curved surfaces rather than
plane surfaces. The curvature is usually spherical in nature—the

surface of the mirror is a portion of a sphere. A spherical
reflecting surface has the ability to focus light rays in a man-
ner similar to a lens. Simple ray-tracing techniques can pro-
vide an understanding of the resulting images.

Ray tracing with a concave mirror
Mirrors that produce magnification are concave mirrors,
which means that light is being reflected from the inside
of a spherical surface. Their focusing properties can be un-
derstood by following rays that approach the mirror par-
allel to the axis, as shown in figure 17.20. The center of
curvature of the spherical surface lies on the axis, as shown,
and the law of reflection dictates where each ray will go.

Each ray that we have traced in figure 17.20 obeys the
law of reflection—the angle of reflection equals the angle
of incidence. The surface normal for each ray is found by
drawing a line from the center of curvature of the sphere to
the reflecting surface. A radius of a sphere is always per-
pendicular to its surface.

As you can see from the diagram, each ray is reflected
so that it crosses the axis at approximately the same point
as all the other rays. This point of intersection is the focal
point, labeled with the letter F. Like the focal point of a
lens, it is the point where rays coming in parallel to the
axis are focused. Since any of these rays could be reversed
in direction and still obey the law of reflection, rays that
pass through the focal point on their way to the mirror will
emerge parallel to the axis of the mirror.

We can also see from the diagram in figure 17.20 that
the distance of the focal point F from the mirror is approx-
imately half the distance of the center of curvature C from
the mirror. These two points, F and C, can be used in tracing

figure 17.19 Three rays are traced from the top of an
object to locate the image formed by a negative lens. The virtual,
upright image lies on the same side of the lens as the object and
is reduced in size.

F

o

3

1

2

i F

figure 17.20 Light rays approaching a spherical concave
mirror traveling parallel to the axis are reflected so that they all
pass approximately through a common focal point F. The focal
length f is half the radius of curvature R.

C F
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figure 17.21 Three rays are traced from the top of the
candle placed in front of the mirror. Extending the reflected rays
backward locates the top of the image behind the mirror.

figure 17.22 Light rays coming from an object located
beyond the focal point of a concave mirror converge to intersect
in front of the mirror forming an inverted real image.

C F
o i

2

3

1

o

i

2

1

3 C F

rays to locate and describe images formed by the mirror.
When you use such a mirror to examine your face, you
generally place your face “inside” the focal point (closer to
the mirror). This produces the magnified image that you
normally observe.

Figure 17.21 shows how rays can be traced to find the
image of an object placed inside the focal point of the mir-
ror. There are three rays that we can easily trace, but any
two of these rays would be sufficient to locate the image.
The three rays are:

1. A ray coming from the top of the object parallel to
the axis and reflected through the focal point.

2. A ray coming in through the focal point and reflected
parallel to the axis.

3. A ray coming in along a line passing through the
center of curvature and reflected back along itself.

The third ray comes in and out along the same line because
it strikes the mirror perpendicular to its surface. The angles
of incidence and reflection are both zero in this case.

When these three rays are extended backward, we see
that they all appear to come from a point behind the mir-
ror. This point defines the position of the top of the image.
The bottom of the image lies on the axis. We see the image
as lying behind the mirror and, as is obvious from the dia-
gram, magnified.

The resulting image is upright, magnified, and virtual. It
is a virtual image because, just as in the case of the plane
mirror, the light rays do not actually pass through the image.
The rays never get behind the mirror, but the image appears
to lie behind the mirror.

It is also possible to form real images with a concave
mirror. This occurs when the object is located beyond the
focal point of the mirror, as is illustrated in figure 17.22. In

this case, when the three rays are traced, we see that they
converge rather than diverge as they leave the mirror. The
rays coming from the top of the object intersect at a point
on the same side of the mirror as the object and then di-
verge again from this point. If our eyes collect these rays,
we see an image that lies in front of the mirror.

Since we are used to looking at images that lie behind a
mirror, it is a little harder for us to focus on one lying in front.
This image can be observed, however, using a curved makeup
or shaving mirror. As you move the mirror away from your
face, the original magnified image becomes larger and finally
disappears. It is replaced by an upside-down image that grows
smaller as you continue to move away from the mirror. This
image is a real image because the light rays do pass through
the image and then diverge again from these points. As is also
clear from the diagram, the image is inverted (upside down).

Object and image distances
Can we predict where an image will be found for a given
location of an object? One way of doing this is simply to
carefully trace the rays as already illustrated. Using trian-
gle relationships and the law of reflection, it is also pos-
sible to develop a quantitative relationship between the
object and image distances. The relationship turns out to be
the same as that stated earlier for a thin lens.

1
o

 � 
1

i
 � 

1

f
 .
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The object distance o, the image distance i, and the focal
length f are all measured from the vertex, the point where
the axis meets the mirror. As shown in figure 17.20, the
focal length is half the radius of curvature.

In the case shown in figure 17.22 these distances are all
positive quantities. In general, distances are positive if they
lie on the same side of the mirror as the light rays them-
selves. If they lie behind the mirror, the distances are nega-
tive. The exercise in example box 17.3 demonstrates the
use of the relationship between object and image distances.

The triangles in figures 17.21 and 17.22 can also be
used to find a relationship between the image height and
object height—or, in other words, the magnification, m.
This relationship is also the same as that obtained earlier
for a thin lens,

In example box 17.3, where the image distance is �10 cm
and the object distance �5 cm, the magnification is �2.0.
In other words, the image height is twice that of the object.
The fact that this magnification is positive indicates that the
image in this case is upright.

m � � 
i
o

 .

Convex mirrors
Up to this point, we have been considering concave mirrors,
which curve inward toward the viewer. What happens if the
mirror curvature is in the opposite direction? Convex mir-
rors, for which light is reflected from the outside of the
spherical surface, are used as wide-angle mirrors in store
aisles or as the side-view mirror on the passenger side of
a car. These mirrors produce a reduced-in-size image, but a
large field of view. It is this wide-angle view that makes
them useful.

Figure 17.23 pictures rays approaching a convex mirror
traveling parallel to the axis of the mirror. The center of
curvature C lies behind the mirror in this case. Lines drawn
from the center of curvature are perpendicular to the sur-
face of the mirror, as before. The law of reflection dictates
that the parallel rays will be reflected away from the axis as
shown. When the reflected rays are extended backward,
they all appear to have come from the same point F, the
focal point.

A convex mirror is therefore a diverging or negative
mirror. Parallel light rays diverge as they leave the mirror
rather than converging as they do with a concave mirror.
We can use the same ray-tracing techniques, however, to
locate an image. Figure 17.24 illustrates this process. The
ray coming from the top of the object traveling parallel to
the axis (1) is reflected as though it came from the focal

example box 17.3

Sample Exercise: Finding an Image
for a Concave Mirror

An object lies 5 cm to the left of a concave mirror with a
focal length of �10 cm. Where is the image? Is it real or
virtual?

o � 5 cm

f � 10 cm

i � ?

Since the image distance is negative, the image lies 10 cm
behind the mirror and is virtual. The situation is much like
that pictured in figure 17.21.

i  � � 10 cm

1

i
  � � 

1

10 cm

1

i
  � 

1

10 cm
 � 

2

10 cm

1

i
  � 

1

10 cm
 � 

1

5 cm

1

i
  � 

1

f
 � 

1
o

1
o

 � 
1

i
  � 

1

f

figure 17.23 Light rays traveling parallel to the axis of a
convex mirror are reflected so that they appear to come from
a focal point, F, located behind the mirror.

F C
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figure 17.24 Three rays are traced to locate the virtual
image of an object placed in front of a convex mirror. The
reflected rays diverge as though coming from the image point
behind the mirror.

o i

2

1

3

CF

point. A ray coming in toward the focal point (2) is reflected
parallel to the axis, and the ray coming in toward the cen-
ter of curvature (3) is reflected back along itself since it is
perpendicular to the surface.

When extended backward, these three rays all appear to
come from a point behind the mirror, thus locating the top
of the image. The image is virtual since it lies behind the
mirror, and it is obviously upright and reduced in size.
Check it out the next time you are in a store that has one of
these mirrors mounted above an aisle. The images are small
but cover a broad area.

The object-image distance formula introduced for con-
cave mirrors and lenses can also be used to locate images
for a convex mirror. The one difference is that the focal
length of a convex mirror must be treated as a negative quan-
tity, like that for a negative lens. The image formed by a
convex mirror always lies behind the mirror and therefore
the image distance will always be negative for any object
distance that you choose.

The side mirror on the passenger side of a car is usually
a convex mirror. It produces a wide-angle view of the traf-
fic lane to the right. Since it is a negative mirror, the image
is reduced in size and lies just behind the mirror as in fig-
ure 17.24. However, there is usually a warning written on
the mirror saying: “OBJECTS IN MIRROR ARE CLOSER
THAN THEY APPEAR.” How can this be if the image
being viewed is very close to the mirror itself?

The answer lies in the fact that our brains use many dif-
ferent cues to determine distance. In this case, since the
size of the image viewed in the mirror is small, our brains
interpret this as meaning that the vehicles must be farther
away than they actually are. We know the actual size of
that truck or car, and our brains use this size information to
determine distance. If you viewed some object of unknown
size, your binocular depth perception might place the image
of this object at the actual image location behind the mirror.

Mirrors with curved surfaces can be used to focus light
rays and form images. We can locate and describe these
images by tracing rays associated with the focal point of
the mirror and its center of curvature. The same formula
used for lenses can be used to relate object and image
distances for mirrors. A concave mirror produces a magni-
fied virtual image when the object is inside the focal point
and real images when the object is beyond the focal
point. A convex mirror produces a reduced-in-size image
for any object position, but provides a wide angle of view.

17.5 Eyeglasses, Microscopes,
and Telescopes
Lensmaking was an art that developed during the Renais-
sance. Before then, it was not possible to correct visual
problems such as nearsightedness or farsightedness or to
magnify objects with a magnifying glass. Once lenses be-
came common, though, it did not take long for people to
discover that they could be combined to make optical instru-
ments like microscopes and telescopes. Both were invented
in Holland in the early 1600s.

Correction of visual problems is still the most familiar
use of lenses. Most of us will wear eyeglasses at some
time in our lives, and many of us have worn them since
adolescence or even earlier. What goes wrong with our vi-
sion that requires corrective lenses? To answer that ques-
tion, we need to explore the optics of the eye itself.

How do our eyes work?
Our eyes contain positive lenses that focus light rays on the
back surface of the eyeball when working properly. As
shown in figure 17.25, the eye actually contains two posi-
tive lenses—the cornea, which is the curved membrane
forming the front surface of the eye, and the accommodat-
ing lens attached to muscles inside the eye. Most of the
bending of light occurs at the cornea. The accommodating
lens is more for fine-tuning.

There is a good analogy between the eye and a camera.
A camera uses a compound positive lens system to focus
light rays coming from objects being photographed onto the
film at the back of the camera. The lens system in a camera
can be moved back and forth to focus on objects at different
distances from the camera. In the eye, the distance between
the lens system and the back surface of the eye is fixed so
that we need a variable focal-length lens, the accommodat-
ing lens, to focus on objects at different distances.

The positive lenses form an inverted real image on the
retina, the layer of receptor cells on the back inside surface of
the eye. The retina plays the role of the film in a camera and
is the sensor that detects the image. In a digital camera, the
film is replaced with an array of tiny light detectors, making
the analogy to the retina even better. The light reaching the
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cells in the retina initiates nerve impulses that are carried to
our brain. Similarly, the detector array in a digital camera
sends electrical signals to the memory card, creating an
image. The brain processes the nerve impulses received from
both eyes and interprets the image according to its experi-
ence. Most of the time this interpretation is straightforward,
and what we see is what we get, but at times, the brain’s
interpretation can produce misleading impressions.

Even though the image on the retina is upside down,
our brains interpret the scene as right side up. Interestingly,
if we fit people with inverting lenses that turn the image on
the retina right side up, they initially see things as being
upside down. After some time, the brain makes an adjust-
ment, and they begin to see things right side up again. Every-
thing is fine until they take the inverting lenses off. Then
everything appears to be upside down again until the brain
readjusts! A great deal of processing takes place between the
signal received by your eyes and what you actually perceive.

What problems are corrected
with eyeglasses?
The most common visual problem of people who do a lot
of reading is nearsightedness or myopia. The eyes of a
nearsighted person bend the light rays from a distant object
too strongly, causing them to focus in front of the retina, as
in figure 17.26a. By the time the rays reach the retina, they
are diverging again and no longer form a sharp focus.
Things appear fuzzy, although we sometimes fail to notice,

because we grow accustomed to this indistinct view. A
myopic person can see near objects distinctly, because the
incident light rays are diverging more strongly from a near
object than from a distant object.

Negative eyeglass lenses correct for the tendency of the
eye itself to converge the light rays too strongly (fig. 17.26b).

figure 17.25 Light rays entering the eye from a distant object are focused on the back surface of the eye (the retina) by the cornea
and the accommodating lens, much as light rays are focused on the film (or detector array) by a camera lens.

Cornea
Retina

Optic
nerve

Accommodating
lens

Iris

Film
(or detector
array)

figure 17.26 For a nearsighted person, parallel light
rays from a distant object are focused in front of the retina.
A negative lens placed in front of the eye can correct this problem.

(b)

(a)
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figure 17.27 A microscope consists of two positive lenses separated by a connecting tube (not shown). The real image formed by
the first lens is viewed through the second lens. Both lenses produce magnification.

Fo

Fo Fe

Fe

Virtual image

Object Real image

Since a negative lens diverges light rays, it compensates for
the excessive convergence by the lenses in the eye and
forms distinct images of distant objects on the retina. For a
nearsighted person who has not worn glasses before, the
difference can be striking.

A farsighted person has the opposite problem. The eye
does not converge light rays strongly enough, and images
of near objects are formed behind the retina. Positive lenses
correct this problem. Laser refractive surgery (see everyday
phenomenon box 17.2) can correct both nearsightedness
and farsightedness by reshaping the cornea, eliminating
the need for eyeglasses.

As we age, the accommodating lenses lose their flexibil-
ity. We gradually lose the ability to change the converging
power of our eyes and cannot focus on near objects, since
light rays diverge more strongly from near objects than
from distant objects. At this point, we need bifocals, in
which the top half of the lens has one focal length and
the bottom half another. We look through the bottom half
to do close work and through the top half to view distant
objects.

How does a microscope work?
How are lenses combined to form a microscope? A micro-
scope consists of two positive lenses spaced as shown in fig-
ure 17.27. They are usually held together by a connecting
tube, which is not shown in the diagram. If you have ever
used a microscope, you know that the object being viewed
is placed near the first lens, called the objective lens.

The objective lens forms a real, inverted image of the
object, provided that the object lies beyond the focal point
of the objective lens. If the object lies just beyond this
focal point, the real image has a large image distance and
the image is magnified. This can be verified by tracing rays
or by using the object-image distance formula.

Since light rays actually pass through a real image and
diverge again from that point, this real image becomes the

object for the second lens in the microscope. The eyepiece
lens, or ocular, is used like a magnifying glass to observe
the real image formed by the objective lens. This real
image is focused just inside the focal point of the eyepiece,
which then produces the magnified virtual image that we
see. The virtual image is also located farther from your eye,
so that it can be focused on more readily (fig. 17.27).

Both lenses in a microscope cooperate to produce the
desired magnification. The objective lens forms a magni-
fied real image, and this image is magnified again by the
eyepiece. The overall magnification of the microscope is
found by multiplying these two magnifications together,
sometimes achieving magnifications of several hundred
times the original object size.

Since eyepiece powers have a limited range, the magni-
fication power of a microscope is determined primarily by
the power of the objective lens. A high-power objective lens
has a very short focal length, and the object must be placed
very close to the objective lens. Microscopes often have
two or three different objective lenses of different powers
mounted on a turret (fig. 17.28).

The invention of the microscope opened up a whole new
world for biologists and other scientists. Microorganisms
too small to be seen with the naked eye or with a simple
magnifying glass became visible when viewed through a
microscope. Seemingly clean pond water was revealed to
be teeming with life. The structure of a fly’s wing and var-
ious kinds of human tissue suddenly became apparent. The
microscope is a striking example of how developments in
one area of science have a dramatic impact on other areas.

How does a telescope work?
The development of the microscope opened up the world
of the very small. The earlier invention of the telescope
had an equally dramatic impact in opening up the world of
distant objects. Astronomy was the primary beneficiary. A
simple astronomical telescope, like a microscope, can be
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Laser Refractive Surgery

The Situation. Megan Evans has been nearsighted since her
early teens. She has worn contact lenses for several years after
first using spectacle lenses. Now in her twenties, she has heard
friends talk about a new procedure called laser refractive
surgery that can allow people to see well without corrective
lenses. She is intrigued and wants to know more about it.

How can bombarding her eye with a laser beam improve
her vision? She knows that lasers can be dangerous in other
situations. Is this procedure safe? How does it work, and can
it help her situation?

The Analysis. In our culture, myopia or nearsightedness is
the most common visual problem. It may develop from doing
a lot of near work such as reading during childhood, although
there are also hereditary factors. As is described in figure
17.26, the lens system of the myopic eye is too strong, which
causes light from distant objects to focus in front of the
retina rather than on the retina.

Most of the optical power of the eye is produced by the
front surface of the cornea. Optical power is measured in
diopters, which is the reciprocal of the focal length measured
in meters (P � 1/f ) when the lens is surrounded by air. The
shorter the focal length, the stronger the optical power
because a short focal length implies that the light rays are
being strongly bent by the lens. The overall power of the lens
system of the eye is about 60 diopters, but the front surface
of the cornea produces 40 to 50 diopters by itself.

The optical power of the cornea (or of any lens) is deter-
mined by two things—how strongly the surface is curved
and the difference in index of refraction on either side of the
surface. For a nearsighted person, the surface of the cornea
is too strongly curved for the length of the eyeball. It is not
unusual for a person like Megan to have an optical power
of the cornea that is too strong by 4 to 5 diopters. She then
requires a corrective lens of �4 to �5 diopters to allow her
to see distant objects clearly.

The purpose of laser refractive surgery is to reshape the
cornea by vaporizing different portions of the cornea by
different amounts. The most commonly used procedure is
called LASIK, which is an acronym for laser assisted in situ
keratomileusis. In this procedure, the surgeon cuts a circular
flap of the outer layer of the cornea with a surgical scalpel
and pulls this flap to the side as shown in the drawing. She
then uses a pulsed excimer laser to vaporize small amounts of
corneal tissue to produce a predetermined new shape for the
central portion of the cornea. When finished, the flap of the
outer layer is replaced.

The excimer laser used has a wavelength of 192 nm, which
lies in the ultraviolet portion of the spectrum. This wavelength

is strongly absorbed by corneal tissue, so it vaporizes or
ablates this tissue without heating the surrounding tissue.
The laser operates in a pulsed mode, with each pulse deliver-
ing a definite amount of energy. The surgeon can then control
how much tissue is ablated by the number of pulses that are
delivered to each section of the cornea. This is all controlled
by a computer program to achieve the desired new shape.

The LASIK procedure is done on an outpatient basis, and
the cornea heals in just a few days. When successful, the
reshaped cornea generally allows a person to discard their
glasses or contact lenses. Sometimes a weak correction is still
needed because the cornea does not heal to quite the desired
power. Older people who have lost the ability to accommo-
date will generally still need reading glasses unless one eye is
shaped to have a stronger power than the other. The LASIK
procedure is most commonly used to cure myopia where the
goal is to flatten the shape of the cornea. It can also be used,
though, for farsightedness (hyperopia) or astigmatism. In the
case of astigmatism, the cornea is not spherical and this can
also be addressed by reshaping with the laser.

Is the procedure safe? The jury is still out on possible long-
term effects, but most patients experience only minor prob-
lems, if any. There is always a small risk of infection or poor
healing, as with any surgical procedure. People sometimes
experience problems with night vision after undergoing
LASIK. This is because only the central portion of the cornea
is reshaped so there is then a circular boundary between the
reshaped and untreated portions of the cornea. At night when
light levels are low, the pupil of the eye opens more widely
and some light may get through this boundary region produc-
ing blurring of the image.

everyday phenomenon
box 17.2

Laser beam

Flap

Iris

Cornea

In the LASIK procedure a circular flap of the outer layer of the cornea
is pulled aside. Controlled pulses from the laser reshape the central
region of the cornea.
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figure 17.28 A laboratory microscope often has three or
four objective lenses mounted on a rotatable turret. Light passes
through the object slide from a source below the slide.

figure 17.29 The objective lens of a telescope forms a real, reduced image of the object, which is then viewed through the
eyepiece. The real image is much closer to the eye than the original object. (Not drawn to scale.)

Fo

Fo Fe Fe

constructed from two positive lenses. How does a tele-
scope differ from a microscope in its design and function?

Distant objects, such as stars, are very large but so far
away that they appear to be tiny. One obvious difference be-
tween the uses of a microscope and a telescope is that objects
viewed with a telescope are much farther from the objec-
tive lens. As shown in figure 17.29, the objective lens of a
telescope, like a microscope, forms a real image of the ob-
ject, which is then viewed through the eyepiece. Unlike the
microscope, however, the real image formed by a telescope
is reduced in size rather than magnified.

If the real image formed by the objective lens is smaller
than the object, how can there be an advantage to using a
telescope? The answer is that this image is much closer to
the eye than the original object. Even though this image is
smaller than the object itself, it forms a larger image on the
retina of the eye when viewed through the eyepiece.
Figure 17.30 shows two objects of equal height at different
distances from the eye. By assuming that the images of
both objects are focused on the retina and tracing just the
central undeviated ray from the top of each object, we see
that the nearer object forms a larger image on the retina.

When you want to see fine detail on an object, you
bring the object closer to your eye to take advantage of
the larger image formed on the retina. Since the size 
of the image on the retina is proportional to the angle
that the object forms at the eye, we say that we have
achieved an angular magnification by bringing the object
nearer. We are limited in how close we can bring the
object by the focusing power of the eye. The eyepiece of
either a telescope or microscope solves this problem by
forming a virtual image farther from the eye but at the
same angle as the original real image.

The magnifying effect of a telescope is basically an an-
gular magnification. Because it is closer to the eye, the
image seen through the telescope forms a larger angle at
the eye than the original object. This larger angle produces
a larger image on the retina and allows us to see more detail
on the object, even though the real image is much smaller
than the actual object.

The overall angular magnification produced by a tele-
scope is equal to the ratio of the focal lengths of the two
lenses,

where fo is the focal length of the objective lens, fe is the
focal length of the eyepiece lens, and M is the angular
magnification. A minus sign is sometimes included in this

M � (�) 
fo

fe

,
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relationship to indicate that the image is inverted. From
this relationship, we see that it is desirable to have a large
focal length for the objective lens of a telescope to produce
a large angular magnification. A microscope, on the other
hand, uses an objective lens with a very short focal length.
This is the fundamental difference in the design of tele-
scopes and microscopes.

The large telescopes used in astronomy have concave
mirrors instead of lenses for the objective lens. The objects
astronomers study are often very dim, and the telescope must
collect as much of their light as possible. This requires an
objective lens or mirror with a large aperture, or opening, for

the incoming light. Since it is easier to make and physically
support large mirrors than large lenses, concave mirrors are
used in the telescopes at most observatories.

Binoculars and opera glasses
The image formed by an astronomical telescope is inverted,
like the image formed by a microscope. The inverted image
is not a big problem for viewing stars or planets, but it can
be confusing for viewing objects on land. The most famil-
iar form of land or terrestrial telescope is a pair of prism
binoculars, which use multiple reflections in the prisms to
reinvert the image (fig. 17.31).

Opera glasses are a simpler form of terrestrial tele-
scope. The two tubes are straight, and the image is re-
inverted by using negative instead of positive lenses for the
eyepieces. Using negative lenses has the additional ad-
vantage of making the tubes shorter because the negative
lenses must be placed in front of where the real image
would be formed. The disadvantage of opera glasses is
their narrow field of view and weak magnification. They fit
into a purse or pocket more readily than prism binoculars,
though.

The two tubes in binoculars and opera glasses allow us to
use both eyes when viewing distant objects. Using both eyes
preserves some of the three-dimensional aspects of what we
see. In normal vision, your two eyes form slightly different
images of what you are viewing, because each eye sees
objects from a slightly different angle. Your brain interprets
these differences as being produced by three-
dimensional features of the scene. Try closing one eye when
you are viewing near objects, and then reopen that eye.

figure 17.30 Two objects of the same size but at different distances from the eye form different-sized images on
the retina. We can see more detail on the nearer object.

figure 17.31 Opera glasses and prism binoculars employ
different means of reinverting the image so that it is upright.
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For many purposes, the propagation of light can be studied using
rays drawn perpendicular to the wavefronts. The laws of reflec-
tion and refraction are the basic principles governing these rays.
Using these ideas, we can explain how images are formed by mir-
rors and lenses and how these elements can be combined to make
optical instruments.

1 Reflection and image formation. The law of re-
flection states that the angle that the reflected ray makes to an
axis drawn perpendicular to the surface equals the angle made by
the incident ray. The image formed by a plane mirror is the same
distance behind the mirror as the object is from the front of the
mirror. Light rays appear to diverge from this image.

3 Lenses and image formation. Lenses can focus light
rays to form either real or virtual images. A convex or positive
lens converges light rays and can be used as a magnifying glass.
A concave or negative lens diverges light rays and forms reduced
images. Image positions can be predicted by ray tracing or by
using the object-image equation.

summary

2 Refraction of light. A light ray passing into glass or
water from air is bent toward the axis by an amount that depends
on the index of refraction n. Because of this bending, the image
of an underwater object seems to lie closer to the surface than it
actually does. The index of refraction depends on the wavelength
of the light causing dispersion or different amounts of bending
for different colors.

4 Focusing light with curved mirrors. A mirror with
a spherical curved surface can focus light so that incoming paral-
lel rays pass through or appear to come from a single focal point.
A concave mirror can form real images or magnified virtual im-
ages depending upon the object position. A convex mirror forms
reduced virtual images with a wide angle of view.

5 Eyeglasses, microscopes, and telescopes. Lenses
can be used to correct vision problems and can also be combined
to make optical instruments. Negative lenses are prescribed for
nearsightedness and positive lenses for farsightedness. A micro-
scope forms a magnified real image of the object with the objec-
tive lens. This real image is then magnified again when viewed
through the eyepiece. A telescope produces an angular magnifica-
tion by forming an image of a distant object that is much nearer
to the eye than the original object.

376 Chapter 17 Light and Image Formation

Can you see the difference? A person with just one functional
eye sees a flatter world at first, although the brain can make
use of head movements and other cues for judging distances.

Our eyes are similar to cameras. They use positive lenses
to focus an inverted image on the retina or film. If the
point of focus does not lie on the retina, we need correc-
tive lenses. Negative lenses are used to correct nearsight-
edness and positive lenses to correct farsightedness.

A microscope uses a combination of positive lenses to
produce a magnified virtual image. The overall magnifi-
cation is the product of the magnifications produced by
each lens. A telescope produces an angular magnification
of distant objects by bringing the image that we view
closer to our eyes. Binoculars and opera glasses are ter-
restrial telescopes that reinvert the image and allow us
to use both eyes.
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key terms

Geometric optics, 356
Physical optics, 356
Wavefront, 356
Surface normal, 357
Law of reflection, 357
Index of refraction, 359
Law of refraction, 360

Dispersion, 363
Positive lens, 364
Focal point, 364
Focal length, 364
Ray-tracing with lenses, 365
Ray-tracing with mirrors, 368
Magnification, 365

Negative lens, 366
Concave mirror, 367
Convex mirror, 369
Myopia, 371
Microscope, 372
Telescope, 372

* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. Does either the velocity or the speed of light change when
a beam of light is reflected from a mirror? Explain.

Q2. Does light actually pass through the position of the image
formed by a plane mirror? Explain.

Q3. How can an image lie behind a mirror hanging on a wall
when no light can reach that point? Explain.

*Q4. When you view your image in a plane mirror, your right
hand appears to be your left hand and vice versa. Explain
how this reversal occurs.

Q5. If you want to view your full height in a plane mirror, must
the mirror be as tall as you are? Explain using a ray diagram.

Q6. Can a plane mirror focus light rays to a point like a posi-
tive lens does? Explain.

Q7. Objects A, B, and C lie in the next room hidden from di-
rect view of the person shown in the diagram. A plane mir-
ror is placed on the wall of the passageway between the
two rooms as shown. Which of the objects will the person
be able to see in the mirror? Explain using a ray diagram.

perpendicular to the surface) of the glass or away from that
axis? Explain.

Q10. Does either the speed or the velocity of light change when
light passes from air into a glass block? Explain.

Q11. When we view an underwater object, is the image we see a
real image or a virtual image? Explain.

Q12. A fish swimming in a pond looks up at an object lying a
couple of feet above the surface of the water. Does this ob-
ject appear to the fish to lie nearer to the surface or farther
from the surface than its actual distance? Explain.

Q13. A light ray traveling in glass for which the critical angle
is 42° strikes a surface between the glass and air at an
angle of 45° to the surface normal. Is this ray refracted
into the air at this surface? Explain.

Q14. Do light waves of different colors all travel at the same
speed in glass? Explain.

Q15. Is reflection or refraction responsible for the separation of
colors in a rainbow? Explain.

Q16. Can we see a rainbow looking eastward if it is raining in
the early morning? Explain.

Q17. An object is located at a distance twice the focal length
from a positive lens. Trace three rays from the top of the
object to locate the image. Is the image real or virtual,
erect or inverted?

Q18. Is it possible to form a virtual image with a positive (con-
verging) lens? Explain.

Q19. An object is located at the left-side focal point of a negative
lens. Trace three rays from the top of the object to locate the
image. Is the image real or virtual, erect or inverted?

*Q20. Is there any position that an object could be placed in
front of a negative (diverging) lens that will result in the
formation of a real image? Explain.

Q21. Suppose that light rays approach a negative lens so that
they are converging toward the focal point on the far side
of the lens. Will these rays be diverging when they leave
the lens? Explain.

Q22. Do rays traveling parallel to the axis of a concave mirror
pass through the center of curvature of the mirror after
they are reflected? Explain.

Mirror

Wall
Person A B

C

questions

*Q8. When two plane mirrors are joined at right angles to one
another, three images of an object can be seen. The image
of the object formed by each mirror can serve as object for
the other mirror. Where is the third image located? Explain
using a ray diagram.

Q9. A light ray traveling in water (n � 1.33) passes from the
water into a rectangular piece of glass (n � 1.5). Is the
light ray bent toward the surface normal (the axis drawn

Q7 Diagram
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Q23. An object is located at the center of curvature of a con-
cave mirror. Trace two rays from the top of the object to
locate the image formed by the mirror. Is the image real
or virtual, upright or inverted? Explain.

Q24. An object is located inside the focal point of a concave
mirror. Will the image of the object be nearer or farther
from the observer than the object itself? Explain.

Q25. Is there any distance at which an object can be located in
front of a convex mirror that will produce a real image?
Explain.

Q26. Why would you use a convex mirror rather than a concave
or plane mirror for viewing activities in a store aisle?
Explain.

*Q27. When a convex mirror is used as a side-view mirror on an
automobile, where is the image located? Why does print-
ing on the mirror warn you that vehicles may be closer
than they appear to be when viewed in the mirror? Explain.

Q28. Does a nearsighted person have trouble seeing near ob-
jects? Explain.

Q29. Would you use a positive lens or a negative lens to cor-
rect the vision of a farsighted person? Explain.

Q30. Does each of the two lenses used in a microscope produce
a magnification of the object being viewed? Explain.

Q31. Does each of the two lenses used in a telescope produce a
magnification of the object being viewed? Explain.

Q32. Is it possible to produce an angular magnification of an
object by simply bringing the object closer to your eye?
Explain.

Q33. Is the objective lens of a microscope likely to have a longer
focal length than that of the objective lens of a telescope?
Explain.

Q34. What advantages might there be to using binoculars rather
than an astronomical telescope for viewing distant objects
on land? Explain.

E1. A man with a height of 1.8 m stands 3.0 m in front of a
plane mirror viewing his image. How tall is the image, and
how far from the man is the image located?

E2. A fish lies 80 cm below the surface of a clear pond. If the
index of refraction of water is assumed to be 1.33 and that
of air is approximately 1, how far below the surface does
the fish appear to a person looking down from above?

E3. A rock appears to lie just 24 cm below the surface of a
smooth stream when viewed from above the surface of the
stream. Using the indices of refraction given in exercise 2,
what is the actual distance of the rock below the surface?

E4. An insect is embedded inside a glass block (n � 1.5) so
that it is located 2.4 cm below a plane surface of the block.
How far from this surface does this insect appear to a per-
son looking at the block?

E5. A positive lens has a focal length of 6 cm. An object is lo-
cated 24 cm from the lens.
a. How far from the lens is the image?
b. Is the image real or virtual, erect or inverted?
c. Trace three rays from the top of the object to confirm

your results.

E6. A positive lens has a focal length of 12 cm. An object is lo-
cated at a distance of 3 cm from the lens.
a. How far from the lens is the image?
b. Is the image real or virtual, erect or inverted?
c. Trace three rays from the top of the object to confirm

your results.

E7. A positive lens forms a real image of an object placed 8 cm
to the left of the lens. The real image is found 16 cm to the
right of the lens. What is the focal length of the lens?

E8. A negative lens has a focal length of �10 cm. An object is
located 20 cm from the lens.
a. How far from the lens is the image?
b. Is the image real or virtual, erect or inverted?

E9. A magnifying glass with a focal length of �4 cm is placed
2 cm above a page of print.
a. At what distance from the lens is the image of the page?
b. What is the magnification of this image?

E10. A concave mirror has a focal length of 12 cm. An object is
located 6 cm from the surface of the mirror.
a. How far from the mirror is the image of this object?
b. Is the image real or virtual, upright or inverted?

E11. A concave mirror has a focal length of 10 cm. An object is
located 30 cm from the surface of the mirror.
a. How far from the mirror is the image of this object?
b. Is the image real or virtual, upright or inverted?
c. Trace three rays from the top of the object to confirm

your numerical results.

E12. A convex mirror has a focal length of �10 cm. An object
is located 10 cm from the surface of the mirror.
a. How far from the mirror is the image of this object?
b. Is the image real or virtual, upright or inverted?
c. Trace three rays from the top of the object to confirm

your numerical results.

E13. A convex mirror used in a store aisle has a focal length of
�60 cm. A person in the aisle is 3.0 m from the mirror.
a. How far from the mirror is the image of this object?
b. If the person is 1.8 m tall, how tall is the image viewed

in the mirror?

exercises
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E14. The objective lens of a microscope has a focal length of
0.4 cm. An object on the microscope slide is placed at a
distance of 0.5 cm from the lens.
a. At what distance from the lens is the image formed by

the objective lens?
b. What is the magnification of this image?

E15. The objective lens of a telescope has a focal length of 1.0 m.
An object is located at a distance of 10 m from the lens.
a. At what distance from the objective lens is the image

formed by this lens?
b. What is the magnification of this image?

E16. A telescope has an objective lens with a focal length of
�40 cm and an eyepiece with a focal length of �2.5 cm.
What is the angular magnification produced by this
telescope?

E17. A telescope that produces an overall angular magnification
of 20� uses an eyepiece lens with a focal length of 2.5 cm.
What is the focal length of the objective lens?

SP1. A fish is viewed through the glass wall of a fish tank. The
index of refraction of the glass is 1.5 and that of the water
in the tank is 1.33. The fish lies a distance of 6 cm behind
the glass. Light rays coming from the fish are bent as they
pass from the water to the glass and then again as they pass
from the glass to air (n � 1). The glass is 0.4 cm thick.
a. Considering just the first interface between the water

and the glass, how far behind the glass does the image
of the fish lie? (This is an intermediate image formed
by bending of light at just the first surface.)

b. Using this image as the object for the second interface
between the glass and air, how far behind the front sur-
face of the glass does this “object” lie?

c. Considering the bending of light at this second interface
between the glass and air, how far behind the front sur-
face of the glass does the fish appear to lie?

SP2. An object is located at the focal point of a positive lens
with a focal length of 12 cm.
a. What is the image distance predicted by the object-

image distance formula?
b. Trace two rays to confirm the conclusion of part a.
c. Will the image be in focus in this situation? Explain.

SP3. An object with a height of 2.5 cm lies 10 cm in front of a
lens with a focal length of 6 cm.
a. Using the object-image distance formula, calculate the

image distance for this object.
b. What is the magnification of this image?
c. Trace three rays to confirm your conclusions of parts a

and b.
d. Suppose that this image serves as the object for a sec-

ond lens that has a focal length of �4 cm. The second
lens is placed 6 cm beyond the image serving as its
object. Where is the image formed by this second lens,
and what is its magnification?

e. What is the overall magnification produced by this two-
lens system?

SP4. An object 2 cm tall is located 30 cm from a concave mirror
with a focal length of 15 cm. Since the focal length is half
the radius of the curvature, the object is located at the cen-
ter of curvature of the mirror.
a. Using the object-image distance formula, find the loca-

tion of the image.
b. Calculate the magnification of this image.
c. Is the image real or virtual, upright or inverted?
d. Trace two rays from the top of the object to confirm

your results.

SP5. Suppose that a microscope has an objective lens with a
focal length of 0.8 cm and an eyepiece lens with a focal
length of 2.5 cm. The object is located 1.0 cm in front of
the objective lens.
a. Calculate the position of the image formed by the ob-

jective lens.
b. What is the magnification of this image?
c. If the eyepiece lens is located 2 cm beyond the position

of the image formed by the objective lens, where is the
image formed by the eyepiece lens? (The image formed
by the objective serves as the object for the eyepiece.)

d. What is the magnification of this image?
e. What is the overall magnification produced by this two-

lens system? (This is found by multiplying the magnifi-
cations produced by each lens.*)

*This is not the usual way of calculating the magnifying power of a mi-
croscope. The standard method compares the size of the angle subtended
at the eye with and without the use of the microscope (called angular
magnification).

synthesis problems
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HE1. Fill a clear glass almost to the top with water and insert
various objects into the water.
a. Do the objects appear to be shorter than their actual

length when viewed from above the glass?
b. Do the objects appear to be shorter than their actual

length when viewed through the sides of the glass?
What distortions do you notice when viewing the ob-
jects through the sides?

HE2. Locate two small plane mirrors like the ones often carried
in a purse. Place the two mirrors next to each other so that
they touch along one edge, making an angle of 90° be-
tween the two mirrors. Place a small object like a paper
clip in front of the two mirrors.
a. How many images do you see in the two mirrors when

the angle between the mirrors is a right angle (90°)?
b. As you decrease the angle between the two mirrors, de-

scribe what happens to the number of images that you
can see.

c. Using the idea that each of the images formed can
serve as an object for the other mirror, can you explain
your observations? (Ray diagrams may be useful.)

HE3. If you have a magnifying (concave) mirror available, such
as a shaving or makeup mirror, try moving the mirror
slowly away from your face.
a. Describe the changes in the image of your face as the

mirror is moved away from your face.
b. The image should become blurred and indistinct when

your face is at the focal point of the mirror. Can you es-
timate the focal length of the mirror by finding the dis-
tance from your face where the image disappears?

HE4. The passenger-side side-view mirror on most cars is a con-
vex mirror. (The warning that objects may be closer than
they appear indicates that the mirror is convex.)
a. View some object of known height in the mirror. A

friend will serve nicely. Estimate the height of the
image viewed in the mirror. What is the approximate
magnification produced by the mirror?

b. Using your binocular depth perception, estimate the
distance behind the mirror that the image is located.
(You first have to convince your brain that the image is
behind the mirror.) Estimate also the distance of the ob-
ject from the mirror. Using these values, calculate the
focal length of the mirror. (It should be negative.)

HE5. If you have access to an overhead projector, examine the
device carefully so that you can describe the optical sys-
tem involved.
a. What optical elements (lenses or mirrors) are present?
b. What is the function of each of these elements? (Hold-

ing a white card or stiff paper at various places between
the elements when the projector is in use may help you
analyze their function.)

c. Can you produce a ray diagram showing how the rays
coming from the object (the transparency being viewed)
converge or diverge on their way to the screen?

home experiments and observations
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The idea that matter is made up of tiny particles
called atoms has a long history dating at least to the
early Greeks, a few hundred years before the birth of
Christ. We knew virtually nothing about the struc-
ture of atoms, though, until the early part of the
twentieth century. In fact, just before the turn of
that century, physicists debated whether atoms ex-
isted at all—or were merely a convenient fiction used
mainly by chemists. At that time, the evidence for
the existence of atoms was not overwhelming.

From about 1895 to 1930, a series of discoveries
and theoretical developments revolutionized our view
of the nature of the atom. We went from knowing
almost nothing about the structure of atoms (and
even questioning their existence) to a firmly based
theory of their structure capable of explaining an
enormous range of physical and chemical phenom-
ena. This revolution is surely one of the greatest
achievements of the human intellect, with wide-
ranging implications for our economy and technol-
ogy. Its story deserves to be understood by more
than a small fraction of our population.

The discovery of the electron in 1897, followed by
the discovery in 1911 that an atom has a nucleus,
were critical breakthroughs that provided building

blocks for atomic models. Niels Bohr’s model of the
atom put some of these pieces together and stimu-
lated research that led to the more complete and
highly successful theory that we now call quantum
mechanics. Quantum mechanics serves as the basis
for most work in theoretical physics and chemistry; its
detailed predictions about the nature of the atom have
spawned many advances in science and technology.

The nucleus of the atom, that tiny center contain-
ing all of the positive charge and most of the atom’s
mass, has also been found to have an underlying struc-
ture. Advances in nuclear physics, discussed in chapter
19, led to the invention of nuclear reactors and nu-
clear weapons, which thrust physics into world poli-
tics. The story of the development of the atomic bomb
during World War II is a fascinating mixture of human
ingenuity and conflict. Science and world politics
have both been irrevocably changed in the process.

The twentieth century has seen a revolution in
our understanding of the atom and in the role of sci-
ence in modern life. This revolution may be a mixed
blessing, but it cannot be ignored: it involves chem-
istry and molecular biology as well as physics. Chap-
ters 18 and 19 look at how this revolution began—
where it will lead is an open question.

The Atom and
Its Nucleus

unit

Five
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chapter overview
Our principal goals in this chapter are to investigate some of the
evidence for the existence of atoms and to describe several discoveries
that led to an understanding of the structure of atoms. We will begin
with evidence from chemistry and proceed to the discoveries of the
electron, X rays, natural radioactivity, the nucleus of the atom, and
atomic spectra. We will then discuss the Bohr model of the atom and its
relationship to the modern view given by the theory of quantum
mechanics.

chapter outline
1 The existence of atoms: Evidence from chemistry. What information

does the study of chemical reactions offer about the existence and
nature of atoms? How was the periodic table of the elements
developed?

2 Cathode rays, electrons, and X rays. How are cathode rays produced,
and what are they? How did the study of cathode rays lead to the
discovery of the electron and of X rays?

3 Radioactivity and the discovery of the nucleus. How was natural
radioactivity discovered, and what is it? What role did natural
radioactivity play in the discovery of the nucleus of the atom?

4 Atomic spectra and the Bohr model of the atom. What are atomic
spectra? What role did they play in understanding atomic structure?
What are the basic features of Bohr’s model of the atom?

5 Particle waves and quantum mechanics. What were the limitations of
the Bohr model, and how does the theory of quantum mechanics
address these problems? What do we mean when we say that
particles have wave properties?
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figure 18.1 A stylized atom. Does an atom really look 
like this?

18.1 The Existence of Atoms:
Evidence from Chemistry
Why should we believe in the existence of things that we
have never personally seen? Why did many nineteenth-
century scientists talk with confidence of the existence and
properties of the atoms of different substances when they
knew nothing about their actual structure? What in our
everyday experience may cause us to believe in atoms?

Much of modern science involves things that we cannot
see directly. We infer their existence from observations that,
taken together, provide convincing evidence of their behav-
ior and characteristics. In the case of atoms, much early
evidence came from the study of chemistry. Chemical pro-
cesses are very common in our daily life, although we may
not give them much thought. If the concept of atoms were
not already available, you might have to invent the idea
just to explain these phenomena.

What did early studies in chemistry
reveal about atoms?
Chemistry is the study of the differences in substances and
how they can be combined to form still other substances.
During early Greek civilization, philosophers tried to iden-
tify the elementary substances from which all things are
made. Fire, earth, water, and air were the early candidates.
Clearly, those choices required some refinement. Earth, in
particular, was capable of taking on many forms.

One of the most striking demonstrations in elementary
chemistry involves taking a small tablet of dye or food col-
oring and dropping it into a glass of water (fig. 18.2). Rather
quickly the color diffuses, until the originally clear water
becomes a uniformly colored fluid. Evidently, a change has
taken place, but how might we explain that change?

figure 18.2 A tablet of food coloring is dropped into a
glass of water. How might we explain what happens?

Have you ever seen an atom? You have certainly
heard people talk about atoms and have probably seen
pictures of atomic models like the one in figure 18.1, but
do you know why we think atoms exist? Perhaps the
question that should be posed is, Do you believe in
atoms? And, if so, why?

Most of us have accepted the existence of atoms
based on the pronouncements of textbooks or teachers
dating back to our elementary-school days. You may be
shocked to learn that many of those teachers never seri-
ously questioned why they believed in atoms or under-
stood where our evidence for the existence of atoms
originated. Why, then, should you believe in atoms or in
descriptions of their structure?

Although we cannot see atoms directly and we may
not recognize them as part of our everyday experience,
atomic phenomena are evident in our everyday world.
The operation of a television set, chemical changes that
occur in our bodies, the use of diagnostic X rays, and
many other common phenomena can all be understood
by relying on our modern knowledge of atomic behavior.

Most important, we will consider the question of why
we believe in the existence of atoms and in our models
of atomic structure. How have these ideas developed?
Understanding how our knowledge of the atom origi-
nated can make atoms themselves seem more real.
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Even without instruction in the language of chemistry,
we might find ourselves thinking that tiny particles of the
dye migrate in the water and move between particles of
the water through spaces that are not apparent. Similar ex-
planations might account for the disappearance of sugar or
salt when placed in water or other fluids.

We also know that almost any solid substance can be
crushed into a fine powder. By subjecting that powder to
heat (or fire), we often can form a solid again, although
perhaps modified compared to the original substance. If
the powder is combined with some other powdered substance
and heated, the resulting product can be quite different
from either of the original substances. Baking is a famil-
iar example of that process, but experiments in refining
and modifying metals may have been the most important
examples in early chemistry. Alchemists were enticed by
the elusive prospect of making gold from more
common metals.

Is it possible to reduce something into a powder of ever-
smaller particles? Early scientists were tempted to think
that this was not the case. Since certain elementary sub-
stances always seemed to be retrievable from their experi-
ments, they assumed that irreducible particles of these
substances retained their form. The notion that each of the
elementary substances or elements was made up of tiny
particles or atoms was an attractive model for explaining
chemical phenomena. Such atoms might then combine
with atoms of other elements to form different substances
but could always be retrieved from these substances by
sufficient heating or other processes.

Systematic study of how elements combined with each
other revealed regularities and rules that formed the basis
of early chemical knowledge. Clearly, certain elements were
more alike in their properties and reactions than others.
Elements could thus be grouped or classified, which further
suggested that the atoms of these elements must have sim-
ilarities in structure. The details of that structure, and even
the size of the atoms, were completely unknown and seem-
ingly inaccessible.

Is mass conserved in chemical reactions?
The birth of modern chemistry is often dated to the work of
the French scientist, Antoine Lavoisier (1743–1794). Lavoi-
sier discovered that the total mass of chemical reactants
and products is conserved in chemical reactions. This dis-
covery established the importance of weighing the reactants
and products, which has since become a routine procedure
in most chemical experiments.

Although the idea that mass is conserved in chemical
changes might seem self-evident now, conservation of
mass was not at all clear in Lavoisier’s time. The reason
was simple: most chemical experiments were performed in
open air, and oxygen and other gases in the air were in-
volved in the reactions. Since the quantities of these react-
ing gases were not recognized and measured, the masses

of the solid or liquid substances in the reactions did not
seem to be conserved. Air itself is not a simple substance,
a fact only beginning to be understood at that time.

One of the most common of all chemical reactions is
the burning or combustion of carbon compounds such as
wood or coal (fig. 18.3). That reaction combines oxygen from
the air with the carbon in the coal or wood to form carbon
dioxide (a gas) and water vapor (also a gas). If we are not
aware of the role of the gases, we can be easily misled into
thinking that we have lost some mass during combustion.

Lavoisier performed a series of experiments in which he
carefully controlled and weighed the quantities of gas that
participated either as reactants or products. The results of
these experiments showed clearly that the total mass of the
products was equal to the total initial mass of the reactants—
no mass was lost or gained. In the process, he was able to dis-
tinguish oxygen (or “highly respirable air”) from carbon
dioxide and water vapor and to provide the first accurate
description of combustion reactions. The results of this work
were published in 1789 as the Traité Elémentaire de Chimie.

How did the concept of atomic
weight emerge?
Although Lavoisier’s brilliant career was tragically cut short
(literally) when he lost his head to the guillotine in the
French Revolution, his discoveries were soon followed by
another important insight from the English chemist, John
Dalton (1766–1844). Dalton tried to make sense of the
regularities observed in the ratios of weights of chemical
reactants and products. Dalton’s ideas depended heavily on
the experimental work of other chemists, who were en-
gaged in the new practice established by Lavoisier of care-
fully weighing all reactants and products.

Dalton was intrigued by the fact that when a chemical
reaction took place, the reactants always seemed to com-
bine in the same proportions by mass. For example, when
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figure 18.3 Burning wood is a chemical reaction. What
substances are reacting? What is produced?
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carbon combined with oxygen to form the gas now called
carbon dioxide, the ratio of the mass of oxygen to the mass
of carbon that would react was always the same: 8 to 3. In
other words, if 3 grams of carbon were involved, 8 grams
of oxygen were required to complete the reaction, no more
and no less. If more than 8 grams of oxygen were present,
some would be left over; if less than 8 grams were pres-
ent, some carbon would be left over.

This idea of specific mass ratios held for other reactions,
although with different ratios for each reaction. When hy-
drogen combines with oxygen to form water, the mass ratio is
8 to 1. That is, 8 grams of oxygen are required to react com-
pletely with 1 gram of hydrogen. Each reaction required a
specific proportion to react completely. This observation is
often referred to as Dalton’s law of definite proportions.

Dalton recognized that a model using atoms explained
these observations. Dalton thought that each element was
made up of tiny atoms that were all identical in mass and
form, but that different elements had different atomic masses.
A chemical compound might then be the combination of a
few atoms of one element with a few atoms of another to
form molecules—several atoms of different elements bound
together somehow. The characteristic masses of the atoms
were responsible for the regular ratios of mass observed in
the reactions.

This idea is illustrated in figure 18.4. Suppose (as we now
know) that the chemical compound of water is formed by
two atoms of hydrogen combining with one atom of oxygen
to form a water molecule (H2O in modern notation). If the
mass of an oxygen atom is 16 times the mass of a hydrogen
atom, this would account for the observed proportion of oxy-
gen to hydrogen of 8 to 1 (16 to 2), since each water mole-
cule has two atoms of hydrogen for every one of oxygen.

When different atoms or molecules interact to form new
molecules, we call this a chemical reaction. The reaction in
which oxygen combines with hydrogen to form water is
discussed in everyday phenomenon box 18.1. In a chemical
reaction, the atoms of elements combine in different ways,
but do not change their fundamental nature. However, the
chemical compounds that result can appear very different
from the original reactants.

The 8-to-3 proportion for the carbon dioxide reaction can
likewise be explained if the carbon atom has a mass 12 times
that of hydrogen, and two atoms of oxygen (each one 16
times the mass of hydrogen) combine with one atom of car-
bon to form a carbon dioxide molecule (CO2). See example
box 18.1. Carbon dioxide is a greenhouse gas, as discussed in
everyday phenomenon box 10.1, and is produced whenever
we burn a carbon-based fuel such as coal, oil, or natural gas.

One reaction by itself is not enough to establish the rela-
tive atomic masses, but the study of several reactions provides
a consistent picture, which Dalton showed in his treatise, A
New System of Chemical Philosophy, published in 1808.

Dalton’s atomic hypothesis did not establish the actual
mass of individual atoms—he still did not know how large
one atom was. Dalton’s hypothesis is a means of determining
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figure 18.4 Two atoms of hydrogen combine with one of
oxygen to form water (H2O). The mass ratio is 8 to 1 because the
atomic mass of oxygen is 16 times the mass of hydrogen.

O 
16

H
1

16 = 8
 2     1
__ _

H
1

example box 18.1

Sample Exercise: Burning Carbon

If 30 g of pure carbon are burned (combined with oxygen)
to form carbon dioxide, how many grams of oxygen will
be consumed in this reaction? Carbon  has an atomic
mass of 12, and oxygen has an atomic mass of 16.

The reaction can be described by the reaction 
equation:

,
where the notation O2  indicates that two
oxygen atoms are normally combined to
make an oxygen molecule in oxygen gas.

The ratio of the mass of oxygen to that of
carbon, Ro/c is then:

So:

mo � 80g

mo � a8

3
 b  130g2

mo � 1Ro/c 2 1mc2
mo

mc
� Ro/c

Ro/c �
8

3

Ro/c �
32

12

Ro/c �
2(16)

12

C � O2 1 CO2

mo � ?
mc � 30 g

the masses of the atoms of one element relative to those of
another, a task that occupied chemists through much of the
remainder of the nineteenth century. Like any good theory,
Dalton’s model was a productive guide for further chemical
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Fuel Cells and the Hydrogen Economy

The Situation. Most of the energy used by modern industrial
societies comes from fossil fuels—oil, natural gas, and coal.
Each of these fuels produces significant amounts of pollution.
They also produce carbon dioxide, a greenhouse gas that
contributes to global warming. Fossil fuels are nonrenewable,
which means there is a limited amount of oil, natural gas,
and coal. This may lead to irreversible shortages in the near
future, especially in the case of oil.

Are there alternatives to fossil fuels without these draw-
backs? Many scientists and engineers have proposed switching
to a “hydrogen economy” in place of our current oil-based
economy. The fuel cell, a device invented in the nineteenth cen-
tury and developed by NASA to power space vehicles, combines
hydrogen and oxygen to produce electricity and water. Is it fea-
sible for this pollution-free, energy-producing technology to
replace internal combustion engines that use oil-based fuels?

The Analysis. A hydrogen fuel cell converts hydrogen and
oxygen into water and generates electricity in the process. A
fuel cell is similar to a battery in that it uses a chemical reac-
tion to produce electricity. However, for a battery the chemicals
are stored internally, whereas hydrogen and oxygen are stored
externally from the fuel cell and can be replenished to produce
electricity until the fuel cell wears out. There are several types 

of fuel cells, but the proton exchange membrane (PEM) fuel
cell is the most promising type for use in cars and light trucks.

The PEM fuel cell consists of several components: the
anode, the cathode, the proton exchange membrane, and the
catalyst (see the diagram). The anode and cathode are where
chemical reactions take place. The proton exchange mem-
brane is a thin, specially treated material that allows only
protons to pass through it and blocks electrons. The PEM is
sandwiched between the anode and cathode. A catalyst is a
substance that speeds up a chemical reaction without being
consumed by the reaction. For the PEM fuel cell, the catalyst
is platinum powder thinly coated on carbon paper. The pow-
der provides a large surface area on which the hydrogen and
oxygen can react. Both the anode and cathode are covered
with the catalyst.

How does the fuel cell work? Hydrogen gas is fed to the
anode. A hydrogen atom contains one positively charged pro-
ton and one negatively charged electron. Hydrogen gas con-
sists of hydrogen molecules, which are denoted by H2 since
they are composed of two individual hydrogen atoms bound
together. When an H2 molecule comes in contact with the plat-
inum catalyst at the anode, it reacts chemically and splits into
two protons and two electrons. Both the protons and the elec-
trons are attracted to the oxygen at the cathode. However, the
PEM allows only the protons through to the cathode and 

everyday phenomenon
box 18.1

(continued)
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Hydrogen gas is supplied to the fuel cell. The proton exchange membrane allows the positive hydrogen ions
(protons) to flow across the membrane, but the electrons must travel through the external circuit. The exhaust
is water vapor.
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research. It also presented the concept of atoms in a new and
more detailed light: some atoms were heavier than others,
and atomic mass was a property of an element.

Table 18.1 compares the masses of the atoms of several
common elements. Traditionally referred to as atomic weight,
atomic mass is a more appropriate term, given our distinc-
tion between mass and weight. A complete list is found in
the periodic table in the inside back cover of this text. Note
that many of the relative masses are approximately whole
numbers, but others are not. Therein lay another intriguing
mystery and a clue to the structure of the atom.

How was the periodic table developed?
As chemists gathered more and more information on the
atomic masses and chemical properties of the various ele-
ments, some other interesting regularities began to emerge. It
had been known for some time that families of elements dis-
played similar chemical properties. Chlorine (Cl), fluorine (F),
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blocks the electrons. In order for the electrons to get to the
cathode, they travel through a circuit from the anode through
an electric motor or other device to the cathode. These elec-
trons provide the electric current that powers the motor.
When the protons and electrons arrive at the cathode via
their different routes, they come in contact with the catalyst
and react with oxygen molecules to form water. If oxygen is
not supplied to the cathode, the protons and electrons are not
attracted to it. Fortunately, the fuel cell can use oxygen that
exists in air. The overall net chemical reaction is

Notice that there are four hydrogen atoms and two oxy-
gen atoms on both sides of this equation, so the chemical
reaction is balanced. Many instances of this reaction occur
simultaneously, so a large number of electrons are produced
to provide power for the electric motor. Since a single fuel cell
cannot provide enough power to drive a car, a stack of fuel
cells is used.

It all sounds wonderful—a pollution-free device that pro-
duces only electricity and water to run our cars. Indeed, NASA
has been using fuel cells for years to power space vehicles, so
fuel cells are effective and reliable. Unfortunately, there are
serious practical challenges that must be overcome before
hydrogen fuel cells can be widely used in place of internal com-
bustion engines. Some of the main technological challenges are

1. Developing reasonably priced, long-lasting fuel cells. Cur-
rently, fuel cells are a lot more expensive than internal
combustion engines with comparable power. Also, fuel
cells with longer lifetimes need to be developed for use
in automobiles.

2. Developing effective onboard hydrogen storage systems.
So far an onboard storage system for hydrogen that has
an energy density similar to storage systems for gasoline
has not been designed. This means that cars using fuel
cells do not have as much range as gasoline cars before
requiring refueling.

3. Developing systems to deliver hydrogen to the end
user. We would need to phase out oil tankers, pipelines,
and trucks and create a new system for transporting
hydrogen to refueling stations. This is a daunting
challenge.

4. Developing environmentally sound methods for producing
enough hydrogen to replace gasoline and diesel fuels.

This last point needs emphasis. Because hydrogen does
not exist in large quantities on Earth in an isolated form, it
must be separated from water or other compounds containing
hydrogen. This requires energy input from another source. It is
straightforward to separate water into hydrogen and oxygen,
but there is no net gain in energy if the hydrogen and oxygen
are then recombined in a fuel cell to produce electricity.
Rather than a source of energy, it is better to think of hydro-
gen as a means of storing energy that can then be used at a
later time.

If the energy to separate hydrogen comes from fossil fuels
(say, burning coal at an electric power plant), the problems of
using fossil fuels are not solved by the hydrogen economy.
Using renewable energy resources such as wind, solar, or
geothermal would help, but this requires a large investment
in other energy technologies. The hydrogen economy will
require major technical advances if its promise is to be
fulfilled.

2H2 � O2 1  2H2O.

Element Chemical symbol Atomic mass

hydrogen H 1.01

helium He 4.00

carbon C 12.01

nitrogen N 14.01

oxygen O 16.00

sodium Na 22.99

chlorine Cl 35.45

iron Fe 55.85

lead Pb 207.2

table 18.1

Atomic Masses of Some Common Elements
Compared
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and bromine (Br) (called halogens), for example, formed
similar compounds when combined with highly reactive
metals such as sodium (Na), potassium (K), or lithium (Li)
(alkali metals). The atomic weights of the elements within
any given family, however, were very different.

When all of the elements were listed in order of increas-
ing atomic weight, the members of a family seemed to pop
up at more-or-less regular intervals in the list, particularly
the lighter elements. Although others had tried to make
sense of these regularities, the person who succeeded in pro-
ducing the most useful organization was the Russian chem-
ist, Dmitri Mendeleev (1834–1907). Mendeleev’s scheme,
first published in 1869, is now called the periodic table of
the elements.

To understand Mendeleev’s table, imagine listing all of the
known elements by increasing atomic weight on a long strip
of paper. Then, to make the table, we cut the strip at various
points and lay the strips out in rows. We begin by cutting at
every place that we encounter an alkali metal in the list. We
line these strips up in our table so that the alkali metals all lie
in a column on the left side of the table (fig. 18.5).

To get the halogens to line up, we need to cut the
remaining strips again, somewhere near their midpoints,
because there are more elements in some rows than in oth-
ers. The halogens are also arranged above one another in a
column near the right side of the table. In Mendeleev’s
original table, the halogens formed the column on the far
right, because the noble gas elements (helium (He), neon
(Ne), Argon (Ar), krypton (Kr), xenon (Xe), and radon
(Rn)) had not yet been discovered. In the finished table,
elements with common chemical properties line up in
columns above one another, but the order of atomic
weights is preserved in the rows and throughout the table.
(See the complete periodic table on the inside back cover.)

Although the periodic table was an intriguing way of
organizing knowledge of the chemical elements, it raised
more questions than it answered. Atoms of the elements in
a given column must somehow have similar properties, but
chemists still knew virtually nothing about the structure of
atoms. They were driven to drawing little hooks and rings
on their atoms as they attempted to explain how atoms
combined, but they knew that these pictures were unlikely

388 Chapter 18 The Structure of the Atom

figure 18.5 The periodic table can be formed by listing the elements in order of increasing atomic weight and then cutting the list
at certain points. Elements with similar chemical properties are then aligned in columns.
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to be accurate. A body of knowledge was building that
called for explanation, but the explanation did not come
until the early part of the twentieth century.

From many observations on how substances combine to
form other substances, scientists speculated that each dif-
ferent substance consisted of tiny particles, or atoms, with
properties characteristic of that substance. Lavoisier’s dis-
covery of the conservation of mass in chemical reactions
established the importance of weighing the reactants and
products. Dalton’s law of definite proportions introduced
the property of atomic weight for atoms of different sub-
stances. The periodic table of the elements was developed
by Mendeleev in the 1860s. He listed the elements in
rows of increasing atomic weight and then divided the
list into rows so that elements with similar properties sat
above one another in the columns. These regularities
suggested recurring similarities in atomic structure.

18.2 Cathode Rays, Electrons,
and X Rays
By the end of the nineteenth century, chemists were quite
comfortable with the concept of atoms and knew a good deal
about their relative masses and properties, if not their actual
structure. Physicists, on the other hand, were less convinced.
Many physicists were not aware of the details of the chemi-
cal evidence, and some even denied that atoms existed.

Near the end of the nineteenth century, several discover-
ies were made in physics that would prove crucial to un-
derstanding atomic structure. This part of the story begins
with the study of cathode rays, the focus of much curiosity
and research in the latter half of the century.

How are cathode rays produced?
You use cathode rays almost every day, although you may
not be aware of it. The heart of most television sets, its pic-
ture tube, is a cathode-ray tube (or CRT, as it is known in
the electronics industry). The discovery of cathode rays re-
sulted from merging two different technologies: the ability
to produce good vacuums with improved vacuum pumps
and the growing understanding of electrical phenomena.
(The cathode-ray tube used in a television set is described
in everyday phenomenon box 18.2.)

Johann Hittorf (1824–1914) was one of the first to observe
cathode rays. In a paper published in 1869, he described in
detail what happens when a high voltage is placed across two
electrodes sealed in a glass tube connected to a vacuum pump
(fig. 18.6). As the air is pumped out of the tube, a colorful
glow first appears in the gas near the cathode, the negative
electrode. As the gas pressure in the tube is reduced, the glow
spreads through the entire volume between the two elec-
trodes. The colors of this glow discharge depend on the kind
of gas originally in the tube.

As the tube is evacuated to still lower pressures, the glow
discharge disappears. A dark region starts to form near the
cathode and then moves across the tube toward the anode,
the positive electrode, as the pressure is further reduced.
When the dark region has moved completely across the
tube, a new phenomenon appears. Instead of the gas glow-
ing, there is now a faint glow on the glass wall of the tube
opposite the cathode.

Since the darkening began near the cathode and spread
across the tube, scientists surmised that something emitted
from the cathode was responsible for the glow on the op-
posite wall of the tube. For this reason, the invisible radia-
tion was called cathode rays.

One of the simpler experiments that can be performed
with cathode rays is deflecting the beam with a magnet.
If cathode rays are focused into a narrow beam by appro-
priate shaping and positioning of the cathode and anode,
the beam can be moved around with a magnet. If the
north pole of a magnet is brought down from the top, as
in figure 18.7, the spot of light created by the beam is
deflected to the left on the face of the tube. This result is
consistent with the assumption that the cathode rays are
negatively charged particles, which you can confirm
using the right-hand rule for magnetic forces introduced
in chapter 14.

How was the electron discovered?
The questions about the nature of cathode rays were
largely resolved by J.J. Thomson (1856–1940). Thomson
performed a series of experiments to measure the masses
of the negatively charged particles thought to be present
in the cathode-ray beam. In one experiment, Thomson
passed the beam through crossed electric and magnetic

figure 18.6 A simple cathode-ray tube consists of two
electrodes sealed in a glass tube. A glow discharge appears in
the gas between the electrodes as the tube is evacuated. With
further evacuation, the discharge disappears, and a glow appears
on the end of the tube opposite the cathode.
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Electrons and Television

The Situation. Television plays an enormous role in modern
life. It is the primary source of entertainment and news for
much of our population. For many of us, spending some time
watching the dancing light of the TV is an everyday pursuit.

How does a television set work? Could you explain its basic
principles of operation to a younger brother or sister? How are
cathode rays involved in producing the picture that we see?

The Analysis. Until recently, the heart of most television sets
has been the cathode-ray tube or CRT. Many new flat-screen
television sets now use liquid-crystal displays (LCDs) or plasma
technology rather than cathode-ray tubes, but cathode-ray tube
television sets are less expensive and are still readily available.
As described earlier, a CRT is an evacuated tube containing
electrodes across which we place a high voltage. This produces
a beam of electrons in the tube, which create flashes of light
when they strike the glass wall of the tube.

The type of cathode-ray tube used in television sets is
shown in the drawing. The electrodes that produce and focus
the electron beam are all located near the tube socket on the
left side of the diagram and are called the electron gun. The gun
contains a cathode (negatively charged), behind which lies a fil-
ament. An electric current passes through the filament to heat
the cathode, which increases the rate of emission of electrons.

Beyond the heated cathode lies the anode, which is posi-
tively charged and has a hole in its center. Electrons are ac-
celerated from the cathode to the anode by the high voltage
placed across these two electrodes. Electrons passing through
the hole in the anode make up the electron beam. These elec-
trons are focused into a narrow beam by further electrodes
located beyond the anode. The filament, cathode, anode, and
focusing electrodes together constitute the electron gun.

After leaving the electron gun, the beam of electrons trav-
els across the tube, producing a bright spot of light when it
strikes the glass face of the tube. This effect is enhanced by

coating the inside of the front surface of the tube with a
special phosphor, a material that emits light when struck by
fast-moving particles. Magnetic coils, usually arranged in a
yoke that fits around the tube, are used to deflect the elec-
tron beam so that it strikes different points on the face of the
tube at different times.

The electron beam can be moved quickly from one point
to another on the face of the tube, and the intensity of the
beam varied to produce degrees of brightness at different
points. The pattern of varying brightness of the different spots
makes up the picture that we watch. Usually, the beam moves
in a zigzag scan pattern back and forth across the face of
the tube in a fraction of a second. In the system used in the
United States, 525 horizontal scans are required to make one
picture, and this process is repeated 30 times a second.

The process just described produces a black-and-white
picture. To produce a colored picture, three phosphors are
used for three different colors. Each spot on the face of the
tube is, in fact, three closely spaced spots or lines, and three
different electron guns are used, one for each of the colors.
Different combinations of these three colors produce the
range of color that we see. If you look closely at the face of a
color-television picture tube (with the set turned off!), you
can detect the pattern of vertical lines containing the three
different phosphors.

The information used to produce both the pictures and
the sound is carried to the set by electromagnetic waves lying
in the shorter-wavelength portion of the radio-wave spectrum.
The signals can also be transmitted by cables or received and
retransmitted by satellites (as microwaves) and picked up by
dish antennas at remote locations. The availability of multiple
stations and programming and the range of technologies
used to record and transmit the signals would have seemed
like an absurd dream to people just a hundred years ago
when radio waves were first studied.

everyday phenomenon
box 18.2

Children performing the common ritual of communing with a
television set.

Electron gun

Deflection coils

Filament

A cut-away view of a modern picture tube shows the electron gun
and other electrodes used to deflect the beam to different points on
the screen.
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fields of known strength (fig. 18.8). The combined effect
of the electric and magnetic fields on the beam allowed
him to estimate the velocity of the particles, since the
magnetic force depends on velocity, but the electric force
does not.

Knowing the velocity and the extent of deflection pro-
duced by the magnetic field alone, he could estimate the
mass of the particles. By Newton’s second law, the accel-
eration of the particles by the magnetic force that causes
their deflection is inversely proportional to their mass.
Since the magnetic force (F � qvB) also depends on the
charge of the particles, which was not known, he actually
ended up measuring the ratio of the charge to the mass,
q/m. He published the results of this work in 1897.

The striking features of Thomson’s results were the ap-
parently small mass of these particles and the fact that all
of them seemed to have the same ratio of charge to mass,
which suggested that the particles were identical. The

lightest element in the periodic table is hydrogen. If hydro-
gen ions and cathode-ray particles had the same charge,
the mass of the hydrogen atom was nearly 2000 times
larger than the mass of a cathode-ray particle.

Not only were these particles identical for a given cath-
ode, they had the same charge-to-mass ratio even if the
cathode was made of a different metal. Thomson checked
this result by repeating the experiment with cathodes made
of various metals. The same particles seemed to be present
in all those that he tested. This fact, together with their
small mass, suggested that these particles must be common
constituents of different types of atoms.

We now call the negatively charged particles of the
cathode-ray beam electrons, and Thomson is credited with
discovering the electron in these experiments. A cathode-
ray beam is a beam of electrons. Each electron is now
known to have a mass of 9.1 � 10�31 kg and a charge of
�1.6 � 10�19 C. Thomson’s discovery provided the first
known subatomic particle, a particle smaller than the
smallest known atom. The electron became the first possi-
ble candidate for a building block of atoms.

How were X rays discovered?
The study of cathode rays produced other dividends besides
the discovery of the electron. A German physicist, Wilhelm
Roentgen (1845–1923), discovered another type of radia-
tion associated with the cathode-ray tube. His discovery
created a sensation in the popular press and in the scien-
tific community.

As is often the case, Roentgen made his discovery partly
by accident. For reasons that he never made completely
clear, he was experimenting with a cathode-ray tube that
he had covered with black paper. Nearby on his workbench
was a piece of paper coated with a fluorescent material, bar-
ium platinocyanide. Roentgen noticed that the paper glowed
in the dark when the cathode-ray tube was turned on, even
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figure 18.8 Thomson used both electric and magnetic fields to deflect the cathode-ray beam in a tube specially designed to
measure the mass of the cathode-ray particles.
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figure 18.7 If the north pole of a magnet is brought down
toward the top of a cathode-ray tube, the spot of light is
deflected to the left across the face of the tube.
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figure 18.10 Roentgen discovered that a shadowgram of
the bones in a hand could be produced by passing X rays
through the hand.

though no light was escaping from the tube (fig. 18.9). The
glow stopped when the tube was turned off.

It was already well known that cathode rays could not
travel far in air—nor could they travel through the glass
walls of the tube. The fluorescence, though, appeared even
when the paper was located as far as 2 meters from the
tube. The new radiation causing the fluorescence could not
be the cathode rays. Not knowing exactly what they were,
Roentgen called them X rays, because the letter X is often
used to represent an unknown quantity.

The most striking feature of these X rays was their pen-
etrating power. They apparently passed readily through the
glass walls of the tube, and also through other obstacles in
their path. In some of his earliest experiments, Roentgen
showed that he could produce a shadow of the bones in his
hand by placing his hand between the end of the cathode-
ray tube and the fluorescent screen (fig. 18.10). He also
showed that the X rays were capable of exposing a covered
photographic plate. He took pictures of the outlines of brass
weights inside a wooden box. Roentgen published the re-
sults of his initial experiments with X rays in 1895.

This ability to “see” through objects opaque to visible
light excited the imagination of the popular press. Every-
one, scientists included, wanted to see an X-ray tube at
work. Within a year, doctors were using X rays to take
pictures of broken bones and other dense tissue. Unfortu-
nately, they knew little about the hazards of repeated expo-
sure to X rays, so many doctors and dentists suffered from
severe radiation effects in the early years of their use.

Roentgen performed an extensive series of experiments
with his newly discovered radiation as he tried to ascertain
what it was. As a result of the work done by Roentgen and
other scientists, it was eventually determined that X rays are
a form of electromagnetic wave with very short wavelengths
and very high frequencies (see section 16.1 and figure 16.5).
X rays are produced by collisions of the cathode rays (elec-
trons) with the walls of the cathode-ray tube or with the
anode of the tube. The strongest X-ray beams are produced
by placing the metal anode at a 45° angle to the electron
beam and using high voltages to excite the tube (fig. 18.11).

Although the discovery of X rays was important to
medicine, it was also important to physicists, partly be-
cause it led directly to the discovery of yet another kind
of radiation and thus furthered the exploration of the
atom’s structure. This new type of radiation, called natu-
ral radioactivity, actually is three distinct forms of radia-
tion. In section 18.3, we will describe how this discovery
provided a powerful probe for getting inside an atom.
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figure 18.11 An X-ray tube in a diagnostic X-ray
machine uses an angled anode to project X rays through the
side of the tube.
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figure 18.9 Roentgen noticed that a fluorescent material
would glow when placed near his covered cathode-ray tube. The
glow appeared only when the cathode-ray tube was turned on.
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Cathode rays are produced by placing a high voltage across
two electrodes sealed in an evacuated tube.
Experiments with these rays showed that they were
comprised of negatively charged particles, all having an iden-
tical charge-to-mass ratio. The mass of these particles appar-
ently was smaller than the mass of the smallest atom, and
they seemed to be present in different types of metal, which
suggested that they could be constituents of all atoms. Study
of cathode rays also resulted in the discovery of X rays, which
are highly penetrating electromagnetic waves with a very
short wavelength. This discovery, in turn, led to the discovery
of natural radioactivity and the nucleus of the atom.

18.3 Radioactivity and the Discovery
of the Nucleus
Most of us have heard of radioactivity and perhaps have
come to fear it because of publicity about nuclear power,
nuclear weapons, and radon in our homes and other build-
ings. For most of the time that humans lived on Earth,
however, we were blissfully unaware of its presence. How
was radioactivity discovered, and how did that lead to the
discovery of the nucleus of the atom? The fields of atomic
and nuclear physics, which did not exist before the begin-
ning of the twentieth century, arose from these events.

How was radioactivity discovered?
A French scientist, Antoine-Henri Becquerel (1852–1908),
discovered natural radioactivity in 1896. His experiments
were directly motivated by Roentgen’s discovery of X rays
the previous year. For many years, Becquerel had studied
phosphorescent materials, which glow in the dark after
being exposed to visible or ultraviolet light. Many of the
phosphorescent materials that Becquerel was studying were
compounds containing uranium, the heaviest element known
at that time.

Becquerel wondered whether penetrating radiation like
Roentgen’s X rays was emitted by his phosphorescent com-
pounds. He tried a simple experiment in which he ex-
posed some of these compounds to sunlight for a while
and then placed them on top of photographic plates wrapped
in black paper so that no light could reach them. Sure
enough, the photographic plates were exposed near the pieces
of phosphorescent material (fig. 18.12). Radiation apparently
was passing from these materials through the black paper to
expose the film.

Although an interesting discovery in itself, there was more
to come. Further experiments by Becquerel showed that not
all phosphorescent materials could expose a photo- graphic
plate, only those that contained uranium or thorium. Further-
more, somewhat by accident, Becquerel discovered that it
was not necessary to expose these materials to light to pro-
duce the effect. Becquerel had prepared samples one day
intending to expose them to sunlight. The sun was not shining

that day, however, so he put them away in a drawer for a few
days, together with the covered photographic plate. When he
returned to the project several days later, he decided to
develop the plate before proceeding, just to be safe, fully
expecting that it would not be exposed. To his great surprise,
he discovered that the plate was very heavily exposed near
the uranium samples. Apparently, earlier exposure to sunlight
(necessary for phosphorescence) was not needed to produce
the radiation that was exposing the plates.

Becquerel was even more surprised to discover that the
uranium samples retained the ability to expose film indef-
initely, even if kept in a dark box or drawer for weeks.
The phosphorescent effect, on the other hand, disappeared
swiftly (in just a few minutes) after the samples were re-
moved from the source of light. The penetrating radiation
coming from his uranium samples did not seem to be con-
nected with the phosphorescence at all.

Becquerel named this new radiation natural radioactiv-
ity, because it seemed to be produced continuously by com-
pounds containing uranium or thorium without a need for
special preparation. Natural radioactivity puzzled physi-cists
of that time, because there was no apparent source of energy
to produce the radiation. Where did these rays come from?
How could rays continue to be emitted when no energy was
being added to the samples in any obvious manner? Was this
radiation somehow a property of the atoms themselves?

Is more than one type of radiation
involved in radioactivity?
Along with the discovery of X rays, the discovery of natu-
ral radioactivity generated much new experimental activity
and theoretical speculation. Many scientists were involved,
most notably Marie (1867–1935) and Pierre (1859–1906)
Curie and a young New Zealand-born physicist, Ernest
Rutherford (1871–1937). The Curies, by painstaking chem-
ical techniques, were able to isolate two more radioactive
elements, radium and polonium. Both were contained in
samples of uranium and thorium but were much more
radioactive than uranium or thorium themselves.
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figure 18.12 When Becquerel placed a piece of
phosphorescent material on a covered photographic plate, the
developed plate showed a silhouette of the sample, indicating
that the plate had been exposed by radiation passing through
the black paper cover.
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Rutherford became interested in the nature of the radia-
tion. One of his earliest experiments with this new phe-
nomenon showed that at least three kinds of radiation came
from the uranium samples. By placing a uranium sample
at the base of a hole drilled in a piece of lead, he could
produce a beam of radiation. When this beam was passed
through a magnetic field produced by a strong magnet, it
split into three components, as in figure 18.13.

Rutherford used the first three letters of the Greek
alphabet—� (alpha), � (beta), and � (gamma)—to name these
three components. One of the components, alpha, deviated
slightly to the left (fig. 18.13). This is the direction we
obtain, using the right-hand rule for the magnetic force, for
radiation consisting of positively charged particles. The
location of the beam could be detected with photographic
film or, more conveniently, with a zinc-sulfide screen, which
produces flashes of light when struck by the beam.

The second component of the beam, beta, was bent in the
opposite direction (as would be expected for negatively
charged particles) and much more strongly than the alpha
rays. Further study indicated that these beta rays were
electrons, recently discovered by J. J. Thomson. The gamma
rays, the third component, were undeviated by the magnetic
field. These rays turned out to be a variety of electromagnetic
wave similar to X rays but with even shorter wavelengths.

Exactly what the alpha rays were remained a mystery,
however, until clarified by an experiment performed by
Rutherford and a student assistant, T. D. Royds. That these

rays or particles were deviated only slightly by the mag-
netic field suggested that they were much more massive
than the electrons in the beta portion of the beam. They
were also the primary component emitted by the radium
isolated by Marie and Pierre Curie.

In 1908, Rutherford and Royds established that the
alpha rays were helium atoms stripped of their electrons.
They determined this by placing a small sample of radium
in a very thin-walled tube sealed inside a somewhat larger
tube. The alpha particles could escape from the thin-walled
tube but not from the larger tube. The larger tube contained
electrodes across which a high voltage was introduced to
produce a glow discharge in the alpha-particle gas that ac-
cumulated. The colors of this discharge were characteristic
of helium, which had not been present initially in the tube.
(See section 18.4 for a discussion of atomic spectra.)

How was the nucleus of the atom discovered?
Rutherford quickly realized that alpha particles would make
effective probes for studying the structure of the atom.
Because they were much more massive than electrons, and
also highly energetic, it seemed possible to get alpha particles
inside the atom. By firing a beam of alpha particles at a thin
metal foil and noting what happens to the beam, Rutherford
thought he might deduce features of atomic structure. Such
an experiment is called a scattering experiment.

The basic scheme of Rutherford’s scattering experiments
is illustrated in figure 18.14. An alpha-emitting substance
such as radium or polonium is placed at the bottom of a
hole in a lead shield to produce a beam of alpha particles.
This beam is directed at a very thin foil of gold or some
other metal. The scattering of the alpha particles is then
detected by a small hand-held scope with a zinc-sulfide
screen at one end and a magnifying eyepiece at the other.
The experimenter counts the flashes of light (scintillations)
produced by alpha particles striking the screen at various
angles from the initial direction of the beam.

The initial results of these experiments were not surpris-
ing or informative. Most of the alpha particles went straight
through the gold foil without deviating much. A few were
scattered through larger angles, but the number fell off rap-
idly as the angle from the initial direction of the beam was
increased. These results seemed consistent with the pre-
vailing view of the atom at that time: the mass and positive
charge of the atom were seen as being distributed uniformly
throughout the volume of the atom. Electrons, known to be
present in atoms, were thought to be strewn here and there
within this volume, much like the raisins in a plum pud-
ding (a British dish). Such an arrangement would not be
dense enough to affect a beam of energetic alpha particles.

Just to be sure, however, Rutherford suggested to one of
his students, an undergraduate named Ernest Marsden, that
he look for scattered alpha particles reflected back from
the foil. After a few days in the dark lab squinting at occa-
sional flashes of light through the detecting scope, Marsden
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figure 18.13 When the beam of radiation coming from a
uranium sample passes through a magnetic field, it splits into
three components, which are named—� (alpha), � (beta), and �
(gamma).
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reported to Rutherford that a few alpha particles did indeed
scatter at these much larger angles. Rutherford was tempted
not to believe him, but further checking by Marsden and a
more senior research associate, Hans Geiger (1882–1947),
verified their presence.

Much later, Rutherford said that the backward scattering
was as if someone had fired bullets into a piece of tissue
paper and the bullets bounced back. The result was totally
unexpected. An analogy often used to explain this scatter-
ing experiment is illustrated in figure 18.15. We are trying
to learn what is inside a Christmas present without opening
the box. We may lift and shake the package to get some
sense of its weight and nature. Another (somewhat more

destructive) test could be made by firing a rifle at the pack-
age and noting what happens to the bullets as they emerge
(fig. 18.15). This is a scattering experiment similar to what
Rutherford and his assistants performed.

If we had already determined that the package is not
heavy, we would be surprised to find some of the bullets,
even just a few, coming back toward us. Somewhere in the
package, small but dense objects with enough mass to
reverse the momentum of a rapidly moving bullet must
be present. Since the package is not heavy and many of
the bullets go right through, the objects responsible for the
large-angle scattering must be small. Small steel balls held
in a light but rigid packing material might do the job.

18.3 Radioactivity and the Discovery of the Nucleus 395

figure 18.14 A beam of alpha particles was scattered from a thin gold foil in the experiments performed by
Rutherford’s assistants.
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figure 18.15 The contents of a Christmas present could be probed by firing a rifle into it and noting how the
bullets are scattered by the contents.
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Similar reasoning applies to the atom. If most of the alpha
particles go through, but a few are scattered through large
angles, there must be very dense but small centers somewhere
within the atoms massive enough to reverse the momentum
of rapidly moving alpha particles. To explain the quantitative
results of the scattering experiment, Rutherford had to
assume that these massive centers were very small indeed. By
this time, atoms were known to have a diameter of approxi-
mately 10�10 m. The diameter of the tiny, but massive centers
had to be just a ten-thousandth of the diameter of the atom in
order to explain the data!

The discovery of the nucleus of the atom followed from
the analysis of these scattering experiments. The nucleus
was presumed to be a very dense center of the atom that
contained most of the mass of the atom and all of its posi-
tive charge. The rest of the atom consisted of the nega-
tively charged electrons arranged somehow around this
center. The electrons were responsible for most of the size of
the atom, but for very little of its mass. To get a sense of the
scale, imagine that the atom is enlarged to the size of a foot-
ball field (about 100 m, counting the end zones). The nucleus
would be roughly the size of a pea on the 50-yard line.

Rutherford’s analysis of the alpha-particle scattering
experiments performed by Geiger and Marsden was pub-
lished in 1911. The idea that the atom has a tiny nucleus
containing most of its mass and all of its positive charge pre-
sented a radical new view of the atom.

Becquerel discovered that a penetrating radiation, which
he called natural radioactivity, was emitted by phospho-
rescent materials containing uranium or thorium. Ruther-
ford showed that this radiation had three components:
alpha (helium ions), beta (electrons), and gamma (short-
wavelength X rays). Using the alpha particles as probes
in scattering experiments, Rutherford and his assistants
learned that the atom must have a tiny, massive center,
which we now call the nucleus. This set the stage for the
first successful model of the atom.

18.4 Atomic Spectra and the Bohr
Model of the Atom
If the atom has a positively charged nucleus, and electrons
(with their negative charges) are arranged somehow around
this nucleus, it is natural to compare the atom to the solar
system. In the solar system, the planets are held in orbit about
the sun by the gravitational force, which is proportional to the
inverse square of the distance (1/r2) between the planets and
the sun (see chapter 5). In an atom, the electrons are attracted
to the nucleus by the electrostatic force, which by Coulomb’s
law is also proportional to the inverse square of the distance.
Maybe an atom is like a miniature solar system.

Although the comparison was intriguing, there were
some problems. Since an orbiting electron should act like a
transmitting antenna and radiate electromagnetic waves,

the atom would lose energy, and the electron would spiral
into the nucleus, causing the atom to collapse. Physicists
were aware, though, that atoms did sometimes emit elec-
tromagnetic waves in the form of light. The patterns of the
light emitted by the smallest atom, hydrogen, were partic-
ularly interesting because of their simplicity.

Niels Bohr (1885–1962) was working with Rutherford
when the nucleus was discovered. Bohr’s model of the atom
first suggested answers to these problems and provided
an explanation of the wavelengths of light (the spectrum)
emitted by hydrogen. The publication of Bohr’s model of
the atom in 1913 opened a tremendously exciting period
of research that resulted in our current understanding of
atomic structure.

What is the nature of the
hydrogen spectrum?
The study of the light emitted by different substances began
more than fifty years before Bohr’s work. If a substance is
heated in the flame of a Bunsen burner and the emitted
light observed through a prism, each substance produces
characteristic colors or wavelengths. These characteristic
wavelengths are the atomic spectrum of that substance.

For gases, the most convenient way of producing this
spectrum was in a gas-discharge tube. (We encountered
this phenomenon in section 18.2 when we discussed cathode
rays.) When a high voltage is placed across electrodes sealed
inside a tube containing a gas at low pressure, a colorful dis-
charge is observed (fig. 18.16). This is what happens in a
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figure 18.16 A high voltage placed across the electrodes
of a gas-discharge tube produces a colorful glow. The colors are
characteristic of the type of gas in the tube.
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fluorescent light, too, although the light tube has a fluores-
cent coating to produce a more uniform distribution of
wavelengths.

If you observe the light emitted by a gas discharge
through a prism or diffraction grating, you see that the
spectrum consists of a series of discrete bright lines at
specific wavelengths. (As discussed in section 16.4, dif-
fraction gratings use interference effects to separate
wavelengths.) If the source itself is long and thin (fig.
18.16), or if the light passes through an entrance slit, the
separate wavelengths show up as colored lines. Each kind
of gas has its own spectrum, which can be used as a reli-
able means of identifying the substance.

The spectrum of hydrogen is quite simple. The visible
portion (fig. 18.17) has just four wavelengths—a red line,
a blue line, and two violet lines. The 410 nm violet line is
harder to see, mostly because the eye is less sensitive at
that wavelength (see fig. 16.8). In 1884, a Swiss teacher,
J.J. Balmer (1825–1898), discovered that the wavelengths
of these four lines could all be computed from a simple
formula. Balmer’s formula is not based on underlying
theory but is just a numerical way to compute the wave-
lengths of the observed lines. When other lines were dis-
covered in the near-ultraviolet portion of the spectrum,
they also were correctly described by Balmer’s formula.

Somewhat later, other series of spectral lines were dis-
covered for hydrogen in the infrared and ultraviolet regions.
All of these lines could be predicted from a generalized
form of Balmer’s formula published in 1908 by Rydberg
and Ritz. This formula is usually written as

where n and m are both integers and R is called the Rydberg
constant, R � 1.097 � 107 m�1.

Setting n � 2, we get the Balmer series of lines lying in
the visible and near ultraviolet. For n = 1, we get a series in
the ultraviolet portion of the spectrum, which has wave-
lengths shorter than visible wavelengths. For n = 3 or 4, we

1

�
 � R a 1

n2 � 
1

m2b ,

get lines in the infrared region (see example box 18.2), with
wavelengths longer than visible wavelengths. The integer m is
always greater than n for a given series. For the Balmer
series, n � 2, and m can be 3, 4, 5, and so on. Each value of
the integer m generates a different line in the series.

The formula developed by Rydberg and Ritz pointed out
a simple regularity in the spectrum of hydrogen that cried
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figure 18.17 The hydrogen gas-discharge spectrum has four lines in its visible portion: a red line, a blue line, and two
violet lines.
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example box 18.2

Sample Exercise: Using the Rydberg Formula

What is the wavelength of the photon in the infrared
series of the hydrogen spectrum for m = 6 and n = 3? Use
the Rydberg formula.

Notice that this result is in the infrared region of the
electromagnetic spectrum because its wavelength is
greater than 7.5 × 10–7 m, as discussed on page 334 in
Chapter 16. Notice also that the m appearing in the
Rydberg formula is an integer and has nothing to do with
the unit m–1, which is an inverse meter.

 l �
1

9.14 � 105 m�1 � 10.94 � 10�7 m

 
1

l
� 9.14 � 105 m�1

� 1.097 � 107 m�1 (0.0833)

� 1.097 � 107m�1 a1

9
�

1

36
b

l � ?

� 1.097 � 107m�1 a 1

32 �
1

62bn � 3

m � 6

1

l
� R a 1

n2 �
1

m2b
R � 1.097 � 107 m�1
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out for explanation. Thomson, in creating his so-called
plum-pudding model of the atom, had attempted to explain
this regularity without success. Bohr, working with the new
view of the atom provided by Rutherford, took a fresh
approach to the problem.

Quantization of light energy
Although the discovery of the nucleus and the regulari-
ties in the spectrum of hydrogen were crucial to Bohr’s
model, another new idea was at least as important. Intro-
duced tentatively by Max Planck (1858–1947) in 1900
and later strengthened by Albert Einstein (1879–1955), it
also had its origin in the study of spectra, in this case the
spectrum produced by a heated blackbody.

A blackbody is best represented by a hole or cavity
carved into metal or ceramic material that can be heated
to high temperatures (fig. 18.18). Such a hole appears
black at room temperature. The spectrum that it emits
when heated depends only on the temperature and not on
the material in which the cavity is carved. The spectrum
is continuous (no discrete lines), but the average wave-
length emitted becomes shorter as the temperature is
increased. At high temperatures, the wavelengths become
short enough to be visible: the cavity first appears “red
hot,” and at even higher temperatures “white hot,” mean-
ing that the average wavelength is near the middle of the
visible spectrum.

Planck and other theorists were trying to explain the
distribution of wavelengths that emerged from a heated
blackbody. Planck arrived at a formula that succeeded in
predicting the proper distribution and its dependence on
temperature. In giving a rationale for his formula, however,
he was forced to a radical conclusion: apparently, light
could not be absorbed or emitted from the surface of the
blackbody in continuously varying energies but only in
discrete chunks, or quanta, whose energy depended on the
frequency or wavelength.

To be more precise, at a given frequency, the only ener-
gies allowed are integer multiples of the energy:

E � hf

where f is the frequency and h is a constant called Planck’s
constant. The value of this constant is extremely small. In
metric units, it is

h � 6.626 � 10�34 J·s.

According to Planck’s theory, for a particular frequency f,
light could be emitted with energies of hf, 2hf, 3hf, and so
on, but not at any energy between these values.

This idea disturbed Planck himself as well as other
physicists at that time. There had previously been no rea-
son to suspect that light waves could not be emitted in
continuously varying energies, depending only on how
much energy was available. The idea that this process
was quantized, meaning that it could only happen in dis-
crete energy chunks, was indeed radical. In 1905, Ein-
stein showed that the quantization of light energy could
be used to explain a number of other phenomena. The
idea of light quanta (or particles of light that we now call
photons) having energies E � hf, was thus available, if
not fully accepted, when Bohr began to develop a new
model of the atom.

What were the features of Bohr’s model?
Bohr’s accomplishment was to combine all of these ideas—
the discovery of the nucleus, knowledge of the electron,
the regularities in the hydrogen spectrum, and the new
quantum ideas of Planck and Einstein—into a new model
of the atom. He started with the miniature-solar-system
model mentioned on p. 388, in which the electron in the
hydrogen atom orbits about the nucleus. The electrostatic
force provides the necessary centripetal acceleration.

Bohr’s first bold step departed from classical physics:
he assumed certain stable orbits that do not continuously
radiate electromagnetic waves as expected from classical
physics. Instead, he imagined that light is emitted from the
atom when the electron jumps from one stable orbit to an-
other (fig. 18.19). Since the energy of a quantum of light
or photon, as given by Planck and Einstein, is E � hf, the
energy of the emitted photon is equal to the difference in
energies of the two stable (or almost-stable) orbits. Ex-
pressed in symbols,

E � hf � Einitial � Efinal ,

where Einitial is the energy of the electron in the initial orbit,
and Efinal is the energy of the electron in the final orbit. These
energies could be calculated for a specific orbital radius
with ordinary Newtonian mechanics.

This energy difference could then be used to compute the
frequency or wavelength of the emitted photon. Comparison
of the resulting formula to the Rydberg–Ritz formula for the
lines in the hydrogen spectrum showed that the energies of
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figure 18.18 A blackbody radiator consists of a hole
carved in material that can be heated to high temperatures.
When heated, it emits a continuous spectrum of electromagnetic
radiation.
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figure 18.19 Bohr pictured the electron as orbiting the
nucleus in certain quasi-stable orbits. Light is emitted when the
electron jumps from one orbit to another.

+

–
Photon

the stable orbits must all be given by a constant divided by
an integer squared, E � E0/n2. This relationship placed a
condition on the orbits: the only orbits allowed were those
whose angular momentum, L, was equal to

where n is an integer and h is Planck’s constant.
These are the essential features of Bohr’s model:

1. Electrons are pictured as orbiting the nucleus in certain
quasi-stable orbits, given by the condition L � n(h/2	).

2. Light is emitted when an electron jumps from a
higher-energy orbit to a lower-energy orbit.

3. The frequencies and wavelengths of the emitted light
are computed from the energy differences between the
two orbits, yielding the wavelengths in the hydrogen
spectrum.

Figure 18.20 shows an energy-level diagram computed
from Bohr’s model for hydrogen. Example box 18.3 uses
these values to find the wavelength of one line in the Bal-
mer series of the hydrogen spectrum. The energy values
in the diagram and exercise are expressed in electron volts
rather than joules. An electron volt (eV) is the amount of
kinetic energy gained when an electron is accelerated
through a potential difference of 1 volt. It has the value 
1 eV � 1.6 � 10�19 J. The energy levels in figure 18.20
can all be found by dividing the bottom level (�13.6 eV)
by n2, as predicted by the Bohr model. The energy values

L � n a h

2	
b ,

are all negative because the potential energy associated
with the opposite-sign charges is negative.

One of the most striking successes of Bohr’s model was
that it could predict the correct value of the Rydberg constant
from quantities like the mass of the electron, the charge
of the electron, Planck’s constant, and the speed of light.
Bohr’s theory was an instant and controversial sensation in
the physics community. Its introduction spurred intense ac-
tivity in both experimental and theoretical physics. Much
of the experimental work focused on making more accu-
rate measurements of the atomic spectra of different ele-
ments. The theoretical work sought to extend Bohr’s model
to atoms other than hydrogen and to try to understand the
periodic properties observed in the periodic table of the
elements.

Despite its impressive successes, the Bohr model left
many unanswered questions. The most bothersome ques-
tion was why just those few orbits described by the Bohr
condition should be stable and not others. Attempts to ex-
tend the Bohr model to elements other than hydrogen met
with limited success. Physicists now recognize that the
Bohr model is inaccurate in many of its details. Its historic
significance was that it opened the door to research that ul-
timately led to our modern theory of the atom.

The atomic spectrum of hydrogen has a particularly
simple and regular form; the measured wavelengths are accu-
rately described by the Rydberg formula. Bohr used these
results, together with Rutherford’s discovery of the nucleus
and the Planck–Einstein condition for quantization of light
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figure 18.20 The energies for the different orbits are
shown in an energy-level diagram for hydrogen. The Balmer lines
are produced by the indicated transitions. The transition for the
blue line is highlighted.

E1 = –13.6 eV

n = 2

n = 3
n = 4

n = 1

E4 = –0.85 eV

E = 0

E3 = –1.51 eV

E2 = –3.4 eV
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18.5 Particle Waves and Quantum
Mechanics
The unanswered questions and the intense activity gener-
ated by Bohr’s model of the atom attracted many young
physicists to the field of atomic physics. A more compre-
hensive model of the atom that could explain why only
certain orbits were stable obviously was needed. That need

was filled when quantum mechanics was developed in
1925. Quantum mechanics was actually developed from
two independent approaches that were quickly shown to be
fundamentally the same in their structure and predictions.

The approach that is usually described followed from the
work of Louis de Broglie (1892–1987) and Erwin Schrödinger
(1887–1961). De Broglie lit the spark by asking a simple
but radical question: if light waves sometimes behave like
particles (as shown by Planck and Einstein), could particles
sometimes behave like waves? That question produced a
revolution in our thinking about basic physical principles.

What are de Broglie waves?
The question posed by de Broglie was inspired by the con-
cept of the photon introduced by Planck and Einstein. In
1865, Maxwell had shown that light could be described as
an electromagnetic wave. On the other hand, light some-
times behaved as though it were made up of discrete and
localized particlelike bundles of energy, now called pho-
tons. Certain experiments involving the interaction of light
with electrons were most simply explained by thinking of
light as a particle.

Einstein was the leader in pointing out this aspect of
light. His 1905 paper discussed a number of phenomena that
could be treated this way, the simplest being the photoelectric
effect, a phenomenon in which light shining on an electrode
in an evacuated tube causes an electric current to flow across
the tube. This effect is frequently used in electric-eye devices
that open doors when a person interrupts the light beam.

Einstein showed that the photoelectric effect could be
explained by assuming that one photon of light, with energy
E � hf as suggested by Planck’s work, ejected one elec-
tron on hitting the electrode. This simple model predicted
the observed frequency dependence of the photoelectric
effect as well as its other features. Other effects could also
be treated in this manner by attributing an energy, E � hf,
and a momentum, p � h/�, to the photon.

Although this idea was simple, physicists were slow to
accept it because particles and waves were thought to be
very different phenomena. It was hard to understand how
light could behave as a particle in some respects and a
wave in others. An ideal wave extends indefinitely in
space, but an ideal particle is completely localized, a sim-
ple point in space (fig. 18.21). Real waves have a finite

400 Chapter 18 The Structure of the Atom

figure 18.21 An ideal wave goes on indefinitely, but an
ideal particle is just a point with no volume or extension in space.

Wave

Particle

v

example box 18.3

Sample Exercise: Energy Levels
in a Hydrogen Atom

Using the energy values shown in figure 18.20, calculate
the wavelength of the photon emitted in the transition
from the n � 4 energy level to the n � 2 energy level in
the Bohr model of the hydrogen atom.

E2 � �3.4 eV The energy difference is

E4 � �0.85 eV 
E � E4 � E2

� � ? � �0.85 eV � (�3.4 eV)

� 2.55 eV

Using h � 6.626 � 10�34 J·s � 4.14 � 10�15 eV·s,
the frequency of the emitted photon is given by

E � h f

� 6.16 � 1014 Hz

From v � c � f�, the wavelength of the emitted photon
is then

� 4.87 � 10�7 m � 487 nm

This is the blue line in the Balmer series of the hydrogen
spectrum, pictured in figure 18.17.

� 
3 � 108 m/s

6.16 � 1014 Hz

� � 
c

f

� 
2.55 eV

4.14 � 10�15 eV#s

f � 
E

h

energy, to develop a model of the hydrogen atom. Bohr
assumed that there were just a few stable orbits for the elec-
tron about the nucleus. Light was emitted when the electron
jumped from a higher-energy orbit to a lower-energy orbit.
His model accurately described the wavelengths in the hydro-
gen spectrum and predicted the value of the Rydberg con-
stant from fundamental quantities.
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length, of course, and real particles have some extension
in space, but the concepts are still quite different.

De Broglie suggested that certain things traditionally
thought of as particles, such as the electron, might some-
times behave like waves. In particular, he proposed that we
reverse the relationships that described the energy and mo-
mentum of a photon to find the frequency and wavelength
associated with a particle. Inverting the energy relationship
yields a frequency for the particle of f � E/h. Photons have
a momentum p � h/�, and inverting this relationship yields
the de Broglie wavelength

where p is the momentum and h is Planck’s constant. In
example box 18.4, we compute the extremely small de
Broglie wavelength of a baseball. If we knew the energy
and momentum of an electron, we could compute its fre-
quency and wavelength from these relationships.

De Broglie’s suggestion might have passed unnoticed if
not for a striking result that he obtained. If he treated the
electron as a wavelike entity orbiting the nucleus of the hy-
drogen atom, he could explain the condition for the quasi-
stable orbits in Bohr’s atomic model. He pictured the electron
wave forming a standing wave wound around the circular
orbit, as in figure 18.22.

To form a circular standing wave, the wavelength
would have to be restricted to values such that an integer

� � 
h
p

 ,

number of wavelengths would fit onto the circumference
of the circle. By using the de Broglie wavelength for the
electron, he could derive the Bohr condition on the
allowed values of angular momentum, L � n(h/2	). In
other words, by assuming that particles had wavelike
properties and by visualizing a standing-particle wave
winding around a circular orbit, de Broglie could explain
why only certain orbits would be stable. He had answered
one of the fundamental questions in Bohr’s theory.

De Broglie’s picture of a standing wave on a circular
orbit should not be taken literally. In fact, both the Bohr
model and the standing-wave explanation predict the
wrong value for the angular momentum of the various
stable states in the hydrogen atom. The basic difficulty is
that a circular orbit is two-dimensional and the atom
itself is three-dimensional. We need a more sophisticated
analysis to depict the standing waves properly.

The suggestion that particles had wavelike properties
was quickly borne out by experiment. It was known that
X rays, which are electromagnetic waves, could be dif-
fracted by a crystal lattice to form interference patterns
characteristic of the crystal structure. Various workers
soon showed that electron beams could also be dif-
fracted. The interference patterns that resulted looked
just like those obtained with X rays for the same crystal,
and the wavelengths needed to explain these patterns
were exactly the ones predicted by de Broglie’s relation-
ship, � � h/p.
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figure 18.22 If the electron were pictured as a standing
wave wrapped around a circular orbit, de Broglie showed that its
wavelength could take on only certain values. These values yield
the quasi-stable orbits predicted by Bohr.

+

3λ = 2π r

example box 18.4

Sample Exercise: Finding the Wavelength of a
Baseball

What is the de Broglie wavelength, in meters, of a 145 g
baseball traveling at 80 mph?

Notice how small this wavelength is!. It makes it
impossible to detect wave-like properties of everyday
objects, even with sophisticated technology.

 l � 1.28 � 10�34 m

 l �
6.626 � 10�34 Nms

5.17 Ns

 l �
6.626 � 10�34 Nms

5.17 kgm/s

 l �
6.626 � 10�34 Js

(0.145 kg)(35.7 m/s)
l � ?

h � 6.6 26 � 10�34 Js
 l �

h
mv

v � 80 mph � 35.7 m/s

 p � mv l �
h
p

m � 145 g � 0.145 kg
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How does quantum mechanics differ
from the Bohr model?
Erwin Schrödinger had spent much of his professional life
studying the mathematics of standing waves in two and
three dimensions. He was well prepared to explore the im-
plications of standing electron waves in the atom. In the
year following de Broglie’s suggestion, Schrödinger devel-
oped a theory of the atom that used three-dimensional
standing waves to describe the orbits of the electron about
the nucleus.

Within the next five years, Schrödinger and other sci-
entists pursuing the same problem from different
approaches worked out the details of the theory that we
now call quantum mechanics. This new theory gave a
much more complete and satisfactory view of the hydro-
gen atom than the Bohr model. Quantum mechanics pre-
dicted the same primary energy levels for the hydrogen
atom as the Bohr model, though we now know several
other features of the Bohr model are incorrect.

In quantum mechanics, the orbits are not simple
curves, as pictured in the Bohr model. Instead, they are
three-dimensional probability distributions centered on
the nucleus. These distributions rely on treating the elec-
tron as a standing wave. These standing waves describe
the probability of finding electrons at certain distances
and orientations about the nucleus. The probability distri-
butions of the ground state and two excited states of the
hydrogen atom appear in figure 18.23. The dark or
denser areas are the places where the electron is most
likely to be found. The average distances of the electron
from the nucleus for different quasi-stable orbits are con-
sistent with the orbital radii given by the Bohr model.

What is the Heisenberg uncertainty
principle?
Dealing with probability distributions rather than well-
defined orbital paths is a fundamental, necessary feature of
quantum mechanics. The waves associated with electrons
and other particles predict a probability for finding the
electron at various positions, but they cannot tell us exactly
where the particle is located. Likewise, electromagnetic
waves give us a probability of finding photons at various
positions. In situations where wave properties are domi-
nant, we lose information about precise particle locations.

This limitation on what we can know about a particle’s
location is summarized in the famous Heisenberg uncer-
tainty principle, introduced by Werner Heisenberg (1901–
1976). This principle states that the position and momen-
tum of a particle cannot both be known simultaneously
with high precision. There will be an uncertainty in one
that depends on how precisely we have determined the
other. In symbols, this limitation takes the form:

where h is Planck’s constant, 
p is the uncertainty in the
momentum of the particle, and 
x is the uncertainty in its
position. If the uncertainty in position is small, the uncer-
tainty in momentum must be large, and vice versa.

Since the momentum p is related to the wavelength as-
sociated with the particle by the de Broglie relationship
� � h/p, the uncertainty principle says that if we know the
wavelength accurately, we cannot know the position of the parti-
cle accurately. The converse is also true: if we know the position
accurately, we cannot know the wavelength accurately. Some
experiments tend to bring out the particlelike aspects of photons
or electrons (knowledge of position), and others tend to bring out
the wave features (knowledge of wavelength).

Heisenberg’s uncertainty principle is a fundamental
limitation on what we can observe rather than a lack of ex-
perimental capability. The limitation is an inevitable fea-
ture of wave pulses. If we attempt to localize a wave by
creating a brief pulse, the wavelength cannot be accurately
defined. On the other hand, an extended wave, which per-
mits accurate definition of the wavelength, gives us no pre-
cise information regarding position.

How does quantum mechanics explain
the periodic table?
Quantum mechanics provides a means of answering most
of the questions raised by the Bohr model about atomic
structure and spectra. In particular, quantum mechanics is
successful in predicting the structure and spectra of atoms
with many electrons, although the computations are diffi-
cult. It also clarifies other features of the spectra that can-
not be understood using the Bohr model.

¢p¢x � 
h

2	
 ,
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figure 18.23 The probability of finding the electron at
different distances from the nucleus is given by these probability-
density diagrams of the ground state (top left) and two excited
states of the hydogen atom.
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The picture of atomic structure that emerges from
quantum mechanics had already been partially assembled
from attempts to explain the regularities in the periodic
table of the elements. The theory provides us with quan-
tum numbers that describe the various possible stable
orbits. One of these is the principal quantum number, n,
needed to compute the energies in the Bohr model. Quan-
tum mechanics provides three others, however, associated
with the magnitude and orientation of the angular
momentum and with the spin of the electron. (Experimen-
tal evidence indicated that the electron behaves like a
magnetic dipole, suggesting that it must be spinning to
form a tiny current loop.)

No two electrons in an atom can have the same set of
quantum numbers. Once an orbit is filled, other electrons
must take on new, and generally higher, values for at least
one of the quantum numbers. The number of possible
combinations increases rapidly as the principal quantum
number n increases. For n � 1, there are only two possible
combinations corresponding to two different orientations
of the electron-spin axis, but for n � 2, there are eight, for
n � 3, eighteen, and so on. Once the two possible states
for n � 1 are filled, the next electron added must go into
an n � 2 level, or shell.

From this conception, we can explain certain regulari-
ties of the periodic table. The first two elements, hydro-
gen (H) and helium (He), have one and two electrons,
respectively. Two electrons fill the n � 1 shell. The next
element, lithium (Li), which has three electrons, must
have its third electron in the n � 2 shell. Since lithium
has one electron beyond the filled n � 1 shell, its chemi-
cal properties are quite similar to those of hydrogen,
which has just one electron. Likewise, the next element
in that column of the periodic table, sodium (Na), has
one electron beyond the filled n � 2 shell. Its other ten
electrons fill the n � 1 and n � 2 levels, two in the first
shell and eight in the second shell. Figure 18.24 shows a
schematic representation of the shell structure of hydro-
gen, lithium, and sodium.

The element immediately preceding sodium in the peri-
odic table is neon (Ne), which has ten electrons, two in the
n � 1 shell and eight in the n � 2 shell. Like helium,
therefore, it has a closed-shell arrangement and does not
react readily with other elements. Helium and neon are
both noble gases, which are chemically nonreactive.

Fluorine (F), however, has nine electrons, one short of
a filled shell, and is very reactive. It forms compounds with
elements such as hydrogen or sodium, which can contrib-
ute an electron to close a shell.

The principles used in explaining the entire periodic
table are the same as those we have just outlined, although
the details become more complicated with higher numbers
of electrons. The theory explains the regularities of the peri-
odic table and is highly successful in predicting the ways
different elements combine to form chemical compounds.

18.5 Particle Waves and Quantum Mechanics 403

Quantum mechanics has become the fundamental theory of
chemistry as well as atomic, nuclear, and condensed-mat-
ter physics.

Louis de Broglie suggested that particles such as elec-
trons might have wavelike properties. Using this idea, he
was able to explain the Bohr condition for stable orbits
in the hydrogen atom. Thinking of particles as having
wavelike properties leads directly to the Heisenberg
uncertainty principle, which tells us that we cannot pre-
cisely determine both the position and the momentum of
a particle at the same time. Quantum mechanics treats
the standing waves associated with electrons in the
atom as three-dimensional probability distributions. This
theory has been successful in predicting the spectra and
chemical properties of atoms with many electrons. Shells
explain whywe get the regularities described by the peri-
odic table. Quantum mechanics is now the fundamental
theory underlying most areas of physics and chemistry.

figure 18.24 The chemical properties of sodium, with one
electron in the n � 3 shell, are similar to those of hydrogen and
lithium, which also have a single electron in their outermost
shells.

Hydrogen (H) Lithium (Li)

Sodium (Na)

+
+

+
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key terms

In a period of less than fifty years, we progressed from knowing
virtually nothing about the structure of the atom to having de-
tailed knowledge of that structure. Some of the critical discover-
ies that led to this knowledge were discussed, starting from chemical
evidence for the existence of atoms and culminating in the theory
called quantum mechanics that explains atomic structure.

1 The existence of atoms: Evidence from chem-
istry. Recognition of the importance of weighing chemical re-
actants and products led to the statement of the law of definite
proportions and the concept of atomic mass. If each element con-
sists of atoms all having the same mass, we could explain the
mass ratios observed in chemical reactions. The periodic table
shows regularities in the properties of different elements when
they are organized in order of increasing atomic weight.

summary

4 Atomic spectra and the Bohr model of the atom.
Bohr explained the regularities in the observed spectrum of hy-
drogen (the colors of light emitted by excited hydrogen atoms)
with a model that incorporated the new quantum ideas introduced
by Planck and Einstein. Bohr pictured light as being emitted
when an electron jumped from one stable orbit to a lower-energy
orbit. The energy difference explained the frequency and wave-
length of the emitted photons.

16

11

mO = 16 = 8
mH        2     1

__ ___

H2O

__∆E = hf = hc
λ

2 Cathode rays, electrons, and X rays. The study of
cathode rays, produced by placing a high voltage across two elec-
trodes in an evacuated tube, led to the discovery of the electron
and X rays. The electron is a negatively charged particle with a
mass much smaller than the smallest atom, so it was the first
known subatomic particle available for building atomic models.

3 Radioactivity and the discovery of the nucleus.
Natural radioactivity, discovered shortly after the discovery of
X rays, has three components: alpha (helium ions), beta (electrons),

5 Particle waves and quantum mechanics. De
Broglie’s suggestion that particles such as electrons could have
wavelike properties characterized by a wavelength related to the
momentum of the particle, � � h/p, was one path that led to the
development of quantum mechanics. The stable orbits of the elec-
trons in atoms can be described in terms of three-dimensional
standing waves in this theory. The resulting probability distribu-
tions can explain the atomic spectra and chemical properties of
multi-electron atoms.

and gamma (short-wavelength X rays). The alpha rays were used
to probe the structure of the atom in scattering experiments, which
led to the discovery of the nucleus of the atom.
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questions

* � more open-ended questions, requiring lengthier responses, suitable
for group discussion 
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. Is a chemical element the same as a chemical compound?
Explain.

Q2. Can the element iron (Fe) be changed to gold (Au) by heat-
ing it to a high enough temperature? Explain.

Q3. When a substance is burned, are all of the products of that
reaction solid substances that can be easily weighed?
Explain.

Q4. Is mass conserved in a chemical reaction? Explain.

Q5. In a chemical reaction, do the elements involved change
into different elements as the reaction proceeds? Explain.

Q6. Does an atom of carbon (C) have the same mass as one
atom of oxygen (O)? Explain.

Q7. Is it possible for any number of hydrogen atoms to com-
bine with just one atom of oxygen? Explain.

*Q8. Can the law of definite proportions be explained by a model
in which different atoms of the same element have widely
varying masses? Explain.

Q9. Do cathode rays consist of electromagnetic waves? Explain.

Q10. Do X rays consist of electromagnetic waves? Explain.

Q11. Assuming that cathode rays are a beam of charged parti-
cles, how could you demonstrate that these particles are
negatively charged? Explain.

Q12. What characteristics of the negatively charged particles
that make up cathode rays suggested to Thomson that they
might be atomic building blocks? Explain.

Q13. Would you expect X rays to be produced by a television
picture tube? Explain.

Q14. If the electron beam in a television tube is striking just
one point on the screen at a time, how can we get a full
picture? Explain.

Q15. Following Roentgen’s discovery of X rays, Becquerel dis-
covered a seemingly similar type of radiation given off by
phosphorescent materials containing uranium or thorium.
Was this new radiation the same as X rays? Explain.

Q16. Was it necessary for Becquerel’s phosphorescent materi-
als to be exposed to sunlight for them to exhibit natural
radioactivity? Explain.

Q17. What are two important differences that distinguish alpha
particles from beta particles when they are passed through
a magnetic field? Explain.

*Q18. When alpha particles are scattered from a thin piece of
gold foil, why do most of them go through with very lit-
tle deflection? Explain.

Q19. Does most of the mass of the atom reside inside or out-
side of the nucleus? Explain.

*Q20. What role did Rutherford’s scattering experiment play in
our developing understanding of atomic structure? Explain.

Q21. Would you expect electrons to be effective in deflecting
an alpha-particle beam? Explain.

*Q22. How are the atomic spectra of hydrogen or other gaseous
elements generated experimentally? How are they mea-
sured? Explain.

Q23. Does the spectrum of hydrogen consist of randomly spaced
wavelengths or is there a pattern to the spacing? Explain.

Q24. According to Planck’s theory, can light be emitted from
a blackbody radiator in continuously varying amounts of
energy for a given wavelength or frequency? Explain.

Q25. According to Bohr’s theory of the hydrogen atom, is it pos-
sible for the electron to orbit the nucleus with any possible
energy? Explain.

Q26. What happens to the excess energy when the electron
jumps from a higher-energy orbit to a lower-energy orbit
in the hydrogen atom? Explain.

Q27. Does an electron have a wavelength? Explain.

Q28. According to the theory of quantum mechanics, is it possi-
ble to pinpoint exactly where an electron is located in an
atom? Explain.

Q29. The Bohr model of the hydrogen atom predicts a circular
orbit for the electron about the nucleus; the theory of
quantum mechanics predicts a three-dimensional probabil-
ity distribution for locating the electron. Which of these
views provides the more realistic picture of the hydrogen
atom? Explain.

Q30. The chemical properties of sodium (Na), with eleven elec-
trons, are similar to those of lithium (Li), which has just
three electrons. How do we explain this fact?

Q31. Does helium (He), with two electrons (one more than hy-
drogen), react chemically with other substances more read-
ily or less readily than hydrogen? Explain.

Q32. Why does the second row in the periodic table have more
elements than the first row containing hydrogen and he-
lium? Explain.
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synthesis problems

SP1. An electron beam in a cathode-ray tube passes between two
parallel plates that have a voltage difference of 300 V across
them and are separated by a distance of 2 cm, as shown in
the diagram.
a. In what direction will the electron beam deflect as it

passes between these plates? Explain.
b. Using the expression for a uniform field, 
V � Ed, find

the value of the electric field in the region between the
plates.

c. What is the magnitude of the force exerted on individ-
ual electrons by this field? (F � qE, q � 1.6 � 10�16 C)

d. What are the magnitude and direction of the accelera-
tion of an electron? (m � 9.1 � 10�31 kg)

e. What type of path will the electron follow as it passes
through the region between the plates? Explain.

SP2. Study the energy-level diagram shown in figure 18.20. The
Balmer series of spectral lines all involve transitions to the
n � 2 energy level, and the Lyman series in the ultraviolet
involves transitions to the n � 1 level. The energies are all
negative as a result of the negative potential energy for two
charges of opposite sign.
a. Which transition in the Balmer series produces the small-

est frequency photon (and the largest wavelength)?
b. What is the energy difference in joules for the two lev-

els involved in the transition of part a?
c. What are the frequency and wavelength of the photon

emitted in this transition?
d. Similarly, find the frequency and wavelength of the pho-

ton with the longest wavelength in the Lyman series.

SP3. When an electron is removed completely from an atom, we
say that the atom is ionized. An ionized atom has a net pos-
itive charge since an electron has been removed.
a. From the energy-level diagram in figure 18.20, how

much energy would be required to ionize a hydrogen
atom when it is in its lowest energy level?

b. How much energy would be required to ionize the
atom when it is in the first excited state above the low-
est level?

+ + + + + + + +

– – – – – – – –

300 V– 2 cm

exercises

E1. If sodium (Na), with an atomic weight of 23, combines
with oxygen (O), with an atomic weight of 16, to form the
compound Na2O, what is the ratio of the mass of sodium to
oxygen that you would expect to react completely in this
transformation?

E2. If carbon (C), with an atomic weight of 12, combines with
oxygen (O), with an atomic weight of 16, to form carbon
dioxide (CO2), how many grams of carbon would react
with 96 g of oxygen?

E3. If 38 g of fluorine (F) react completely with 2 g of hydro-
gen (H) to form the compound hydrogen fluoride (HF),
what is the atomic weight of fluorine?

E4. If aluminum (Al), with an atomic weight of 27, combines
with oxygen (O), with an atomic weight of 16, to form
the compound aluminum oxide (Al2O3), how much oxy-
gen would be required to react completely with 54 g of
aluminum?

E5. If the mass of a hydrogen atom is 1.67 � 10�27 kg and the
mass of an electron is 9.1 � 10�31 kg, how many electrons
would be required to have a mass equivalent to one hydro-
gen atom?

E6. How many electrons would be required to produce 5 micro-
coulomb (5 � 10�6 C) of negative charge? (e � �1.6 �
10�19 C)

E7. Suppose that an X-ray beam has a wavelength of
1.5 � 10�10 m. What is the frequency of these X rays?
(v � c � f �)

E8. Using the Rydberg formula, find the wavelength of the
line in the Balmer series of the hydrogen spectrum for
m � 3. (n � 2 for the Balmer series.)

E9. Using the Rydberg formula, find the wavelength of the
spectral line for which m � 3 and n � 1. Would this line
be visible to the unaided eye? Explain.

E10. Suppose that a photon has a wavelength of 650 nm (red).
a. What is the frequency of this photon?
b. What is the energy of this photon in joules?

E11. Suppose that a photon has an energy of 3.6 � 10�19 J.
a. What is the frequency of this photon?

(h � 6.626 � 10�34 J·s)
b. What is the wavelength of this photon?

E12. An electron in the hydrogen atom jumps from an orbit in
which the energy is 1.89 eV higher than the energy of the
final lower-energy orbit.
a. What is the frequency of the photon emitted in this

transition? (h � 4.14 � 10�15 eV·s. See example box
18.1.)

b. What is the wavelength of the emitted photon?

SP1 Diagram
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HE1. Obtain some red or blue liquid food coloring from your
kitchen or local grocery. Prepare two glasses or transparent
plastic cups containing equal amounts of water, one drawn
from the cold tap and the other drawn from the hot tap.
Drop one drop of food coloring into each cup and observe
what happens. (Do not stir once the food coloring has been
added.)
a. Describe the changes that take place over several min-

utes in time until the food coloring is well dispersed in
both cups. What differences do you note between the
cups with the cold and hot water?

b. Develop an explanation for your observations. Do they
suggest the presence of tiny particles such as molecules
or atoms?

HE2. With the television set turned off, take a close look at the
screen of a color-television set. If you have a magnifying
glass available, it will help to get a good view of the detail.
a. Describe the pattern of lines that you observe. Produce

a careful sketch showing the arrangement of the lines.
How many lines are there, approximately?

b. If there is a black-and-white television set handy, com-
pare the pattern on its screen to the color set. What dif-
ferences can you describe?

home experiments and observations

c. If an electron with zero kinetic energy was “cap-
tured” by an ionized hydrogen atom and went imme-
diately to the lowest energy level, what wavelength
would you expect to observe for the photon emitted
in this transition?

SP4. Suppose that an electron (m � 9.1 � 10�31 kg) is moving
with a velocity of 1500 m/s.

a. What is the momentum of this electron?
b. What is the de Broglie wavelength of this electron?
c. How does this wavelength compare to those of visible

light? (See fig. 16.5.)
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chapter overview
The story of how physicists explored the nucleus and its structure is told
in this chapter, including the discovery of nuclear fission just before
World War II and the wartime effort to invent the atomic bomb. The
postwar desire to find peaceful uses for the atom led to the
development of commercial power plants, although this same era also
saw the invention of the hydrogen (fusion) bomb and a rapid buildup of
the nuclear arsenals of the major world powers. Our goal is to
understand the underlying science of these issues.

chapter outline
1 The structure of the nucleus. What is the nucleus made of, and how

do the pieces fit together? What is the distinction between different
isotopes of the same element?

2 Radioactive decay. What is radioactive decay, and how does it relate
to changes in the nucleus? Why can radioactivity be dangerous?

3 Nuclear reactions and nuclear fission. What are nuclear reactions, and
how do they differ from chemical reactions? How was nuclear fission
discovered? How can fission produce a chain reaction?

4 Nuclear reactors. How do nuclear reactors work? What are the
functions of the moderator, the control rods, the coolant, and other
reactor components? What do nuclear wastes consist of?

5 Nuclear weapons and nuclear fusion. How does a nuclear bomb
work? What is nuclear fusion, and how can it be used to release
energy?

408
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19.1 The Structure of the Nucleus 409

In 1986, the news media were full of reports and com-
ments on a serious nuclear accident at the Chernobyl
nuclear power plant in Ukraine, then part of the Soviet
Union. Radioactivity was dispersed across parts of
Europe, several firefighters and reactor employees were
killed, and the fears of the public about nuclear power
were dramatically reawakened.

Closer to home, in the United States we have about
seventy nuclear reactors producing electric power, sub-
marines that use nuclear reactors as their power source,
and many smaller reactors used for research and other
purposes. Most of these reactors have operated with
only minor problems and have had minimal impact on
their surroundings. Nevertheless, the environmental con-
sequences and economics of nuclear power have been
extremely controversial issues over the past three decades.

What goes on inside a nuclear reactor? How do we
derive power from uranium, and what nuclear wastes
are generated? Need we fear those benign-looking clouds
that billow from the cooling towers (fig. 19.1)? Can a
reactor explode like a nuclear bomb? What is the differ-
ence between nuclear fission and nuclear fusion? If you
know the answers to these questions, you will be less at
the mercy of the extremists on either side of the issue
who assert simple but misleading views.

The development of our knowledge of the nucleus of
the atom is one of the most fascinating tales of twentieth-
century science. The political consequences of nuclear

weapons and nuclear power have been critical compo-
nents of that story. These issues, more than any other,
have thrust science and physics into the cauldron of
national and international policy. Nuclear issues have
become part of our common concern as citizens.

figure 19.1 The large cooling tower is often the most
prominent feature of a modern nuclear power plant. What is the
source of energy in such a plant?

19.1 The Structure of the Nucleus
We began to understand the structure of the nucleus only in
the twentieth century. Even the existence of an atomic nu-
cleus was not suspected until Rutherford’s famous alpha-
particle scattering experiments performed between 1909 and
1911 (see section 18.3). The idea that this tiny center of the
atom also has a structure that we can decipher may seem
amazing.

What are the building blocks from which the nucleus is
constructed? Ernest Rutherford, who is credited with the
discovery of the nucleus, also played a major role in an-
swering this question. The evidence came from more scat-
tering experiments. Scattering experiments of one sort or
another are the major tool for probing the nucleus and
other subatomic particles.

How was the proton discovered?
Rutherford performed the experiment that uncovered the
first nuclear building block in 1919. Once again, he used
alpha particles as his probe. Figure 19.2 shows a conceptual
diagram of this scattering experiment. A beam of alpha par-
ticles was used to bombard a cell containing nitrogen gas.
As expected, some of the alpha particles went through the
sample without hitting anything, and others were deflected

(scattered) by the nuclei of the nitrogen atoms. The
deflected particles could be observed with scintillation de-
tectors (see section 18.3).

The unexpected result of this experiment was the emer-
gence of a different particle from the cell containing the
nitrogen. These new particles were positively charged like
the alpha particles but could be distinguished by how far
the particles traveled in air and by other features. In fact, the
new particles behaved like the nuclei of hydrogen atoms
that Rutherford had observed in earlier experiments when
he bombarded hydrogen gas with alpha particles. The mass
of the hydrogen atom is approximately one-fourth that of
an alpha particle, which is the nucleus of a helium atom, as
noted in chapter 18.

Finding hydrogen nuclei emitted from a cell that con-
tained no hydrogen hinted at an exciting possibility: perhaps
the hydrogen nucleus was a basic constituent of the nucleus
of other elements. It was already known that the atomic
masses of many elements were close to being integer mul-
tiples of the atomic mass of hydrogen. The atomic mass of
nitrogen, for example, is approximately 14 times the atomic
mass of hydrogen, while carbon is approximately 12 times
and oxygen 16 times the atomic mass of hydrogen. These
masses could be explained if the nuclei of these elements
were made up of 12, 14, and 16 hydrogen nuclei for car-
bon, nitrogen, and oxygen, respectively.
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Further experiments by Rutherford and others showed
that hydrogen nuclei could also be ejected from sodium
and other elements by bombarding them with alpha parti-
cles. We now call this particle a proton—it is the nucleus
of the hydrogen atom as well as a component of other
nuclei. A proton has a charge �e � 1.6 � 10�19 C, oppo-
site in sign but identical in magnitude to the charge of the
electron �e. Its mass is much larger than the electron’s,
however, and is approximately equal to the mass of the
hydrogen atom, 1835 times the mass of the electron.

How was the neutron discovered?
The hypothesis that the nuclei of different elements could
be made simply of protons had some serious problems, the
most obvious of which was the charge of the nucleus.
From nitrogen’s place in the periodic table and other evi-
dence, the charge of the nitrogen nucleus should be �7e
rather than �14e. If there were 14 protons in the nucleus
of the nitrogen atom, the nuclear charge would be too large.
Likewise, carbon and oxygen have nuclear charges of �6e
and �8e, respectively, rather than 12 or 16 times e.

For a while, physicists considered the possibility that
electrons were also present in the nucleus, partially neu-
tralizing the extra charge of the protons. This view had
some serious drawbacks, however, in light of the new in-
sights of quantum mechanics. The energies of electrons
confined to the very small region of the nucleus would
have to be much larger than the measured energies of the
electrons emerging as beta rays in radioactive decay.
Therefore, it did not seem likely that electrons existed as
separate particles in the nucleus.

It took several years to solve this riddle. Yet another scat-
tering experiment, performed by Walther Bothe and Wilhelm

Becker in Germany around 1930, provided the breakthrough.
Bothe and Becker bombarded thin beryllium samples
with alpha particles and found that a very penetrating
radiation was emitted. Since gamma rays were the only
radiation known to be so penetrating, Bothe and Becker
originally assumed that gamma rays were involved. Other
experiments, however, showed that this new emission had
an even greater ability to pass through lead than gamma
rays and possessed other properties quite unlike gamma
rays.

In 1932, a British physicist, James Chadwick (1891–
1974), showed that this new emission from beryllium be-
haved like a neutrally charged particle with a mass roughly
equal to the proton. Chadwick’s experiment used the pene-
trating emission from the alpha bombardment of beryllium
to bombard a piece of paraffin (fig. 19.3). Paraffin is a
compound of carbon and hydrogen, and hydrogen nuclei
(protons) emerged from the paraffin when placed in the
path of the penetrating radiation coming from the beryl-
lium. If a new neutral particle with a mass equal to the pro-
ton was colliding with protons in the paraffin, it neatly
explained the energies of the protons emerging from the
paraffin. This new particle was called a neutron—it has no
charge, and its mass is very close to the proton’s mass.

Chadwick’s discovery of the neutron settled the ques-
tion of the basic building blocks of the nucleus (fig. 19.4):
If the nucleus is made of neutrons and protons, we can
explain both the charge and the mass of the nucleus. Nitro-
gen, for example, can have a nucleus made up of 7 protons
and 7 neutrons for a total mass 14 times the mass of hy-
drogen and a nuclear charge 7 times that of hydrogen. You
can easily deduce the required numbers of protons and
neutrons for carbon and oxygen. The numbers for several
elements are shown in figure 19.5.

410 Chapter 19 The Nucleus and Nuclear Energy

figure 19.2 A drawing of the apparatus used in Rutherford’s scattering experiment, which resulted in the discovery
of the proton. Nitrogen gas was the target for the alpha particles.
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19.1 The Structure of the Nucleus 411

What are isotopes?
Another puzzle was also solved with the discovery of the
neutron. It had been known for some time that atoms of
the same element could have different values of nuclear
mass. Nuclear masses were measured with high accuracy
by passing nuclei of known velocity through a magnetic
field and observing how much their paths were bent by the
magnetic force on the positively charged nucleus. For ex-
ample, chlorine was known from chemistry to have an aver-
age atomic mass 35.5 times that of hydrogen. When chlorine
ions were passed through a magnetic field, however, two
different masses were present, one 35 times hydrogen and
the other 37 times hydrogen. Their chemical properties were
identical—both behaved like chlorine.

Today we call different-mass versions of the same ele-
ment isotopes. Different isotopes have the same number of
protons in the nucleus, but different numbers of neutrons.
The two common isotopes of chlorine, for example, both
have 17 protons in the nucleus, but one has 18 neutrons for a
total mass number of 35 and the other 20 neutrons for a total
mass number of 37. (The mass number is the sum of the pro-
ton and neutron numbers.) Table 19.1 gives other examples.

The chemical properties of an element are determined
by the number and arrangement of the electrons outside of
the nucleus as discussed in chapter 18. For a neutral atom
with a net charge of zero, the number of electrons outside
the nucleus must equal the number of protons inside the

nucleus, which is called the atomic number. Nitrogen, for
example, has an atomic number of 7: there are 7 protons in
the nucleus and 7 electrons orbiting the nucleus. There also
happen to be 7 neutrons in the nucleus, but, in general, the
neutron number is not equal to the atomic number. Except
for the lightest elements, the neutron number is generally
larger than the atomic number.

With the discovery of the neutron in 1932, many pieces of
the puzzle fell into place. Atomic masses as well as the chem-
ical properties of atoms could now be explained. Physicists
began inventing models of the nucleus and designing new
experiments to test these models. Perhaps most important, the
neutron provided a powerful new probe for exploring the
structure of the nucleus. Since it has no charge, a neutron can
penetrate the nucleus and begin to rearrange it. The proton

figure 19.3 A diagram of Chadwick’s experiment. Radiation coming from the beryllium target was used to
bombard a paraffin target.

figure 19.4 The basic building blocks of the nucleus are
the proton and the neutron.

Radium or polonium

Alpha-particle beam

Thin sheet
of beryllium

Neutrons

Protons

Thin sheet
of paraffin

Penetrating radiation
(neutrons)

+

Proton Neutron

q = +e
m = 1.673 × 10−27 kg

q = 0
m = 1.675 × 10−27 kg

Name Symbol* Protons Neutrons

Hydrogen-1 1H1 1 0

Hydrogen-2 (deuterium) 1H2 1 1

Hydrogen-3 (tritium) 1H3 1 2

Carbon-12 6C12 6 6

Carbon-14 6C14 6 8

Chlorine-35 17Cl35 17 18

Chlorine-37 17Cl37 17 20

Uranium-235 92U235 92 143

Uranium-238 92U238 92 146

* See section 19.2 for an explanation of the notation used here.

table 19.1

Neutron and Proton Numbers for Different Isotopes
of the Same Elements
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and the alpha particle, on the other hand, are both positively
charged and, therefore, repelled by the positive charge of the
nucleus. A host of new experiments were begun, and some
produced even more spectacular surprises than those we have
been describing here.

A series of scattering experiments performed by Ruther-
ford and other physicists gave clues to the building blocks
of the nucleus. The proton, which is the nucleus of the
hydrogen atom, was found in other nuclei as well. The
neutron, which has a mass almost equal to the proton but
zero charge, could also be generated in scattering experi-
ments. Together, the proton and neutron account for both
the mass and charge of different nuclei, as well as the
existence of different isotopes of the same element.

19.2 Radioactive Decay
Becquerel discovered natural radioactivity in 1896, as de-
scribed in section 18.3. By 1910, Rutherford and others had
demonstrated that one element was actually being changed
into another during radioactive decay. The nucleus of the

atom itself is modified when a decay occurs. How can our
new insights into nuclear structure help to illuminate this phe-
nomenon?

What happens in alpha decay?
Radium, which was isolated and identified at the turn of the
century by Marie and Pierre Curie, was one of the first
radioactive elements to be studied extensively. Radium was
found in the uranium ore, pitchblende, but was soon shown to
be much more radioactive than uranium itself. Alpha parti-
cles, which Rutherford identified as the nuclei of helium atoms,
were the primary radiation emitted in the decay of radium.

The dominant isotope of radium found in pitchblende
contains a total of 226 nucleons (neutrons and protons) in
its nucleus. We call this isotope radium-226 and often write
it as 88Ra226, where Ra is the chemical symbol for radium,
the subscript 88 is the atomic number, and the superscript
226 is the mass number, the total number of neutrons and
protons. Since the atomic number is 88, there are 88 protons
and 138 neutrons (226 � 88) in the nucleus of this isotope.

If we know that radium-226 emits alpha particles, we
can figure out what element results from its decay. The
process is straightforward: we know how many protons and

412 Chapter 19 The Nucleus and Nuclear Energy

figure 19.5 The proton and neutron numbers for the most common isotopes of several elements. The nucleus gets larger as the
number of protons and neutrons increases.
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19.2 Radioactive Decay 413

neutrons are contained in both the radium and the alpha par-
ticle (a helium nucleus), so we also know how many of each
are left in the decay product or daughter element. We often
write a reaction equation to help keep track of the numbers
and to serve as a shorthand for describing the reaction:

88Ra226 ⇒ 86?
222 � 2He4.

Here we have found the atomic number (86) of the un-
known element by subtracting the atomic number of
helium, 2, from radium, 88. The mass number is found
similarly: subtracting 4 from 226 yields the mass number
of 222. Both the atomic numbers and the mass numbers
must add to the same total on either side of the reaction
equation. The unknown element can then be identified by
looking in a periodic table (see the inside back cover) to
find which element has an atomic number of 86. It turns
out to be the noble gas radon (Rn), so the daughter nucleus
indicated by the question mark is radon-222 (86Rn222).

The alpha decay of radium-226 is illustrated in figure 19.6,
where the alpha particle is shown emerging with a much
larger velocity than the recoil velocity of the radon nucleus
as required by conservation of momentum (see chapter 7). If
the initial momentum of the system was zero, the alpha par-
ticle and the radon nucleus must have equal but oppositely
directed momentums after the decay. Since the alpha particle
has a much smaller mass than the radon nucleus, its velocity
must be much larger than that of the helium nucleus for the
momenta to be equal in magnitude (p � mv).

Even though we did not obtain gold, we find that the al-
chemist’s dream of turning one element into another does
happen in radioactive decay and other nuclear reactions.
The daughter isotope, radon-222, is itself radioactive and
undergoes alpha decay to produce polonium-218, which, in
turn, undergoes alpha decay to yield lead-214. Although
lead-214 is not a stable isotope, lead is often the end product
of the radioactive decay of heavier elements. For an applica-
tion of alpha decay, see everyday phenomenon box 19.1.

What happens in beta and gamma decay?
Lead-214 undergoes beta decay—the particle emitted in beta
decay is either an electron or a positron (a positively charged
version of the electron). In the case of lead-214, an ordinary
(negatively charged) electron is emitted. The mass of an elec-
tron is so small that it can be ignored on the scale of nuclear
masses—its mass number is effectively zero. Since an elec-
tron is negatively charged, its charge or atomic number is
�1, so the reaction equation takes the form

82Pb214 ⇒ 83?
214 � �1e

0 � 0�
0.

The third particle appearing on the right-hand side of
the beta-decay reaction equation is called an antineutrino
and is represented by the Greek letter nu (�). The bar over
the symbol indicates an antiparticle. All elementary parti-
cles also have antiparticles. Antiparticles have identical
masses but opposite-sign charges if they are charged. For
example, the positron is the antiparticle of an electron.
Antiparticles will annihilate one another, releasing energy
in other forms, if they interact.

The antineutrino had not been directly observed in beta
decay but was included to conserve energy. Since the elec-
trons in beta decay emerge with a range of energies, physi-
cists reasoned that something else must be involved to
account for the remaining energy. Neutrinos were not actually
detected until 1957, but physicists believed in their existence
for many years before, because of their faith in the principle
of conservation of energy. Neutrinos (and antineutrinos) have
an extremely small mass and no charge, so they do not affect
the charge and mass numbers in the reaction equation.

Here again we see that the mass numbers and charge
numbers add up on either side of the reaction equation. The
atomic number of the resulting element is 83, since
83 � 1 � 82 is the original atomic number of the lead (Pb)
isotope. Looking up the atomic number 83 in the periodic
table shows that bismuth-214 is the daughter element in this
decay (fig. 19.7). One of the neutrons inside the nucleus of
lead-214 has been changed to a proton, yielding a nucleus
with a higher atomic number. Thus, we could substitute

83Bi214 for the question mark in the reaction equation.
Through a series of further beta and alpha decays,

bismuth-214 decays finally to a stable isotope of lead, lead-
206. Some of the isotopes involved in this decay chain
also emit gamma rays, which are high-energy photons. Since
the emitted particle in this case is a photon, which has no
charge or mass, neither the mass number nor the charge
number changes in a gamma decay. We are merely left with a
more stable version of the original isotope (fig. 19.8).

Isotopes that emit gamma rays are used extensively in
medical applications. Since the gamma rays have no charge or
mass, they don’t interact much with matter, and therefore have
greater penetrating power than alpha or beta particles. They
also cause significantly less biological damage. Many nuclear
medicine diagnostic procedures involve introducing a radioac-
tive isotope into the body and then imaging the concentration

figure 19.6 Alpha decay of radium-226. The daughter
isotope is radon-222.
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α86Rn222
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(2He4)
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Smoke Detectors

The Situation. Smoke detectors are ubiquitous in our lives,
thank goodness. Many hundreds of lives have been saved by
smoke alarms. Most homes, apartments, and offices have
smoke detectors installed, often in hallways (see photograph).
Most people have probably had the experience of burning
dinner and having the smoke alarm go off.

A typical smoke detector mounted on a ceiling.

How do smoke detectors work? How does radiation play a
role in smoke detectors? Many everyday phenomena depend on
the properties of radiation. The field of medicine is full of exam-
ples—medical imaging, radiation treatment of cancer, etc. How-
ever, many people don’t realize that smoke detectors are cleverly
designed to take advantage of a property of alpha particles.

The Analysis. So what are alpha particles? Alpha particles are
simply a helium nucleus, consisting of two neutrons and two
protons. They are much more massive than the beta particles
(electrons) and gamma rays also discussed. Because of their rel-
ative size, alpha particles cannot travel very far in air. Nitrogen
and oxygen molecules make up 89% of the air we breathe.
Alpha particles bump into the nitrogen and oxygen molecules
in the air and lose their energy. If the air is filled with smoke
particles, they lose their energy much more rapidly and they
can barely travel any distance at all! This characteristic of alpha
radiation helps to make a very sensitive smoke detector.

In the smoke detector there is a source of alpha particles
called americium-241. There are no stable isotopes of americium,
thus it is extremely rare in nature. It was originally discovered
at a nuclear reactor at the University of Chicago by bombarding
plutonium with neutrons. Glenn Seaborg, who worked on the
Manhattan Project and co-discovered 10 elements, named the
new element americium, in honor of the continent where it
was discovered. All the americium used in smoke detectors is
produced in nuclear reactors.

When the alpha particles bump into the nitrogen and 
oxygen molecules, they remove electrons from those mole-
cules, causing them to become ionized. An ionized molecule,
also called an ion, is a molecule that is no longer neutral. The
number of protons in the nucleus is now greater than the
number of electrons since one or more of the electrons have
been removed by the interaction with the alpha particle. This
produces negatively charged electrons and positively charged
nitrogen and oxygen ions.

In the smoke detector there are two plates, one positively
charged and one negatively charged (see diagram). Since unlike
charges attract one another, the electrons head toward the pos-
itively charged plate and the positive nitrogen and oxygen ions
head toward the negatively charged plate. This creates an elec-
tric current. This is why it is important to change the battery in
your smoke detector regularly since it is the battery that creates
the positive and negative charges on the plates.

A simple diagram showing the basic idea of how a smoke
detection works. Additional circuitry (not shown) is necessary
to detect the decrease in the current that activates the alarm.

When the electric current is present, all is well. However, if
there are smoke particles in the air, the current decreases and
an alarm is triggered. The current decreases both because the
alpha particles are absorbed by the smoke particles and thus
prevented from creating many of the ions and because the
smoke particles interact with what ions are present, contribut-
ing electrons so they become electrically neutral again.

Alpha particles are amazingly easy to stop. The dead layer
of your skin on the outside of your body is more than suffi-
cient to stop any alpha particle. A single sheet of paper, or a
layer of clothing can also stop them. Thus the detector itself
generally absorbs all the alpha radiation produced in the
smoke detector. If any of the alpha radiation escapes from the
detector, it is absorbed within a few centimeters in the air.
Think how many lives have been saved because of this clever
use of the properties of alpha radiation!

everyday phenomenon
box 19.1
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α particles
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of radioactivity. Among other things this allows doctors to
determine without invasive surgery if an organ is working
properly, if cancer is present, or if repair is taking place some-
where in the body (indicating an injury). See example box 19.1.

How do we describe the rate of decay?
How long does it take for these different decays to hap-
pen? The different kinds of radioactive decay are all spon-
taneous events that happen randomly. There is no way of
predicting exactly when a specific unstable nucleus will
throw out a particle and change to a different isotope.

Different radioactive isotopes have different average or
characteristic times that elapse before they decay. The con-
cept of half-life describes this characteristic time: the half-life
is the time required for half of the original number of atoms
to decay. For example, the half-life of radon-222 is about 3.8
days. If we started with 20 000 atoms of radon-222, 3.8 days
later we would have about 10 000 remaining. The other half
would have decayed to polonium-218 (84Po218). In two half-
lives, or 7.6 days, half of the remaining atoms would have
decayed, leaving only 5000 atoms of radon-222. In three 

half-lives, we would be down to 2500, and in four half-lives
this number would be halved again, yielding 1250.

Because the number of radon-222 atoms is reduced by
half each time 3.8 days passes, it does not take many
half-lives to reduce the remaining number of atoms of an
isotope to a tiny fraction of the original amount. After 10
half-lives, or 38 days, the number of atoms remaining from
the original 20 000 would be just 20 atoms or a thousandth
of the original number.
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figure 19.7 Beta decay of lead-214. The daughter isotope,
bismuth-214, has a higher atomic number than lead.

figure 19.8 Gamma decay of bismuth-214. The daughter
isotope is a more stable (lower-energy) version of the original
bismuth-214.
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Sample Exercise: A Medical Isotope

Technetium-99 is a radioactive isotope with a half-life of
6.0 hours that is used in bone scans and other medical
tests. It emits gamma radiation.

a. If a sample of technetium-99 is prepared a half-day
(12 hours) before it is used, what fraction of the
original amount of the isotope remains at the time
of use.

b. What fraction remains one day (24 hours) after
preparation?

a.

b.

 fraction � 
1

2
 � 

1

2
 � 

1

2
 � 

1

2
 � 

1
16

fraction remaining � ?

t � 24 h

fraction remaining � ?

t � 12 h

t
 

1
2
 � 6.0 h

figure 19.9 Decay curve for radon-222. The amount
remaining decreases by one-half every 3.8 days, the half-life.
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This decay process is graphed in figure 19.9. The curve
that results is called an exponential decay curve, because
mathematically it can be represented by an exponential
function. Exponential decay or growth occurs in nature
whenever the number of decays or additional events is pro-
portional to the total number of candidates for decay or
growth. This is true for many random processes.

The half-lives of different radioactive isotopes vary enor-
mously. The half-life of radium-226 is 1620 years, for
example, which is quite short compared to the 4.5-billion-
year half-life of the common isotope of uranium, uranium-
238. At the other extreme, polonium-214 has a half-life of
just 0.000 164 second. It does not stick around long! The
longer the half-life, the more stable the isotope.

On the other hand, the shorter the half-life, the greater
the rate of radioactivity. From an environmental standpoint,
isotopes with intermediate half-lives pose the greatest prob-
lem. An isotope with a very short half-life is highly radio-
active while it lasts but decays quickly and does not remain
dangerous. An isotope with an extremely long half-life like
uranium-238 is not highly radioactive, although it can be a
hazard if enough is present. An isotope such as strontium-90
with a half-life of 28.8 years is much more radioactive than
uranium-238 and remains in the environment long enough
to pose serious problems. Strontium-90 is sometimes pre-
sent in fallout from bomb tests or nuclear accidents.

Why is radioactivity hazardous
to our health?
Radioactivity is dangerous because the emitted particles—
alpha particles, beta rays (electrons), and gamma rays—can
alter chemical compounds that make up our cells. These
alterations can cause cancer and other damage. In high-
enough doses, these alterations produce radiation sickness
and death. The effects of very low doses are still being de-
bated. Some scientists believe that any dose is potentially
damaging, but others hold that very low levels may have
beneficial effects that counter the negative effects.

Because their half-lives are similar to the estimated age
of the Earth, uranium-238 and thorium-232 have not com-
pletely decayed and are still present naturally in our envi-
ronment. They appear in trace amounts in all rocks and soils
and in more concentrated amounts in uranium ores. One of
the elements produced as U-238 decays is the gas radon,
which appears as the largest source of background radiation
in Table 19.2. Radon is an alpha emitter and is an odorless,
tasteless gas. Alpha particles cannot penetrate even the dead
layer of skin on the outside of your body. However, if you
inhale them (easy to do since they are in the form of a gas),
the alpha particles deposit energy inside your body and can
cause some biological damage. It is important to note that
the amount of radon varies by location, by season, by type
of home construction, and by other factors. The radon test
kit shown on the cover of this chapter is an example of a
way to estimate your own radon exposure.

Although a variety of units are used for measuring
amounts of ionizing radiation and their impact on human tis-
sue, the unit most commonly used for comparison of
absorbed doses of differing kinds of ionizing radiation 
(X rays, natural radioactivity, and so on) is the rem. Rem is an
acronym standing for roentgen equivalent in man—the
roentgen is a unit that describes the amount of ionizations
produced by radiation. The rem takes into account differing
effects of different types of radiation on human tissue, meas-
ures the amount of energy absorbed per unit mass of tissue.

A whole-body dose of 600 rems usually is lethal. Much
smaller doses can also produce damage, however, and these
are generally quoted in millirems (mrems). One millirem is
one-thousandth of a rem. On the average, people in the
United States receive about 295 mrems yearly from natural
sources and another 64 mrems yearly from human-produced
sources. (An easy way to remember this is the total from both
sources is almost 365 mrem, or a mrem a day over the course
of a year.) As table 19.2 shows,* the largest human-produced
source is from medical procedures, such as diagnostic X rays
and radioactive isotopes used in nuclear medicine.

Both the natural background and the human-produced
sources vary widely, depending on where you live and what
medical procedures you undergo. The average dose received
by people in the United States from nuclear-power sources is
not significant on this scale, but individuals working in the
industry may be exposed to larger amounts. Current stan-
dards place a limit of 5 rems a year (5000 mrems/yr) on
nuclear workers, X ray technicians, or other people exposed
to radiation in their occupations.

We are constantly exposed to very low levels of radioac-
tive emissions from trace amounts of the isotopes of Th-
232 and U-238 and their decay products as well as from
cosmic rays that impinge on Earth from space. Since the
beginning of humankind, we have been exposed to this
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*For further discussion, see “Health Effects of Low-Level Radiation” (Physics
Today, August 1991, pp. 34–39), from which this table was adapted.

Sources mrems/yr

Natural Sources

inhaled radon 200

cosmic rays 27

terrestrial radioactivity 28

internal radioactivity 40
295

Human-produced sources

medical 53

consumer products 10

other 1

64

table 19.2

Background Radiation Sources
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would be found, even though none was present at the beginning
of the experiment. Unlike a chemical reaction, which involves
rearrangement of the electrons orbiting the nucleus, the ele-
ments themselves can change in a nuclear reaction.

The emission of neutrons from beryllium samples bom-
barded by alpha particles is another example of a nuclear
reaction. The reaction equation in this case would be

2He4 � 4Be9 ⇒ 6C
12 � 0n1.

The neutron has no charge, so its atomic or charge number
is 0, and its mass number, like the proton, is 1. The other
reaction product, carbon-12, is identified by looking in the
periodic table to find which element has an atomic number
of 6. The resulting isotope of carbon turns out to be the
most common one. After the experiment has been per-
formed, we will find small amounts of carbon present in
the originally pure beryllium target.

How are energy and mass involved
in nuclear reactions?
One of the original mysteries of radioactivity was the
question of where the energy comes from. The alpha parti-
cles, beta rays, or gamma rays emerged with large kinetic
energies even though Becquerel’s uranium samples were
stored in a dark drawer for weeks at time. What was the
source of this energy?

The answer was found in Einstein’s famous E � mc2 re-
lationship, developed as part of his theory of relativity about
ten years after the discovery of radioactivity. The meaning of
this equation is that mass and energy are equivalent: mass is
energy and energy is mass. (This equation will be explained
in more detail in chapter 20.) The constant c2, the speed of
light squared, is a unit-conversion factor that allows us to
convert mass units to energy units, and vice versa. If the
mass of the products is less than the reactants, the energy
represented by this mass difference shows up in other forms,
usually as the kinetic energy of the emerging particles.

figure 19.10 The collision of an alpha particle and a
nitrogen nucleus results in a proton being emitted and an
oxygen-17 nucleus remaining in place of nitrogen.

7N14

After

p

8O17

Before

α

2α4 + 7N14  ⇒ 8O17 + 1p1
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low-level background radiation and our bodies have devel-
oped impressive repair capabilities. Only when levels of
radiation exposure become much greater than natural back-
ground radiation is there some cause for concern.

In radioactive decay, the nucleus of the radioactive atom
is modified as it emits different kinds of particles. In alpha
decay, helium nuclei are emitted, leaving the daughter
isotope with lower atomic and mass numbers. In beta
decay, electrons or positrons are emitted, which changes
the atomic number but not the mass number. In gamma
decay, a high-energy X ray is emitted, which does not
change either the atomic or mass number of the original
isotope. Unstable isotopes are like time bombs waiting to
go off. They have a characteristic decay time that we often
describe in terms of the half-life.

19.3 Nuclear Reactions
and Nuclear Fission
We have seen that the nucleus can change spontaneously in
radioactive decay. One element changes to another when this
happens. Is it possible for us to cause such changes to occur
experimentally rather than waiting for spontaneous decays?

The discovery of the neutron in 1932 provided a new
probe for rearranging the nucleus. As a result of this dis-
covery, nuclear physics became a field of intense activity
during the 1930s. This work produced some unanticipated
results with enormous implications for both science and
human affairs.

What are nuclear reactions?
We have already encountered experimentally produced
changes in the nucleus: Rutherford’s discovery that protons
are emitted from nitrogen nuclei when they are bombarded
by alpha particles is an example of such a change. We could
write the reaction equation for Rutherford’s experiment as

2He4 � 7N
14 ⇒ 8O

17 � 1�
1.

The alpha particle is a helium nucleus, and the emitted pro-
ton is a hydrogen nucleus, as indicated in the equation. The
other product of the reaction is an element with an atomic
number of 8, which turns out to be oxygen (fig. 19.10). Oxy-
gen-17 is not the most common isotope of oxygen (which is
oxygen-16), but it is found in nature as a stable isotope.

This is an example of a nuclear reaction. Note that the
charge and mass numbers add up to the same total on either
side of the equation: the total charge or atomic number is 9
and the total mass number is 18. (This was also true of the
radioactive-decay equations in section 19.2.) The mass and
atomic numbers are used to identify the other reaction prod-
uct, oxygen-17, but we could also confirm this result by ana-
lyzing the gas found in the cell after the experiment. Oxygen
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418 Chapter 19 The Nucleus and Nuclear Energy

This idea is illustrated for the beryllium reaction in the
computations shown in example box 19.2. The masses for
the isotopes and particles involved are given in atomic

mass units (or unified mass units, u), which are based on
the mass of the carbon-12 atom. The mass of carbon-12 is
exactly 12.000 000 u, by definition of the atomic mass
unit. (One atomic mass unit is equal to 1.661 � 10�27 kg.)
The mass difference is converted to kilograms and then
multiplied by c2 to find the energy released in joules. This
energy will appear as kinetic energy of the emerging neu-
tron and the recoiling carbon-12 nucleus.

Although the amount of energy released in a single re-
action may seem small, it is roughly a million times larger
than the typical energy released (per atom) in a chemical
reaction. Such changes in mass are the source of the parti-
cle energies involved in radioactive decay and other nu-
clear reactions. From these ideas formulated in the early
1900s, physicists became aware of the possibility of re-
leasing large quantities of energy in nuclear reactions.

How was nuclear fission discovered?
Before 1932, alpha particles or protons were the primary
probes available for attempting to rearrange the nucleus.
The discovery of the neutron immediately offered a power-
ful new probe, since its zero charge means that it is not
repelled by the positive charge of the nucleus. Because
alpha particles and protons are positively charged and are
repelled by the charge on the nucleus, they require high
initial energies and head-on collisions to produce a reac-
tion. The neutron, on the other hand, can slip right into the
nucleus at low energies.

The Italian physicist Enrico Fermi (1901–1954) was
one of the first to explore the potential of the neutron for
producing nuclear reactions. In a series of experiments
from 1932 to 1934, he attempted to produce new heavy
elements. The element with the largest mass and atomic
number then known was uranium, so Fermi decided to
bombard uranium samples with neutrons produced from
the beryllium reaction (fig. 19.11). He then analyzed the
samples to see whether he could detect elements with
atomic numbers higher than 92.

figure 19.11 A diagram of Fermi’s experiments, in which he attempted to produce new elements by bombarding
uranium with neutrons.

Radium

Alpha particles Neutrons

Beryllium Uranium

Chemical analysis
for new elements

example box 19.2

Sample Exercise: Transforming Mass Energy
into Kinetic Energy

The nuclear masses for the reactants and products of
the reaction

2He4 � 4Be9 ⇒ 6C
12 � 0n1

are provided here. Using these values and Einstein’s
E � mc2 relationship, calculate the energy released in
this reaction.

Reactants Products

Be9 9.012 186 u neutron 1.008 665 u

He4 �4.002 603 u C12 �12.000 000 u

13.014 789 u 13.008 665 u

E � ? The mass difference is

13.014 789 u

�13.008 665 u

�m � 0.006 124 u

1 u � 1.661 � 10�27 kg

�m � (0.006 124 u)(1.661 � 10�27 kg/u)

� 1.017 � 10�29 kg

E � �mc2

� (1.017 � 10�29 kg)(3.0 � 108 m/s)2

� 9.15 � 10�13 J
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At first, the results were both confusing and disappoint-
ing. Fermi and his chemist colleagues were able to predict
the likely chemical properties of the elements that they
were seeking by knowing what should come next in the
periodic table, but attempts to isolate such elements were
not successful in these early experiments. Since the ex-
pected quantities would be small and the exact chemical
properties were not known, the lack of clear-cut results
may not have been surprising.

Others took up the effort, and the first real breakthrough
in this line of research occurred in 1938, when two German
scientists, Otto Hahn and Fritz Strassmann, isolated the
element barium from uranium samples that had been bom-
barded with low-energy neutrons. This was an astonishing
result that Hahn and Strassmann carefully rechecked be-
fore announcing their findings. The result was unexpected
because barium is nowhere near uranium in the periodic
table—barium has an atomic number of 56, just a little
more than half that of uranium.

What kind of reaction could produce barium from ura-
nium? Two other German scientists, then working in Den-
mark and Sweden because of the growing persecution of
Jews in Germany, provided a possible answer.

Lise Meitner and her nephew, O. R. Frisch, speculated
that the uranium nucleus might be splitting into two smaller
nuclei, a process that we now call nuclear fission. If one
of these nuclei was barium with an atomic number of 56,
the other should have an atomic number of 36 in order to
add up to 92, the atomic number of uranium. This element
happens to be krypton, a noble gas (fig. 19.12). Thus, one
possible reaction equation might be

0n1 � 92U
235 ⇒ 56Ba142 � 36Kr91 � 30n1.

This equation has been written with some extra neu-
trons being emitted. We will indeed end up with an excess
of neutrons if we split a large nucleus into two smaller
ones because the ratio of neutrons to protons gets larger
and larger with increasing atomic number for the heavier
elements in the periodic table (see fig. 19.5). The isotopes
of barium and krypton that we have proposed in the reac-
tion equation also contain an excess of neutrons. There-
fore, they are unstable and undergo beta decay, which
means that the reaction products are radioactive.

We have jumped ahead of the story in writing uranium-
235 as the isotope of uranium involved. Naturally occurring
uranium is mostly uranium-238, and only 0.7% is uranium-
235. Uranium-235 most readily undergoes nuclear fission,
however. Low-energy neutrons are absorbed more readily
by uranium-235 than by uranium-238, and fission is more
likely for uranium-235 than for uranium-238 when a neu-
tron is absorbed.

The two elements that emerge from a fission reaction
are called fission fragments; in this case, barium and kryp-
ton. Many other elements can result, however, all having
atomic numbers between 30 and 60, near the middle of the

list of known elements. These fission fragments are gener-
ally radioactive because of the excess of neutrons and
make up the bulk of nuclear wastes from applications of
nuclear fission.

The excitement generated among scientists by these dis-
coveries and ideas was far-reaching. In 1939, Niels Bohr,
who discussed these speculations with Meitner and Frisch
in Denmark, suggested that uranium-235 was the isotope
involved. Bohr then traveled to the United States, where he
spread the word to a growing community of nuclear scien-
tists. Many of these scientists were refugees who had fled
the precarious situation in Europe created by the beginning
of World War II and the persecution of Jews in areas under
Nazi control.

The excitement and concern were engendered, in part, by
the immediate recognition that a chain reaction involving
nuclear fission could be produced. A chain reaction can result
because the fission reaction is initiated by a neutron, but
several more neutrons are emitted in each reaction, which can
cause the number of reactions to grow rapidly (fig. 19.13). A
chain reaction would release enormous quantities of energy,
as predicted by Einstein’s mass-energy equation.

Among the European-born scientists working in the
United States by 1939 were Enrico Fermi, Edward Teller,
and Albert Einstein. Although Einstein was not primarily
interested in nuclear physics, he was recognized throughout
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figure 19.12 Barium-142 and krypton-91 are two possible
fission fragments produced when a neutron is absorbed by
uranium-235, causing a fission reaction.
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420 Chapter 19 The Nucleus and Nuclear Energy

the world as a brilliant theoretician. The general public
was familiar with his name, and for this reason, some of
his colleagues prevailed on Einstein to write a letter to
President Franklin D. Roosevelt suggesting the need for a
crash research program to explore the military implications
of nuclear fission. The Manhattan Project, begun shortly
afterward, led to the development of both nuclear reactors
and nuclear weapons.

Nuclear reactions involve changes in the nucleus of
atoms, which often result in one element changing into
another. Radioactive decay and the reactions involved in
the discoveries of the proton and neutron are examples.
The amount of energy released or absorbed can be pre-
dicted from the difference in the masses of the reactants
and products using Einstein’s famous mass-energy equa-
tion. The discovery of the neutron provided a new probe
for initiating nuclear reactions. Experiments using this
probe led to the discovery of nuclear fission in the late
1930s. The possibility of a chain reaction spurred research
that produced both nuclear reactors and nuclear weapons.

19.4 Nuclear Reactors
By 1940, the possibility of producing a chain reaction by
nuclear fission was apparent to physicists in both Europe
and the United States. If the fission reaction is initiated by

neutrons, and each reaction produces several additional
neutrons, why are chain reactions not occurring all the
time in uranium samples? What conditions are necessary
to produce a chain reaction? These questions demanded
answers because war was raging in Asia and in Europe,
and the United States and its allies feared that Germany
might be developing a nuclear bomb.

How can we achieve a chain reaction?
Understanding the conditions necessary for a chain reac-
tion is a crucial step to knowing how both nuclear reactors
and nuclear bombs work. The key is to trace what happens
to the neutrons produced in the fission reaction. If enough
neutrons are captured by other uranium-235 nuclei, new
fissions will occur and the reaction will be sustained. If too
many of the neutrons produced are absorbed by other ele-
ments or escape from the reactor or bomb without colliding
with other uranium-235 nuclei, the reaction dies.

Keep in mind that natural uranium consists mainly of
uranium-238 (99.3%)—only 0.7% is uranium-235. Uranium-
238 also absorbs neutrons, but this does not usually result
in fission. The main reason that a chain reaction does not
occur in natural uranium is that the neutrons produced
in one fission reaction are more likely to be absorbed by
uranium-238 than by uranium-235 nuclei. One way of in-
creasing the likelihood of a chain reaction is to increase the
proportion of uranium-235 in the sample.

Unfortunately (or, fortunately, depending on your point
of view), it is extremely difficult to separate uranium-235
from uranium-238. Different isotopes of the same element
have identical chemical properties, so chemical separation
techniques are useless. Only the very small difference in
mass between the two isotopes can be used as the basis for
separation. Various techniques were tested during the war
years—the most promising was a gas-diffusion technique
tried in a plant at Oak Ridge, Tennessee. After enormous
effort and expense, scientists succeeded in separating only
enough uranium-235 for one bomb ( just a few kilograms)
by the end of the war.

A different strategy for achieving a chain reaction is
used in nuclear reactors designed to run on natural ura-
nium or on uranium only slightly enriched in uranium-235.
The trick is to slow the neutrons down between fission re-
actions. Slow neutrons have a much greater probability of
being absorbed in collisions with uranium-235 nuclei than
with uranium-238 nuclei. The faster neutrons emitted in
the fission reactions have almost equal probabilities of ab-
sorption when they encounter the two isotopes. Thus, if
the neutrons can be slowed down before encountering
additional uranium nuclei, we have a better chance of
producing additional fission reactions.

Using this idea, Enrico Fermi and his co-workers at the
University of Chicago achieved the first controlled chain
reaction in 1942. Fermi constructed a nuclear pile of blocks
of pure graphite interspersed with small pieces of natural

figure 19.13 A chain reaction involving nuclear fission.
Neutrons are produced in each fission of a uranium-235 nucleus,
which, in turn, can initiate more fission reactions.
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uranium (fig. 19.14). Graphite is a solid form of the ele-
ment carbon, which has a relatively small mass number,
12. Since carbon does not absorb neutrons readily, neu-
trons that collide with carbon-12 nuclei just bounce off. In
each collision, the neutrons lose energy, while the carbon
nuclei gain kinetic energy. The graphite slows down the
neutrons without absorbing them—such a material is called
a moderator.

Besides the moderator and the uranium fuel, one other
feature is required in any reactor. Because a chain reaction
can grow very rapidly under the proper conditions, we
need some means of controlling the rate of reaction. Con-
trol rods containing a neutron-absorbing material can be
inserted or removed from the pile to maintain the desired
level of reaction. In Fermi’s pile, the control rods were
made of cadmium, but boron is the material most com-
monly used now.

On December 2, 1942, Fermi and his colleagues slowly
removed some of the control rods from their carefully con-
structed pile. By monitoring the rate of neutron flow at
different points in the pile, they established that a self-
sustaining chain reaction had occurred. The reactor had
gone critical; that is, for each fission reaction, one of the
new neutrons generated went on to be absorbed by another
uranium-235 nucleus, producing another fission reaction.
If more than one new fission reaction is produced for each
initial reaction, we say that the reactor is supercritical. If
less than one is produced, the reactor is subcritical.

In starting up a reactor, we let the reactor go just slightly
supercritical at first, until the desired reaction level is
reached. Then the control rods are reinserted slightly to
maintain the reactor at a critical or steady-state level. In-
serting the control rods farther decreases the reaction level—
the control rods are like the gas pedal in an automobile.
Frequent adjustment of some of the control rod positions
fine-tunes the level of reaction. Other control rods are
designed to be rapidly inserted to shut down the reactor.

Why is plutonium produced
in nuclear reactors?
Up to this point, we have not considered what happens
when uranium-238 absorbs a neutron other than to indicate
that this does not usually result in fission. Fermi’s original
objective of producing new elements heavier than uranium
does indeed occur: a series of nuclear reactions produces
plutonium, now the primary material in fission bombs.

The reactions that generate plutonium-239 from uranium-
238 are summarized in table 19.3 and figure 19.15. The
first step is the absorption of a neutron by a uranium-238
nucleus to produce uranium-239. Uranium-239, in turn,
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figure 19.14 A diagram of Fermi’s “pile,” the first human-
produced nuclear reactor. Small pieces of natural uranium were
interspersed between bricks of graphite (carbon).

figure 19.15 Absorption of a neutron by uranium-238
followed by two beta-decay reactions produces plutonium-239,
which can also be used as a fission fuel.

Graphite
blocks

Control
rods

Natural uranium fuel

1. Neutron absorption by uranium-238

0n
1 � 92U

238 ⇒ 92U
239

2. Beta decay of uranium-239

92U
239 ⇒ 93Np239 � �1e

0 � 0�
0

3. Beta decay of neptunium-239

93Np239 ⇒ 94Pu239 � �1e
0 � 0�

0

table 19.3

Reactions Involved in the Production of Plutonium

92U238

Neutron
absorption

n + 92U239

(0n1)

92U239

Beta decay

–+93Np239

(–1e0)

+
(0�0)–

93Np239

Second
beta decay

–+94Pu239

(–1e0)

+
(0�0)–

⇒

⇒

⇒
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undergoes beta decay (half-life, 23.5 minutes) to produce
neptunium-239, a new element with an atomic number of
93, one higher than uranium. Neptunium-239 also under-
goes beta decay (half-life, 2.35 days), producing yet another
new element with an atomic number of 94, plutonium-239.
Plutonium-239 is relatively stable—its half-life is roughly
24 000 years. Like uranium-235, it readily undergoes nu-
clear fission when it absorbs a neutron.

Since nuclear reactors use either natural uranium or ura-
nium only slightly enriched in uranium-235, the production
of plutonium-239 is a natural by-product of the operation of
a reactor. Also, because it is a different element, its chemi-
cal properties are not the same as uranium, and it can be
separated from uranium using chemical techniques. Nu-
clear reactors can be used to produce plutonium, a fission-
able material, for nuclear weapons. A crash program was
begun at Hanford, Washington, during the closing years of
World War II to build nuclear reactors for precisely this
purpose.

What are the design features
of modern power reactors?
Most modern reactors designed for power production do
not use graphite as the moderator—they use ordinary
(light) water instead. Water (H2O) contains nuclei of both
hydrogen (H) and oxygen (O), and the hydrogen nuclei are
effective in slowing the neutrons. Unfortunately, hydrogen
also absorbs neutrons to form its heavier isotopes, deute-
rium (H2) and tritium (H3). Heavy water, made using

deuterium in place of the ordinary isotope of hydrogen, ab-
sorbs neutrons less readily than light water, so it is used
sometimes as a moderator.

Because the neutrons absorbed by ordinary hydrogen are
removed from circulation, ordinary water is not effective
as a moderator when natural uranium is the fuel. Enrich-
ment of the uranium-235 concentration from the 0.7%
concentration in natural uranium to approximately 3% com-
pensates for the neutrons lost to absorption by hydrogen,
however, and a chain reaction can then be achieved. Light-
water reactors must use slightly enriched uranium as the
fuel, but reactors using heavy water as the moderator can
use natural uranium.

The advantage of using water as a moderator is that it
can also serve as a coolant, removing heat from the reactor
core. The kinetic energy of the neutrons and fission frag-
ments released in the fission reactions shows up as heat
when this energy is randomized by collisions with other
atoms. Any large reactor must have some means of cooling
the core, or the temperature will increase to the point where
some of the reactor components melt. The coolant circu-
lates through the reactor carrying the energy generated in
the fission reactions to the steam turbines, which turn the
generators to produce electric power. The turbines them-
selves must be cooled to operate efficiently. Heat from water
used to cool the turbines is released into the atmosphere
by the cooling towers. This water never passes through the
reactor itself.

Figure 19.16 is a diagram of a modern nuclear power
reactor. The reactor core is contained within a thick-walled

figure 19.16 A diagram of a modern pressurized-water nuclear reactor. Hot water coming from the reactor is converted to steam
when the pressure is reduced in the steam generators. The steam turns the turbines, which power the electric generator.
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steel reactor vessel through which the coolant circulates.
The reactor vessel is housed in a heavily reinforced con-
crete containment building designed to withstand strong
pressure variations and to shield the reactor from external
influences as well as to contain radioactivity resulting from
accidents. The coolant passes through steam generators,
and the steam passes through the steam turbines that turn
electrical generators. There is a lot of plumbing in a nu-
clear power plant.

Within the plant, but outside the containment building,
is a control room to oversee the pumps, control rods, and
other equipment for running the reactor. Here we also find
temperature and radiation gauges and other monitoring
equipment that tell the operators what is happening inside.
Most reactors are designed with a lot of redundancy in
safety equipment, and reactor operators are trained to deal
with many contingencies. Because of the complexity of re-
actor operation, however, operator error is often a factor
when accidents do occur, either in the initial event or in the
response to a problem. Everyday phenomenon box 19.2
describes the Chernobyl reactor accident.

Environmental issues surrounding
nuclear power
Any material like hydrogen, which absorbs neutrons in a
reactor, is called a poison. Impurities in the moderator or
fuel elements, or even the fission products themselves, can
act as poisons that slow the reaction. The longer a reactor
is operated, the more the poisons build up in the fuel ele-
ments and, of course, the more the uranium-235 fuel is de-
pleted. The fuel rods must be replaced from time to time
(fig. 19.17). The spent fuel rods containing uranium, pluto-
nium, and the radioactive fission fragments must be stored
or disposed of somehow. Radioactive elements in the spent
fuel rods make up most of the nuclear wastes produced by
nuclear reactors.

Our current national policy on waste disposal set by the
federal government proposes burying these radioactive ma-
terials in a solid rock formation without separating the
plutonium and remaining uranium from the fission frag-
ments. This policy avoids the need for the expensive and
environmentally hazardous processing involved in chemical
separation. The disadvantage, however, is that it wastes fis-
sionable material in the form of plutonium and uranium.
The disposal site also must remain stable for thousands of
years, because plutonium and uranium have much longer
half-lives than most of the fission fragments. Plutonium-239
has a half-life of 24 000 years, but most of the fission frag-
ments have half-lives of several years or less. They decay
more rapidly and do not have to be isolated nearly as long.

When nuclear power was first introduced in the late
1950s, it was seen as a clean and inexpensive means of gen-
erating electric power. Concerns about reactor safety and
waste disposal have caused many people to modify their
views, but nuclear power still causes far less atmospheric

pollution (and no greenhouse gases) than burning fossil fuels
such as coal or oil to generate power. Disposal of nuclear
wastes has become a political issue, however, and reactor
safety and economic issues have also been a source of debate.

The development of nuclear power in the United States
is at a virtual standstill, because of economic issues. The
high costs and long time required for plant construction,
and concerns about public acceptance, have made utilities
back away from ordering new reactors. In Japan, Europe,
and other parts of the world where fossil fuels are less
available, the use of nuclear power continues to expand. As
we enter the twenty-first century, the future of nuclear
power in the United States is uncertain. The development
of new, smaller reactors that are inherently stable may
bring new life to this industry in the near future.

Nuclear reactors are used for many other purposes be-
sides power production. One important application is the
production of radioactive isotopes for use in nuclear medi-
cine. These isotopes are involved in diagnostic procedures
as well as for treatment of various types of cancer. Radio-
active isotopes produced in nuclear reactors are also used as
tracers in industrial processes and environmental studies,
and for many other applications in industry and research.

To sustain a chain reaction, on the average at least one
neutron released in each fission must be absorbed by a
uranium-235 nucleus to initiate a new fission reaction.
If more than one neutron is absorbed, the reaction is

19.4 Nuclear Reactors 423

figure 19.17 An assembly containing fuel elements and
control rods for use in a modern power reactor.
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424 Chapter 19 The Nucleus and Nuclear Energy

supercritical and will grow rapidly. If less than one is
absorbed, the reaction is subcritical and will die. In a
nuclear reactor, the neutrons are slowed down by the
moderator, increasing their likelihood of being absorbed
by other uranium-235 nuclei. Control rods absorb neu-
trons and permit the rate of reaction to be adjusted.
Fermi’s original reactor used graphite as the moderator,
but modern reactors use water, which also serves as a
coolant. Fission fragments and plutonium build up in the
fuel rods, which must eventually be removed from the
reactor, becoming nuclear wastes.

19.5 Nuclear Weapons
and Nuclear Fusion
In a nuclear reactor, the objective is to release energy from
fission reactions in a controlled manner, never letting the
chain reaction get out of hand. In a bomb, on the other
hand, the objective is to release energy very quickly—a
supercritical chain reaction is what is sought. How can this
state be achieved? What conditions are necessary for a
nuclear explosion? What is the difference between fission
weapons and weapons that use nuclear fusion?

What Happened at Chernobyl?

The Situation. In 1986, a serious accident happened at a
nuclear power plant at Chernobyl in Ukraine, then part of the
Soviet Union. In terms of loss of life and radiation releases
into the environment, the Chernobyl incident is the worst
reactor accident that has occurred anywhere in the world to
date. Worldwide publicity about the Chernobyl accident raised
many questions and inflamed public debate about the safety
of nuclear power. What type of reactor was involved, and how
did the accident occur? Could a similar accident happen in
the United States?

The Analysis. The nuclear reactor at Chernobyl, like many
others in the former U.S.S.R., was a dual-purpose reactor de-
signed both to generate power and to produce weapons-grade
plutonium. It used graphite as the moderator and also cir-
culated water through the core as a coolant. The presence

of ordinary water in the core necessitates some enrichment of
uranium-235 (to about 2%) but not as much as if water were
also the moderator, as in the commercial reactors in the
United States.

Because of the use of water as the coolant but not as the
moderator, the reactor had an unusual design characteristic.
In the event of loss of the coolant or increase in core temper-
ature, the rate of reaction actually increases, because the water
used as the coolant absorbs neutrons. However, if the water is
lost (or changes to steam, becoming less dense), it absorbs
fewer neutrons, and the chain reaction accelerates. This result
is not possible in a reactor in which water also serves as the
moderator, because loss of the moderator reduces the rate
of reaction.

In a reactor used to produce weapons-grade plutonium, the
fuel rods must be removed from the reactor about 30 days
after being inserted to avoid consuming the plutonium-239
through fission and to avoid the buildup of plutonium-240
(another, less fissionable isotope of plutonium). Reactors of
the Chernobyl type were designed for easy access to the top
of the reactor for replacement of fuel rods, as in the second
photograph. The building housing the reactor is not designed
to withstand strong pressure variations, as are the contain-
ment buildings housing most reactors in the United States.

When the accident occurred, an experiment was being
conducted to see whether the electric generators could be
used to provide power to the reactor pumps in the event
of loss of external power. The experiment required that the
reactor be run at a low power level to simulate conditions in
which the reactor was being shut down. The person in charge
of the experiment was an electrical engineer who was pri-
marily interested in the generator response and was not an
expert on the operation of the reactor.

everyday phenomenon
box 19.2

The damaged reactor at Chernobyl. Rapid buildup of heat caused
explosions that ignited the graphite moderator.

(continued)
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What do we mean by critical mass?
The initial approach to producing nuclear weapons involved
separating uranium-235 from uranium-238 to produce a
highly enriched sample of uranium-235. If most of the
uranium-238 is removed, neutrons emitted in the initial
fission reactions would be much more likely to encounter
other uranium-235 nuclei, and a rapidly increasing chain
reaction should result. The size of the uranium mass is
also important: if it is too small, neutrons will escape
through its surface before they encounter other uranium-
235 nuclei.

A critical mass of uranium-235 is a mass just large
enough for a self-sustaining chain reaction. For a mass
smaller than the critical mass, too many of the neutrons
generated in the initial fission reactions escape through the
surface of the uranium without encountering other nuclei.

For a mass larger than the critical mass, more than one
of the neutrons produced in each fission reaction will be
absorbed by other uranium-235 nuclei and produce addi-
tional fission reactions. The chain reaction will grow very
rapidly, because the time between reactions is very short.
This is the supercritical state necessary for an explosion.

19.5 Nuclear Weapons and Nuclear Fusion 425

Here is a summary of the complex series of events and
errors. First, the reactor was partially shut down to perform
the experiment. To bring it back to a desired power level,
most of the control rods were removed, and several other
safety features disengaged to achieve the conditions called
for by the experiment. In the initial stages of the experiment,
water flow to the reactor core was reduced, and this caused a
rapid increase in fission reactions. The heat generated caused
explosions that blew open the top of the reactor building and
ignited the graphite moderator (which can burn much like
coal).

The fire in the graphite had to be put out, so firefighters
from nearby towns were called in. Of the 31 deaths directly
caused by the accident, many were firefighters who were
exposed to high levels of radiation. Radiation, in the form of
fission fragments carried by emissions from the fire, spread
over the surrounding countryside and, at decreasing levels, over
much of Europe.

Certain features of commercial reactors in this country
make an accident like Chernobyl impossible. Most importantly,
a loss of coolant slows the chain reaction because water is
used as the moderator in our commercial reactors. An explo-
sive increase in the chain reaction is not possible. The partial
meltdown at Three Mile Island in Pennsylvania in 1979 was
caused by heat generated from residual radioactivity of the
fission fragments following shutdown of the chain reaction.
Residual heat can still be a serious problem but does not
result in an explosive buildup of the chain reaction.

Secondly, most reactors throughout the world are built
with heavily reinforced concrete containment buildings, so the
fission fragments are highly unlikely to escape from the con-
tainment building (or even from the reactor vessel itself) in
the event of a partial meltdown or other accident. Although
serious, the accident at Three Mile Island released little radio-
activity into the environment. The economic impact of the
accident was considerable, however, because of the loss of
the reactor and the cleanup costs.

Operator error was a major factor in the accident at
Chernobyl. We would like to think that the training given to
reactor operators in the United States precludes the serious
errors in judgment that happened at Chernobyl. Operator mis-
judgments have also been a problem, however, in the acci-
dents in our own nuclear industry. The complex details of
reactor behavior make it hard to plan and train for all pos-
sible contingencies.

The top of a Chernobyl-type reactor, showing a technician working on
the square tops of the fuel-rod assemblies.
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426 Chapter 19 The Nucleus and Nuclear Energy

How can we create a supercritical mass without having
it blow apart prematurely? The energy released in a fission
chain reaction causes rapid heating and expansion. If a su-
percritical mass were built up slowly from subcritical
pieces, the mass would begin to come apart as soon as it
became supercritical. The bomb would fizzle. One ap-
proach to solving this problem is to bring two subcritical
pieces of almost-pure uranium-235 together rapidly to pro-
duce a strongly supercritical mass. A gun design, as in fig-
ure 19.18, was developed for the first uranium bomb. A
subcritical cylinder of uranium-235 is fired into a subcriti-
cal sphere of the same material containing a cylindrical
hole, thus quickly assembling a supercritical mass. A neu-
tron source must also be present to initiate the reaction.

The major problem in producing a bomb like this is the
extreme difficulty of separating uranium-235 from the much
more abundant isotope, uranium-238. The gas-diffusion
plants at Oak Ridge, Tennessee, were able to produce only
enough pure uranium-235 for one bomb during the war years.
Building a nuclear arsenal at that rate would have been slow
and expensive. It became apparent that plutonium-239
might be a better nuclear fuel than uranium-235.

How are plutonium bombs designed?
Plutonium-239 is a natural by-product of nuclear reactors
that use uranium for fuel. As noted in section 19.4, the re-
actors built at Hanford, Washington, during World War II
were designed to produce plutonium for weapons. The fis-
sion reaction of plutonium-239 is different from uranium-
235, however, so that the gun design used for the uranium
bomb will not work with plutonium. Plutonium-239 ab-
sorbs fast neutrons much more readily than uranium-235,
which causes the chain reaction to grow even more swiftly
than for uranium, and two subcritical pieces cannot be
brought together quickly enough to avoid the fizzle pro-
duced by premature disintegration.

The design used for plutonium bombs relies on implosion:
explosives arranged around a subcritical mass of plutonium
and fired together create a tremendous inward pressure on the
plutonium. This pressure increases the density of the pluto-
nium sample enough to make the mass supercritical (fig.
19.19). The same number of atoms are now confined in a
smaller volume, increasing the probability of absorption of
neutrons by other plutonium nuclei.

By the end of World War II, enough weapons-grade ma-
terial had been assembled to produce just three nuclear
bombs. Two of them were plutonium bombs, dubbed Fat
Men because of their shape. The third bomb was a uranium
bomb, called Little Boy because of its slimness. In a his-
toric test, one of the plutonium bombs was exploded at
White Sands, New Mexico, in the summer of 1945, produc-
ing the first of the awesome mushroom clouds of nuclear
explosions. Shortly thereafter, the other two bombs were
dropped on the cities of Hiroshima and Nagasaki in Japan.

During the war years, the effort to build and test nuclear
bombs was seen as a race with Nazi Germany, where the
fission reaction had originally been discovered. Many of
the scientists working on the Manhattan Project were Eu-
ropean refugees. The thought that Germany might acquire
the bomb first was a horrifying possibility. As the war was
winding down, and the success of the bomb-building ef-
fort was approaching, it became evident that Germany no
longer had the resources to produce a nuclear bomb. A de-
bate began among the scientists on the project about how

figure 19.18 The gun concept used in the Little Boy
uranium bomb design. A subcritical-size cylinder of uranium-235
is fired into the hole in a subcritical sphere of uranium-235 to
make a supercritical mass of uranium-235.

figure 19.19 The Fat Man plutonium bomb used chemical
explosives arranged around a subcritical mass of plutonium-239.
When imploded by the explosives, the increased density makes
this mass supercritical.
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to use the bomb. Many scientists favored a demonstration
of the bomb’s effects without actually using one on mili-
tary targets.

A demonstration involved serious problems, however,
especially since there were only two bombs available after
the test of the plutonium bomb. One of these, the uranium
bomb, could not be tested beforehand because only one
had been built. The decision to drop the bombs on Japan
was made by the top military authorities, including the
President, Harry S Truman. Although still controversial,
that decision probably hastened the end of the war, avoid-
ing the need for a costly invasion of Japan.

After the war, weapons production went on, as the Han-
ford reactors continued to generate more plutonium. Soon
Russia had the ability to manufacture fission bombs, and
the pressure increased to proceed to the next step in the
race, the development of the hydrogen bomb, which was
first successfully tested in 1952. A hydrogen bomb in-
volves nuclear fusion rather than fission.

What is the fusion reaction?
What happens in a hydrogen bomb? Nuclear fusion is an-
other kind of nuclear reaction that also releases large quan-
tities of energy. Fusion is the energy source of the sun and
other stars as well as of thermonuclear bombs. How does
nuclear fusion differ from fission, and how can we gener-
ate a chain reaction involving fusion?

Nuclear fusion combines very small nuclei to form some-
what larger nuclei. In a sense, it is the opposite of nuclear
fission, the splitting of large nuclei into smaller fission
fragments. The fuel for fusion consists of very light ele-
ments, usually isotopes of hydrogen, helium, and lithium.
(Lithium has an atomic number of 3.) The end product is
often the particularly stable nucleus, helium-4, which we
have already encountered as the alpha particle.

As long as the mass of the helium-4 nucleus and other
reaction products is slightly less than the sum of the masses
of the isotopes combining to produce the reaction, this
mass difference will show up as kinetic energy, as pre-
dicted by Einstein’s formula E � mc2. One possible re-
action is the combination of two isotopes of hydrogen,
deuterium (H2) and tritium (H3), to form helium-4 plus a
neutron:

1H
2 � 1H

3 ⇒ 2He4 � 0n
1.

As shown in figure 19.20, the sum of the masses of the
two particles on the right side of this equation is less than
the sum of the masses of the two particles on the left side.
The total kinetic energy of the alpha particle and the neu-
tron will be greater than the kinetic energy of the initial
two particles.

What makes this reaction so difficult to produce is that
all the nuclei are positively charged and repel one another.
Large initial kinetic energies are needed to overcome the
repulsive electrostatic force so that the two nuclei can com-

bine. One way of assuring large kinetic energies is to heat
the reactants to a very high temperature. High densities
of the reacting isotopes are also necessary to increase the
probability of the reactions occurring. The reactants must
be confined in a very small space at a very high tempera-
ture, two requirements hard to achieve simultaneously.

The chain reaction that results under these conditions is
called a thermal chain reaction. Very high temperatures are
needed to initiate the reaction, and the energy released in
the reaction raises the temperature even more. The temper-
atures required for nuclear thermal chain reactions are a
million degrees Celsius or more. Chemical explosions are
also thermal chain reactions, but the temperatures required
for chemical reactions are much lower and more easily
attainable.

The easiest way to get both the high temperatures and the
high densities required for a fusion chain reaction is
to explode a fission bomb to initiate the fusion reaction. The
high temperature produced by the fission bomb cre-ates the
high kinetic energies necessary for fusion. The fission explo-
sion also compresses the fusion fuel momentarily—the
time is very short but still long enough for considerable
additional energy to be released from fusion reactions (fig.
19.21). Basically, this is how a hydrogen bomb (also called a
thermonuclear bomb) works.

Hydrogen bombs can be made in various sizes, unlike
fission bombs, which are restricted to a size dependent on
the critical mass of the fissionable material. Much larger
energy yields are possible with fusion bombs than with
pure fission bombs. Even though the energy released per
reaction is smaller for fusion reactions than for the typical
fission reaction, pound for pound the fusion reactions pack
more wallop because the fusion fuels consist of very light
elements. Hydrogen bombs can be made with an explosive
power equivalent to 20 million tons of TNT or more. (Tons
of TNT is the standard basis for comparison in quoting
bomb yields.) Both fission and fusion bombs now make up
the arsenals of the nuclear powers.
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figure 19.20 A deuterium nucleus and a tritium nucleus
combine to form a helium-4 nucleus and a neutron. The difference
in the masses is converted to the kinetic energy of the emerging
particles.
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Can we generate power from
controlled fusion?
Producing fusion reactions for a commercial power source
has not yet been accomplished. Confining the fuel at very
high temperatures in a very small space for a long enough
time to release a significant amount of energy presents ex-
treme difficulties. Since any solid will melt at temperatures
well below those required for fusion reactions, magnetic
fields or some other scheme must be used to confine the
fuel (fig. 19.22). Another approach involves bombarding a
small pellet of fusion fuel with laser beams (or particle
beams) from several directions to both heat and compress
the pellet.

Projections made in the 1970s that we would have work-
ing fusion reactors by the 1990s were highly optimistic. It
now seems that this goal may not be achieved until well
into the twenty-first century. We cannot be completely
confident that an economically feasible reactor will ever be
built, but we have already invested heavily in the effort, and
someday, the goal should be reached. Experimental re-
actors, such as the Tokamak (fig. 19.22), have generated
energy from fusion, but they have not reached the break-
even point, where as much energy is released as is required
to initiate the reaction. We need to improve yields to make
the process commercially viable.

Considerable excitement was generated a number of
years ago (1988–1989) when scientists working in Utah
claimed to have achieved cold fusion in a cell that did not
require extraordinary temperatures or densities. Their cell
involved a palladium electrode immersed in a beaker con-
taining heavy water (in which deuterium replaces the ordi-
nary isotope of hydrogen). By passing a current through
the cell, deuterium atoms are drawn into the spaces be-
tween the atoms in the palladium electrode. The Utah group

claimed to have observed excess heat (presumed to be pro-
duced by fusion) that could not be explained by other
chemical or physical processes occurring in the cell.

Although occasional fusion reactions occur under these
circumstances, not enough fusion results to produce usable
quantities of energy. If it were possible, though, the com-
mercial potential would be enormous. The claims of the
Utah group piqued a great deal of publicity and public in-
terest. Many workers have attempted to reproduce their ex-
periments, but so far the results have been disappointing.
Most physicists do not believe that usable fusion energy is
likely to come from cold fusion.

We do not yet know the best approach to achieving en-
ergy from fusion. Work continues on magnetic containment
and on the particle-beam and laser-beam techniques. A few
scientists are still exploring cold fusion. If a breakthrough
occurs in the near future, some of today’s students of sci-
ence and engineering will be involved in a new expansion
of applications of nuclear power.

To produce a nuclear explosion using fission, a supercriti-
cal mass of either uranium-235 or plutonium-239 must be
assembled quickly from subcritical components. In a ura-
nium bomb, firing a subcritical cylinder of uranium into a
subcritical sphere with a cylindrical hole achieves critical
mass. In a plutonium bomb, this is achieved by firing
chemical explosives arranged around a subcritical sphere
of plutonium, compressing it to a supercritical condition.
Nuclear fusion releases energy by combining small nuclei
to form larger nuclei. Fusion is the energy source of the
sun and of hydrogen or thermonuclear bombs. Attempts
to produce power from controlled fusion are not yet
commercially viable, but research on this problem may
someday reach that goal.

figure 19.21 A fission bomb is exploded around the fusion
fuel to produce the high temperatures and density required for a
fusion chain reaction in a thermonuclear bomb.

figure 19.22 The Tokamak Fusion Test Reactor at Princeton,
New Jersey, designed to confine and heat fusion fuels using
magnetic fields.
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We have traced how identifying the nuclear constituents, the pro-
ton and the neutron, led to an understanding of isotopes and
of what happens in radioactive decay. The discovery of the neu-
tron also gave us a new tool for probing and modifying nuclei,
which led to the discovery of nuclear fission. Nuclear fission and
fusion are nuclear reactions capable of releasing large amounts of
energy.

1 The structure of the nucleus. Experiments in which
alpha particles were scattered from various nuclei led to the dis-
covery of both the proton and neutron as constituents of the nu-
cleus. The number of protons in a nucleus is the atomic number
of an element. The total number of protons and neutrons (nucle-
ons) is the mass number of a given isotope. The same element
can have isotopes of different masses.

2 Radioactive decay. Radioactive decay is a spontaneous
nuclear reaction in which a particle or gamma ray is emitted and the
structure of the nucleus changes. One element is transformed
into another in alpha or beta decay. The half-life is the time
required for half of the original number of radioactive nuclei to
undergo decay.

3 Nuclear reactions and nuclear fission. In any nu-
clear reaction, one element may change into another, but the total
charge number (atomic number) and mass number (nucleon num-
ber) are conserved. Fission was discovered by bombarding ura-
nium samples with neutrons, which leads to the splitting of the
uranium-235 nucleus into fission fragments and the emission of
additional neutrons.

4 Nuclear reactors. Nuclear reactors generate energy
by allowing a controlled nuclear-fission chain reaction to take
place. The moderator slows down the neutrons to increase the
probability of absorption by uranium-235, the fissionable isotope
of uranium. Control rods absorb neutrons to control the reaction
level, and the coolant carries off the energy generated. Spent fuel
rods contain radioactive fission fragments as well as uranium and
plutonium.

5 Nuclear weapons and nuclear fusion. Bombs can
be built from either uranium or plutonium. Plutonium is pro-
duced in reactors when neutrons are absorbed by uranium-238. In
nuclear fusion, small nuclei combine to form larger nuclei, which
also can release energy. Hydrogen bombs use a fission bomb to
trigger the high temperatures and densities needed for fusion.
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* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. In 1919, Rutherford bombarded a sample of nitrogen gas
with a beam of alpha particles.
a. In addition to alpha particles, what other particle emerged

from the nitrogen gas in this experiment?
b. What conclusion did Rutherford draw from this experi-

ment? Explain.

Q2. When beryllium is bombarded with alpha particles, a very
penetrating radiation is emitted from the beryllium sam-
ple. Does this radiation consist of X rays? Explain.

Q3. Is it possible for two atoms of the same chemical element
to have different masses? Explain.

Q4. Is it possible for atoms of the same chemical element to
have different chemical properties? Explain.

Q5. Which number, the mass number or the atomic number,
determines the chemical properties of an element? Explain.

Q6. Why is the atomic weight of chlorine, as determined from
chemical experiments, not a whole-number multiple of the
atomic weight of hydrogen? Explain.

*Q7. In a nuclear reaction, can the total mass of the products of
the reaction be less than the total mass of the reactants?
Explain.

Q8. In alpha decay, do we expect the atomic number of the
daughter nucleus to be equal to, greater than, or less than
the atomic number of the isotope undergoing decay?
Explain.

Q9. In beta decay, do we expect the atomic number of the
daughter nucleus to be equal to, greater than, or less than the
atomic number of the isotope undergoing decay? Explain.

Q10. What is a neutrino and why did scientists believe in its
existence long before it was ever detected? Explain.

Q11. In gamma decay, do we expect the atomic number of the
daughter nucleus to be equal to, greater than, or less than
the atomic number of the decaying isotope? Explain.

Q12. Do all radioactive substances decay at the same rate?
Explain.

Q13. In a time equal to two half-lives of a radioactive isotope,
would you expect all of that isotope to have decayed?
Explain.

Q14. In chemical reactions, the individual elements present in
the reactants are the same as in the products of the reac-
tion. Is this also true in a nuclear reaction? Explain.

Q15. Chemical reactions and nuclear reactions can both release
energy. On the average, would you expect the energy re-
leased per unit of mass in a chemical reaction to be greater

than, equal to, or less than what is released in a nuclear
reaction? Explain.

*Q16. Why do we expect fission fragments to have higher neu-
tron numbers than stable isotopes of the same element
and, therefore, to be radioactive? Explain.

Q17. Suppose that you light a match to a mixture of oxygen
and hydrogen, which then reacts explosively to form
water. Is this a chemical reaction or a nuclear reaction?
Explain.

Q18. The most common isotope of uranium is uranium-238. Is
this the isotope that is most likely to undergo fission?
Explain.

Q19. What property of the fission reaction leads to the possi-
bility of a chain reaction? Explain.

*Q20. What is the function of the moderator in a nuclear reac-
tor? Explain why the moderator is needed to obtain a
chain reaction using natural uranium.

Q21. Do the control rods in a nuclear reactor absorb or emit
neutrons? Explain.

Q22. If you wanted to slow down the chain reaction in a nu-
clear reactor, would you remove or insert the control
rods? Explain.

*Q23. Will a reactor that uses ordinary water as the moderator
be able to operate using unenriched uranium as a fuel?
Explain.

Q24. If a reactor goes subcritical, will the chain reaction speed
up? Explain.

*Q25. If plutonium and uranium are removed from the spent fuel
of a nuclear reactor, will the remaining nuclear wastes
need to be stored for thousands of years before they be-
come nonradioactive? Explain.

Q26. In Fermi’s original experiments in which he bombarded
uranium samples with neutrons, he was trying to produce
new elements heavier than uranium. Is it possible to do
so? Explain.

Q27. What was the purpose of the nuclear reactors built at
Hanford, Washington, during World War II? Explain.

Q28. How does nuclear fusion differ from nuclear fission?
Explain.

Q29. Is nuclear fission the main process involved in the energy
generated in the sun? Explain.

Q30. Do we currently have commercial nuclear reactors that
use nuclear fusion as their energy source? Explain.

*Q31. Which can produce larger yields of energy, a fission
weapon or a fusion weapon? Explain.

questions
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E1. Sodium has an atomic number of 11 and an atomic weight
of approximately 23. How many neutrons would you ex-
pect to find in the nucleus of the most common isotope of
sodium?

E2. 93Np239 is an isotope produced in nuclear reactors.
a. How many protons are in the nucleus of this isotope?
b. How many neutrons are in the nucleus of this isotope?

E3. A certain isotope has 13 protons and 14 neutrons in its nu-
cleus. Identify the element involved and write its symbol
in the standard notation including the atomic and mass
numbers.

E4. Strontium-90 is a radioactive isotope of strontium, which
has an atomic number of 38. How many protons and how
many neutrons are present in the nucleus of this isotope?

E5. Thorium-232 undergoes alpha decay. Complete the reac-
tion equation for this decay and identify the daughter nu-
cleus.

90Th232 ⇒ ? � �

E6. The fission fragment iodine-131 undergoes negative beta
decay. Complete the reaction equation and identify the
daughter nucleus.

53I
131 ⇒ ? � �1e

0 � 0�̄
0

E7. Nitrogen-13 is a radioactive isotope of nitrogen that under-
goes positive beta decay in which a positive electron (or

positron) is emitted. Complete the reaction equation and
identify the daughter nucleus.

7N
13 ⇒ ? � �1e

0 � 0�
0

E8. Suppose that we have 10 000 atoms of a radioactive sub-
stance with a half-life of 30 minutes.
a. How many atoms of that element remain after 2 hours?
b. How many atoms remain after 4 hours?

E9. When we measure the rate of radioactivity of a given iso-
tope 18 days after making an initial measurement, we dis-
cover that the rate has dropped to one-eighth of its initial
value. What is the half-life of this isotope?

E10. How many half-lives must go by for the radioactivity of a
given isotope to drop to
a. One-sixteenth (1⁄16) of its original value?
b. One-sixty-fourth (1⁄64) of its original value?

E11. Suppose that we discover that one of the fission fragments
for a given fission reaction of uranium-235 is tin-130 and
that four neutrons are emitted in this reaction. Complete the
reaction equation and identify the other fission fragment.

0n
1 � 92U

235 ⇒ ? � 50Sn130 � 4 0n
1

E12. Suppose that two deuterium nuclei (1H
2) combine in a fu-

sion reaction in which a neutron is emitted. Complete the
reaction equation and identify the resulting nucleus.

1H
2 � 1H

2 ⇒ ? � 0n
1

Synthesis Problems 431

exercises

synthesis problems

SP1. Using the periodic table found in the inside back cover, we
can get some idea of how the number of neutrons increases
compared to the number of protons as the atomic number
increases. By rounding the atomic weight to the nearest
whole number, we can estimate the total number of nucle-
ons (neutrons and protons).
a. What are the neutron and proton numbers for carbon

(C), nitrogen (N), and oxygen (O)?
b. What is the ratio of neutrons to protons for the stable

isotopes of these three elements? (Ratio � Nn/Np)
c. Taking three elements near the middle of the table, sil-

ver (Ag), cadmium (Cd), and indium (In), find the num-
ber of neutrons and protons for each the same way.

d. Compute the ratio of neutrons to protons for the ele-
ments in part c and find the average ratio.

e. Repeat the process of parts c and d for thorium (Th),
protactinium (Pa), and uranium (U).

f. Compare the ratios of parts b, d, and e. Can you see
why there are extra neutrons when uranium or thorium
undergo fission?

SP2. Uranium and thorium are the radioactive elements found in
some abundance in the Earth’s crust. As each isotope of
these elements decays, new radioactive elements are cre-
ated that have much shorter half-lives than uranium or tho-
rium. A series of alpha and beta decays occurs that leads to
a stable isotope of lead (Pb). One such series begins with the
isotope thorium-232 and proceeds through these elements:

Th ⇒ Ra ⇒ Ac ⇒ Th ⇒ Ra ⇒ Rn ⇒ Po ⇒ Pb ⇒ Bi ⇒ Po ⇒ Pb

a. Using the periodic table, find the atomic numbers for
all of these elements.

b. Identify which of the reactions in this series involve alpha
decay and which involve beta decay. (The change in
atomic number provides all the information you need.)

c. Write the reaction equations for the first three decays in
this series.

d. Fill in the mass numbers for all of the isotopes in this
series.
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432 Chapter 19 The Nucleus and Nuclear Energy

SP3. Consider the fusion reaction: 1H
2 � 1H

2 ⇒ 2He3 � 0n
1.

From tables of nuclear masses, we can find the masses for
the reactants and products in this reaction:

H2 2.014 102 u

He3 3.016 029 u

n 1.008 665 u

a. Find the mass difference �m between the reactants and
the products for this reaction.

b. Following the procedure used in example box 19.2, con-
vert this mass difference to energy units.

c. Is energy released in this reaction, and if so, where
does it go? Explain.

SP4. Nuclear power has been a constant source of controversy
over the last few decades. Although the use of nuclear power

has grown during this time, we still get over half of our
electric power by burning fossil fuels. The environmental
and economic impacts differ for these energy sources.
a. Burning fossil fuels produces carbon dioxide as a natu-

ral by-product. Carbon dioxide is one of the gases that
contributes to the greenhouse effect and global warm-
ing, as discussed in chapter 10. Is this a problem with
nuclear power also? Explain.

b. What environmental problems associated with nuclear
power are not present in the burning of fossil fuels?
Explain.

c. What environmental problems associated with fossil fuels
are not present in the use of nuclear power? Explain.

d. On balance, which of these power sources would you
choose to develop further if other alternatives were not
available? Explain. (Reasonable people may differ here!)

HE1. The concept of half-life, and the associated exponential
decay curve, can be made more vivid by using piles of pen-
nies (or other stackable objects) to represent atoms.
a. Collect as many pennies as you can find on dresser tops

and from coin purses. Fifty to one hundred should
suffice.

b. Divide your pile into two equal stacks, placed side by
side. The left pile represents the original number of
atoms.

c. Divide the right pile in half. Place one of the resulting
stacks next to the original left stack. This represents the
number of atoms remaining after one half-life has
passed.

d. Continue this process, always dividing the remaining
right stack in half and placing the stack obtained from
division next to those stacks already accumulated. The
resulting row of stacks, each one smaller than the pre-
ceding one, forms an exponential decay curve. How
many half-lives do you obtain before you are down to
one penny a stack?

HE2. The concept of a chain reaction can be made more vivid by
using the same piles of pennies (or other objects) you used in
HE1. Gather about $3.00 worth of pennies. Each pile will
represent the number of neutrons produced as the chain reac-
tion continues.
a. Assume each fission creates 3 neutrons, as shown in

figure 19.13. On the first pile put one penny to indicate
the neutron that initiated the fission.

b. On the next pile put 3 × 1, or 3 pennies, to indicate the
3 neutrons created in the fission.

c. On the next pile put 3 × 3, or 9 pennies, since each of
the 3 neutrons produced in the first reaction will create
3 more neutrons in the next set of reactions.

d. How many pennies do you need in the next pile? And in
subsequent piles?

e. How many piles do you need to have more than 100
pennies in a pile?

f. How many piles would you need to have more than 1 000
pennies per pile (follow the pattern and calculate this
since it is unlikely you have found that many pennies)?

home experiments and observations
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Throughout this book, we have tried to build your
understanding of physics concepts by stressing their
origin in, and application to, everyday phenomena—
things that happen around us all the time. Certainly,
we have strayed at times from everyday events, par-
ticularly in discussing the structure of the atom and
its nucleus. These ideas have their origins in simple
experiments, however, and they have many applica-
tions to familiar technology.

Some of the most fascinating ideas of modern phys-
ics are a bit more difficult to relate to everyday experi-
ence, for example, the theories of special and general
relativity developed by Albert Einstein in the early
years of the twentieth century. Relativity is fun to ex-
plore, though, because it challenges us to rethink basic
concepts like space and time. Einstein’s ideas can
stretch your mind.

The development of quantum mechanics and its
application to nuclear physics have also led to areas
of research far removed from everyday experience.

New particles have been discovered in what we often
call high-energy physics. We never see these parti-
cles, and their properties carry unusual names like
strangeness and charm, but they too are important to
deciphering the fundamental nature of the universe.
Together with relativity, the quantum theories of
high-energy physics take us back to the beginning
of time and the Big Bang.

The final two chapters of this book briefly explore
the theories of relativity (chapter 20) and recent de-
velopments in modern physics (chapter 21). Chapter
21 includes discussions of the particle zoo and cos-
mology, as well as developments in condensed-matter
physics that brought about the revolution in micro-
electronics and computers.

The discoveries of fission and fusion occurred over
50 years ago, during the 1930s and 1940s. What has
happened since these breakthroughs? What can we
expect to hear from physics in the future? Chapters
20 and 21 may serve as a preview.

Relativity and Beyond

unit

Six
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chapter overview
After reexamining how relative motion is handled in classical physics, we
introduce Einstein’s postulates of special relativity and explore their
consequences for our views of space and time. We then consider how
Newton’s laws of motion must be modified to be valid for very high
velocities and explore the idea of mass-energy equivalence. Finally, we
briefly discuss the general theory of relativity.

chapter outline
1 Relative motion in classical physics. How did Galileo and Newton

describe relative motion? How do velocities add when the frame of
reference is moving?

2 The speed of light and Einstein’s postulates. What is the appropriate
frame of reference for measuring the speed of light? How did
experimental evidence lead to Einstein’s postulates of special
relativity?

3 Time dilation and length contraction. How do Einstein’s postulates
lead to surprising conclusions about time and space? What are the
effects of time dilation and length contraction?

4 Newton’s laws and mass-energy equivalence. How must Newton’s
second law of motion be modified to make it valid for very large
velocities? How does the concept of mass-energy equivalence arise?

5 General relativity. How does the theory of general relativity differ
from special relativity? What new consequences emerge from the
general theory?

434
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Have you ever been in a stationary bus peering out
the window at another bus sitting alongside when sud-
denly the other bus moved forward and you had the
distinct sensation that your own bus was moving back-
ward (fig. 20.1)? The sensation lasts until the other bus
moves out of your view, and you realize that you are
not moving.

Your senses have deceived you because of the mo-
tion of your frame of reference. We normally measure
our own motion with respect to objects that we expect
to remain at rest. If these objects are fixed to the sur-
face of the Earth, our frame of reference is the Earth:
position, velocity, and acceleration are measured relative
to that frame. If objects that we have identified with
that fixed frame of reference suddenly move, though,
we may perceive ourselves as moving.

All motion must be measured with respect to some
frame of reference, and that frame of reference may
also be moving. The Earth rotates on its axis and also or-
bits the sun. The sun, in turn, is moving with respect to
other stars, and so on. Something at rest in one frame of
reference may be moving with respect to some other
frame of reference—we must define our frame of refer-
ence to provide a complete description of motion.

The problem in defining a frame of reference, and in
describing how a certain motion might look as it is seen
from different frames of reference, was discussed by
both Galileo and Newton. This is a simple problem if the
relevant velocities are not large. Relative motion in this
sense is part of our everyday experience. The motion of
a boat relative to a flowing stream, for example, is
familiar to many of us.

If we imagine ourselves moving along with a light
beam, however, as Einstein may have as a boy, some very
interesting questions arise. Addressing some of these
questions led to the special theory of relativity, intro-
duced by Einstein in 1905. This theory is mainly con-
cerned with cases in which different frames of reference
move at constant velocity with respect to one another.
The general theory of relativity, which Einstein pub-
lished roughly ten years later, deals with the relation-
ship of gravity to accelerated frames of reference.
Together these theories have revolutionized the way we
view the universe.

figure 20.1 The forward motion of an adjacent bus can
give you the impression that your own bus is moving backward.

v

20.1 Relative Motion
in Classical Physics
Imagine that you have dropped a twig in the water of a
moving stream and are watching its motion as it is carried
along by the water (fig. 20.2). What is the velocity of the
twig with respect to the bank of the stream? What is its ve-
locity with respect to the water, and how are these two veloc-
ities related? How does this picture change if we consider a
motorboat moving on a flowing stream? These questions
can be addressed within the framework of classical mechan-
ics developed by Galileo and Newton.

How do velocities add?
When you drop a twig in the water, the twig swiftly reaches the
velocity of the stream. Once that happens, its velocity with
respect to the bank is the same as the water’s velocity with re-
spect to the bank, but the twig’s velocity with respect to the
water is zero. If you watched the twig from a boat that is
also floating with the current, the twig would not seem to move.

A more interesting situation arises if your boat is mov-
ing with respect to the water with the aid of oars, a motor,

figure 20.2 A floating twig moves with the current. What
is its velocity with respect to the stream bank?

20.1 Relative Motion in Classical Physics 435
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or a sail. In this case, the velocity of the boat relative to the
water is not zero. The boat moves relative to the water, and
the water moves relative to the stream bank (fig. 20.3).
If the boat and the stream are moving in the same direc-
tion, we might assume that the velocity of the boat rela-
tive to the water should add to the velocity of the water
relative to the Earth to yield the overall velocity of the boat
relative to the Earth. It is like walking on a moving escala-
tor or one of those traveling walkways found in airports.

If we express this idea in symbols, it takes the form

vbe � vbw � vwe ,

where vbe is the velocity of the boat relative to the Earth,
vbw the velocity of the boat relative to the water, and vwe

the velocity of the water relative to the Earth. The velocity
of the boat relative to the Earth is the vector sum of the ve-
locity of the boat relative to the water and the velocity of
the water relative to the Earth.

As shown in figure 20.3, our expectation that these ve-
locities should add can be justified by considering the dis-
tances that the water and the boat travel in some fixed
time. In this time, the piece of wood floating in the stream
moves a distance dwe, which is the distance that the water
has moved relative to the Earth. In that same time, however,
the boat has moved a distance dbw relative to the water, so
that it is now that much ahead of the piece of wood. The
total distance that the boat has moved relative to the Earth
in this time, dbe, is the sum of the other two distances.
Since the magnitude of the velocity (the speed) is distance
divided by time, the velocities also add.

Although we have illustrated this idea for the simple case
in which all three velocities were in the same direction, the
velocity-addition result is valid more generally. For exam-
ple, if we point the boat upstream (fig. 20.4), the different
direction of the velocities of the boat and the current can
be indicated by a difference in sign. See example box 20.1.

figure 20.3 A motorboat and a piece of wood move
downstream. The boat moves a distance dbe relative to the Earth
while the wood moves a distance dwe.

figure 20.4 A motorboat moving upstream loses ground to
the stream’s current if it cannot travel fast enough relative to the
water (vbw).

dwe dbw

dbe

vbe

vbw vwe
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example box 20.1

Sample Exercise: Rowing With and Against the
Current

Two rowers, Derek and Teresa, are in a boat. Derek can
row at a steady speed of 3.8 MPH, and Teresa can row at
a steady speed of 4.6 MPH. If the water in the stream is
moving at a speed, , of 4.0 MPH relative to the bank,
determine the velocity of the boat relative to the earth (or
bank), , when a) Derek rows against the current, b)
when Teresa rows against the current, and c) when Derek
rows with the current.

We will assume that the direction of the current,
downstream, is negative. Therefore, if a velocity is positive
the movement is upstream (or against the current), and if
it is negative the movement is downstream (or with the
current).

a. For Derek,

b. For Teresa,

c. For Derek,

 vbe � �7.8 MPH (downstream)vbe � ?

 vbe � �3.8 � (�4.0)vwe � �4.0 MPH

vbe � vbw � vwevbw � �3.8 MPH

vbw � �3.8 MPH (downstream)

 vbe � �0.6 MPH (upstream)vbe � ?

 vbe � 4.6 � (�4.0)vwe � �4.0 MPH

vbe � vbw � vwevbw � 4.6 MPH

vbw � 4.6 MPH

 vbe � �0.2 MPH (downstream)vbe � ?

 vbe � 3.8 � (�4.0)vwe � �4.0 MPH

vbe � vbw � vwevbw � 3.8 MPH

vbw � 3.8 MPH

vbe

vwe
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How do velocities add in two dimensions?
Addition of relative velocities can also be extended to two or
three dimensions. Suppose, for example, that you are traveling
across stream, as in figure 20.5. If you point the motorboat
directly toward a point straight across the stream, will the
boat end up at that point? Not if the stream is moving.

At the same time that the boat is moving across the stream
relative to the water, the water is moving downstream relative
to the Earth. The boat is carried downstream as it moves
across the stream. As before, the two velocities add. (The
vector addition process can be handled by the graphical
method discussed in appendix C and illustrated in figure
20.5.) Notice that the size of the velocity of the boat relative
to the Earth (its speed) will not be equal to the simple numer-
ical sum of the other two speeds in this case. Since this veloc-
ity vector is the hypotenuse of a right triangle in the vector
diagram, it will be equal to the square root of the sum of the
squares of the other two sides.

If you wanted to hit a point on the bank directly across
the stream from your starting point, you would have to
point the boat somewhat upstream, at an angle to the line
drawn perpendicular to the bank (fig. 20.6). In this case,
when the two velocities add, they produce a velocity of the
boat relative to the Earth that is straight across the stream.
The magnitude of this velocity will be smaller than that of
the boat relative to the water, however, as can be seen from
the vector diagram.

We can apply the same analysis to an airplane. The ve-
locity of the plane relative to the air adds to the velocity of
the air relative to the Earth (the wind velocity) to yield the
velocity of the plane relative to the Earth, vpe � vpa � vae.

A tailwind has a different effect than a head wind or a
crosswind. The situation is directly analogous to the boat
on the stream.

The principle of relativity
Velocity addition can also be applied to events happening in
moving vehicles. Imagine, for example, that you are walk-
ing up the aisle of a large airliner traveling with a constant
velocity relative to the Earth. Your velocity relative to the
plane must be added to that of the plane relative to the Earth
to find your own velocity relative to the Earth. In practice,
however, you are usually much more aware of your veloc-
ity relative to the plane than your velocity relative to the
Earth—the plane is your frame of reference.

As long as the plane is moving with constant velocity,
you can move about a large airliner quite easily without
much awareness of the motion of the plane. In fact, you
can throw a ball back and forth or perform physical exper-
iments in the airplane and obtain the same results as if these
experiments were done in a stationary building. (Since the
Earth itself is rotating on its axis and orbiting about the sun,
it is not truly stationary either.)

Even when a plane is moving with approximately con-
stant velocity, we often have some sense of motion be-
cause of air turbulence causing it to bounce around. We
also can look out the window and watch the clouds or
Earth go by. In smooth air and with the window shades
closed, though, we lose the impression that we are moving.
This loss is even more striking in an elevator moving up or
down with constant velocity. Since elevators usually have
no windows and can move very smoothly, it becomes hard
to tell whether or not they are actually moving.

figure 20.5 A motorboat pointed straight across the
stream ends up at a point on the opposite bank that is
somewhat downstream.

figure 20.6 The boat must be pointed somewhat upstream
to travel straight across the stream.

vbe
vbw

vwe

vbevbw

vwe
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These ideas were discussed by both Galileo and Newton
and are often summarized in the principle of relativity:

The laws of physics are the same in any inertial frame of
reference.

This principle means that we cannot tell whether our frame
of reference is in motion or not by performing physical ex-
periments. As long as our frame of reference is moving
with constant velocity with respect to other inertial frames
of reference, the results of our experiments are the same.

Inertial frames of reference
But what is an inertial frame of reference? At this point, log-
ical difficulties arise, as Newton was well aware. Newton’s
second law of motion is valid only in an inertial frame of ref-
erence, that is, in any frame of reference for which Newton’s
first law is obeyed. If an object at rest remains at rest when
the net force acting on the object is zero, that object is in an
inertial frame of reference. Any frame of reference moving
with constant velocity with respect to some valid inertial
frame will also be an inertial frame of reference.

If some other frame of reference is accelerated with re-
spect to a valid inertial frame, the accelerated frame is not an
inertial frame of reference. If, for example, your airplane
lurches up or down because of accelerations produced by air
turbulence, your experimental results (and your ability to walk
a straight line) are modified. Likewise, if an elevator is accel-
erating up or down, your apparent weight changes. If you
were standing on a bathroom scale, as discussed in chapter 4,
this change would register on the dial. Other experiments
would also have modified results due to this acceleration.

If we want to apply Newton’s second law in these situ-
ations, we have to modify the law by adding imaginary or
inertial forces that arise as a result of the acceleration of the
frame of reference. The centrifugal force that we sometimes
talk about feeling in a rotating frame of reference is such an
imaginary force. A rotating frame has a centripetal accelera-
tion and is not a valid inertial frame. We feel as though we are
being pulled outward by a centrifugal force—but viewed from
a valid inertial frame, we see that this apparent force is really
just our own inertia at work, our tendency to continue moving
in a straight line while our reference frame is turning.

The centrifugal force that seems to be present in a rotating
frame of reference is not a valid force in the Newtonian sense,
because it does not derive from the interaction of the affected
body with any other body. In other words, it does not obey
Newton’s third law, which is part of Newton’s definition of
force. It arises solely because of the acceleration of the frame
of reference. It is like the increase or decrease in apparent
weight observed in an accelerating elevator.

Defining an inertial frame of reference seems easy
enough: it is one that is not accelerated. But with respect to
what? For many purposes, we can treat the surface of the

Earth as an inertial frame of reference, since its acceleration is
small. But the Earth is rotating and also orbiting (in a curved
path) about the sun, so it is accelerated with respect to the
sun. The sun itself is accelerated with respect to other stars, so
it is not a completely valid inertial frame of reference either.

Our problem stems from the apparent impossibility of
establishing a frame of reference that is absolutely at rest,
or at least not accelerated in any sense. Maxwell’s predic-
tion and description of electromagnetic waves brought new
attention to this problem in the latter half of the nineteenth
century. The possibility that measuring the velocity of light
could help to establish an absolute inertial frame of refer-
ence was an exciting idea. Questions about the appropriate
reference frame for measuring the velocity of light led to
Einstein’s special theory of relativity.

The velocity of any object must always be measured with
respect to some frame of reference. For ordinary motions,
the surface of the Earth often provides that frame. If our
frame of reference is moving with respect to some other
frame, as with a boat on a flowing stream, the velocity of
the boat relative to the stream can be added to the velocity
of the stream relative to the Earth to obtain the velocity of
the boat relative to the Earth. This process works in two or
three dimensions as well as for straight-line motion. Galileo
and Newton recognized that the laws of physics take the
same form in any inertial frame of reference. The difficulty
comes in trying to establish an absolute inertial frame.

20.2 The Speed of Light
and Einstein’s Postulates
Light is an electromagnetic wave, which was originally pre-
dicted by Maxwell’s theory of electromagnetism, as dis-
cussed in chapter 16. An electromagnetic wave consists of
oscillating electric and magnetic fields that propagate through
empty space, as well as through air, glass, and other trans-
parent materials. Light waves can travel through a vacuum.

Is there a medium that light waves travel through even
when they are passing through a vacuum? Most waves travel
through some medium or material, sound waves through air
(and other materials), water waves in water, waves on a rope
on the rope itself, and so on. Does light also have a medium?
At the end of the nineteenth century (and even now), this
was one of the fundamental questions of physics.

What is the luminiferous ether?
When Maxwell invented the concepts of electric and mag-
netic fields, he used a mechanical model to help him visual-
ize these ideas. An electric field can exist in otherwise empty
space: it is the force per unit of charge that a charge would
experience if placed at the point in space where the field

438 Chapter 20 Relativity

gri12117_ch20_433-456.qxd  31/7/08  10:18  Page 438



Confirming pages

exists. There does not have to be a charge (or anything else)
there to define the field—the field is a property of space.

The presence of a field must somehow modify or distort
space to produce its effect on a charged particle. Maxwell
imagined empty space to have elastic properties. We could
think of empty space as being like an infinite array of tiny,
massless, interconnected springs (fig. 20.7). The changing
electric and magnetic fields of an electromagnetic wave
could be viewed as a distortion of this array of springs. Al-
though Maxwell did not believe this was an accurate de-
piction of empty space, such a model may have helped him
to think about fields and the process of wave propagation.

Even if this model was not to be taken literally, attribut-
ing elastic properties to empty space seemed necessary to ex-
plain the propagation of a wave through space. Otherwise,
nothing oscillates as the wave passes through. This invisible,
elastic, and apparently massless medium that could exist in
a vacuum was called the luminiferous ether—it was the
medium light waves and other electromagnetic waves sup-
posedly traveled through. Whether or not it was needed to
explain the propagation of electromagnetic waves was a mat-
ter of debate. Maxwell himself was not totally convinced.

Could the ether serve as a universal
reference frame?
The supposed existence of the ether opened an exciting pos-
sibility for solving the problem of inertial frames of refer-
ence mentioned in section 20.1. Perhaps, the ether could
serve as an absolute or universal reference frame for meas-
uring any motion. Any other valid inertial frame of refer-
ence would then be traveling with constant velocity relative

to the ether. The ether itself could be pictured as being
embedded and fixed somehow in empty space.

How could we measure motion relative to the ether? Sim-
ply by measuring the velocity of light. If the Earth is moving
relative to the ether, the velocity of light should be affected by
this motion. The velocity-addition formula introduced in 
section 20.1 should apply. This idea is easier to visualize if we
consider a water wave on a flowing stream, as in figure 20.8.

If the wave is moving with a velocity vws relative to the
stream, and the stream is flowing in the same direction
with a velocity vse relative to the Earth, the velocity of the
wave relative to the Earth, vwe, should be vwe � vws � vse,
just like a boat going downstream. The velocity of the wave
in the medium (the stream, in this case) adds to the velocity
of the medium relative to the Earth to yield the overall ve-
locity of the wave relative to the Earth.

Extending these ideas to light waves traveling in the ether
is not difficult. If the Earth is moving through the ether, the
ether is also flowing past the Earth. The velocity of light
that we measure should then be the vector sum of the ve-
locity of light relative to the ether and the velocity of the
ether relative to the Earth. Accurate measurement of the ve-
locity of light relative to the Earth at different times of the
year would then let us determine whether or not the Earth
is moving in a certain direction relative to the ether.

The Michelson-Morley experiment
The most famous experiment designed to detect the possible
motion of the Earth relative to the ether was performed by
Albert Michelson (1852–1931) and Edward Morley (1838–
1923) during the 1880s at what is now Case Western Re-
serve University in Cleveland. To detect small differences in
the velocity of light, they used a special instrument designed
by Michelson, now called the Michelson interferometer. As
the name suggests, this instrument uses interference phe-
nomena to detect small differences in the velocity of light or
in the distance that the light travels (see section 16.3).

figure 20.7 Maxwell imagined empty space to have elastic
properties. An array of massless, interconnected springs can serve
as a crude model of this idea.

figure 20.8 The velocity of wave relative to the stream
adds to the velocity of the stream to yield the velocity of the
wave relative to the Earth.

vws

vse

vwe

vwe  = vws  + vse
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A Michelson interferometer is shown in figure 20.9.
Light introduced from the source on the left is split into
two beams by a partially silvered mirror, or beam splitter.
Roughly half of the light striking this mirror passes through
the mirror and half is reflected, producing two beams of
equal intensity. These two beams travel along perpendicu-
lar paths, as shown, and are reflected by fully silvered mir-
rors, returning through the beam splitter. Here, the beams
are partially transmitted and partially reflected again.

The observer looks at images of the source along a path on
the fourth side of the interferometer at the bottom of the dia-
gram. Because the light the observer sees has come from the
same source but has traveled along different paths, it may be
either in or out of phase for different points on the image of
the source. If one of the end mirrors is slightly tilted so that it
is not exactly perpendicular to the light beam, these phase
differences will create a pattern of dark and light fringes, as
in figure 20.9. The dark fringes are produced by destructive
interference, the light fringes by constructive interference.

If anything happens to change the time required for either
one of the light beams to make its trip to the end mirror and
back, the phase difference will change and the fringe pattern
will shift. Michelson and Morley reasoned that if the ether
was moving in a direction parallel to one of the arms, the
time interval for the beam moving parallel to the ether
stream would be slightly different from the time interval of
the beam moving perpendicular to the ether stream. These
time differences could be computed by finding the effective
wave velocities for light traveling along each arm. The com-
putation is similar to the one for a boat moving parallel or
perpendicular to the current of a stream.

To see the expected shift of fringes, the interferometer
must be rotated through 90° (along with the observer), so

that the arm that had been parallel to the ether stream is
now perpendicular to the ether stream, and vice versa.
Michelson and Morley mounted the interferometer on a
rock slab and floated the slab in a vat of mercury to let the
interferometer rotate smoothly. (Mercury was the only ob-
tainable fluid dense enough to float a heavy rock slab.)

Michelson and Morley based their computations on the
assumption that the velocity of the Earth relative to the ether
would be due, in part, to the orbital motion of the Earth
around the sun. Since they could not assume that the ether
was fixed with respect to the sun, they had to do the exper-
iment at different times of the year. At some time during
the year, the motion of the Earth should be parallel to a
component of the ether’s motion, and six months later it
should be antiparallel (fig. 20.10). They assumed that the
minimum velocity of the Earth relative to the ether would
be equal to the orbital velocity of the Earth about the sun.
It would have this value if the ether was fixed with respect
to the sun. If the ether was moving relative to the sun, the
relative velocity of the ether to the Earth would be even
larger at some time during the year.

The results of the Michelson-Morley experiment were
disappointing: no fringe shift was observed when the inter-
ferometer was rotated at any time during the year. Al-
though the shift was expected to be small (of the order of
half a fringe width), it should have been observable ac-
cording to the assumptions the experiment was based on.
The experiment failed to detect any motion of the Earth rel-
ative to the ether. Often in science, though, failing to find
what is expected can be an important result.

Einstein’s postulates of special relativity
The failure of the Michelson-Morley experiment to detect
any motion of the Earth relative to the ether raised new ques-
tions about the ether. Why could we not detect its motion?
Maybe the ether was being dragged along with the Earth,
much like the atmosphere, so that an experiment performed

figure 20.9 A Michelson interferometer. Light waves
traveling along the two perpendicular arms interfere to form a
pattern of light and dark fringes.
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figure 20.10 Regardless of the direction of the ether’s
motion relative to the sun, at some time during the year the
Earth should be moving relative to the ether.
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on the surface of the Earth would not detect motion. This
assumption seemed to be precluded, however, by other
observations involving shifts in the apparent positions of
stars viewed at different times of the year.

Einstein was just a child at the time of the Michelson-
Morley experiment and was not familiar with its results at
the time of his initial work on relativity. However, he was
aware of the debate regarding the existence of the ether. His
solution to the dilemma was both simple and radical. He
merely took as a basic postulate what seemed to be the
case experimentally, namely, that the velocity of light is not
affected by motion of the source or of the frame of reference.

Einstein actually stated two postulates in his introductory
paper on special relativity published in 1905. The first was
a reaffirmation of the principle of relativity stated similarly
more than 200 years earlier by Galileo and Newton and dis-
cussed in section 20.1:

Postulate 1: The laws of physics are the same in any inertial
frame of reference.

The second postulate involved the speed of light:

Postulate 2: The speed of light in a vacuum is the same in any
inertial frame of reference, regardless of the relative motion of
the source and observer.

Although both postulates are important to Einstein’s
theory, the second one calls for a radical change in our
thinking. What he was saying, in essence, is that light (or
any electromagnetic wave) does not behave like most
waves or moving objects. If we throw a ball on a moving
airplane, the velocity of the ball relative to the Earth is the
vector sum of the velocity of the ball relative to the air-
plane plus the airplane’s velocity relative to the Earth. If
the pilot speaks on the sound system, the sound wave trav-
els with a velocity relative to the Earth that is the vector
sum of the velocity of sound in the air of the airplane plus
the airplane’s velocity relative to the Earth (fig. 20.11).

If we shine a flashlight on the airplane, however, the ve-
locity of light measured on the plane must be the same, ac-
cording to Einstein’s second postulate, as what is measured
for the same flashlight beam by an observer at rest on the
Earth. The classical velocity-addition formula does not hold
for light—not an easy idea for physicists to accept in 1905.
In fact, if we examine this second postulate more closely, we
find that it requires us to rethink space and time themselves.
This aspect of relativity really challenges our minds. We will
begin to explore some of these consequences in section 20.3.

The ether was assumed to be the medium for electromag-
netic waves. Since these waves could travel in a vacuum, the
ether was thought to exist even in a vacuum. If the Earth
moves through the ether, we might be able to establish an

figure 20.11 In contrast to sound waves or a ball, the velocity of the airplane does not add to the velocity of a flashlight beam to
yield the speed of light relative to the Earth. The speed of light is the same for all observers. (Velocity vectors are not drawn to scale.)
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absolute frame of reference associated with the ether. The
Michelson-Morley experiment was designed for this purpose
but failed to detect any motion of the Earth relative to the
ether. In response to this and other experiments, Einstein
postulated that the speed of light is the same in any inertial
frame of reference, denying the existence of the ether. This
assumption holds radical implications for our concepts of
space and time.

20.3 Time Dilation and
Length Contraction
The units for velocity are always a ratio of distance (a
measure of space) divided by time—for example, meters
per second. The law of velocity addition depends on the
assumption that space and time can be measured by dif-
ferent observers in the same manner and with the same
results, regardless of whether these observers are moving
relative to one another. This assumption is consistent
with our daily experience.

If the velocity of light does not add like ordinary veloc-
ities, there must be some problem with how different ob-
servers measure space or time. If we accept Einstein’s
second postulate that the speed of light is the same for all
observers, we must give up the ideas that space and time
are the same for all observers. This goes against our intu-
ition or common sense and requires us to throw out ideas
that seem to be inherently true.

To approach these questions, Einstein devised thought ex-
periments, experiments that are impractical to perform be-
cause of the tremendous velocities involved but that can be
readily imagined and their consequences explored. Thought
experiments allow us to see how the concepts of space and
time must be altered to accept Einstein’s second postulate.
Anyone can do thought experiments; no physical equip-
ment is required.

Measurements of time by
different observers
Suppose that you wish to measure time using the velocity
of light as your standard of measurement. Imagine, too,
that you are riding in a spaceship moving with a large
velocity with respect to the Earth. If your spaceship has a
large glass window on one side, another observer stand-
ing on Earth could also watch your experiments and
make measurements.

How would you go about using the speed of light as a
standard for a time measurement? One way would be to
send a light beam at a mirror directly overhead and use
the time required for the beam to travel to the mirror and
back as a basic unit of time. This arrangement would be
a light clock—it uses the speed of light to establish a
time standard. If the distance from the light source to the

mirror is d (fig. 20.12), the time interval required for the
light to travel to the mirror and back (a distance of 2d) is

where c is the speed of light. This quantity becomes your
basic measure or unit of time as measured in the spaceship.

The observer standing on the Earth as you flash by in
your glass-walled spaceship can also see the time taken for
the light beam to make its trip to the mirror and back. She
views the events somewhat differently, though. If the space-
ship is moving with a velocity v relative to the Earth, the
mirror also moves at that velocity. For the light beam to be
reflected from the mirror and return to the source (which,
meanwhile, has moved), it must travel along the diagonal
path shown in figure 20.13.

If the observer on Earth uses the same light clock to es-
tablish a measure of time, her basic measure t will be larger
than t0. She sees the light beam traveling a longer distance
at the same speed c than the distance measured by the ob-
server on the spaceship (yourself). We assume that she
measures the vertical distance d in the same manner as you
do, because this distance is perpendicular to the direction
of relative motion and should be unaffected by the motion.
The longer path for the light beam yields a greater time.

The difference in the time intervals measured by the two
observers can be found by considering the geometry and
distances in figure 20.13. (See synthesis problem 5.) The
time t measured by the Earth observer can be expressed in
terms of the time t0 measured on the spaceship as

This is the time-dilation formula. In it, t will always be
larger than t0, since the number in the denominator is always
less than one. The observer on Earth measures a longer,
dilated time with the light clock.

t � 
t0B1 � 

v2

c2

.

t0 �
2d
c

 ,

figure 20.12 In a light clock, the time taken for light to
travel the distance 2d to the overhead mirror and back becomes
the basic measure of time t0.

v

Mirror

Flashlight

d
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The time t0 is often called the proper time. In this
case, it is the time interval measured in the spaceship
where the light starts and finishes its trip at the same
point in space.

A proper time interval is the elapsed time between two events
measured in a frame of reference in which the two events
occur at the same place within that frame of reference.

This is true for the time interval measured by the person on
the spaceship but not for the observer standing on Earth.
She sees the light leaving the source at one point in space
and returning to the source at a different point in space and
measures a dilated time interval for the elapsed time be-
tween the start and finish of the beam’s flight.

Step back and try to see what we have actually done
in this thought experiment. We have used the speed of
light as a standard for measuring time in a light clock.
By insisting that the two observers moving relative to
one another observe the same value for the speed of light
c, we find that they arrive at different measures of time
using the same clock. If they agree on the value of c,
they cannot agree on the travel time of the light beam.
Time does not pass at the same rate in the different
frames of reference.

For ordinary speeds of relative motion, the difference
in these two time intervals would be extremely small. For
a speed of one-hundredth the speed of light (0.01c), for
example (still the enormous speed of 3 million meters
per second), the quantity v/c in the time-dilation formula
is 0.01. The dilated time t in this case is just 1.000 05
multiplied by t0, so the difference between t and t0 is very

small. The relative speed v of the two observers must be
almost as large as the speed of light for the difference in
these time intervals to be noticeable.

The quantity containing the square root that appears in
the time-dilation formula is involved in many relativistic
expressions, and the Greek letter � (gamma) is used as its
symbol, where

Table 20.1 shows the value of � for a few values of the rela-
tive speed v. These values are very close to 1 for small values
of v but increase rapidly as the magnitude of v approaches c.
(The relative speeds are all expressed here as fractions of the
speed of light c.) Written in terms of gamma, the time-dilation
relationship takes the form t � �t0, that is, the proper time t0
must be multiplied by the factor � to obtain the dilated time t.

� � 
1B1 � 

v2

c2

 .

figure 20.13 To an observer standing on Earth, the light takes a diagonal path to the mirror and back to the source. This yields a
longer time interval as measured by the light clock.

v � 0.01c � � 1.000 05

v � 0.1c � � 1.005

v � 0.5c � � 1.155

v � 0.6c � � 1.250

v � 0.8c � � 1.667

v � 0.9c � � 2.294

v � 0.99c � � 7.088

table 20.1

Values of � for Different Values of Relative Speed v
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How do length measurements vary
for different observers?
Our two observers disagree on the elapsed time for the flight
of the light beam, and they will also disagree on the dis-
tance the spaceship and the mirror traveled during this
time. We can see this by extending our thought experiment
to measure the distance that the spaceship travels in the
time required for one round-trip of the light beam.

This distance can be measured most readily by the ob-
server standing still on the surface of the Earth. With the
help of assistants spaced along the path of the spaceship, she
can mark both where the spaceship is when the light pulse is
emitted and when it returns to the source. She can then
measure the distance between these two points at her leisure,
since this distance is fixed on the Earth’s surface (fig. 20.14).

The observer in the spaceship has a somewhat more dif-
ficult task in measuring this distance. He sees the Earth as
moving past him and must somehow locate the end points
of the distance simultaneously. If he could measure the
speed of the spaceship independently of this distance, he
could then compute the distance by multiplying the speed v
by the time of flight of the light beam. This quantity is the
time t0, the proper time, since that is the time measured by
the astronaut. Using this method, he would measure a
length L � vt0 for the distance covered by the spaceship
during the flight of the light beam.

Using the same reasoning, the observer on Earth could
also compute this distance. She finds L0 � vt, where t is the
dilated time that she measures for the flight of the light beam.
We have used the symbol L0 because this is the rest length,
the length measured by the observer who is at rest relative to
the distance being measured. Since we have already discov-
ered that t is greater than t0, we see that the rest length L0

must be larger than the length L measured by the observer in
the spaceship. He measures a contracted, or shorter, length
than the rest length.

Since t � �t0, the contracted length can be expressed as

This is the length-contraction formula. Since � is always
greater than 1, L is always less than L0, the rest length.
Again, for the effect to be noticeable, v must be very large,
as illustrated in example box 20.2. In this example, the
spaceship is traveling with a velocity of 0.6c. The space-
ship’s pilot measures a contracted length of 720 km for the
trip distance while the Earth observer measures the trip dis-
tance as 900 km. The pilot also measures a shorter time
of 4 milliseconds (the proper time) for the trip than the
5-millisecond dilated time measured by the Earth observer.

Although these effects seem strange, they have been ob-
served in a wide variety of circumstances. While ordinary-
sized objects seldom move at speeds large enough to show
noticeable effects, subatomic particles routinely travel at
such speeds. A particle that has a certain lifetime at rest in
the lab seems to have a longer (dilated) lifetime when it is
moving at velocities near the velocity of light. It travels far-
ther before decaying, as seen from the perspective of an
observer at rest in the laboratory.

From the perspective of an observer traveling with the
particle, however, the particle has its proper lifetime t0 and
travels a contracted distance L shorter than the rest length
measured by the laboratory observer. The situation is basi-
cally the same as for the spaceship in example box 20.1.
All of these observations are consistent if we treat them
according to Einstein’s theory.

L � a1
�
b L0.

444 Chapter 20 Relativity

figure 20.14 With the help of assistants, the observer on Earth can mark the position of the spaceship when the light pulse is
emitted and when it returns. The distance between these positions L0 can be easily measured.
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example box 20.2

Sample Exercise: A Contraction in Length

A spaceship traveling at the velocity of 1.8 � 108 m/s
(0.6c) covers a distance of 900 km as measured by an
observer on the Earth.

a. What is the distance traveled in this time as
measured by the pilot of the spaceship?

b. How much time does it take to cover this distance
as measured by the observer on Earth and as
measured by the pilot?

a. v � 0.6c From table 20.1,

c � 3 � 108 m/s � � 1.25

L0 � 900 km

L � ?

� (0.8)(900 km)

� 720 km

b. t � ? As seen by the observer on Earth: L0 � vt

t0 � ?

� 5 � 10�3 s � 5 ms

As seen by the spaceship pilot: L � vt0

� 4 � 10�3 s � 4 ms

� 
7.2 � 105 m/s

1.8 � 105 m/s

t0  � 
L
v

� 
9 � 105 m

1.8 � 108 m/s

t � 
L0

v

L � a1
�
b L0

1
�

 � 0.8

1
�

 � 
1

1.25

The problem of measuring distances from a moving
spaceship, if examined closely, boils down to a problem of
simultaneously locating the end points of the length being
measured. Not only will two observers disagree on the
elapsed time, they will also disagree about whether events
are simultaneous or not. Two events separated in space
may be seen as being simultaneous by one observer but as
occurring at different times by an observer moving relative
to the first observer.

These space and time effects are explored further in every-
day phenomenon box 20.1 on the famous twin paradox. The
paradox involves the difference in aging rates of two twins,

one who makes a space trip to a distant star and back and
the other who remains on Earth. The fact that the traveling
twin ages less than the one remaining on Earth can be
understood using the concept of time dilation. It is not just
science fiction!

If we accept Einstein’s second postulate that the speed
of light has the same value for different observers,
regardless of their relative motion, we must give up
some cherished ideas about space and time. Using the
speed of light as a standard for time measurements, we
find that a dilated or longer time is measured between
two events for an observer who does not see these
events as occurring at the same place in space. Also, an
observer who is moving relative to a distance being
measured finds a contracted or shorter length. Different
observers cannot even agree on whether two events are
simultaneous or not.

20.4 Newton’s Laws and
Mass-Energy Equivalence
Accepting Einstein’s postulates requires some major changes
in how we think about space and time. Since space and time
measurements are involved in velocity and acceleration, and
acceleration plays a key role in Newton’s laws of motion,
we might suspect that Newton’s laws must also be modified
to be consistent with Einstein’s postulates. Does Newton’s
second law of motion still apply when objects are moving
at very large velocities?

In addressing these questions, Einstein discovered that it
was necessary to modify Newton’s second law by redefin-
ing the concept of momentum. As he explored the conse-
quences of this new approach to dynamics in his early papers
on relativity, he was also led to a striking conclusion about
the relationship between mass and energy summarized in
the often-quoted equation E � mc2.

How must Newton’s second law
be modified?
When Einstein examined Newton’s second law in the light
of his postulates, he discovered problems: an acceleration
measured in one frame of reference is not the same as the
acceleration of the same object measured in some other
frame of reference. If a spaceship pilot fires a projectile
with a certain acceleration, the observer on Earth would
measure a different acceleration.

At ordinary velocities, there is no difference in the ac-
celerations measured by different observers. We can apply
Newton’s second law, Fnet � ma, in any inertial frame of
reference using the same forces to explain the acceleration of
the object. Newton’s second law apparently will not work

20.4 Newton’s Laws and Mass-Energy Equivalence 445
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when the velocities are very large, because the accelera-
tions are no longer equal in different frames of reference. We
then have a violation of Einstein’s first postulate: Newton’s
second law does not seem to take the same form in different
inertial frames of reference.

As discussed in chapter 7, the most general form of
Newton’s second law is stated in terms of momentum rather
than acceleration, Fnet � �p/�t—the net force equals the
rate of change of momentum. Momentum is defined as the
product of the mass multiplied by the velocity, p � mv.
We also find problems at large velocities when we attempt
to use Newton’s second law in this form. Even the law of
conservation of momentum does not seem to work when
viewed by observers in different frames of reference.

To salvage the law of conservation of momentum at rel-
ativistic (large) velocities, Einstein found that he had to re-
define momentum as

p � �mv.

Here v is the velocity of an object with respect to a given
frame of reference and � is the relativistic factor defined
in section 20.3, which also depends on the magnitude of
the velocity v. Using this new definition of momentum,
Einstein was able to show that different observers could
agree that momentum was conserved in a collision, even
though these different observers would measure different
values for the velocities and momenta. At low velocities,
this revised definition of momentum reduces to the ordi-
nary definition of momentum, p � mv, because the factor
� is then approximately equal to 1.

Since the law of conservation of momentum follows
directly from Newton’s second law, this revised definition
of momentum must be used there also. In other words,
Einstein found that he could make Newton’s second law
conform to his postulates by using the new definition of
momentum in the general form of Newton’s second law,
Fnet � �p/�t. At ordinary velocities, Newton’s second law

The Twin Paradox

The Situation. One of the most discussed phenomena of
relativity is the so-called twin paradox. One of a pair of identi-
cal twins, Adele, journeys at very large velocities to a distant
star and then returns to Earth. The second twin, Bertha,
remains on Earth the entire time that her twin is traveling.

Since one of the twins is traveling at a speed approaching
the speed of light, the twins should measure time as passing
at different rates because of time dilation. When the traveling
twin returns, will she find that she is younger than the twin
who stayed at home? Since each twin can regard the other
as moving while she herself is standing still (as long as the
velocity is constant), shouldn’t the other twin also see herself
as younger? This question lies at the heart of the apparent
paradox.

The Analysis. Suppose that Adele’s entire trip is made at the
speed v � 0.6c. From table 20.1, the factor � that appears in
the time-dilation formula is equal to 1.25. If Adele perceives
the trip as taking 12 years, this is a proper time in her frame
of reference, the spaceship. She has lived 12 years and experi-
enced an appropriate number of heartbeats (or other suitable
biological measures of time) during her trip. In other words,
as far as she is concerned she is 12 years older than when
she left.

Her twin, Bertha, on the other hand, experiences a dilated
time for this same time interval. She lives a time t � �t0 ,
which is 15 years (1.25 � 12 years) for the trip. Bertha has
aged 15 years waiting for her sister to return. Since Adele has
aged only 12 years during the trip, Adele is 3 years younger
than her identical twin at the end of the trip!

everyday phenomenon
box 20.1

v

Distant
star

Earth

Adele

Bertha

Twin Adele travels to a distant star and back while her twin sister,
Bertha, remains at home.

(continued)

446 Chapter 20 Relativity

gri12117_ch20_433-456.qxd  31/7/08  10:18  Page 446



Confirming pages

works the usual way because the relativistic momentum re-
duces to the classical definition. At very large velocities,
we are forced to use the relativistic definition of momen-
tum. Einstein’s special theory of relativity is a significant
revision of Newton’s theory of mechanics.

How did the idea of mass-energy
equivalence emerge?
As he revised Newton’s second law, Einstein discovered that
mechanical energy also took on a new meaning. In classical
physics, the kinetic energy of an object is found by computing
the work done to accelerate the object to a given speed, result-
ing in the familiar expression . (See chapter 6 and
figure 20.15.) Using the same procedure, we can compute the
kinetic energy for an object accelerated to a very large veloc-
ity. In this case, however, we must use the modified version of
Newton’s second law to describe the process of acceleration.

KE � 1
2 mv2

When Einstein computed the kinetic energy using the
relativistic modification of Newton’s second law, he ob-
tained the result

KE � �mc2 � mc2.

Note that only the first term in this expression depends on
the speed of the object, since the factor � contains the speed.
The second term is independent of the speed of the object.

Suppose, however, that we did the same analysis with the
spaceship as fixed and the Earth as moving. Would we arrive
at the reverse conclusion to what we just computed? Would
such an analysis suggest that Bertha should be 3 years
younger than Adele? Surely we cannot hold both of those
results to be true. Therein lies the paradox.

The resolution of the paradox lies in the fact that we have
ignored the accelerations and the resulting changes in refer-
ence frame. To make a space trip such as this, Adele’s space-
ship must accelerate away from Earth until it reaches the
enormous speed of 0.6c that we have assumed. When it
reaches the distant star, it must turn around, which involves a
deceleration and acceleration in the opposite direction (and
into a different frame of reference). It must decelerate again
when it reaches the Earth. Our situation is not really com-
pletely symmetric: the spaceship exists in two different frames
of reference, each having speed v relative to the Earth but
with velocities in opposite directions.

Although accelerations can be handled using general
relativity, this is not really necessary for our purposes. If we
assume that the accelerations take place in time intervals
that are small compared to the overall time of flight, the
computation done above using special relativity produces the
correct result—Adele does age less than Bertha. This can be
confirmed by doing a thought experiment using the basic
assumptions of special relativity and carefully treating the
behavior of clocks in either frame of reference. We must
assume, however, that the spaceship changes frames of
reference, not the Earth.

This difference in the passage of time and the resulting
difference in aging of the twins is a real effect that has been
confirmed experimentally using highly accurate clocks and the
much slower speeds of a jet plane. If we would reach veloci-
ties as high as 0.995c, the difference in aging of the twins
would be quite striking. At a velocity of 0.995c, the time-
dilation factor is approximately 10 rather than 1.25. A trip
that took 10 years for Adele would take 100 years for Bertha.
Adele would return to Earth 100 Earth-years later having
aged only 10 years herself.

Bertha

Adele

At a spaceship speed of 0.995c, the differences in aging of Adele and
Bertha could be quite striking.

figure 20.15 As before, the work done by the net force
used to accelerate an object equals the increase in the kinetic
energy of the object.
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Arriving at this result was a simple process for Einstein
(the computation is not difficult for someone experienced in
using calculus). Interpreting the result, however, offered a
significant challenge. The new expression for kinetic energy
is the difference between two terms, one that depends on
the speed and another that does not. Apparently, accelerat-
ing an object increases the energy of the object above an
energy that it already possesses by virtue of its mass, mc2.

The quantity mc2 is often called the rest energy and is
given its own symbol, E0 � mc2. The expression for the
kinetic energy obtained by Einstein can be rearranged, put-
ting the rest energy on the other side of the equation with
the kinetic energy, KE � E0 � �mc2. The expression �mc2

is the total energy, the sum of the kinetic energy and the
rest energy. When an object is accelerated, the total energy
and the kinetic energy increase because the factor � in-
creases as the speed increases.

How do we interpret the rest energy?
The rest energy term was the most interesting feature of
Einstein’s computation of the kinetic energy. Since c is a
constant of nature, in multiplying the mass of an object by
c2 to obtain an energy value (mc2), we are just multiplying
the mass by a constant. What this seems to indicate is that
mass is equivalent to energy. If we increase the mass of an
object or system, we increase its energy—if we increase
the energy of a system, we increase its mass. This is the
essence of the E0 � mc2 relationship.

Mass-energy equivalence is illustrated in figure 20.16,
which shows a Bunsen burner heating a beaker of water.
Since heat flow is a flow of energy, we increase the inter-
nal energy of the water by heating it. We are also increasing
the mass of the water, since energy is mass. The amount the
mass increases in this example would be very small and
extremely difficult (if not impossible) to measure. If we add
1000 joules of heat energy, the increase in mass is just 1.1 �
10�14 kg, as shown in example box 20.3. Since a beaker of
water would normally contain a few tenths of a kilogram of
water, a change of 10�14 kg would be utterly negligible.

Because we are so used to thinking of mass and energy
as different, the idea that mass is equivalent to energy can
be hard to accept. The principle itself has been thoroughly
confirmed, because it correctly predicts the amount of en-
ergy released in nuclear reactions such as fusion or fission,
as described in chapter 19. It is sometimes stated that mass
is converted to energy in such reactions, but it would be
better to say that rest-mass energy has been transformed to
kinetic energy. In other words, mass cannot be converted
to energy because it already is energy—we are merely trans-
forming one type of energy into another.

Mass-energy equivalence, like the other ideas that we
have been describing, is just another result of applying
Einstein’s postulates carefully and consistently to mechan-
ics. The surprising results have led to fundamental revi-
sions in our understanding of the concepts of energy and
mass, as well as of space and time.

Further exploration of Einstein’s postulates showed that
different observers could not agree on acceleration values,
or even that momentum is conserved. A modification of
Newton’s second law of motion was required, which was
accomplished by changing the definition of momentum in

figure 20.16 A Bunsen burner adds mass to a flask of
water by increasing the internal energy of the water. Energy and
mass are equivalent.

example box 20.3

Sample Exercise: Adding Energy Adds Mass

A Bunsen burner adds 1000 J of heat energy to a beaker
of water. What is the increase in the mass of the water?

E � 1000 J E � �mc2

c � 3 � 108 m/s

�m � ?

� 1.11 � 10�14 kg

� 
1000 J

9 � 1016 m2/s2

� 
1000 J

(3 � 108 m/s)2

¢m  � 
E

c 
2
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the general form of the second law. Using the modified
form of the second law also changes the expression for
kinetic energy. One of the terms in the new expression
for kinetic energy does not depend on the speed of the
object, suggesting the concept of a rest energy associated
with the mass of the object. Mass-energy equivalence has
since been demonstrated dramatically in nuclear reactions.

20.5 General Relativity
Our discussion so far has been restricted to cases involving
inertial frames of reference, that is, reference frames moving
at constant velocity relative to one another. What happens if
our frame of reference is accelerating? Can we extend the
type of thinking used in special relativity to this situation?

Einstein addressed these questions shortly after his in-
troduction of the theory of special relativity, but it took
him some time to refine the ideas. He did not publish the
resulting general theory of relativity until 1915, about ten
years after his first paper on special relativity. Once again,
Einstein’s ideas led to radical adjustments in our view of
the universe.

What is the principle of equivalence?
We discussed accelerating reference frames earlier, when
we considered how things appear to someone inside an ac-
celerating elevator, at the beginning of this chapter and in
chapter 4. If the elevator is moving with constant velocity,
Einstein’s first postulate (the principle of relativity) tells us
that the laws of physics will behave exactly as they would
if the elevator were at rest. In other words, no experiment
that we can do inside the elevator could establish whether
or not we are moving with respect to the Earth.

If the elevator is accelerating, however, we expect dif-
ferences from what we would see if the elevator were at
rest or moving with constant velocity. In particular, as dis-
cussed in chapter 4, a person standing on a bathroom scale
while the elevator is accelerating upward will register a
greater weight than if the elevator were not accelerating
(fig. 20.17). From Newton’s second law, this greater appar-
ent weight results from the scale’s exerting a larger upward
force on your feet (the normal force) than your actual
weight. The net upward force makes you accelerate up-
ward along with the elevator.

This change in the scale reading could be used as an in-
dication that the elevator is accelerating. If the elevator is
accelerating upward, the reading will be higher than nor-
mal. If the elevator is accelerating downward, the reading
will be lower than normal. If the cable of the elevator is
cut and the elevator accelerates downward with an acceler-
ation g (free fall), the scale will read zero—apparent weight-
lessness. Until things come to a crashing halt at the bottom
of the shaft, you can float around inside the elevator much
like an astronaut in an orbiting space shuttle.

Other experiments will also lead to results that you
would not expect if the elevator were not accelerated. For
example, a dropped ball will approach the floor of the ele-
vator with an apparent acceleration that is different from
g � 9.8 m/s2. If the elevator is accelerating upward, the ap-
parent acceleration of the ball will be larger than g: it is
the sum of the magnitude of the acceleration of the ele-
vator a and the gravitational acceleration g. If the elevator
is accelerating downward, the apparent acceleration of the
ball will be less than g, as figure 20.18 shows. The period
of a swinging pendulum will also differ from the one you
would observe if the elevator were not accelerating.

These experiments all have one thing in common: they
can be interpreted in terms of an apparent acceleration of
gravity that differs from g � 9.8 m/s2. Since weight is
equal to mass times the acceleration of gravity (mg), the
changes in apparent weight can be attributed to a change in
the apparent value of the gravitational acceleration. We ex-
plain the changes in the acceleration of the ball or the pe-
riod of the pendulum in the same way. Although we can
detect the acceleration of the elevator, we cannot distin-
guish these effects from what would happen if the accel-
eration due to gravity were being increased or decreased
somehow.

figure 20.17 If the elevator is accelerating upward, the
scale reads a value N, which is larger than the person’s usual
weight W.

a

N

W
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Our inability to distinguish these accelerations underlies
Einstein’s basic postulate of general relativity, the princi-
ple of equivalence:

It is impossible to distinguish an acceleration of a frame of
reference from the effects of gravity.

From inside the elevator, you cannot tell whether the el-
evator is accelerating or whether the gravitational accelera-
tion g is increasing or decreasing. Since we do not expect
gravity to change, we would usually interpret the effects as
being due to an acceleration of our frame of reference.

Let’s move our elevator to outer space, where gravita-
tional effects will be much smaller than near the surface of
the Earth. If the elevator is not accelerating, we would be
weightless. If the elevator is accelerating upward, however,
any experiments performed in the elevator will behave as
though a gravitational acceleration is acting in the direc-
tion opposite the acceleration of the elevator.

If a ball is thrown horizontally in the elevator (fig.
20.19), its trajectory will be the same as a ball thrown on
the surface of the Earth. From the perspective of someone
inside the elevator, the upward acceleration of their frame
of reference is equivalent to the presence of a downward
gravitational acceleration of the same magnitude as the
acceleration of the elevator. (This is the principle of equiv-
alence at work.) The ball “falls” toward the floor of the ele-
vator, and we can predict its motion by the same methods
used in chapter 3 to describe projectile motion.

If the acceleration of the elevator were equal to 9.8 m/s2,
mechanical experiments done in the elevator and on the
surface of the Earth would have identical results. It has often
been proposed that a space station have a constant acceler-
ation to mimic the effects of gravity. A straight-line accel-
eration would send the space station out of orbit, so we
usually imagine the space station with a centripetal acceler-
ation associated with a constant rotational velocity. Since
the direction of a centripetal acceleration is toward the
center of rotation, that direction would be up (fig. 20.20).

Does a light beam bend in a strong
gravitational field?
The principle of equivalence also has implications for the
propagation of light. Imagine an experiment similar to
the one in figure 20.19 but using a beam of light instead of a
ball. If the elevator were not accelerating, the beam would
trace a horizontal line across the elevator. From the theory of
special relativity, we know that this is true whether or not the
elevator is moving with constant velocity relative to any other
inertial frame of reference.

If the elevator is accelerating upward, however, we get a
different result. If the acceleration is large enough, the path of
the light beam will be curved, as viewed from within the ele-
vator, like the ball’s path in figure 20.19. This bending can be
visualized by superimposing the positions of the accelerated
elevator on the straight-line light beam observed from outside of
the elevator, just as we did for the ball. As shown in figure 20.21,
the path traced by the beam relative to the elevator is curved.

By the principle of equivalence, however, we cannot dis-
tinguish the acceleration of our frame of reference from the

figure 20.18 A ball dropped in an elevator accelerating
downward approaches the floor with an apparent acceleration g’
that is less than g.

figure 20.19 A ball thrown horizontally in an accelerating
elevator in outer space (where the Earth’s gravitational pull is
negligible) falls toward the floor in the same way as a projectile
near the Earth’s surface.
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presence of a gravitational acceleration. We should therefore
expect the path of a light ray to be bent in passing through
a strong gravitational field. It takes a very large accelera-
tion of the frame of reference or a very large gravitational
acceleration to produce a noticeable bending because of the
extremely large velocity of light. The relatively puny field
of the Earth is not enough to produce much of an effect.

When light from a distant star passes near our sun,
however, the gravitational field of the sun should be large
enough to have a measurable effect. Einstein was able to
predict how much bending is produced by the gravitational
field of the sun—and how the true position of stars is dis-
torted when light from these stars passes near the sun. The
effect is small but measurable.

Unfortunately, it is difficult to observe stars from the
surface of the Earth during the daytime. Light from the sun
is scattered in the Earth’s atmosphere and completely washes
out the much more feeble light of the stars. Such observa-
tions are only feasible during a total eclipse of the sun,
when the light from the sun is blocked by the moon.
Einstein suggested that such measurements be attempted
during a total eclipse, and this has since been done almost
every time the opportunity has arisen. These measurements
have confirmed Einstein’s predictions.

What are the space and time effects
of general relativity?
Special relativity tells us that different observers moving
with respect to one another will disagree on measurements
of time. In the time-dilation effect, the time interval mea-

sured by observers who see the start and finish of some
process occurring at the same place in their frame (the
proper time) is shorter than the time interval measured by
observers moving with respect to that frame. The astronaut
in the twin paradox measures the proper time for events
occurring in her frame, which is shorter than the dilated
time measured by her stay-at-home twin. The astronaut’s
clock runs slower than her twin’s clock and the astronaut
measures a shorter time.

In general relativity we also find that an accelerated
clock runs more slowly than a nonaccelerated clock. By
the principle of equivalence, we also expect a clock in a
strong gravitational field to run more slowly than one in
a weaker gravitational field. This time effect predicted by
general relativity is often referred to as the gravitational
red shift. If the period (the time for one cycle) of a light
wave is increased, the frequency is decreased. A lowered
frequency shifts the light toward the red end of the visible
spectrum.

The general theory of relativity is largely about the na-
ture of gravity. Gravity affects a straight-line path as well
as time—it has an impact on how we measure both space
and time. To develop a self-consistent mathematical frame-
work for handling these effects, Einstein resorted to a non-
Euclidean or curved space-time geometry.

Briefly, in Euclidean, or ordinary geometry, two parallel
lines never meet, but in non-Euclidean geometry two paral-
lel lines can meet. An example is parallel lines drawn on the
surface of a sphere, such as the lines of longitude on maps.
The parallel lines drawn perpendicular to the equator meet
at the poles because the surface they are drawn on is a sphere

figure 20.20 The centripetal acceleration a c of a rotating,
wheel-like space station can produce an artificial gravitational
acceleration g’ for the astronauts.

figure 20.21 The path traced by a beam of light relative to
a rapidly accelerating elevator is curved because of the motion of
the elevator.
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(fig. 20.22). It is all a matter of how we define the rules of
geometry.

Einstein’s theory of special relativity showed that the
measurement of time depends on spatial measures, while
the measurement of length depends on time measurements.
Therefore, we can no longer regard space and time as in-
dependent of one another. To fully represent these ideas
using geometry, we must use four dimensions or coordi-
nates: three perpendicular spatial coordinates and a fourth
one representing time. To describe a motion or event, we
need to locate its path in this space-time continuum.

Although the space-time continuum is four-dimensional
and somewhat difficult to visualize, diagrams like fig-
ure 20.23 illustrate how space might be curved near a very
strong gravitational field. The diagram shows only two di-
mensions on a curved surface, but it does suggest how
things might be pulled drainlike into the center of the field.
Since light rays are bent by strong gravitational fields,
they, as well as particles having some mass, can be pulled
into the center of the field.

What is a black hole?
Figure 20.23 is a two-dimensional representation of a black
hole. Black holes are thought to be very massive collapsed
stars, which generate an extremely strong gravitational
field and, therefore, a strong curvature of space in their
vicinity. This field is so strong that light rays coming in at
certain angles are bent into the center and do not reemerge.
Light gets in but cannot get out. A black hole is a perfect
absorber of light and appears black.

Although black holes cannot be observed directly be-
cause they neither emit nor reflect light, their presence can
be inferred from the effects of their gravitational fields on
nearby stars and other matter. For example, if a binary star

consists of two stars, one visible and the other a black hole,
the motion of the visible star indicates the presence of its
partner. Astronomers have found several good candidates
for this type of black hole. Many other observations sug-
gest the presence of black holes.

Einstein’s theories of special and general relativity have
had an enormous impact on modern physics. The predicted
effects are well confirmed, from the energy released in nu-
clear reactions to astronomical effects such as the bending
of starlight. Our fundamental concepts of space and time
have been modified and intermixed by these ideas. Although
removed from everyday experience, these ideas certainly
excite the imagination.

While Einstein’s special theory of relativity is primarily
concerned with inertial frames of reference, his general
theory of relativity treats accelerated frames of reference.
The additional basic postulate of general relativity is the
principle of equivalence, which states that we cannot
distinguish the acceleration of a frame of reference from
the effects of a gravitational field. General relativity pre-
dicts the bending of light by a strong gravitational field,
the slowing of clocks in accelerated reference frames or
gravitational fields, and the curvature of space-time pro-
duced by gravitational effects. The concept of black holes
emerged from these ideas. The study of general relativity
and the nature of gravity remains an active area of
research.

figure 20.22 Parallel lines of longitude drawn on the globe
meet at the poles of the sphere.

figure 20.23 The gravitational effects of a black hole can
be represented by a strong curvature of space near the black
hole.
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The velocity of light apparently does not add to the velocity of
the source or frame of reference in the way that ordinary veloci-
ties do in classical mechanics. This idea led Einstein to a radical
new way of looking at the nature of space and time. We have
described the basic postulates of Einstein’s special and general the-
ories of relativity in this chapter and explored some of the conse-
quences of accepting these postulates.

1 Relative motion in classical physics. If an object
is moving relative to a frame of reference (such as a stream) that is
itself moving, classical mechanics predicts that the velocities of
these motions will add as vectors. Newton’s laws are valid in any
inertial frame of reference, which are frames that are not acceler-
ated relative to other inertial frames.

4 Newton’s laws and mass-energy equivalence.
Extending these ideas to dynamics, Einstein found that Newton’s
second law of motion could be preserved only if we redefined
momentum and used the general form of Newton’s second law
written in terms of momentum. A computation of kinetic energy
then led to the recognition that mass is equivalent to energy.

2 The speed of light and Einstein’s postulates.
The failure of experiments to detect any motion of the ether (the
supposed medium for light waves) relative to the Earth started a
debate that ultimately led to Einstein’s two basic postulates of
special relativity: First, the laws of physics have the same form in
any inertial frame of reference (the principle of relativity), and
second, the speed of light is the same in any inertial frame of ref-
erence, regardless of the motion of the source.

3 Time dilation and length contraction. Applica-
tion of Einstein’s postulates to the measurement of time and
length shows that observers in different frames of reference will
not agree on these measurements. A person observing a moving
clock will see a longer (or dilated) time than the time measured
by an observer for whom the clock is at rest. An observer mea-
suring a moving length will observe a shorter (contracted) length
than the rest length.

vbe

vwe

vbw

vbe  = vbw  + vwe

t t0

L0

t = γ t0 L = 

v

1
–γ L0

5 General relativity. Special relativity is primarily con-
cerned with inertial frames of reference. Accelerated frames of
reference and gravity are treated in general relativity. The basic
new postulate of general relativity is the principle of equivalence:
an acceleration of a frame of reference cannot be distinguished
from the presence of a gravitational field. This additional postu-
late leads to new effects involving the bending of light and the
modification of time by gravitational fields. It also requires the use
of non-Euclidean, curved-space geometries to describe the space-
time continuum.

∆E ⇒ ∆m

E0 = mc2
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* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. If a boat is moving downstream, will the velocity of the
boat relative to the water be greater than the velocity of
the boat relative to the stream bank? Explain.

Q2. If a boat is moving upstream, will the velocity of the boat
relative to the bank of the stream be greater than the ve-
locity of the boat relative to the water? Explain.

Q3. If an airplane is flying in the same direction as the wind,
will the velocity of the plane relative to the ground be
greater than, less than, or equal to the velocity of the
plane relative to the air? Explain.

Q4. Is it possible that a person in a rowboat will not be able
to move upstream? Explain.

Q5. If a boat is moving across a stream, will the speed of the
boat relative to the bank equal the numerical sum of speed
of the boat relative to the water and the speed of the water
relative to the bank? Explain.

Q6. If an airplane is flying in a crosswind blowing at an angle
of 90° to the direction the airplane is pointed, will the
speed of the plane relative to the ground be less than the
speed of the plane relative to the air?

Q7. Does the addition of the velocities of things like airplanes
and wind speed require use of the special theory of rela-
tivity? Explain.

*Q8. Would it be appropriate, from the perspective of special
relativity, to add the velocity of light relative to the Earth
to the velocity of the Earth relative to the sun to obtain
the velocity of light relative to the sun? Explain.

Q9. Was the ether (the assumed medium for light waves) pre-
sumed to exist in a vacuum? Explain.

*Q10. What was the Michelson-Morley experiment designed to
detect? Why did they expect that the speed of light might
vary at different times of the year? Explain.

Q11. Did the Michelson-Morley experiment succeed in measur-
ing the velocity of the ether relative to the Earth? Explain.

Q12. Do either of Einstein’s postulates contradict the classical
assumptions of how relative velocities add? Explain.

Q13. Which of Einstein’s postulates deals most directly with
the failure to detect motion of the Earth relative to the
ether? Explain.

Q14. Is it possible that two different observers will not agree
on the time taken for a light beam to bounce off a mirror
and return to its source? Explain.

Q15. A chess game taking place on Earth is seen by observer
A, who is passing by in a spaceship. Observer B is stand-
ing on Earth looking over the shoulder of the players.
Which of these two observers measures the longer time for
the interval between moves in the game? Explain.

Q16. A radioactive isotope with a certain half-life is moving
with a high speed in a particle accelerator. Does an ob-
server at rest in the lab measure the proper time for the
half-life of this isotope? Explain.

Q17. A spaceship is moving with a large velocity past observer
A, who is standing on Earth. Observer B is aboard the
spaceship. Which of these observers measures the longer
length for the length of the spaceship? Explain.

*Q18. Is it theoretically possible for a father to be younger (to
have aged less) than his son or daughter? Explain.

*Q19. Is it possible for an astronaut to leave on a space trip and
to return a year before her twin sister was born? Explain.

Q20. Is Newton’s second law, written in the form Fnet � ma,
valid for objects traveling at velocities near the velocity
of light? Explain.

Q21. Could we use the relativistic momentum expression
p � �mv, for objects moving at small velocities? Explain.

Q22. If we compress a spring and lock it into its newly com-
pressed configuration, have we changed the mass of the
spring? Explain.

Q23. Is the increase in kinetic energy of an object equal to the
work done to accelerate the object for an object moving at
a very high speed? Explain.

*Q24. Is it completely correct to say that mass is converted into
energy in a nuclear reaction such as a fission reaction?
Explain.

Q25. If the velocity of an object is reduced to zero, does all of
its energy disappear? Explain.

Frame of reference, 435
Special theory of relativity, 435
General theory of relativity, 435
Principle of relativity, 438

Light clock, 442
Proper time, 443
Rest length, 444
Rest energy, 448

Principle of equivalence, 450
Gravitational red shift, 451
Space-time continuum, 452
Black hole, 452
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Q26. If an elevator is accelerating downward, will your apparent
weight (as measured by a bathroom scale) be greater than
your weight measured when the elevator is not accelerat-
ing? Explain.

Q27. When you are inside a closed space vehicle, is it possible
for you to tell whether the vehicle is accelerating or whether
you are simply near some massive body such as the sun or
the Earth? Explain.

Q28. Would your experiences inside a freely falling elevator be
similar in any way to those inside a spaceship moving with

constant velocity when it is a long distance away from any
planet or star? Explain.

Q29. Does light traveling in empty space always travel in a
straight line? Explain.

Q30. Would a clock located on the surface of the sun measure
time at the same rate as a clock located a long distance
away from any planet or star? Explain.

Q31. Is a black hole just a hole in space that contains no mass?
Explain.

E1. A boat that can travel with a velocity of 12 m/s in still
water is moving at maximum speed against the current of a
stream that flows with a velocity of 5 m/s relative to the
Earth. What is the velocity of the boat relative to the bank
of the stream?

E2. A plane that can travel at 460 MPH in still air is flying
with a tailwind of 40 MPH. How long does it take for the
plane to travel a distance of 750 miles (relative to the Earth)?

E3. A swimmer swims upstream with a velocity of 4 m/s rela-
tive to the water. The velocity of the current is 3.5 m/s
(downstream). What is the velocity of the swimmer relative
to the bank?

E4. A ball is thrown with a velocity of 60 MPH down the aisle
(toward the tail of the plane) of a jetliner traveling with a
velocity of 300 MPH relative to the Earth. What is the
velocity of the ball relative to the Earth?

E5. An astronaut aims a flashlight toward the tail of his space-
ship, which is traveling with a velocity of 0.5c relative to
the Earth. What is the velocity of the light beam relative
to the Earth?

E6. The factor appears in many expres-
sions derived from the theory of special relativity. Show
that � � 1.25 when v � 0.6c.

E7. An astronaut cooks a three-minute egg in his spaceship
whizzing past Earth at a speed of 0.6c. How long has the
egg cooked as measured by an observer on Earth? (See
table 20.1.)

E8. An observer on Earth notes that an astronaut on a spaceship
puts in a 4-hour shift at the controls of the spaceship. How
long is this shift as measured by the astronaut himself,
if the spaceship is moving with a velocity of 0.8c relative
to the Earth? (See table 20.1. Be careful—which observer
measures the proper time?)

E9. A spaceship that is 50 m long as measured by its occupants
is traveling at a speed of 0.1c relative to the Earth. How
long is the spaceship as measured by mission control in
Houston? (See table 20.1.)

E10. The crew of a spaceship traveling with a velocity of 0.6c
relative to the Earth measures the distance between two
cities on earth (in a direction parallel to their motion) as
600 km. What is the distance between these two cities
as measured by people on Earth? (See table 20.1—which
observer measures the rest length?)

E11. A spaceship is traveling with a velocity of 0.8c relative to
the Earth. What is the momentum of the spaceship if its
mass is 5000 kg? (p � �mv and c � 3 � 108 m/s. See
table 20.1.)

E12. Suppose that an object has a mass-energy of 200 joules
when it is at rest.
a. What is its total energy when it is moving with a veloc-

ity of 0.9c? (E � �E0. See table 20.1.)
b. What is the kinetic energy of the particle at this speed?

(KE � E � E0)

� � 1/11 � (v2/c2)

SP1. A boat capable of moving with a velocity of 6 m/s relative
to the water is pointed straight across a stream flowing with
a current velocity of 3 m/s. The width of the stream is 48 m.
a. Draw a vector diagram to show how the velocity of the

stream adds to the velocity of the boat relative to the water
to obtain the velocity of the boat relative to the Earth.

b. Use the Pythagorean theorem to find the magnitude of
the velocity of the boat relative to the Earth.

c. How long does it take for the boat to cross the stream?
(Hint: We need to consider only the component of the
velocity of the boat that is straight across the stream if
we use the stream width for the distance.)

Synthesis Problems 455
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d. How far downstream from its starting point does it hit
the opposite bank?

e. How far does the boat actually travel in reaching the
opposite bank?

SP2. Suppose that a beam of �-mesons (or pions) is moving with
a velocity of 0.9c with respect to the laboratory. When the
pions are at rest, they decay with a half-life of 1.77 � 10�8 s.
a. Calculate the factor � for the velocity of the pions rela-

tive to the laboratory.
b. What is the half-life of the moving pions as seen by an

observer in the laboratory?
c. How far do the pions travel, as measured in the labora-

tory, before half have decayed?
d. As measured in a frame of reference that moves with

the pions, how far do the pions travel before half have
decayed?

SP3. Suppose that an astronaut travels to a distant star and re-
turns to Earth. Except for brief intervals of time when he is
accelerating or decelerating, his spaceship travels at the in-
credible speed of v � 0.995c relative to the Earth. The star
is 40 light-years away. (A light-year is the distance light
travels in 1 year.)
a. Show that the factor � for this velocity is approximately

equal to 10.
b. How long does the trip to the star and back take as seen

by an observer on Earth?
c. How long does the trip take as measured by the astronaut?
d. What is the distance traveled as measured by the

astronaut?
e. If the astronaut left a twin brother at home on Earth

while he made this trip, how much younger is the astro-
naut than his twin when he returns?

SP4. Suppose that a beaker of water contains 1 kg (1000 g) of
water. Heat is added to the water to raise its temperature
from 0°C to 100°C.
a. How much heat energy in joules must be added to the

water to raise its temperature? (cw � 1 cal/g·C° and
1 cal � 4.186 J.)

b. By how much does the mass of the water increase in
this process? (E0 � mc2)

c. Compare this mass increase to the original mass of the
water. Would this increase in mass be measurable?

d. If it were somehow possible to convert the original mass
of the water into kinetic energy, how many joules of
kinetic energy could be produced?

SP5. Using the diagram shown in figure 20.13, derive the time-
dilation formula. The steps are:
a. From the symmetry of the diagram, we assume that the

total time measured by the Earth observer is twice
the time required to reach the mirror.

b. Using the right triangle shown in the diagram and the
Pythagorean theorem, we can write

c. Grouping terms containing t on one side of the equation
and taking the square root of both sides, we can solve
this expression for the time t measured by the Earth
observer.

d. Since the quantity 2d/c is the time measured by the
spaceship pilot t0, this expression reduces to the time-
dilation formula introduced in section 20.3.

c2 a t

2
b2

� d2 � v2 a t

2
b2

.

HE1. If you have access to a small smooth-flowing stream, you
can test the velocity-addition ideas in the first section of
this chapter. A small battery-powered or wind-up boat is
also necessary. These can be found in toy or variety stores.
a. Test your boat first in the bathtub or a pond to estimate

how fast it can move in still water.
b. Find a place in the stream where the current is slow and

smooth (no eddies). Drop a twig in the stream, and with
the help of a watch, estimate the velocity of the current.

c. Place your boat, with its motor running, in the stream
with the boat pointed downstream. Estimate its velocity

relative to the bank. Does the result agree with what you
would predict based on the addition of relative velocities?

d. Will the boat move upstream? (If the current is too
strong, it may be difficult to keep it headed in this
direction.)

e. Try pointing the boat across stream in a location where
the current is as uniform as possible. What do you have
to do to get the boat to cross the stream?

456 Chapter 20 Relativity
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Phenomena

21
chapter overview
This chapter delves into a few broad areas of research in physics that
have either excited the popular imagination or are likely to have a
significant impact on developing technologies. The ideas discussed include
elementary particles, the origins of the universe, semiconductor electronics,
and superconductors and other exotic materials. The descriptions are
necessarily brief—the objective is to emphasize the fundamental ideas
and issues.

chapter outline
1 Quarks and other elementary particles. What are the

basic building blocks of the universe? How do current theories
organize and classify the elementary particles?

2 Cosmology and the beginning of time. How was the universe formed,
and how is it changing? How do our studies of elementary particles
shed light on the origins of the universe?

3 Semiconductors and microelectronics. What are transistors, and how
do they work? How have semiconductor devices revolutionized the
electronics industry?

4 Superconductors and other new materials. What are superconductors?
What other new materials are emerging from the study of solid-state
physics?
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One of the most intriguing aspects of science is that
we can never be sure just where it will lead us. Like a
good mystery, there are clues and indications, but the
answers are elusive. Unlike a mystery novel, there is no
final resolution. Successes in science increase our under-
standing of nature and often lead to advances in tech-
nology, but they always raise new questions.

Physics does make the news from time to time and
will continue to do so. Questions are raised about spend-
ing several billion dollars to build a new particle accelera-
tor or space station, and ordinary citizens are sometimes
called on to make judgments about such issues. The pro-
posed construction of the superconducting supercollider
(a particle accelerator) was a political issue for several
years until the project was cancelled by Congress in 1993
(fig. 21.1).

Our everyday lives are impacted in more ways than
we realize by advances in physics. Most of us use personal
computers and electronic devices like video recorders
that have microcomputers built into them. Computers
have brought about enormous changes in the way that
we live, work, and play. The invention of the transistor,
which made the modern computer feasible, came about
through advances in solid-state physics and our under-
standing of semiconductors.

Modern physics is active on many fronts. Some re-
search areas are driven by the need to make improve-
ments in technology, while others are motivated simply
by a desire to better understand the universe in which
we live. Although we cannot touch on all of these areas,

we will describe a few that have received public atten-
tion and are likely to continue to do so. Ideas that seem
well removed from common experience today may some-
day become part of everyday phenomena.

458 Chapter 21 Beyond Everyday Phenomena

figure 21.1 Graphics for a Time magazine article about the
superconducting supercollider (SSC) that was to have been built
in Texas. Did its expected benefits to science justify the cost?
Copyright 1990 The Time Inc. Magazine. Reprinted by permission.

21.1 Quarks and Other
Elementary Particles
One of the most enduring quests in science is the search for
the building blocks of nature, the particles or entities from
which everything else is constructed. Until the twentieth
century, these building blocks were thought to be atoms, a
view strengthened by the advances in chemistry during the
nineteenth century (see chapter 18).

The discovery of the electron by J. J. Thomson in 1897
revealed the first subatomic particle apparently present in
all atoms. This advance was followed in 1911 by the dis-
covery of the nucleus of the atom and by the later recogni-
tion that nuclei are made up of protons and neutrons. 
We are now aware that protons and neutrons also have a 
substructure—they are composed of quarks (fig. 21.2).

Where will this all end? What are quarks and why do we
believe that they exist? Will we someday discover that
quarks also have a substructure? This final question cannot
be answered with certainty, but recent advances in our the-
oretical understanding of high-energy physics have brought
order to what seemed like a bewildering array of new parti-
cles. We will consider just a few features of this new
theory, often called the standard model.

How are new particles discovered?
The electron, proton, and neutron, the basic constituents of
the atom, were just the first in a long parade of subatomic
particles discovered in the twentieth century. The positron,
for example, was discovered in 1932 shortly after its exis-
tence was suggested on theoretical grounds by the British
physicist Paul Dirac (1902–1984). This discovery was fol-
lowed by the discovery of the muon and pion. The list grew
rapidly during the 1950s and 1960s as work in high-energy
physics intensified.

How are these discoveries made? Most of them involve
scattering experiments, similar to those performed by Ruther-
ford and his associates. Targets are bombarded with fast-
moving particles, and particle detectors are used to study
what emerges from these collisions. The emerging particles
leave tracks in the photographic emulsions, cloud chambers,
and bubble chambers that were used in early experiments and
in other more sophisticated detectors in use today. In cloud
chambers and bubble chambers, a rapidly moving charged
particle nucleates water droplets or bubbles in a supersatu-
rated vapor or superheated fluid (fig. 21.3).

Analyses of these tracks, along with other measurements,
allow us to deduce the mass, kinetic energy, and charge of
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the particles created in the collisions. The path of a posi-
tively charged particle, for example, bends one way in a
magnetic field, and the path of a negatively charged parti-
cle bends in the opposite direction. The degree of curva-
ture of the path is related to the mass of the particle. The
mass is particularly important—it is one of the major iden-
tifying characteristics of the particles.

The source of high-energy particles in these scattering
experiments is usually a particle accelerator of some kind.
Rutherford used alpha particles from radioactive sub-
stances, but the alpha particles have limited energies. Other
early workers used the high-energy particles in cosmic rays
that stream in from outer space. Particle accelerators, how-
ever, are capable of producing both high-energy and high-
density beams of particles, which make interesting colli-
sions more likely.

A modern particle accelerator uses electric and mag-
netic fields to accelerate and shape the beam. The beam it-
self is contained in a long evacuated tube that can either be

straight (as in a linear accelerator) or bent into a large ring.
Two beams of particles can be made to collide head-on at
the point where the reactions are studied, providing a larger
collision energy than from collisions with a stationary tar-
get. Beam energies are typically measured in electron volts
(eV). Since mass is equivalent to energy, producing particles
with masses much larger than the proton or neutron requires
very high collision energies, which has stimulated building
ever-bigger particle accelerators. Modern accelerators are
capable of reaching collision energies up to 1000 GeV or
more (1 GeV is 1 billion eV). The largest modern accelera-
tors now operating include the Stanford Linear Accelerator
Center (SLAC) in California, the CERN electron-positron
collider in Switzerland, and the Fermilab proton-antiproton
collider near Chicago.

Denizens of the particle zoo
As more and more particles were discovered, scientists
tried to organize and classify them, guided by theoretical
considerations. Although the models were often incom-
plete, they were sometimes successful in predicting the ex-
istence of new particles later discovered experimentally.
The original classification schemes were based primarily
on the masses of the particles.

The particles were grouped into three primary groups:
leptons, mesons, and baryons. The leptons are the lightest
particles and include electrons, positrons, and the neutrinos
that are involved in beta decay. Mesons are intermediate in
mass and include the pion (originally called the p-meson)
and the kaon. Baryons are the heaviest—they include the
neutron and proton as well as many heavier particles. A
partial list of these particles is found in table 21.1.

Each particle has an antiparticle, which has the same
mass as the particle, but opposite values of other properties
such as charge. The positron, for example, is the antiparti-
cle of the electron and has a positive charge instead of a
negative charge. When a particle runs into its antiparticle,
the two can annihilate each other, producing high-energy

21.1 Quarks and Other Elementary Particles 459

figure 21.2 Atoms, once thought to be the basic building blocks of all matter, are now known to
consist of electrons, protons, and neutrons. Neutrons and protons also have a substructure made of quarks.

figure 21.3 Particle tracks in a bubble chamber provide
information on the new particles produced in collisions or decays.
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photons or other particles. Antiparticles are not shown in
table 21.1.

The spin is listed in table 21.1 because it distinguishes
mesons from leptons and baryons. All of the mesons have
zero spin, but all of the leptons and baryons have a spin of
one-half. Spin is a quantum property related to the angular
momentum of the particle. If the particle is charged, the
spin also generates a magnetic dipole, which affects how
the particle interacts with other particles.

What are quarks?
Quantum electrodynamics and quantum chromodynamics,
based on both quantum mechanics and relativity, are the
theories that describe the interactions between these parti-
cles. Advances in these theories in the early 1970s suggested
a more fundamental organization scheme for all of these
particles, and this is where quarks come into the picture.
Mesons and baryons (which together are now called had-
rons) are all made up of quarks, new particles suggested by
the theory. Each meson consists of two quarks—a quark
and an antiquark—and baryons are groups of three quarks.

As the theories developed, it became evident that six
types of quark were necessary (not counting the antiparti-
cles) to account for all of the baryons and mesons. These
have been dubbed the up, down, charmed, strange, top, and
bottom quarks. Different combinations of these six quarks
(and their antiparticles) account for all of the observed par-
ticles in the meson and baryon groups.

The proton consists of three quarks: two up quarks each
of charge and one down quark of charge A
neutron is made of two down quarks and one up quark, for
a total charge of zero (fig. 21.4). Scattering experiments in
which extremely high-energy electrons are collided with
protons provide strong evidence for this substructure.
These experiments indicate the presence of hard scattering
centers within the proton, with the appropriate charges for
two up quarks and one down quark. The analysis is similar
to Rutherford’s discovery of the nucleus (chapter 18).

There are also similarities among the groups of leptons
and quarks. We now group these particles into three fami-
lies with similar properties. Each family consists of two
leptons and two quarks, and one of the leptons in each
family is a neutrino. Table 21.2 shows the particles that be-
long to each family. In this scheme, there are just twelve
elementary particles (three families of four particles each),
twenty-four counting the antiparticles.

At the time of this writing, the existence of these twelve
particles has been confirmed experimentally, except for the
tau neutrino. Neutrinos are extremely difficult to detect,
and tau neutrinos are expected to be much rarer than the
electron or muon neutrinos. The top quark was discovered
most recently (1994) by physicists working at Fermilab
near Chicago. Experiments are continuing to better define
its mass. The successes of the overall model give us strong
confidence in the existence of the tau neutrino as well.

Quarks are never present individually but always in
combination with other quarks. For this reason, they can-
not be directly observed as tracks in a particle detector.

� 

1
3 e.� 

2
3 e,
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figure 21.4 A proton consists of two up quarks and one
down quark. A neutron consists of two down quarks and one up
quark.

Mass
(MeV) Charge Spin Lifetime

leptons

electron neutrino 0? 0 1⁄ 2

muon neutrino 0? 0 1⁄ 2

electron 0.511 �e 1⁄ 2

muon 105.7 �e 1⁄ 2 2.2 � 10�6 s

mesons

pion 139.6 �e 0 2.6 � 10�8 s

neutral pion 135.0 0 0 8.3 � 10�15 s

kaon 493.7 �e 0 1.2 � 10�8 s

neutral kaon 497.7 0 0 9 � 10�11 s

eta 548.8 0 0 7 � 10�19 s

baryons

proton 938.3 �e 1⁄ 2

neutron 939.6 0 1⁄ 2 920 s

lambda 1115.6 0 1⁄ 2 2.5 � 10�10 s

sigma 1189.4 +e 1⁄ 2 8.0 � 10�11 s

neutral sigma 1192.5 0 1⁄ 2 5.8 � 10�20 s

xi 1321.3 �e 1⁄ 2 1.7 � 10�10 s

neutral xi 1314.9 0 1⁄ 2 3.0 � 10�10 s

omega 1672 �e 1⁄ 2 1.3 � 10�10 s

table 21.1

Basic Characteristics of Leptons, Mesons, and Baryons
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Their existence can be inferred, however, by scattering ex-
periments and by observing reactions that are predicted by
the quark model. High particle energies and beam densities
are required to enhance the probability of observing such
reactions. The cancelled superconducting supercollider
project would have provided better conditions for observ-
ing these reactions, but refinements in other accelerators
have continued to produce advances.

What are the fundamental forces?
What holds all of these particles together? The primary
force responsible for binding the quarks in neutrons, pro-
tons, and other baryons (as well as mesons) is the strong
nuclear interaction. This force also binds the neutrons
and protons inside the nucleus of an atom and must be
stronger than the electrostatic repulsion of the positively
charged protons to keep the nucleus from flying apart. The
strong force has a very short range, however, and decreases
rapidly at distances greater than nuclear dimensions.

In addition to the strong nuclear interaction, physicists
had recognized three other fundamental forces—the electro-
magnetic force, the gravitational force, and the weak nuclear
force. The weak nuclear force is involved in the inter-
actions of leptons: the process of beta decay, which involves
electrons and neutrinos, is an example. One of the goals of

theoretical physics has been to unify all of these forces with a
single theory. Since we usually describe these forces in terms
of their fields, as we have done with electric and magnetic
fields, such a theory is referred to as a unified field theory.

One of the major successes of the standard model of
particle physics is that it has unified the weak nuclear force
with the electromagnetic force. These two forces can now
be viewed as different manifestations of the same funda-
mental force, the electroweak force. James Clerk Maxwell’s
theory of electromagnetism earlier had unified two seem-
ingly independent forces, the electric force and the mag-
netic force, into the electromagnetic force. Now, that force
has been joined with the weak nuclear force.

Perhaps we should say that there are only three funda-
mental forces, the strong nuclear interaction, the electro-
weak force, and the gravitational force. This statement may
also be misleading, since substantial progress has been
made toward unifying the strong nuclear interaction with
the electroweak interaction in extensions of the standard
model (fig. 21.5). These theories are now referred to as
grand unified theories, or GUTs for short.

One force, the gravitational force, has thus far resisted
incorporation into a unified field theory. Gravity’s theoretical
basis is found in Einstein’s theory of general relativity, but the
mathematics of general relativity seem to be incompatible in
some ways with quantum mechanics and the standard model.
Fame and honor await those who succeed in unifying the
gravitational force with the other fundamental forces in a
theory of everything. String theory, a multidimensional
model that incorporates gravity, is a possible candidate, but
it has not yet been possible to test it experimentally.

Scattering experiments performed at ever-higher energies
have uncovered an array of new subatomic particles. The
standard model has succeeded in organizing these parti-
cles into three families, each with two leptons and two
quarks (and their antiparticles). This model predicted the
existence of new particles, including the top quark that
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figure 21.5 Fundamental forces of nature once viewed as independent forces have been unified into fewer fundamental forces by
advances in theoretical understanding. Complete unification of all fundamental forces may lie ahead.

First family Second family Third family

electron muon tau particle

electron neutrino muon neutrino tau neutrino

up quark charmed quark top quark

down quark strange quark bottom quark

table 21.2

The Three Families of Elementary Particles

Electric force

Gravitational force

Magnetic force

Weak nuclear force

Strong nuclear force

Electromagnetic force

“Electroweak” force

Theory of everything

Grand unified theory
(GUT)

gri12117_ch21_457-474.qxd  31/7/08  10:21  Page 461



Confirming pages

was recently detected experimentally. Theoreticians con-
tinue to strive for a unified theory that will encompass all
of the fundamental forces.

21.2 Cosmology and the
Beginning of Time
Section 21.1 gave us a glimpse of advances in the physics
of the very small—substructures of substructures of sub-
structures. The quark is a building block of protons and
neutrons, which form the nucleus. Atoms consist of the nu-
cleus and the surrounding electrons. Atoms, in turn, make
up molecules and the ordinary matter of our world.

What happens if we focus on the very large? Our world,
the Earth, is a part of the solar system (see chapter 5). The
sun is one of a seemingly infinite number of stars grouped
into galaxies, which themselves seem to come in clusters.
What is the structure of the universe, and how is it chang-
ing? The answers to these questions may come from our
knowledge of atoms, nuclei, and quarks.

Is the universe expanding?
Humans have long been fascinated by the night sky and by
questions about the nature of the universe. The invention
of the telescope around 1600 provided a new instrument
for viewing the planets and stars. Using a crude telescope,
Galileo discovered the moons of Jupiter and the phases of
Venus, and helped to turn the tide in favor of the Copernican
heliocentric model of the solar system (see chapter 5).

As telescopes improved, observers of the heavens became
aware of many more objects out there than those visible to
the unaided eye. Not all of these objects appeared to be
pointlike stars. Some had a fuzzy appearance, and as the
resolution of telescopes increased, it became obvious that
they were not stars at all but collections of stars, what we
now call a galaxy. Many galaxies have a spiral structure
like the one shown in figure 21.6.

The galaxy that we see most readily with unaided eyes
is our own, the Milky Way. On a clear night, the Milky
Way is visible in what appears to be a continuous cloud of
stars making a band across the sky (fig. 21.7). We are actu-
ally looking across the disk into our own spiral galaxy. The
brighter stars lie on the same side of the spiral as our sun
and are much closer to us. The sun is one of billions of
stars that make up the Milky Way galaxy.

We have also come to think that the universe is expanding—
the other galaxies are receding from us. This realization
emerged from the spectrographic studies by the American
astronomer Edwin Hubble (1889–1953) in the 1920s. Hub-
ble was trying to estimate the distance to various stars and
galaxies by measuring their relative brightness. To do so,
he needed some assurance that he was looking at the same
type of star. It was already known that different types of
stars had characteristic colors or spectra—red giants are

different from white dwarfs, and so on. Measuring the in-
tensity of the distribution of wavelengths emitted from dif-
ferent stars gave Hubble a basis for comparing the size and
temperature of the stars he was viewing.

When Hubble applied these techniques to galaxies,
however, he noticed a startling feature. Specific absorp-
tion lines in the spectra of stars in these other galaxies
were all shifted in wavelength and frequency towards the
red portion of the spectrum. (Absorption lines make
good reference points in the otherwise continuous spec-
trum of stars. They are produced by the absorption of
light at specific wavelengths by gases in the outer por-
tions of the star.)

462 Chapter 21 Beyond Everyday Phenomena

figure 21.6 A spiral galaxy viewed against a foreground of
nearer stars. Our own Milky Way galaxy has a similar shape.

figure 21.7 The Milky Way appears as a continuous
cloud of stars that can be seen as a band across the sky on a
clear night.
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The only reasonable explanation for this shift was that
these stars must be moving away from us, producing a
Doppler shift in the frequency of the light. The Doppler
shift is the same phenomenon discussed in chapter 15 for
sound waves. The frequency of a car horn is shifted to a
lower value when it is moving away from us. For light,
a lower frequency is a shift toward the red end of the visi-
ble spectrum. The cosmological red shift is now thought of
as a relativistic effect of the expansion of space itself.

The farther away a galaxy is, the more swiftly it seems to
recede from us, which is consistent with the hypothesis that
the entire universe is expanding. There is even some recent
evidence suggesting that the rate of expansion is accelerat-
ing. From our knowledge of the curvature of space-time
introduced in Einstein’s theory of general relativity, we
know that we do not need to be at the center of the universe
to see things in this way. An often-used analogy is of spots
on an expanding balloon. Viewed from any point on the sur-
face of the balloon, all the other spots appear to recede as
the balloon expands. Points farther away from the given
point recede at a greater rate than closer points (fig. 21.8).

What was the Big Bang?
If the universe is expanding, at some point in time long
ago the entire mass of the universe must have been much
more compressed than it is now. If we could run a motion
picture of the expanding universe in reverse, the universe
should revert to a very small volume. The beginning of the
expansion (and perhaps the beginning of time) was an 

explosion from which the universe has been spreading ever
since. This initial rapid expansion or explosion is called
the Big Bang.

As we run the film backward and confine a large quan-
tity of matter in a very small space, matter no longer con-
sists of individual atoms and molecules. The electrons get
stripped from the atoms, and what is left is a dense plasma
of electrons, protons, and neutrons. At even higher densities,
the protons and electrons combine to form neutrons. This
process may occur in the gravitational collapse of stars that
have used up their fusion fuel, resulting in very small and
dense neutron stars. If such a star has sufficient mass, it
might collapse still further to form a black hole (see sec-
tion 20.5). At even higher densities, the matter would exist
as a sea of quarks, in which individual quarks would not
belong to specific neutrons or protons.

In the earliest stages of the Big Bang (just a microsecond
or so after the beginning), all of the matter of the universe
was an extremely hot sea of quarks. As the expan-
sion proceeded, the matter behaved like a gas, cooling off and
condensing. The quarks condensed into mesons and baryons,
including neutrons and protons. At approximately 3 minutes
after the beginning, the protons and neutrons probably began to
fuse into nuclei, primarily isotopes of hydrogen and helium.

At a much later point (roughly half a million years), the
universe should have cooled down enough for electrons to
begin to orbit about the nuclei to form atoms. Gravitational
attraction produced clumps of matter that became galaxies,
and matter within these galaxies condensed into individual
stars. The synthesis of larger nuclei by fusion reactions
began to take place within the stars.

The standard model of high-energy physics, discussed
in section 21.1, has been able to predict how some of these
steps could have occurred. The model has had success in
explaining certain astronomical observations, including the
ratio of helium to hydrogen observed in stars and galaxies.
Another confirming observation has been the detection of
the uniform background of microwave radiation, predicted
as a residual effect of the Big Bang itself. Many physicists
consider the existence and general uniformity of the  back-
ground radiation to be some of the strongest evidence
confirming the Big Bang scenario.

Our success in describing the world of the very small
(nuclei and quarks) plays a large role in our understanding
of the universe. Much of this success has been achieved in
only the last thirty years or so, but more remains to be done.
Advances in the theory of fundamental forces are quickly
applied to models of the universe to test their implications.

There are still many unanswered questions. Since we still
have not achieved a completely unified field theory, we can-
not model the very earliest stages of the Big Bang. Therefore,
we cannot describe with assurance the initial conditions of
the universe. There may be many universes, some of which
have evolved differently from our own. These questions hold
a tremendous fascination for physicists, astronomers, philoso-
phers, and the general public.
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figure 21.8 As the balloon is inflated, spots on the surface
recede from one another. Spots that are initially farther away
from some chosen point recede more rapidly from that point
than do nearer spots.
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Our own solar system is a small part of the Milky Way
galaxy, just one of many observable galaxies. The discov-
ery that distant galaxies seem to be receding from us led
to the Big Bang theory of the expanding universe. Models
of the early phases of this expansion are based on our
knowledge of the elementary particles and forces discussed
in section 21.1. These models have succeeded in explaining
and predicting many astronomical observations.

21.3 Semiconductors and
Microelectronics
Most of us have used a hand-held calculator. In our homes,
we have microwave ovens, video recorders, and perhaps
home computers. We probably also own other electronic
devices, including television sets, radios, digital watches,
stereo systems, and electronic ignition systems in automo-
biles. All of these devices use solid-state electronics, and
many of them incorporate microcomputers.

What do we mean by solid-state electronics? What led
to the current revolution in technology? Although these elec-
tronic devices are part of our everyday experience, how
they work is invisible to us. Despite their enormous impor-
tance to our economy, most people have little understand-
ing of how they function.

What are semiconductors?
In chapter 12, we discussed the distinction between electrical
conductors and insulators. Good electrical conductors, mostly
metals, permit a relatively free flow of electrons or other
charge carriers through the material. Good insulators do not.
There is an enormous difference in the values of electrical
conductivity between these two types of materials. Conduc-
tivity is a property of the material that, together with its
length and width, determines its electrical resistance—a high
conductivity yields a low resistance.

Table 12.1 listed some conductors and insulators, as well
as a few members of a third category called semiconductors.
Semiconductors have a much higher conductivity than good
insulators but a considerably lower conductivity than good
conductors. What causes these differences in electri-
cal conduction? Can we predict which materials will be good
conductors, insulators, or semiconductors?

If you examine the periodic table in the inside back cover
of this book, you will see that the metals all lie on the left
side of the table or in the transition regions. These elements
have just one, two, or sometimes three electrons outside of a
closed shell of electron states (see chapter 18). These outer
electrons are responsible for the chemical properties of a
particular element. Less tightly bound to the nucleus of the
atom than the other electrons, they are relatively free to
migrate within the material as conduction electrons.

On the other hand, elements that make good insulators
lie on the right side of the periodic table. These elements
are lacking one, two, or three electrons needed to complete
a shell. They readily accept electrons from other elements
when they combine to form chemical compounds. When
they bond together in their pure state to form solids or liq-
uids, there are no loosely bound electrons to contribute to
electrical conduction.

The elements that we commonly list as semiconductors
(germanium and silicon) are found in column IVA of the
periodic table. These elements have four outer electrons
beyond a closed shell. When these elements bond together
in a solid, electrons are shared with neighboring atoms,
as in the two-dimensional depiction in figure 21.9. (The
actual crystal structure is three-dimensional, of course,
which is harder to show.) These shared electrons are more
closely tied to their corresponding nuclei than in a metal, but
they are freer to migrate through the substance than in a
good insulator. The conducting properties of these materials
are thus intermediate between metals and good insulators.

Although germanium and silicon are semiconductors,
they do not conduct well in their pure form. Semiconduc-
tors’ importance in electronics results from our ability to
modify their conductivity by doping them with small
amounts of impurity.

Suppose, for example, that we add a small amount of
phosphorus or arsenic to silicon. These elements lie in col-
umn VA of the periodic table and have five outer electrons
(fig. 21.10). Four of these five electrons will participate in
the bonding of the impurity with neighboring silicon
atoms. The fifth electron, however, is not needed in these
bonds and will be free to migrate through the material. The
doping therefore introduces conduction electrons into the
material, making it a better conductor than pure silicon.
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figure 21.9 A two-dimensional representation of the
sharing of the four outer electrons of silicon with neighboring
atoms in solid silicon.
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Doping with phosphorus, arsenic, or antimony produces
an n-type semiconductor, because the charge carriers are
negatively charged electrons. We can also produce 
p-type doping, for which the charge carriers are positive,
by adding impurity atoms of elements from column IIIA
in the periodic table, most commonly boron, gallium, or
indium. Since atoms of these elements have just three
outer electrons, they leave a hole in one of the bonds
between the impurity atom and the neighboring silicon
atoms (fig. 21.10).

A hole is the absence of an electron—but these holes can
also migrate through the material. A moving hole behaves
as a positive charge carrier because it leaves an excess posi-
tive charge (associated with the charge on the nucleus of the
silicon atoms) wherever it goes. Electrons from neighboring
silicon atoms move in to fill the hole, leaving an excess pos-
itive charge somewhere else in the material.

How does a semiconductor diode work?
Besides improving the conducting properties of semiconduc-
tors by amounts that can be carefully controlled, doping has
other advantages. The boundaries, or junctions, between 
p- and n-type materials have properties that have proved
extremely useful in electronics. These junctions are essential
to the operation of diodes, transistors, and related devices.

A diode is a device that allows electric current to flow in
one direction but not in another: it is a one-way valve for elec-
tric current. The diagrams in figure 21.11 illustrate why a
diode behaves as it does. The essential feature of a semicon-
ductor diode is the junction between the n-type and p-type
materials. When the positive terminal of a battery is connected
to the p-type material and the negative terminal to the n-type

side of the diode (fig. 21.11a), electrons are introduced from
the battery into the n-type side. These electrons will flow to
the junction between the n-type and p-type materials. Here,
the electrons attract holes in the p-type material to the junc-
tion, and these holes are eliminated when electrons move
across the junction to fill them. The positively charged holes
move through the p-type material from the positive side of the
battery, and a continuous current will flow. This manner of
connecting the battery is called forward bias of the diode.

A different situation exists if we reverse the connections
of the battery to the diode (fig. 21.11b). Holes are now
pulled away from the junction by the negative charges
from the negative terminal of the battery (now connected
to the p-type side of the diode). Likewise, electrons in the
n-type material are attracted toward the positive terminal
of the battery. Since the holes and electrons are both pulled
away from the junction, no recombination of holes and
electrons occurs there. In other words, there is no flow of
current across the junction in reverse bias.

Diodes have many applications in electric circuits. One
of the easiest to understand is rectification, the process of
converting an alternating current to a direct current. Since
a diode lets current flow in only one direction, the simplest
rectifier would be a single diode. Combinations of diodes,
however, produce a steadier flow of current.

How does a transistor work?
Transistors are probably the most important semiconductor
devices. For many years, the most commonly used type was a
bipolar transistor made up of two pieces of semiconductor
material heavily doped in the same manner and separated by a
thin piece of oppositely doped material. Depending on which
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figure 21.10 Doping silicon with phosphorus or arsenic provides an extra electron, making an n-type semiconductor. Doping with
boron or gallium leaves holes and produces p-type material.
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type of doping is used in the two outer pieces of the sandwich,
either p-n-p transistors or n-p-n transistors can be made. The
diagram in figure 21.12 shows how a p-n-p transistor works.

The transistor is a combination of two diodes that share
the middle portion, the base of the transistor. When con-
nected in the usual manner, holes are introduced to the
emitter of the p-n-p transistor from the positive terminal of
a battery. The junction between the emitter and the base
behaves as a forward-biased diode, and the holes flow into
the thin base layer. Because the base layer is very thin and
only lightly doped compared to the emitter and collector,
these holes can flow across the base and into the collector
as long as not too many recombine with electrons in the
base layer. The number of free electrons in the base layer
is a critical property in determining how many holes get
through. This number can be controlled by the current al-
lowed to flow between the base and the emitter.

A small change in the current from the base to the emitter
can produce a large change in the current flowing between
the collector and the emitter, which is why a transistor is so
effective as an amplifier. Small variations in the signal
applied to the base can produce large variations in the current
that flows through the collector. A weak signal picked up by a
radio antenna, for example, can be turned into a larger signal
by using transistor amplifiers. This is done routinely in
radios, television sets, and stereo amplifiers.

Another important application of transistors is as voltage-
controlled switches. One value of the voltage applied across
the base and emitter can cause a large flow of current
through the collector, while another value produces a very
small flow. The transistor is then either on or off depend-
ing on the value of voltage applied to the base. This feature
of transistor operation is most useful in computers, which
we will discuss in section 21.4.

A second type of transistor, called a field-effect transis-
tor (FET for short), is often used in computer circuitry. In
a field-effect transistor, the current flowing through a thin

channel of n-type material is controlled by the voltage ap-
plied across two pieces of p-type material on either side of
the channel. The strength of the resulting electric field de-
termines how much current will flow through the channel.

The transistor was invented in 1947 and 1948 by scientists
at Bell Laboratories in New Jersey, including William Shock-
ley, who invented the bipolar junction transistor, and John
Bardeen and Walter H. Brattain, who first demonstrated tran-
sistor action in a simpler but less effective point-contact tran-
sistor. These inventions resulted from the growth in our
understanding of the physics of semiconductors in the previ-
ous half century. By 1960, transistors were used routinely in
many electronic and switching applications.

Before then, electronic amplification and switching were
accomplished with vacuum tubes, which required much
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figure 21.11 A forward bias of a diode lets electrons and holes recombine at the junction, and an
electric current flows across the junction. Reverse bias produces no recombination and no current.

figure 21.12 The rate of flow of holes from the emitter to
the collector of a p-n-p transistor depends on how much current
is allowed to flow to the n-type base of the transistor.
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higher voltages and generated much more heat than semi-
conductor diodes and transistors. Vacuum tubes were also
considerably larger than transistors, so they took up more
space, resulting in bulky instruments. During the 1950s
and 1960s, vacuum tubes were replaced by solid-state
electronics in all kinds of electronic devices.

What are integrated circuits?
Another major revolution in technology, the development
and rapid growth in use of miniaturized integrated circuits,
took place during the 1960s. An integrated circuit con-
sists of several transistors, diodes, resistors, and electrical
connections all built into a single tiny chip of semiconduc-
tor material, usually silicon. This advance allowed the pro-
duction of circuits much smaller than circuits made from
individual transistors or vacuum tubes. A computer that
would fill a large room using vacuum tubes could now be
reduced to the size of a hand-held calculator.

Producing integrated circuits begins with the growth of a
large cylindrical crystal of doped silicon. This crystal is sliced
into wafers, which are generally several centimeters in diam-
eter but just a few millimeters thick (fig. 21.13). The wafers
are polished and run through a long process in which insulat-
ing oxides are layered on the wafer, and circuit patterns are
overlaid on the wafer by photographic methods. Some
regions are masked, and the unmasked portions are doped
opposite to the underlying silicon crystal to produce diodes
and transistors. Metal strips are overlaid to provide conduct-
ing connections between elements.

Several identical circuits are usually imprinted on a single
silicon wafer. Near the end of the process, the wafer is cut
into individual chips, each containing a miniature circuit. A
single wafer may yield a hundred or more chips (fig. 21.14).
The final steps involve making electrical connections to the
chip, packaging the chip in a sealed plastic enclosure (fig
21.15), and testing the resulting circuit. Producing integrated
circuits (or ICs) has become a major industry.

Competition to produce ever smaller and faster circuitry
for computers and other applications continues to push the
technology forward. Physics and chemistry are central to
the invention and improvement of new processing tech-
niques. For some applications, silicon is being replaced by
semiconducting compounds like gallium arsenide. Research
in the condensed-matter physics of semiconducting ele-
ments and compounds has become one of the largest areas
of activity in modern physics. The revolution in electronics
technology is still proceeding.
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figure 21.13 The starting point in producing integrated
circuits is a polished wafer of single-crystal silicon. The wafer shown
here has been processed to produce tiny circuits on its surface.

figure 21.14 A magnified view of the circuit on a single
integrated-circuit chip sitting on a dime. Millions of circuit
elements may be contained on such a chip, and many chips can
be produced from a single silicon wafer.

figure 21.15 Rows of packaged microchips arranged on
the circuit board of a computer.
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Integrated circuits have had an enormous impact on our
everyday lives. They are the heart of all modern computers
but are also incorporated into thousands of other devices.
They are found in our cell phones, cars, digital cameras,
toys, television sets, and most home appliances. Computers
themselves have been a tremendous boon to physicists and
other scientists since they are used in data analysis, theoret-
ical computations, and the building of complex models like
those used in predicting weather and the effects of global
warming. The invention of the transistor in the 1940s and
the later development of integrated circuits have made it all
possible. 

Semiconductors are materials with conducting properties
intermediate between good conductors and good insulators.
We can affect their conductivity by doping them with impu-
rity elements that donate extra electrons or leave electron
gaps (holes) in the bonds between atoms, permitting us to
build diodes and transistors. A diode allows the flow of cur-
rent in only one direction. Transistors can produce large vari-
ations in current from small changes in current or voltage.
Integrated circuits combine many diodes, transistors, and
other circuit elements on a tiny semiconductor chip.

21.4 Superconductors and
Other New Materials
A major scientific news item during the late 1980s was the
discovery of so-called high-temperature superconductors. A
series of news stories claimed that Japan was ahead in the
superconductor race and speculated about exotic appli-
cations of superconductors. The news flap was almost as
great as the one surrounding the supposed discovery of
cold fusion a year or so later.

What was all the excitement about? What is superconduc-
tivity? What does temperature have to do with it? What other
exotic materials are in the works? These questions stem from
a field called materials science, a combination of metallurgy,
chemistry, and condensed-matter physics. Materials research
is another physics-related discipline that has already had a
major impact on technology and the way we live.

What is superconductivity?
Superconductivity is a phenomenon in which the resis-
tance to the flow of an electric current completely disap-
pears. It was originally discovered in 1911 by a Dutch
physicist, Heike Kamerlingh Onnes. Onnes found that if he
cooled mercury to a temperature of about 4 K (4 degrees
above absolute zero), the electrical resistance of his sample
completely disappeared. An electric current, once started,
would flow indefinitely with no continuing source of power.
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The electrical resistance of most materials decreases
with decreasing temperature, but in Onnes’s mercury sam-
ple, the resistance completely disappeared at the tempera-
ture of 4.2 K, as illustrated in figure 21.16. The resistance
drops abruptly to zero at the critical temperature Tc and
is zero for any temperature below the critical temperature.

Further research showed that many metals became su-
perconducting if cooled to a low-enough temperature. The
metal niobium has one of the highest critical temperatures
of a pure substance at 9.2 K. Some alloys have even
higher critical temperatures. In 1973, an alloy of niobium
and the semiconductor germanium was discovered to have
a critical temperature of 23 K, still a very low tempera-
ture: 23 K is equal to �250°C (or �418°F).

A theoretical explanation for the phenomenon of super-
conductivity, developed in 1957, applies quantum mechanics
to the behavior of electrons in a low-temperature metal. This
explanation is closely related to a theory that explains the
behavior of superfluids, a phenomenon also observed at
very low temperatures. Liquid helium becomes a superfluid
below a critical temperature where it loses its viscosity 
(or resistance to the flow of the fluid), just as a superconduc-
tor loses its electrical resistance. Both superconductivity and
superfluidity are macroscopic quantum phenomena: quan-
tum mechanics explains their characteristics, but they are
observable on the size scale of ordinary objects rather than at
microscopic sizes.

What are high-temperature
superconductors?
In 1986, a new type of superconducting compound—a ceramic
material, a metal oxide containing various other elements—
was discovered. The original ceramic superconductor had a

figure 21.16 The electric resistance of mercury decreases
as the temperature is decreased. It drops abruptly to zero,
however, at the critical temperature of 4.2 K.
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critical temperature of 28 K, not much higher than the metal
alloys. The discovery provoked a flurry of experimental
activity, however, in which other combinations of elements
were tried. By 1987, ceramic superconductors had been
developed with critical temperatures first of 57 K and then
of 90 K. Finally, in 1988 there were reports of materials
with critical temperatures of over 100 K, and perhaps as
high as 125 K.

These new ceramic superconductors are high-temperature
superconductors, although these critical temperatures are
still not what we would normally regard as high—100 K
is �173°C, for example, still rather cold by most stan-
dards. The development of materials with critical tempera-
tures around 90 K was a breakthrough, though, because
these temperatures can be reached using liquid nitrogen.
Liquid nitrogen is readily available for industrial and sci-
entific uses. It boils at 77 K (�196°C), so a bath of liquid
nitrogen can cool samples to that temperature.

Ceramic superconductors are made of various combina-
tions of materials, and most have copper oxides as one of
the components. The most commonly available supercon-
ducting ceramic material is a combination of yttrium (Y),
barium (Ba), copper (Cu), and oxygen (O) in the propor-
tions Y1Ba2Cu3O7. (The number of oxygen atoms in the
structure varies depending on how the material is pre-
pared.) This material can be prepared in undergraduate
laboratories and has a critical temperature of approxi-
mately 90 K.

One striking property of a superconductor (called the
Meissner effect) is that it will completely exclude magnetic
field lines produced by an external magnet or electric cur-
rent. A magnet brought near a superconducting material
will be repelled. This property is commonly demonstrated
by levitating a small magnet above a disk of superconduct-
ing material. (The materials for this demonstration have
been widely distributed to science teachers.) A small amount
of liquid nitrogen at the bottom of a Styrofoam cup is suffi-
cient to cool the superconducting disk (fig. 21.17).

The theory that successfully explained superconductiv-
ity in pure materials was not adequate for explaining the
superconductivity of these new ceramic materials. A com-
mon feature of the structure of many of these materials is
that they contain layers of copper or copper oxide sand-
wiched between the atoms of the other elements (fig.
21.18). The superconduction is suspected to occur through
these layers, and theoreticians have made good progress in
understanding what is happening. Continued theoretical
and experimental progress could point the way to design-
ing materials with even higher critical temperatures.

High-temperature superconductors have many potential
applications, especially in the use of electromagnets. A
strong electromagnet requires large currents flowing in
tightly wound coils of wire. With ordinary conductors,
these large currents generate a great deal of heat and limit
the amount of current that can be established (and the
resulting strength of the electromagnet). Magnets already

exist that use superconducting coils, but they must be main-
tained at temperatures below the critical temperature of the
superconducting material. If we had materials that were
superconducting near room temperature, such electromag-
nets would become much more feasible for general use.

figure 21.17 A small magnet levitates above a
superconducting disk cooled with liquid nitrogen. This simple test
establishes the presence of superconductivity.

figure 21.18 The atomic structure of many
superconducting ceramics has layers of copper atoms sandwiched
between other elements, such as oxygen, yttrium, and barium.
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The superconducting supercollider would have used
superconducting magnets to control the particle beams.
Such magnets are now being used in other accelerators.
Superconducting magnets are also used in magnetic reso-
nance imaging (MRI) devices, an important diagnostic
tool in medicine (fig. 21.19). Other possible applications
include the magnetic levitation of trains and other vehi-
cles to reduce friction and attain higher speeds. Super-
conducting cables could be used in power transmission to
reduce losses from electric resistance.

Most of these applications need superconducting materi-
als that can be readily shaped into wires and cables, with
even higher critical temperatures than those available now.
Many of the ceramic superconductors are quite brittle and
not suitable for cables or magnetic coils. Success in invent-
ing more usable superconducting materials may await a
new generation of scientists, engineers, and dreamers.

Other exotic materials
The discovery of the new superconductors was sparked by
research on ceramic metal oxides already known to have
interesting electrical properties. A compound of barium,
titanium, and oxygen, barium titanate (BaTiO3), for exam-
ple, had been used for many years to convert changes in
pressure into electrical signals, or vice versa. This property
allows a crystal of barium titanate to be used as a tiny mi-
crophone or speaker. Other metal oxides are important in
integrated-circuit processing.

The search for new materials stems from our growing
knowledge of how atoms interact in the solid or liquid
states. We have become more able to design materials to
meet specific needs. These needs may be special optical or
electronic properties for use in electronics and communi-
cations or perhaps high-strength but lightweight materials
for aircraft. Different elements can be combined in an infi-
nite number of ways to make new materials, and the re-
sults cannot always be predicted.

Liquid crystals are one of the new materials that have
found extensive application. Liquid crystals have a crystallike
organization in one direction but are disordered and free to
flow along other directions in the material. They have some
properties of both liquids and solids. Electric fields can affect
how much light flows through the material. This property has
led to their use in display screens of hand-held calculators and
in very thin, flat television screens that do not require a bulky
cathode-ray tube.

Liquid crystals are often made up of long organic (carbon-
based) molecules that line up in layers, as in figure 21.20.
These layers slide along one another, so that the material can
flow in the directions parallel to the layers. The regular spac-
ing perpendicular to these layers causes the crystal-like prop-
erties. The author has conducted research on another class of
substances known as plastic crystals whose molecules are
globular in shape and partially free to rotate in the solid crys-
tal. Plastic crystals have many interesting properties, but so far,
they have not led to the extensive applications (and financial
rewards) that have grown out of research on liquid crystals.
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figure 21.19 A patient is about to enter the chamber
housing the superconducting magnets of a magnetic resonance
imaging (MRI) instrument.

figure 21.20 The long molecules in some liquid crystals
line up in layers, allowing the liquid to flow along these layers
but not in the perpendicular direction.

It is hard to know just where this research will lead. We
can be sure of two things: some new materials will have
unexpected and exciting properties, and some of these ma-
terials will lead to new products that you will encounter in
your everyday activities.

Everyday phenomenon box 21.1 discusses another mod-
ern development resulting from research in physics, this
one in the subfield of optics. We are now exploring the use
of holograms for data storage in computers, which requires
the development of special optical materials.

Superconductors are materials that lose all resistance to
flow of an electric current below some critical temperature.
For pure metals, these critical temperatures are only a few
degrees above absolute zero, but more recently,
superconducting compounds have been discovered with crit-
ical temperatures of 100 K or above. These high-temperature
superconductors may someday find extensive applications in
power transmission or in superconducting magnets. Materi-
als science has invented many other exotic materials in
recent years, including the liquid crystals that are used in
display panels for calculators and laptop computers. Our
increasing knowledge of how atoms interact in the solid
and liquid states lets us design materials for specific applica-
tions, but their precise properties still hold surprises.
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Holograms

The Situation. We all have seen holograms on cereal boxes,
toys, credit cards, and perhaps on simple jewelry, such as the
pendants in the photograph. Although the credit cards and
other surfaces are clearly two-dimensional, the images that
we see in a hologram are three-dimensional. You can move
your head from side to side and view these images from
different perspectives just as you can with a real three-
dimensional object. How are these three-dimensional images
produced?

Holography seems like science fiction to many people—
what can actually be achieved with holograms? What
are holograms, and how do we go about making them? 
Could holograms be used to develop three-dimensional tele-
vision or movies?

The Analysis. Although the idea was conceived earlier, the
first good holograms were produced in the early 1960s fol-
lowing the invention of the laser. A hologram is an interfer-
ence pattern produced by combining light waves reflected
from some object with another wave coming directly from the
laser. Lasers are highly coherent light sources—they produce
much longer wave trains than ordinary light sources, which
produce short, uncorrelated pulses of light. The high coher-
ence of the laser is needed to produce interference patterns
of light scattered from objects of ordinary size.

A common arrangement for making a hologram is shown
in the drawing below. Light coming from the laser is split by
a partially silvered mirror or beam splitter into two beams,
one called the object beam and the other the reference beam.
The object beam is scattered or reflected by the object back
toward the photographic plate. The reference beam is directed
to the photographic plate at some angle to the object beam,
and these two beams of light then combine to produce an
interference pattern on the photographic plate.

everyday phenomenon
box 21.1

A hologram on a pendant viewed from two different angles. How is
this three-dimensional image produced?
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Light from the laser is split into two beams, one of which is reflected from the object and interferes with the second (reference) beam to form
the hologram.

(continued)
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When the photographic plate is developed, the recording
of the interference pattern becomes the hologram. If light
similar to the original laser light passes through the holo-
gram, the interference pattern modifies the light so that
one of the light waves transmitted is identical to the origi-
nal light wave reflected from the object. This identical light
wave is what we view when we look at a hologram. This
light wave is diverging from an image of the original object—
we are observing a three-dimensional virtual image. (See
chapter 17 for a discussion of image formation.) 

The most familiar holograms are reflection holograms
designed to be viewed in light reflected from the hologram
rather than light transmitted through the hologram. Reflec-
tion holograms have the additional advantage that we do
not need a laser or other monochromatic light source to view
them. The reflection process selects out only certain wave-
lengths of light. In the reflection holograms on cereal boxes 
or credit cards, the interference pattern representing the holo-
gram is embossed onto a thin reflecting film. Holograms are 

used on credit cards because it is extremely difficult to pro-
duce counterfeit copies.

Originally, the process of making holograms required
that the object be held completely still, with no vibrations,
to produce an accurate interference pattern. More powerful
lasers and better films now allow shorter exposure times—
objects do not have to be kept quite so motionless. It is also
possible to generate the interference patterns from mathe-
matical computations on a computer, so that we can design
computer-generated holograms of nonexistent objects. A sin-
gle hologram contains an enormous amount of information,
however, so moving holograms that can be transmitted by
television signals are not yet feasible.

The invention of the laser in 1960 has spurred tremendous
growth in the field of optics. Holography is just one of the
applications that this amazing light source has made possible.
Holography is now used in many technical applications as
well as in art, special displays, and novelty items.

summary

In this chapter, we have gone beyond everyday phenomena to
touch on some of the more exciting discoveries in the continually
advancing areas of research in physics. The ideas explored in-
cluded quarks and other elementary particles, cosmology and the
Big Bang, integrated circuits, digital computers and neural-network
computers, and superconductors and other “designer” materials.

1 Quarks and other elementary particles. The stan-
dard model of high-energy physics can now describe all of
the known particles as combinations of twenty-four elementary
particles—six leptons, six quarks, and their antiparticles. Progress
has been made in bringing the fundamental forces of nature into
a single unified field theory. 3 Semiconductors and microelectronics. Our un-

derstanding of semiconductors and how their conductivity can be
modified by doping with impurity atoms led to the invention of
the transistor in the late 1940s. Since then, integrated circuits
have been developed by combining hundreds of transistors and
other elements on tiny silicon chips. A tremendous industry has
grown from this ability to miniaturize electronic and computer
circuitry.

Quarks

Proton

du

u

2 Cosmology and the beginning of time. Astronom-
ical observations have shown that our sun is just one star in a
large galaxy of stars and that there are many other galaxies, all
receding from one another in an expanding universe. Knowledge
of quarks is necessary to model the earliest moments of the universe
following the Big Bang, which started the current expansion.

8065
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4 Superconductors and other new materials. Super-
conductors are materials that lose all of their electrical resistance
below a certain critical temperature. Recently, ceramic supercon-
ductors have been discovered with critical temperatures around 100
K, much higher than those previously known, but still well below
room temperature. Research in the physics of solids and liquids has
produced many other useful materials such as the liquid crystals
that are used in calculator displays and similar applications.

Standard model, 458
Lepton, 459
Meson, 459
Baryon, 459
Quark, 460
Hadron, 460
Strong nuclear interaction, 461

Weak nuclear force, 461
Unified field theory, 461
Electroweak force, 461
Grand unified theories, 461
Galaxy, 462
Big Bang, 463
Conductivity, 464

Diode, 465
Transistor, 465
Integrated circuit, 467
Superconductivity, 468
Critical temperature, 468
Superfluid, 468

key terms

* � more open-ended questions, requiring lengthier responses, suitable
for group discussion
Q � sample responses are available in appendix D
Q � sample responses are available on the website

Q1. Are leptons generally heavier than protons or neutrons?
Explain.

Q2. Do we now consider protons to be elementary particles
that do not have any underlying structure? Explain.

Q3. Are quarks constituents of electrons? Explain.

Q4. Are baryons and mesons made up of the same number of
quarks? Explain.

Q5. Why are high energies required to produce particles with
larger masses than protons or neutrons? Explain.

Q6. Which fundamental force of nature is the most difficult to
incorporate into a completely unified field theory? Explain.

*Q7. Why do physicists propose spending large amounts of
money to build new particle accelerators? How can we
justify these large expenditures? Explain.

*Q8. How do we know that the universe is expanding? Explain.

Q9. Is our own sun part of a galaxy? Explain.

Q10. Is the Milky Way a cloud of interstellar gases? Explain.

Q11. What force is responsible for the formation of atoms from
individual nuclei and electrons? What force is responsi-
ble for the condensation of individual atoms into stars?
Explain.

Q12. Does the term Big Bang refer to explosions of individual
stars? Explain.

*Q13. Is it necessary to know anything about very small entities

scale phenomena such as the beginning of the universe?
Explain.

Q14. Is the electrical resistance of a semiconductor such as sil-
icon increased when we dope it with impurity atoms of
arsenic? Explain.

Q15. Does doping of silicon with gallium make the resulting
semiconductor an n-type or p-type semiconductor? Explain.

Q16. Does the direction in which the battery is connected to a
diode affect the amount of electric current that will flow
through the diode? Explain.

Q17. Can a diode be made from material that is doped with just
one type of impurity atom? Explain.

*Q18. What property of transistors makes them useful for ampli-
fying an electrical signal? Explain.

Q19. In making ever-smaller electronic instruments, do inte-
grated circuits have an advantage over the use of separate
transistors and diodes? Explain.

Q20. Does a superconductor have zero resistance only above a
certain critical temperature? Explain.

Q21. With the high-temperature superconductors currently avail-
able, can we build superconducting magnets that will
operate in a superconducting mode at room temperature?
Explain.

Q22. Are superfluids the same as superconductors? Explain.

Q23. Are liquid crystals fluids or solids? Explain.

Q24. Does the production of a hologram involve the interfer-
ence of light waves? Explain.

Q25. Can we make holograms using an ordinary light source
rather than a laser? Explain.

questions
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474 Chapter 21 Beyond Everyday Phenomena

E1. The average distance from the sun to the Earth is approxi-
mately 1.5 � 108 km. How many seconds are required for
light to travel from the sun to the Earth? (c � 3 � 108 m/s,
1 km � 1000 m)

exercises

SP1. The nearest star to our sun is about 4 light-years away—a
light-year is the distance that light travels in 1 year.
a. How many seconds are there in a year?
b. Since light travels at the rate of 3 � 108 m/s, how many

meters are there in 1 light-year?

c. How far is it to the nearest star in meters?
d. How long would it take to travel to the nearest star if

we were able to travel at a speed one-tenth the speed of
light?

synthesis problems

HE1. On a clear night (preferably away from city lights), go out-
side and study the night sky.
a. Can you see the Milky Way? (It will usually appear as

a faint cloud of stars making an irregular band across
the sky.) Make a sketch of its orientation.

b. What are the brightest objects in the sky (other than the
moon)? Are some of these objects planets? Some plan-
ets will produce a steadier-appearing light than stars
and are quite bright.

c. Can you pick out the Big Dipper (a part of the constella-
tion Ursa Major) and other constellations? Make a sketch
of the more prominent groupings of stars that you observe.

HE2. Find a hologram on a credit card or obtain one from your
instructor and examine it closely.
a. As you move your head from side to side, can you see

different features of the object? Is the image that you
see clearly three-dimensional?

b. Move your head up and down as you observe the holo-
gram. Do the colors change? What sequence of colors do
you observe? Is there any three-dimensional character to
the hologram in the vertical (up-and-down) direction?

home experiments and observations
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In chapter 1, we described mathematics as part of the
language of physics. It is a compact way of expressing
relationships between physical quantities that makes
manipulations of these relationships much easier than if
they were expressed in words and sentences. People
who are conversant in mathematics are very comfort-
able in interpreting and using such relationships.

Many people are not comfortable using simple math-
ematics, and therefore mathematics is used sparingly in
this textbook. Most of what is used is basic algebra, to
which most college students have been introduced in
high school. Often that introduction fails to produce a
firm understanding of the principles underlying alge-
braic operations, though, leaving students with little con-
fidence in their use. This appendix presents the basic
concepts underlying simple algebraic manipulations and
provides illustrations of their application.

Basic Concepts
Three simple, but fundamental concepts form the basis
for most algebraic manipulations. These concepts are
the following:

■ Concept 1: The letters used in algebra represent
numbers. Any operation performed with numbers (ad-
dition, subtraction, multiplication, division, and so on)
can also be performed with these symbols.

In mathematics courses, the letters x and y are often
used to represent unknown numbers, and other letters
are used to represent constants or known numbers. In
physics, specific letters are used to represent specific
quantities: t for time, m for mass, d for distance, s for
speed, and so on. They all represent numerical quanti-
ties, but some may be known and others may be ini-
tially unknown. The relationship s � d/t, for example,
tells us that we can find the numerical value of speed by
dividing a numerical value for distance by a numerical

value of time. This relationship holds for any possible
values of the distance and time.

■ Concept 2: If the same operation is performed on
both sides of an equation, the equality expressed by
that equation does not change.

This principle is the basis for all algebraic manipula-
tions performed to express a relationship in different
forms. For example, if we multiply both sides of the
equation s � d/t by the quantity t, the equality still
holds. This operation yields

since t/t equals 1. Performing this operation expresses the
original equation in a new form: d � st tells us that the dis-
tance is equal to the speed multiplied by time. We can
multiply both sides of an equation by the same quantity,
divide both sides by the same quantity, add or subtract
the same quantity from both sides, and the equation is
still valid. We can also square both sides of the equation
or perform various other operations, but the operations
just listed are those most commonly used.

■ Concept 3: When we solve an algebraic equation,
we are merely rearranging the equation as just de-
scribed so that the quantity we wish to know is ex-
pressed, by itself, on one side of the equation and
everything else is on the other side of the equation.

In the paragraph illustrating concept 2, we solved the
equation s � d/t for the quantity d, thus expressing the
distance in terms of the other two quantities, speed and
time. If we wanted to express the time of travel in terms
of the speed and the distance, we could divide both
sides of the equation d � st by the quantity s:

d
s
 � 

st
s

 � t as
s
b � t

st � d  
t

t
 � d

Using Simple Algebra

475

appendix A

gri12117_appA_475-477.qxd  31/7/08  10:27  Page 475



Confirming pages

or, t � d/s, the distance divided by the speed. We see that
the original equation s � d/t can be expressed in two other
forms, d � st and t � d/s, that restate the original equality
in forms suitable for computing a specific quantity when
the other two quantities are known, an extremely useful
thing to be able to do.

Since the letters represent numbers (concept 1), we can
always check the validity of the operations we perform by
inventing numbers for the quantities and checking to see
that the equalities still hold in the new form. For example,
if in the original equation, d � 6 cm and t � 2 s, then

If we put the same numbers in the final equation, t � d/s,
we have

or 2 s � 2 s, which is obviously an equality.
These concepts are straightforward, and their applica-

tion is not difficult once the basic ideas are grasped. A lit-
tle practice, obtained by following the additional examples
given below and performing the exercises at the end of this
appendix, should help to build confidence in their use. For
most people who have trouble with mathematics, lack of
confidence is the fundamental problem. Often, they have
never fully accepted the idea that letters can represent
numbers, and the manipulations and rules of algebra there-
fore seem arbitrary and mysterious.

Other Examples
1. Solve the equation a � b � c for the quantity c.

Solution: We seek an expression in which c is by itself on
one side of the equation and the other two quantities are
on the other side. This can be accomplished by subtracting
the quantity b from both sides of the equation, since doing
so will leave c by itself on the right side:

a � b � b � c � b � c.

Thus we see that c � a � b. (It does not matter which side
of an equality is stated first—the equality is the same in
either case.) By subtracting b from the right side of the orig-
inal equation, c now stands by itself, so we have achieved
the desired result.

2. Solve the equation v � v0 � at for the quantity t.

Solution: This is best done in two steps. The first step is to
subtract the quantity v0 from both sides of the equation
to isolate the product at:

v � v0 � v0 � at � v0 � at

at � v � v0.

t � 
d
s
 � 

6 cm

3 cm/s
 � 2 s

s � 
d

t
 � 

6 cm

2 s
 � 3 cm/s.

Then we divide both sides of this equation by a to get t by
itself:

If you can understand why each of these operations was
performed (what was the motivation or objective?), you
are well on your way to following the algebra used in this
textbook

3. Solve the equation b � c � d/t for the quantity t.

Solution: Again, we first subtract the quantity c from both
sides of the equation to isolate the term containing t:

The quantity t is in the denominator, however, so we mul-
tiply both sides of the equation by t:

Next, we divide both sides of the equation by (b � c) to
obtain t by itself on the left side of the equation:

Although this is a more complex example, each of these
steps has a specific objective. The first step isolates the
quantity d/t, the second step removes t from the denomina-
tor so that we can more readily solve for t, and the final
step leaves t by itself. These objectives must be recognized
to gain confidence in performing such operations yourself.
Even people who are familiar with algebra often forget just
what they are trying to accomplish, or they get careless
in making sure that they are doing the same thing to both
sides of an equation.

Exercises
(Answers to odd-numbered exercises are found in appen-
dix D.)

1. Solve the equation F � ma for the quantity a.

2. Solve the equation PV � nRT for the quantity P.

3. Solve the equation b � c � d for the quantity d.

4. Solve the equation h � g � f for the quantity g.

5. Solve the equation a � bc � d for the quantity d.

6. Solve the equation in exercise 5 for the quantity b.

 t � 
d

b � c
.

 
(b � c) t

b � c
 � 

d

b � c

(b � c) t � 
d

t
  t � d.

b � c � c � 
d

t
 � c � 

d

t
 .

 t � 
v � v0

a
.

 
at
a

 � 
v � v0

a
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7. Solve the equation a � b(c � d) for the quantity b.

8. Solve the equation in exercise 7 for the quantity c. (Hint:
First rewrite the equation as a � bc � bd, multiplying
both terms inside the parentheses by b. This does not
change the equality.)

9. Solve the equation a � b � c � d for the quantity b.

10. Solve the equation in exercise 9 for the quantity c.

11. Solve the equation b(a � c) � dt for the quantity b.

12. Solve the equation in exercise 11 for the quantity c.

13. Solve the equation x � v0t � at2 for the quantity v0.

14. Solve the equation in exercise 13 for the quantity a.

1
2

Exercises 477
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Decimal Fractions, Percentages, and Scientific Notation

Thus, the first place or number after the decimal point
represents tenths, the second place hundredths, the third
place thousandths, and so on. The fraction 346 thou-
sandths (346⁄ 1000) is expressed as 0.346, for example.
We could read this as 3 tenths plus 4 hundredths plus 6
thousandths.

Decimal fractions are used very commonly, although
we may not always stop to think about their meaning.
In baseball, for example, we express a batter’s hitting
efficiency as a decimal fraction. A batter who has pro-
duced 35 hits in 100 official at-bats is said to be hitting
350. This is really 350⁄ 1000 or 0.350, but the decimal
point is often omitted. Most people understand that it
should be there, however, and that we are merely ex-
pressing the fraction 35⁄ 100 in decimal form and includ-
ing three figures to the right of the decimal point.

What Are Percentages?
Another common way of expressing decimal fractions is
to write them as percentages. The word percent means
per one hundred, so a percentage is just a decimal frac-
tion in which the denominator is 100. The fraction 1⁄ 2,
for example, is 5⁄ 10 or 50⁄ 100 and can be expressed as
50%—it is 50 hundredths. The fraction 3⁄ 4 is 0.75 or
75% (75 hundredths), and the fraction 346⁄ 1000 is 0.346
or 34.6% (34.6 hundredths). Thus, moving the decimal
place two places to the right converts a decimal fraction
to a percentage and is equivalent to multiplying the frac-
tion by 100.

The use of percentages is even more common than
the direct use of decimal fractions. Interest rates and tax
rates are usually expressed as percentages, for example,
so we should all have some understanding of their mean-
ing. An interest rate of 7% means that you will receive
or pay $7 each year for every $100 that you have in-
vested or borrowed, 7⁄ 100 of the total amount. (We are

In physics and many other fields in which numbers
are important, we usually express fractions as decimal
fractions and often use percentages as a means of ex-
pressing fractions or ratios. Because we need at times to
deal with very large and very small numbers, we also
use a means of expressing these numbers involving pow-
ers of ten or scientific notation to avoid writing out all
of the zeros. Although scientific notation is used spar-
ingly in this book, there are times when its use is highly
desirable, if not essential, so it is important that you
understand its meaning. It is part of the language of
science.

Decimal Fractions
Although most college-level students are familiar with
decimal fractions and percentages, they are not always
completely sure of their meaning. Fractions involve ra-
tios or proportions, which are not well understood by
many people. One of the benefits of taking a course in
physics is that it can strengthen your ability to think
in terms of ratios or proportions and to understand how
they are described.

A decimal fraction is just a fraction for which the
number in the denominator is some multiple of the num-
ber 10 (10, 100, 1000, and so forth), with the appropri-
ate multiple indicated by the location of the decimal
point. For example, if we start with the fraction 1⁄ 2 and
divide 1 by 2 as the fraction indicates, a calculator will
display the result as 0.5. The decimal point in front of
the 5 is a shorthand notation for expressing the fraction
5⁄10. The number 5 is half of 10, so the fraction 5⁄ 10 is
the same as the fraction 1⁄ 2 (one-half). In other words,
the ratio of 5 to 10 is the same as the ratio of 1 to 2.

If the fraction 3⁄4 is evaluated on a calculator by divid-
ing 3 by 4, the calculator will express the result as 0.75,
which is equivalent to the fraction 75⁄100 or 75 hundredths.

478
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ignoring here the possible effects of compounded interest.)
A tax rate of 28% means that we will owe to the govern-
ment $28 of every $100 that we earn (after deductions are
subtracted). A percentage is always per one hundred, by
definition.

Although it is easy enough to understand how a per-
centage is calculated (compute the decimal fraction and
multiply by 100), having a good feeling for the proportions
represented by different percentages is another matter. Pie
charts, like the one shown in figure B.1, are often used to
provide a visual representation of these proportions. The
slices of the pie should have sizes in proportion to the per-
centages or fractions being represented. If the graphic
artist does not understand this (as sometimes happens), the
resulting pie chart may be very misleading.

The pie chart in figure B.1 represents the average monthly
expenditures of someone who takes home $2000 a month
(after taxes and other deductions). If she spends $500 a
month on rent, this is 500⁄ 2000 or 0.25 (one-quarter) of her
total income. Since 0.25 equals 25%, this is shown as 25%
on the pie chart, and it takes up one-quarter of the total pie
or circle. The size of the slice is in proportion to the per-
centage. Likewise, if she spends $800 a month on food,
this is 800⁄ 2000 or 0.40, which is 40% of her total take-home
pay. The other slices represent smaller percentages and have
correspondingly smaller sizes. If we have taken into account
all of her normal expenses, the sum of the percentages in
the chart should add to 100%.

Why Is Scientific Notation Used?
When we need to represent very large numbers or very tiny
fractions, a lot of zeros are required to locate the decimal
point properly. For example, 1.2 trillion dollars (correspon-
ding roughly to the size of our accumulated national debt
several years ago) can be written as

$1 200 000 000 000.

The zeros are there only to locate the decimal point; they
do not imply that all of the other numbers to the right of the
1 and 2 are exactly zero. If we count the digits to the right
of the 1, we see that there are 12 (11 zeros and the digit 2).

Another way of stating this number would be to say that
it is 1.2 times 1 trillion, where 1 trillion is the number 1
followed by 12 zeros. One trillion is also the number that
results when you multiply 1 by ten 12 times.

1 000 000 000 000 � 1 � 10 � 10 � 10 � 10
� 10 � 10 � 10 � 10
� 10 � 10 � 10 � 10

The shorthand notation for a number multiplied by itself
12 times is to say that has been raised to the power 12, which
we write as 1012. The superscript represents the power to
which the number has been raised, which is the number of
times that you have multiplied the number by itself. We
read this number as “ten to the twelfth power” or often just
“ten to the twelfth.”

Thus we can write the number 1.2 trillion as

1.2 � 1012.

This notation, in which we have written the number as some
number times a power of ten, is called scientific notation.
The number 12 (the power) simply tells us how many
places to the right of the indicated decimal point we would
move the decimal point if we wrote out all of the zeros.
Scientific notation has several advantages: it saves space, it
properly indicates the accuracy or precision of the number
being represented by eliminating the zeros, and it makes
the number easier to manipulate in calculations involving
very large or small numbers.

Some examples involving smaller numbers may help to
make the concept clear. The number 586, to choose a
much smaller number than 1.2 trillion, can be expressed as
5.86 times 100, or 5.86 � 102 since 10 � 10 � 100 � 102

(10 squared). The number 6 180 can be expressed as
6.18 � 103, since 103 (10 cubed) is 1000. The number
5 400 000 (5.4 million) can be expressed as 5.4 � 106,
since 10 to the sixth power is 1 million. Several other ex-
amples are provided in table B.1. The last number listed
under the positive powers of ten is the approximate mass
of the Earth in kilograms.

Table B.1 also shows several decimal fractions written in
scientific notation. A fraction will always have a negative
exponent (negative power of ten) if the value of the fraction

Why Is Scientific Notation Used? 479

figure B.1 A pie chart showing the fractions of total take-
home pay spent in different categories. The slices of the pie are
in proportion to the percentages being represented.

Rent
25%

Food
40%

Utilities,
insurance, etc.

15%

Clothes
10%

Entertainment 5%

Savings 5%
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is less than 1. For example, the fraction 0.000 000 000 001 2
is the very tiny fraction 1.2 trillionths. It can be expressed
as 1.2 � 10�12, which is equivalent to dividing the number
1.2 by 1012, or by 1 trillion. The superscript �12 tells you
that you have to move the decimal point 12 places to the
left to express the number in normal decimal form.

Taking a simpler example, the decimal fraction 0.0346
is 3.46 � 10�2 or 3.46 hundredths. Moving the decimal
points two places to the left, as indicated by the power of
ten, yields the original decimal fraction. The fraction 0.0079
is 7.9 thousandths or 7.9 � 10�3. Studying the other exam-
ples in table B.1 should make the pattern clear. The last
number in table B.1 is the value of the charge on the elec-
tron in coulombs, a quantity that arises frequently in mod-
ern physics.

The prefixes used in the metric system of units (dis-
cussed in chapter 1) are another aid to expressing very large
or very small numbers. Since the prefix mega stands for
1 million, the quantity 1.35 Mg (megagrams) is the same
as 1.35 � 106 g (106 is one million). Likewise, 780 nm
(nanometers) is the same as 780 � 10�9 m, since the pre-
fix nano means one-billionth or 10�9. The values of the
commonly used metric prefixes are found in table 1.3 in
chapter 1. These metric prefixes and the power-of-ten sci-
entific notation are both types of scientific shorthand used
to express numbers in briefer forms.

Multiplying and Dividing
Using Powers of Ten
The process of multiplying or dividing numbers written in
power-of-ten notation is straightforward if you understand
what they mean. It is even easier if you have a calculator

that handles scientific notation—you just punch the num-
bers in and push the appropriate function key. Some under-
standing of their meaning, though, can be useful for checking
your results.

Suppose, for example, that we multiply the number
3.4 � 103 (3400) by 100 (102). Multiplying by 100 adds
two zeros to the original number, yielding 340 000, as you
can quickly check by doing this operation on a calculator
or by direct multiplication. Thus

(3.4 � 103) � (102) � 3.4 � 105.

In other words, the powers of ten add (3 � 2 � 5). If we
divided by 100, we would remove two zeros:

In this case, the exponent of the denominator is subtracted
from the exponent of the number being divided (3 � 2 � 1).
The rules for these operations are thus

1. When numbers are multiplied, the powers of ten add.
2. When numbers are divided, the power of the denomi-

nator is subtracted from the power of the numerator.

These rules are valid regardless of whether the powers are
positive or negative. Thus

(3 � 106) � (2 � 10�4) � 6 � 102 � 600

since 6 � (�4) � 2. This should make sense to you since
multiplying by a fraction (a number with a negative power
of ten) results in a smaller number than the number being
multiplied.

Exercises
If any of these ideas are unfamiliar—or even if they are fa-
miliar but you are rusty in using them—working some or
all of these exercises will help to build your confidence.
The answers to the odd-numbered exercises are found in
appendix D.

(Exercises 1 through 4) Express these numbers as deci-
mal fractions:

1. a. b. c. d.

2. a. b. c. d.

3. a. b. c. d. (Use a calculator.)

4. a. b. c. d. (Use a calculator.)

5. Express the fractions in exercise 3 as percentages.

6. Express the fractions in exercise 4 as percentages.

65

150

147

654

11

15

3

7

312

914

16

52

5

8

1

4

45

1000

83

10  000

7

10

72

100

5

10  000

874

1000

52

100

6

10

3.4 � 103

102  � 3.4 � 101 � 34.
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Positive powers of ten

5 460 � 5.46 times 1 thousand � 5.46 � 103

23 400 � 23.4 times 10 thousand � 2.34 � 104

6 700 000 � 6.7 times 1 million � 6.7 � 106

9 400 000 000 � 9.4 times 1 billion � 9.4 � 109

5 980 000 000 000 000 000 000 000 � 5.98 � 1024

Negative powers of ten (fractions)

0.62 � 6.2 times one-tenth � 6.2 � 10�1

0.0523 � 5.23 times one-hundredth � 5.23 � 10�2

0.0082 � 8.2 times one-thousandth � 8.2 � 10�3

0.000 0024 � 2.4 times one-millionth � 2.4 � 10�6

0.000 000 0079 � 7.9 times one-billionth � 7.9 � 10�9

0.000 000 000 000 000 000 16 � 1.6 � 10�19

table B.1

Examples of Scientific Notation
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7. Find: a. 50% of 105 b. 75% of 48
c. 60% of 180 d. 85.2% of 100

8. Find: a. 40% of 120 b. 90% of 400
c. 33.3% of 90 d. 70% of 540

(Exercises 9 through 12) Express these numbers in sci-
entific notation (power-of-ten notation):

9. a. 5475 b. 200 000 c. 67 000 d. 35 000 000 000

10. a. 3560 b. 78 500 c. 622 000 d. 9 100 000

11. a. 0.0065 b. 0.000 333 c. 0.000 001 5
d. 0.000 000 065

12. a. 0.075 b. 0.000 45 c. 0.000 003 2 d. 0.000 89

13. Express these numbers as decimal fractions:
a. 6.7 � 10�3 b. 1.8 � 10�4

c. 5.77 � 10�6 d. 3.25 � 10�5

14. Perform these operations:
a. (3.0 � 102) � (4.3 � 105)
b. (7.5 � 103) � (5.0 � 106)
c. (4.0 � 108) � (5.4 � 10�5)
d. (6.0 � 108) � (2.0 � 103)

15. Perform these operations:
a. (3.0 � 105) � (2.0 � 104)
b. (4.0 � 107) � (6.0 � 10�3)

c.

d.
3.6 � 1012

2.0 � 10�6

3.6 � 108

2.0 � 105

Exercises 481
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Vectors and Vector Addition

482

A diagram is often a more vivid way of describing
this same vector. Figure C.1 shows the velocity of the
airplane as an arrow, pointed in a direction 20° north of
east. The magnitude of the velocity can be represented
by the length of the arrow if we choose an appropriate
scale factor when drawing the diagram. For example, if
2 cm is selected to represent 100 km/h, then we would
draw the arrow with a length of 8 cm (4 � 2 cm) to rep-
resent the speed of 400 km/h. A smaller speed would be
represented by a shorter arrow, and a larger speed would
require a longer arrow.

An arrow is the universal symbol for representing
vectors on diagrams. An arrow can clearly indicate di-
rection, and can also be drawn to different lengths to in-
dicate magnitude. We often use boldface type for the
symbols that represent vector quantities: the symbol v
tells us that we are dealing with the vector quantity, ve-
locity. The symbol v, on the other hand, often represents
the scalar quantity, speed.

How Do We Add Vectors?
We are often interested in the net result of combining
two or more vectors. In chapter 4, for example, net force
determines the acceleration of an object. This net force
is the vector sum of whatever forces are acting on the
object, which could include several forces. As a second
example, an airplane’s velocity relative to the ground is
determined by the vector sum of its velocity relative to
the air and the velocity of the air relative to the ground
(the wind velocity), as discussed in chapter 20.

One of the most readily visualized examples of vec-
tor addition involves displacements of moving objects.
Suppose, for example, that a student wishes to travel to
an apartment complex located on North Main Street a
few blocks north and west of campus. One way that she

Many of the quantities that we encounter in the
study of physics are vector quantities, which is to say
that their direction is important as well as their size or
magnitude. Examples of vector quantities include velocity
and acceleration (introduced in chapter 2), as well as
force, momentum, electric field, and many others encoun-
tered in later chapters. Direction is an essential feature of
these quantities: the result of traveling with a velocity of
20 m/s due north is very different from traveling with a
velocity of 20 m/s due east.

Quantities for which direction is not an essential fea-
ture (or for which direction has no meaning at all) are
called scalar quantities. Mass, volume, and temperature
are examples of scalar quantities—it makes no sense to
talk about the direction of a volume or a mass. Specify-
ing the magnitude (the numerical value with appropriate
units) of a scalar quantity is sufficient; no other infor-
mation is needed. Vectors, on the other hand, require at
least two pieces of information to describe both their
size and direction.

How Do We Describe a Vector?
Suppose that we wished to describe the velocity of an
airplane flying in a direction somewhat north of due
east. The magnitude of the airplane’s velocity can be
specified by stating its speed as 400 km/h, for example.
The direction of the airplane’s velocity can be specified
in a number of ways, but the simplest would be to spec-
ify an angle to some reference direction, 20° north of
east, for example. These two numbers, 400 km/h and 20°
north of east, are sufficient to describe the airplane’s ve-
locity, provided that its motion is two-dimensional (in
a horizontal plane, not climbing or descending). If the
plane is climbing or descending, a second angle, the angle
of ascent or descent, must also be specified.

appendix C
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might get there from a starting point on the south side of
campus is to walk three blocks due west along Pacific Av-
enue, and then six blocks due north along Main Street, as
indicated in figure C.2. The result of these two motions
can be represented by displacement vectors; the first mo-
tion displaces her three blocks due west, the second one six
blocks due north.

The two displacements just described are drawn to scale
and in the appropriate direction in figure C.2 (1 cm � 1 block
on the drawing). The result of these combined motions is
indicated by drawing displacement C, which is the vector
drawn from the starting point to the final destination. Vec-
tor C is thus the vector sum of vectors A and B:

C � A � B .

The sum combines their individual effects into a single
net displacement. The length of vector C is approximately
6.7 cm, which represents a distance of 6.7 blocks given the
scale factor used in drawing the diagram. Measuring the
angle with a protractor yields an angle of approximately
27° west of north for the displacement vector C.

This process of vector addition that we have just de-
scribed can be used with any vectors. It is often referred to
as the graphical method of adding vectors or, more des-
criptively, as the tail-to-head technique. Its steps are:

1. Draw the first vector to scale (1 cm equals so many
units of the vector quantity) and in the appropriate di-
rection using a ruler and a protractor.

How Do We Add Vectors? 483

figure C.1 The velocity vector of 400 km/h in the direction
20° north of east is represented by drawing the arrow to scale
(2 cm � 100 km/h) and at the appropriate angle (20°).

figure C.2 The net result of adding displacement A (three
blocks due west) and displacement B (six blocks due north) is
the displacement C obtained by drawing a vector from the
starting point to the final destination.

2. Starting the second vector with its tail placed at the
head of the first vector, draw the second vector to
scale and in the appropriate direction.

3. If more than two vectors are involved, draw the suc-
ceeding vectors to scale and in the appropriate direc-
tion, starting each vector with its tail at the head of the
previous vector.

4. To obtain the vector sum, draw a vector from the tail
of the first vector to the head of the final vector. Mea-
sure the angle this vector makes to some reference
direction with the protractor, and measure its length
with a ruler. These two measurements represent the di-
rection and magnitude of the vector sum. (The mea-
sured length must be multiplied by the scale factor
used in drawing the original vectors to obtain the ap-
propriate units.)

To illustrate this process in another example, we have
added two velocity vectors in figure C.3. The first vector A
is a velocity of 20 m/s at an angle of 15° north of east. The
second vector B is a velocity of 40 m/s at an angle of 55°
north of east. They have each been drawn to a scale of
1 cm � 10 m/s, so vector A is 2 cm long and vector B is
4 cm long. The tail of vector B is placed at the head or tip
of vector A to add the vectors. The resulting sum, vector C,

N

E

8 cm

400 km/h

Scale: 2 cm = 100 km/h 

20°

v

E

N

B
(6

 b
lo

ck
s) C

(6.7 blocks)

A (3 blocks)

Scale: 1 cm = 1 block
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is approximately 5.6 cm long, determined by measuring
with a ruler. Using the scale factor of 1 cm � 10 m/s, we
have:

5.6 cm � (10 m/s per cm) � 56 m/s.

Measuring the angle that C makes to the horizontal axis
(east), we find that C is approximately 42° north of east.
Thus, the vector sum of vectors A and B is equal to 56 m/s
at an angle of 42° north of east.

Note that in both this example involving velocities, and
in the previous example involving displacements, the magni-
tude of the vector sum is not equal to the sum of the mag-
nitudes of the two vectors being added. In the first case,
the vector sum C had a magnitude of 6.7 blocks, which is
less than the 9 blocks (3 � 6) that the student actually
walked. In the velocity example, the vector sum has a
magnitude of 56 m/s, less than the sum of 60 m/s obtained
by adding the magnitudes of vectors A and B. This is a
general feature of the process of vector addition. The only
case in which the magnitude of the vector sum equals the
sum of the magnitudes of the vectors being added (A � B)
is when these vectors are in the same direction.

How Do We Subtract Vectors?
Once you have mastered the concept of vector addition,
subtraction represents a straightforward extension of these
ideas. Subtraction can always be represented as the process
of adding to the original quantity the minus value (the neg-
ative of) the quantity being subtracted. Thus the process of
subtracting 2 from 6 is the same as adding �2 to 6. If we
want to subtract vector A from vector B to get the vector
difference B � A, we add �A to B. To get the negative of
a vector, we reverse its direction.

To illustrate this process, we have subtracted velocity A
from velocity B in figure C.4, using the same two vectors
that we added in figure C.3. We first draw vector B to scale
and then add to it the negative of vector A. Note that we

have reversed the direction of A to get �A. The negative
vector is 15° below the westward horizontal instead of 15°
above the eastward horizontal. The difference vector D
is then obtained by drawing the vector from the tail of
the first vector (B) to the head of the second (�A). The
vector D has a length of approximately 5.6 cm and makes
an angle of approximately 7° to the vertical axis (north).
The length of 5.6 cm represents a velocity of 28 m/s
(5.6 cm � 5 m/s per 1 cm), since this is the scale factor
used in figure C.4.

What Are Vector Components?
We often find it useful to describe vectors in terms of their
horizontal and vertical components, rather than directly
dealing with the entire vector. This is particularly true when
we are discussing projectile motion, as in chapter 3, but it
is also useful for computing work (chapter 6) and in many
other applications.

The components of a vector are any two (or more) vectors that
when added together yield the vector of interest.

It is usually most productive to define these components as
perpendicular to one another, often in the horizontal and
vertical directions.

We can use graphical techniques to find the components
of a vector, as well as to add or subtract vectors. The pro-
cess is illustrated for a force vector in figure C.5. The force
vector A has a magnitude of 8 N and a direction of 30°

484 Appendix C Vectors and Vector Addition

figure C.3 The velocity vectors A and B are added to
obtain the vector sum C. A scale factor of 1 cm � 10 m/s is
used, and the tail of vector B is placed at the head of vector A.

figure C.4 The velocity vector A is subtracted from the
velocity vector B to obtain the difference vector D. The scale is
1 cm � 5 m/s.
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above the horizontal. (The newton, N, is the metric unit of
force.) Our first step in finding the horizontal and vertical
components of this vector is to draw the vector to scale
(1 cm � 1 N) and in the appropriate direction (30° above
the horizontal) using a ruler and a protractor, as before.

The horizontal component of the vector A is then found
by drawing a line from the tip of A to the horizontal (x)
axis, such that the line makes a right angle (is perpendicu-
lar to) the x-axis. The distance along the x-axis measured
from the tail of A (the origin) to the point where the per-
pendicular line meets the axis represents the magnitude of
Ax, the horizontal component of A. The magnitude Ax is
the portion of A that is in the horizontal direction.

A similar process yields Ay, the vertical component of
A, but in this case, a dashed line is drawn from the tip of A
to the vertical (y) axis, making a right angle to the vertical
axis. Measuring the lengths of these components with a
ruler yields magnitudes of 6.9 N (6.9 cm on the graph) and
4 N (4 cm on the graph) for Ax and Ay, respectively.

If we treat these two components of A as vectors and
add them together in the usual tail-to-head manner, we ob-
tain the original vector A, as shown in figure C.5. We can
therefore use these two components to represent the vector,
since, added together, they are identical to the original vec-
tor. Very often, however, we are really interested in only
the horizontal effect or the vertical effect of the vector, and
then we use just one of the components by itself. In the
case of a force vector, for example, the effect of the force
in moving an object in the horizontal direction will be de-

termined by the horizontal component of the force vector
rather than by the total vector. In projectile motion, it is the
horizontal component of the velocity that determines how
far the object will travel horizontally in a given time, and
so on.

The components of vectors can also be used in adding
or subtracting vectors, as well as for many other purposes.
In this book, however, our main use of the concept of vec-
tor components will be to break a vector down into its hor-
izontal and vertical portions for the purpose of analyzing
the horizontal and vertical motions separately. Knowing
that this can be done will be a key to your understanding
of projectile motion and many other physical processes.

Exercises
(Answers to the odd-numbered exercises are found in appen-
dix D.)

Use the graphical tail-to-head technique to find the vec-
tor sums of the indicated vectors in exercises 1 through 4.

1. Vector A � a displacement of 20 m due east
Vector B � a displacement of 30 m due north

2. Vector A � a velocity of 20 m/s at 30° north of east
Vector B � a velocity of 50 m/s at 45° north of east

3. Vector A � an acceleration of 4 m/s2 due east
Vector B � an acceleration of 3 m/s2 at 40° north of
east

4. Vector A � a force of 20 N at 45° above the horizontal
(to the right)
Vector B � a force of 30 N at 20° to the left of vertical

5. Find the magnitude and direction of the difference vec-
tor B � A in exercise 1.

6. Find the magnitude and direction of the difference vec-
tor A � B in exercise 1.

7. Find the magnitude and direction of the difference vec-
tor A � B in exercise 2.

8. Find the magnitude and direction of the difference vec-
tor A � B in exercise 3.

9. Find the east and north components (x and y) of vec-
tor A in exercise 2.

10. Find the horizontal and vertical components of vector A
in exercise 4.

11. Find the horizontal and vertical components of vector B
in exercise 4.

Exercises 485

figure C.5 The components of the force vector A are found
by drawing the vector to scale and then drawing lines from the
tip of the vector to the x and y axes, so that these lines make
right angles (90°) with the axes.
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Answers to Selected Questions, Exercises, and 
Synthesis Problems

E1. 57.5 MPH E3. 0.4 cm/day E5. 200 s
E7. 4.32 km E9. 93.3 km/h E11. 21 m/s
E13. a. 17 m/s b. 29 m E15. a. 21 m/s b. 76.5 m
E17. 9.09 s

SP1. a. 21 s SP5. a. car A: 2.25 m, 9 m, 20.25 m,
36 m; car B: 10 m, 20 m, 30 m, 40 m b. 4.5 s

Chapter 3
Q3. Yes. Both balls are accelerated because their velocity
is changing. Ball A has an increasing velocity, and ball B
as a decreasing velocity (negative acceleration).
Q9. No. The acceleration is increasing with time because
the slope of the velocity graph is increasing.
Q15. No. The acceleration due to gravity is always
downward.
Q21. No. The time the ball takes to hit the floor depends
only on the height of the table. The horizontal velocity
does not affect the time.
Q27. No. The maximum horizontal distance is obtained
with a launch angle of 45�.

E1. a. 8 m/s b. 16 m/s E3. 50 m/s, 112 MPH
E5. 22 m/s E7. a. �5 m/s (up) b. �5 m/s (down) 
E9. 1.5 s E11. a. 0.167 s b. 13.9 cm E13. 1.25 m
E15. a. 1.0 s b. 6 m

SP1. a. 0 b. 1.6 s c. 12.8 m d. 12 m e. down
SP3. a. 0.4 s b. 1.2 m, 2.0 m c. no SP5. a. 40.2 m/s
b. 18.3 m c. 0.455 s d. 1.0 m

Chapter 4
Q3. Aristotle suggested that as the ball moves forward, air
rushes around the ball to fill the void left by the ball’s
previous position, and this air pushes the ball from behind.
Q9. Yes. The ball could be moving with constant velocity,
but it is not accelerating when the net force is zero.

(Others will be available on the website.)

Chapter 1
Q3. No. The conditions for historical observations cannot
be repeated or controlled in the manner of a physical
experiment.
Q9. Optics, the study of light, explains the production of
rainbows. Mechanics explains the fall of an acorn.
Q15. The advantage of continuing to use the English
system, besides its familiarity, is that it avoids retraining
workers and revising standards and publications.

E1. 1000 mL E3. 10 E5. 135 in, 11.25 ft
E7. 8600 g, 8.6 � 106 mg E9. 1610 m, 1.61km
E11. 62 500 cm2, 10 000 cm2  E13. $3.03/gal

SP3. a. 1750 hrs b. 131.25 kWh c. 26.25 kWh 
d. $19.69 e. $3.94 f. $15.75 g. $315.00

Chapter 2
Q3. The units mm/week or mm/day would be appropri-
ate because fingernails typically grow 1 or 2 mm in a
week’s time.
Q9. Yes, the velocity changes. The direction of motion
has changed after the ball hits the wall, which represents
a change in velocity since velocity involves both speed
and direction.
Q15. No. Even though the velocity is zero, the velocity
is changing at that instant so the acceleration is not
zero.
Q21. a. No. The velocity is everywhere positive indicat-

ing forward motion. 
b. The acceleration is greatest at point A where the

slope is steepest.
Q27. Yes. The acceleration is constant for uniform
acceleration, so the instantaneous acceleration equals
the average acceleration throughout the motion.

486
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Q15. No. The mass is a property of the object that does not
depend upon where the object is located. Weight is a force
that depends upon the local value of g, the acceleration due
to gravity.
Q21. The external force that pushes the car forward is
the frictional force exerted by the road on the tires, which
is a third-law reaction to the force the tires exert on the
road.
Q27. No. The equality in size of the normal force and the
weight results from Newton’s second law. The acceleration
in the vertical direction is zero, so the net force in the
vertical direction must also be zero.
Q33. No. The gravitational force is equal to your weight,
but there is no normal force pushing upward on your
feet.

E1. 8 m/s2 E3. 5 kg E5. 1.5 m/s2 E7. 5 kg
E9. a. �2.5 N b. �0.625 m/s2 E11. 20 kg
E13. a. 61.2 kg b. 135 lb E15. 6.05 m/s2, downward
E17. a. 4.9 N b. 10.9 N, no E19. a. �72 N
b. �588 N c. �660 N

SP1. a. 5 m/s2 b. 15 m/s c. 22.5 m SP3. a. 0.375 m/s2

b. 0.075 m/s c. 0.75 cm SP5. a. 16 N b. 2.67 m/s2

c. 11.3 N SP7. a. 350 N b. 4.57 m/s2 c. 75 m/s

Chapter 5
Q3. The faster car experiences the larger change of veloc-
ity. In subtracting the initial velocity vector from the final
velocity vector, the longer length of the velocity vectors for
the faster car produces a larger 
Q9. b. The direction of the net force must be toward
the center of the curve to produce the centripetal
acceleration.
Q15. No. In Ptolemy’s view, the stationary Earth was at the
center of the solar system with the other bodies, including
the sun, moving around the Earth.
Q21. Yes. There must be a net force acting on the Earth
to produce the centripetal acceleration for its orbit about
the sun.
Q27. No. The new moon occurs when it is on the same side
of the Earth as the sun. Only the side of the moon opposite
the Earth is illuminated by the sun in that case.
Q33. No. The variation with distance of the gravitational
force produces the difference in force per unit mass experi-
enced by the water at the Earth’s surface and that exerted at
the center of the rigid Earth.

E1. 31.3 m/s2 E3. 1.0 m E5. 1.0 N
E7. a. 18.2 m/s2 b. 18.2 kN E9. 365/1 E11. 0.04 N
E13. 0.56 N E15. 300 lb

SP1. a. 26.7 m/s2 b. 5.34 N c. 1.96 N
SP3. a. 10.4 m/s2 b. 9.36 kN c. 8.82 kN
d. about 9.1 kN e. no SP5. a. 3.53 � 1022 N
b. 2.01 � 1020 N c. 175/1, no d. 4.34 � 1020 N, yes

¢v.

Chapter 6
Q3. a. Yes. The block moves a distance d under the influ-

ence of the force, so work is done by the force. 
b. No. Only the horizontal component of the force (that

in the direction of the motion) does work on the block.
Q9. The two forces do equal work. The smaller force exerted
by the person acts through a larger distance than the
larger force exerted on the rock.
Q15. Yes. The work done results in an increase in potential
energy.
Q21. The chin will be in great danger! The kinetic energy
added by the push increases the total energy of the system
so the ball will swing back farther.
Q27. a. Yes. The energy from burning the oil goes into heat-

ing the air and our hands. No energy has been lost.
b. We are wasting a lot of the heat generated from a

high-grade source of energy just to heat the atmos-
phere, and we are also polluting the atmosphere.

Q33. Yes, if the initial kinetic energy given by the push is
greater than the additional potential energy of the body
when at the hump.

E1. 100 J E3. 5 m E5. a. 160 J b. 0 c. 160 J
E7. a. 80 J b. 80 J E9. 0.8 J E11. 78.4 J, 100 J,
accelerating the rock E13. 40 J E15. 520 kJ
E17. a. 32 J b. 32 J E19. 0.125 s

SP1. a. 7.5 J b. 4.5 J c. 4.5 J SP3. a. 48 J b. 48 J
c. 43.8 m/s SP5. a. yes b. 34.9 m

Chapter 7
Q3. Yes. Since momentum is the product of mass and
velocity, a large velocity for the baseball can produce a mo-
mentum equal to that of a slower-moving bowling ball.
Q9. The air bag increases the time involved in the change of
momentum of the automobile passenger. Since impulse is the
product of force and time, a smaller force is then exerted on
the passenger to produce the impulse needed to change her
momentum. A smaller force will produce less severe injuries.
Q15. No. It is the total momentum of the system that is
conserved. Both objects can experience equal magnitude,
but oppositely directed, changes in momentum.
Q21. Yes, provided that we include the boat as part of the
system being considered. The forward momentum of the
cannonball will be countered by the recoil momentum of
the cannon and boat.
Q27. Momentum is conserved, therefore, momentum after
the collision must equal momentum before the collision
(due to the lack of external forces in this problem). Be-
cause the mass of the moving system is increased by the
addition of the second car, the velocity will decrease.
Q33. The resultant momentum will point in the direction of
the larger momentum, p1, and will have a magnitude (p1–p2).

E1. a. 12 N·s b. 12 kg·m/s E3. the bowling ball
E5. 4.8 N·s E7. a. 1080 N·s b. 2700 N

Answers to Selected Questions, Exercises, and Synthesis Problems 487
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E9. a. �7.5 kg·m/s b. �7.5 N·s E11. a. 0 
b. �7.5 m/s E13. 20 000 kg�m/s E15. a. 2250 kJ 
b. 450 kJ c. no

SP1. a. 12 kg·m/s b. yes c. 12 N·s d. 300 N
SP3. a. case B b. case B SP5. a. 30 000 kg·m/s, south 
b. 5 m/s, south c. 975 kJ d. 75 kJ e. no

Chapter 8
Q3. Yes. As the coin gains linear velocity while rolling
down the inclined plane, it also gains rotational velocity.
Since the rotational velocity is increasing, there is a
rotational acceleration.
Q9. The force applied at the end of the handle produces
a greater torque because it has a larger lever arm than
the force applied at the middle of the handle.
Q15. No. The center of gravity of the pencil must be located
at the fulcrum in order for the pencil to be balanced. There-
fore the center of gravity lies two-thirds the distance from
the end of the pencil.
Q21. Yes. The rotational inertia depends upon how the mass
is distributed about the axis of rotation, so the same mass
can result in a different rotational inertia if it is distributed
differently.
Q27. The rotational velocity will decrease. The additional
mass of the child jumping on increases the rotational inertia
of the system. A larger rotational inertia implies a smaller
rotational velocity in order for the angular momentum to be
conserved.
Q33. The angular momentum of the spinning top provides
stability. A net torque is required to change the direction of
the angular momentum vector. The gravitational torque
about the pivot point is zero or very small when the top is
essentially upright.

E1. a. 0.167 rev/s b. 1.05 rad/s E3. a. 18.8 rad
b. 4.7 rad/s E5. a. 4.8 rev/s b. 9.6 rev E7. a. 1.0 rev/s
b. 2.5 rev E9. 15 cm E11. a. 96 N·m b. �60 N·m
c. 36 N·m E13. 13.5 N·m E15. 0.1 kg·m2

E17. a. 0.08 kg·m2 b. 1.6 kg·m2/s

SP1. a. 132 N·m b. 0.147 rad/s2 c. 2.2 rad/s
d. �0.0133 rad/s2, 165 s SP3. a. 960 kg·m2, 2460 kg·m2

b. 1560 kg·m2 c. 1.89 rad/s d. yes

Chapter 9
Q3. The pressure will be greater in the cylinder with the
smaller-area piston. Pressure is force per unit area, so a
smaller area yields a larger pressure for the same force.
Q9. Water could be used, but the barometer would have to be
much larger than one using mercury because of the much
smaller density of water. The water column would move
greater distances for small changes in pressure, however, thus
yielding a more sensitive measurement.

Q15. The balloon would expand. An approaching storm is
associated with a lower atmospheric pressure pressing on
the balloon. This allows the volume of the helium in the
balloon to increase.
Q21. Yes. Salt water has a greater density than fresh
water, so an object with a density between that of salt
water and fresh water would float in salt water but sink
in fresh water.
Q27. No. Turbulent flow is associated with higher flow
speeds, so decreasing the speed will not produce turbulence.

E1. 80 Pa E3. 1.25 lb/in.2 E5. a. 400 kPa b. 80 kN
E7. 2250 Pa E9. 26.7 kPa E11. 500 kg/m3

E13. 1960 N E15. 0.5

SP1. a. 3.14 cm2, 491 cm2 b. 156/1 c. 13 720 N d. 88 N
SP3. a. 2.7 � 10�5 m3 b. 0.21 kg c. 2.06 N d. 0.26 N
e. 1.8 N SP5. a. 50.3 cm2, 19.6 cm2 b. 3.85 m/s
c. less than

Chapter 10
Q3. Yes. Any system whose properties change with temper-
ature could, in principle, be used as a thermometer.
Q9. Not if no other effect is involved such as work being
done on the system. Heat will flow from the hotter body to
the colder body, resulting in an intermediate temperature
for the two objects.
Q15. Yes. Stirring the water does work on the system,
increasing the internal energy by the first law of thermody-
namics. This results in an increase in temperature.
Q21. The temperature will increase since work has been
done on the gas during the compression. Since no heat can
flow out of the system in an adiabatic process, the internal
energy will increase, resulting in an increase in temperature.
Q27. The metal feels colder because it is a better heat
conductor. Heat will flow more readily from your hand
to the block for metal than for wood, thus cooling your
hand.
Q33. Convection via the fluid (liquid or gas) flowing
through the collector tubes is the primary mechanism of
transport of useful energy away from the collector.

E1. 113°F E3. 297.2 K E5. a. 45°C b. 113°F
E7. 2.23 kcal E9. 22°C E11. 838 J E13. 500 J
E15. 2100K E17. 1595 J

SP1. a. 90 F° b. 50 K c. no SP3. a. 13.5 kcal
b. 3.75 kcal c. 17.25 kcal d. no SP5. a. 2038 J
b. 486 cal c. 1.2 C° d. yes

Chapter 11
Q3. The change in internal energy of a heat engine is
assumed to be zero because the engine operates in cycles,
returning to its initial state at the end of each cycle. Since
the engine is back in its initial state, there is no change in
internal energy.
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Q9. No. The engine shown violates the second law of
thermodynamics because it is removing some heat from a
single-temperature reservoir and converting it completely
to work. The rest of the heat removed is returned to the
same reservoir.
Q15. No. Although a heat pump can be regarded as a heat
engine run in reverse, different devices are needed to make
this happen since real heat engines are not completely
reversible.
Q21. No. The engine shown violates the first law of
thermodynamics because less energy leaves the engine than
is input as heat and work.
Q27. Nuclear and coal-fired power plants are both thermal
power plants that use heat engines to produce electric
power. In their usual form, they burn different fuels to heat
water to run steam turbines.
Q33. Yes. It is a perpetual motion machine of the sec-
ond kind because it violates the Kelvin statement of the
second law of thermodynamics.

E1. 40% E3. a. 300 J b. 33% E5. a. 900 J b. 44% E7.
59% E9. 450 J E11. 500 W E13. no

SP1. a. 37.5 MJ b. 112.5 MJ SP3. a. 6.7% b. 13.4 J
c. 187 J d. 14 SP5. a. 44.4% b. 35.5% c. 100 000 kW·h
d. 282 000 kW·h e. 166 barrels

Chapter 12
Q3. The cloth gains electrons transferred from the glass rod
because the glass rod becomes positively charged in the
rubbing process by losing negatively charged electrons.
Q9. No. Glass is an insulator, so it does not allow charge to
flow from the electroscope to your body. The electroscope
will not discharge.
Q15. Yes. The repulsive force between two charges produces
a torque about the thin wire that supports the beam, causing
the wire to twist. The twisting of the wire develops an elastic
restoring torque that returns the beam to its original position
when one charge is removed.
Q21. Yes. The electric field exists at any point in space in
the vicinity of electric charges. The field is the force per
unit charge that would be exerted if a charge is placed at
that point.
Q27. The potential energy increases. Moving a negative
charge in the direction of the field lines requires an external
force doing work against the electrostatic force, which is in
the opposite direction to the field lines for a negative
charge.

E1. 3 � 1013 electrons E3. 4 mC per ball E5. 3 N
E7. a. 1.8 N E9. 100 N, down E11. 2.67 � 106 N/C,
due east E13. 12.5 J E15. 20 kV

SP1. a. 4.5 � 106 N b. 7.2 � 106 N c. 2.7 � 106 N, to
the left d. 1.35 � 108 N/C, to the left e. 8.1 � 106 N, to
the right SP5. a. �0.12 J b. upward c. upward
d. 3.33 � 104 N/C

Chapter 13
Q3. No. The current flowing around a single loop circuit is
the same at every point in the loop. Unless charge is leak-
ing out or building up somewhere, the current is conserved.
Q9. 10 000 V is much more dangerous than 10 000 �.
A high potential difference can cause current to flow through
your body, producing possibly fatal results. Resistance (�),
on the other hand, limits current flow and represents no
danger at all. The first sign is a physics joke sometimes seen
in labs.
Q15. R3 will have the largest voltage difference across it.
R3 carries the largest current (the sum of that through 
R1 and R2) and also is the largest resistance. The voltage
across the resistor is the product of the current and the
resistance 
Q21. No. Electric power is the rate at which electric energy
is being supplied or used.
Q27. The coffee maker is the most likely to cause a
problem. It has a heating element, which draws more
current than either an electric razor or a television set.

E1. 6 A E3. 0.25 A E5. 200 � E7. a. 0.12 A
b. 4.8 V, 7.2 V E9. a. 0.1 A b. yes c. 2 V E11. 1 �
E13. 13.5 W E15. a. 0.545 A b. 202 � E17. 25 A

SP1. a. 4 � b. 125 mA c. 83.3 mA d. 125 mW
e. greater than SP3. a. 42.9 mA b. 0.857 V
c. 0.386 W d. charging SP5. a. 5.2 A, 10.4 A, 4.3 A
b. yes c. 22 �

Chapter 14
Q3. The two forces obey similar rules for attraction and
repulsion (like poles or charges repel, unlike poles or
charges attract). Also, both forces decrease proportionally to
the inverse square of the distance as the distance increases.
Q9. The needle should not deflect much because the
magnetic field of the wire is directed northward above the
east-west wire and the compass needle is already pointing
approximately in that direction.
Q15. The direction of the magnetic field is downward into
the plane of the loop and perpendicular to the plane. This
follows from the right-hand rule for the field produced by an
electric current. The contributions to the field of each portion
of the wire are all downward at the center of the loop.
Q21. No. The direction of an alternating current reverses it-
self twice in each cycle, eliminating the need for the split-
ring commutator that is used in a dc motor.
Q27. Yes. The magnetic flux changes continuously as the coil
rotates because the flux through the coil depends upon the
orientation of the coil relative to the field. The flux is zero
when the plane of the coil is parallel to the field and has a
maximum value when the plane is perpendicular to the field.

E1. 2.5 N E3. It is one-third the original value.
E5. 20 C E7. 0.3 N E9. 1.92 T·m2 E11. 24 V
E13. a. step-up b. 440 V E15. 15 turns

(¢V � I R).
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SP1. a. 2 � 10�4 N/m b. repulsive c. 6 � 10�5 N
d. 2 � 10�5 T e. into the plane of the page
SP3. a. 0.0018 m2 b. 0.0432 T·m2 c. 0 d. 0.25 s
e. 0.173 V

Chapter 15
Q3. The wave pulse is longitudinal because the motion of
the railroad cars is along the same line (parallel to) the
motion of the pulse.
Q9. It is possible but not very easy to produce a longitudi-
nal wave on a rope. Any rope has some elasticity and be-
haves somewhat like a very stiff spring. A longitudinal
wave would be difficult to generate, however, and would be
very hard to observe.
Q15. The interference will be destructive. The greater
distance of half a wavelength causes the wave on the longer
rope to arrive at the junction a half cycle later than the
other wave, and therefore it is exactly out of phase with the
wave on the shorter rope.
Q21. Increasing the mass per unit length of guitar string
produces a lower frequency but does not affect the wave-
length of the standing wave. The larger mass per unit
length produces a lower wave speed and thus a lower
frequency for the same wavelength 
Q27. No. Due to the Doppler effect, the observer who
is being approached by the truck will perceive higher
frequencies than those generated by the band instruments.
As the truck recedes from the observer, lower frequencies
are observed.
Q33. Two notes an octave apart have many of the same
higher harmonics. We use these harmonics to help in iden-
tifying the note.

E1. 0.5 Hz E3. 0.4 m E5. a. 2.5 Hz b. 4.8 m
E7. a. 1.6 m b. 75 Hz E9. 77.3 cm E11. a. 2 m
b. 170 Hz E13. 264 Hz E15. 60 Hz E17. 220 Hz

SP1. a. 0.3 kg/m b. 10 m/s c. 4.0 m d. 2 cycles
e. 0.8 s SP3. b. 80 cm c. 425 Hz d. 12.5 Hz increase
SP5. a. 396 Hz b. 352 Hz c. 330 Hz d. 495 Hz
e. 297 Hz f. 440 Hz

Chapter 16
Q3. Yes. Electric and magnetic fields exist in otherwise
empty space, so an electromagnetic wave consisting of
changing electric and magnetic fields can propagate
through a vacuum. Unlike mechanical waves it does not
require a medium.
Q9. The surface would appear purple or magenta depend-
ing upon the amounts of blue and red light reflected.
Q15. The two waves that are interfering are that reflected
from the top surface of the oil film (at the air/oil interface)

(v � fl).

and that reflected from the bottom of the film (at the
oil/water interface).
Q21. A diffraction grating is a multiple-slit interference
device that is used primarily for separating and measur-
ing different wavelengths of light. Gratings are used in
spectrometers and similar instruments used for analyzing
light waves.
Q27. The axis of transmission of the polarizing sunglasses
should be vertical. This will eliminate most of the light
reflected from horizontal surfaces (glare) because it is
horizontally polarized.

E1. 3 � 1010 Hz E3. 5.77 � 1014 Hz E5. 2.5 mm
E7. 6.6 cm E9. a. 1/2 wavelength b. destructive
E11. 0.167 mm E13. a. 27.3 cm b. 54.6 cm

SP1. a. 7.9 � 1014 Hz, 4.0 � 1014 Hz b. 2 � 108 m/s
c. 253 nm, 500 nm SP3. a. 125 nm b. 250 nm c. no

Chapter 17
Q3. The light is reflected from the mirror so that the light
rays appear to diverge from a point behind the mirror. The
virtual image that we see is located at this point.
Q9. The light bends toward the surface normal because the
index of refraction of the glass (the second medium) is
greater than that of water. The light waves travel more
slowly in the glass than in water.
Q15. Refraction is responsible for the rainbow colors.
Although both reflection and refraction occur in the raindrops,
dispersion (variation of index of refraction with wavelength) is
important only for refraction, not reflection.
Q21. No. Light rays converging toward the far-side focal
point of a negative lens emerge from the lens parallel to
one another. They neither diverge nor converge.
Q27. The images lie a short distance behind the convex
side-view mirror. Unlike images formed by a plane mirror,
however, these images are greatly reduced in size com-
pared to the actual size of the objects. For objects of known
size, our brains make distance judgments based partly upon
the small size of the images, which makes the images
appear to be farther away.
Q33. No. The objective lens of a microscope must have a
very short focal length to magnify small objects placed
very close to the lens. A telescope, on the other hand,
must have an objective lens with a longer focal length
than the eyepiece lens in order to produce an angular
magnification.

E1. 1.8 m, 6 m E3. 32 cm E5. a. 8 cm
b. real, inverted E7. 3.43 cm E9. a. �4 cm b. 2
E11. a. �15 cm b. real, inverted E13. a. �50 cm
b. 30 cm E15. a. 1.11 m b. �0.11 E17. 50 cm

SP1. a. 6.77 cm b. 7.17 cm c. 4.78 cm SP3. a. 15 cm
b. �1.5 d. 12 cm, �2 e. 3 SP5. a. 4.0 cm b. �4
c. �10 cm d. 5 e. �20
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Chapter 18
Q3. When a substance containing carbon compounds is
burned, oxygen gas from the air reacts with the compounds
to produce carbon dioxide (a gas), as well as solid ash and
often water vapor, which is also a gas. The gases can be
difficult to capture and weigh.
Q9. No. Although X rays are produced by a cathode-ray
tube, the cathode-ray beam itself consists of tiny negatively
charged particles that we now call electrons.
Q15. There were three different types of radiation (alpha,
beta, and gamma rays) given off by the materials containing
uranium and thorium. The alpha and beta rays turned out to
be charged particles and the gamma rays were electromag-
netic radiation with energies greater than those of X rays.
Q21. No. An electron has a tiny mass compared to an alpha
particle, which is the nucleus of a helium atom. An electron
therefore has very little effect on a fast-moving alpha particle.
Q27. Yes. According to quantum mechanics, a particle such
as an electron is characterized by a wavelength given by
the de Broglie relationship The wavelength thus
depends upon the momentum p of the particle.

E1. 23/8 � 2.88/1 E3. 19 E5. 1835 E7. 2 � 1018 Hz
E9. 103 nm, no E11. a. 5.43 � 1014 Hz b. 552 nm

SP1. a. upward b. 15 000 N/C c. 2.4 � 10�15 N
d. 2.64 � 1015 m/s2 e. an upward-bending trajectory
SP3. a. 13.6 eV b. 3.4 eV c. 91.3 nm

Chapter 19
Q3. Yes. Different isotopes of the same element have dif-
ferent masses because the number of neutrons in the nu-
cleus is different. The chemical properties that define the
element are determined by the atomic number, not the
neutron number.
Q9. The atomic number of the daughter element is larger
than that of the original isotope for normal beta decay in
which a negatively charged electron is emitted. One of the
neutrons in the nucleus changes to a proton, increasing the
atomic number by one. If a positron is emitted, the atomic
number decreases by one.
Q15. The energy released per atom in a chemical reaction
is much less than that in a nuclear reaction. The energy re-
leased per atom in a typical nuclear reaction is of the order
of a million times larger than that in a chemical reaction.
Q21. Control rods absorb neutrons. Their function is to
slow the overall rate of reaction when they are inserted by
absorbing some of the neutrons that otherwise might initi-
ate additional fission reactions.
Q27. The nuclear reactors built at Hanford during World
War II were developed to produce plutonium-239, which is
fissionable and could be used to produce nuclear weapons.

E1. 12 E3. aluminum, 13Al27 E5. 88Ra228 E7. 6C
13 E9.

6 days E11. 42Mo102

l � h/p.

SP1. a. 6,6; 7,7; 8,8 b. 1.0/1 c. 61, 47; 64, 48; 66, 49
d. 1.30, 1.33, 1.35; ave � 1.33/1 e. 142, 90; 140, 91; 146,
92; 1.58, 1.54, 1.59; ave � 1.57/1
SP3. a. 0.003 51 u b. 5.25 � 10�13 J c. yes

Chapter 20
Q3. The velocity of the plane relative to the ground will be
larger than the velocity of the plane relative to the air. Since
the air is moving in the same direction as the plane, the air
velocity adds directly to the velocity of the plane relative to
the air.
Q9. Yes. Light waves can travel through a vacuum, so the
ether was assumed to exist in a vacuum.
Q15. Observer A measures the longer time. Observer B
measures the proper time for the chess move since it takes
place at a single point in his frame of reference. Observer A
measures a dilated (longer) time.
Q21. The relativistic expression for momentum is valid at
any speed. However, the correction term � would be very
close to 1.0 at low speeds, so the classical and relativistic ex-
pressions are essentially the same at ordinary speeds.
Q27. No. According to Einstein’s principle of equivalence,
it is impossible to distinguish an acceleration of your refer-
ence frame from gravitational effects.

E1. 7 m/s E3. 0.5 m/s E5. c � 3 � 108 m/s
E7. 3.75 min E9. 49.75 m E11. 2 � 1012 kg·m/s

SP1. b. 6.71 m/s c. 8 s d. 24 m e. 53.7 m
SP3. b. 80.4 yr c. 8.04 yr d. 8 lt-yr e. 72.4 yr

Chapter 21
Q3. No. Quarks are constituents of mesons and baryons,
the latter of which include protons and neutrons. Electrons
are leptons and, as far as we know, leptons have no subpar-
ticles or more fundamental constituents.
Q9. Yes. Our sun is part of the Milky Way galaxy, which
contains an enormous number of other stars. Part of the
Milky Way galaxy is visible to us on a clear night as a white
band across the sky.
Q15. Doping with gallium makes silicon a p-type semicon-
ductor. Gallium has three outer electrons that can partici-
pate in bonds with silicon atoms. This leaves a hole (ab-
sence of an electron) in one of the four bonds formed by
silicon atoms. The hole can migrate and behaves like a pos-
itive charge carrier.
Q21. No. The superconducting magnets used in magnetic res-
onance imagers and other applications must be cooled with
liquid nitrogen to reach the temperature at which the coils be-
come superconducting. Materials that are superconducting at
room temperature have not yet been developed.

E1. 500 s

SP1. a. 3.15 � 107 s b. 9.45 � 1015 m c. 3.78 � 1016 m
d. 40 yr
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Appendix A
1. a � F/m 3. d � b � c 5. d � a � bc
7. b � a/(c � d) 9. b � c � d � a 11. b � dt/(a � c)
13.

Appendix B
1. a. 0.6 b. 0.52 c. 0.874 d. 0.0005 3. a. 0.25 b. 0.625
c. 0.308 d. 0.341 5. a. 25% b. 62.5% c. 30.8% d. 34.1%
7. a. 52.5 b. 36 c. 108 d. 85.2 9. a. 5.475 � 103

v0 �
x
t �

1
2 (at)

b. 2 � 105 c. 6.7 � 104 d. 3.5 � 1010 11. a. 6.5 � 10�3

b. 3.33 � 10�4 c. 1.5 � 10�6 d. 6.5 � 10�8

13. a. 0.006 7 b. 0.000 18 c. 0.000 005 77 d. 0.000 032 5
15. a. 6 � 109 b. 2.4 � 105 c. 1.8 � 103 d. 1.8 � 1018

Appendix C
1. 36 m, 56° north of east 3. 6.6 m/s2, 17° north of east
5. 36 m, 56° north of west 7. 31 m/s, 55° south of west
9. 17.3 m/s, 10 m/s 11. �10.3 N, �28.2 N
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Absolute temperature Temperature
given in the Kelvin scale, which sets
0 K at absolute zero. Room temperature
of 72°F or 22°C is about 295 K.

Absolute zero The lowest possible tem-
perature, 0 K (kelvin) or �273°C, the
point where a gas would have no pres-
sure or molecular motion.

Absorption lines Dark bands or lines in
a spectrum. In the spectra of stars, these
bands or gaps indicate that light has
been absorbed by the gases in the stars.

Acceleration The rate of change of
velocity.

Acceleration due to gravity The uni-
form acceleration of an object in a
gravitational field, g � 9.8 m/s2 near
the Earth’s surface (also called the
gravitational acceleration).

Accelerator One of several kinds of
devices used to study subatomic parti-
cles by accelerating them to high veloc-
ities, causing them to collide and, if
possible, break into previously undis-
covered particles.

Action/reaction principle For every
action (force acting on one body) there
is an equal but opposite reaction (force
acting on another body), as described in
Newton’s third law of motion.

Additive color mixing The production
of different colors by combining light
of the three primary colors blue, green,
and red.

Adiabatic An adjective that describes a
thermodynamic change or process with-
out gain or loss of heat.

Air foil A surface designed to take
advantage of air current to lift or steer
an aircraft.

Air resistance The frictional effects of
the air or atmosphere on the motion
of objects—especially noticeable on
objects with large surface areas com-
pared to their masses like leaves and
feathers.

Alpha decay See radioactive decay.
Alternating current (ac) Electric cur-

rent that continually reverses its direc-
tion. Current in use in North America is
set at 60 Hz (60 back-and-forth cycles a
second) and has an effective voltage of
115 V.

Ammeter An instrument for measuring
electric current.

Amplitude The maximum swing from
the point of equilibrium, for example,
in the movement of a pendulum.

Angular magnification Magnification
of an object by moving the object 
(or its image) closer to the eye, thus
forming a larger image on the retina of
the eye.

Angular momentum The rotational
equivalent of linear momentum, found
by multiplying the rotational inertia I
by the rotational velocity �, or L � I�.
Angular momentum helps to explain the
orbits of planets, twirling ice skaters,
and the spin of subatomic particles.
Also called rotational momentum.

Anode A positive electrode.
Antinode The point, or points, in a

standing wave with the greatest
amplitude.

Antiparticle An elementary particle with
some properties, such as electric charge,
opposite those of the corresponding par-
ticle. The antiparticle of an electron, for
example, is a positron. When these two
particles interact, they annihilate one
another.

Aperture An opening, especially the
opening that allows light into a camera
or other optical instrument.

Application program Computer soft-
ware designed to perform a specific
task or set of tasks, for example, a
word-processing program or graphics-
design program.

Arc A portion of the circumference of a
circle or other curved line.

Archimedes’ principle The buoyant
force acting on an object fully or partly
submerged in a fluid equals the weight
of the fluid displaced by the object.

Artificial intelligence Computers and
software programmed to replicate cer-
tain human thought processes and ways
of perceiving.

Atmospheric pressure The pressure of
the layer of air that surrounds the Earth.
At sea level, the atmospheric pressure
is 14.7 pounds per square inch but
decreases with altitude.

Atom From the Greek word for undi-
vided, the smallest particle of an ele-
ment, now known to be made up of a
nucleus surrounded by one or more
electrons.

Atomic mass The average mass of an
atom of an element, a distinguishing
characteristic of an element.

Atomic number The number of protons
in an element’s nucleus, which deter-
mines its place in the periodic table.
Oxygen’s atomic number is 8, krypton’s
is 36, and gold’s is 79.

Atomic physics The subfield of physics
that studies the structure and behavior
of atoms.

Atomic spectrum The wavelengths of
light emitted by a substance when
heated. In the visible spectrum of light,
each element produces a distinctive
color display.

Atomic weight The traditional term for
atomic mass.

Average acceleration Change in veloc-
ity divided by the time required to pro-
duce that change, a � �v/t.

Average speed Distance traveled
divided by the time traveled (in sym-
bols, s � d/t), the rate at which dis-
tance is covered.

Axis An imaginary line running through
an object, around which it may rotate.
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Balmer series Characteristic absorption
and emission lines that appear in the vis-
ible portion of the spectrum of hydrogen.
There are several other series of lines in
the other (invisible) portions of hydro-
gen’s spectrum.

Barometer An instrument, originally a
tube containing a column of mercury, for
measuring atmospheric pressure.

Baryon The heaviest of subatomic parti-
cles, for example, neutrons and protons.

Battery Cells that produce electricity by
chemical reaction between electrodes of
different materials separated by a chemi-
cal solution.

Beats A regular variation in amplitude
caused by the interference of two waves
of different frequency.

Bernoulli’s principle Pressure is lower
where fluid speed is higher: the sum of
the pressure plus the kinetic energy per
unit of volume of a flowing fluid is
constant.

Beta decay See radioactive decay.
Big Bang The theoretical beginning of the

universe 10 to 20 billion years ago from
an expansion, that still continues, of an
extremely dense volume.

Birefringence A process (also called
double refraction) in which light of dif-
ferent polarizations travels with different
speeds in different directions within a
material.

Bit A contraction of binary digit, a bit is
the pair of choices, 0 or 1, in a single
binary number. It is the basic unit for
storing digitized information in a com-
puter. Eight bits make a byte.

Blackbody Any body that absorbs all the
radiation that falls on it, appearing per-
fectly black. Also, an instrument with a
hole or cavity (dark at room temperature)
that, when heated, emits a spectrum
based on temperature and not on the
composition of the material.

Black hole A very massive collapsed star
with an extremely strong gravitational
field that lets light in but not out, which
makes it a perfect absorber of light.

Boltzmann’s constant A universal con-
stant k that relates the temperature, pres-
sure, and volume of gas under the ideal
gas law. Boltzmann’s constant also
applies to other systems.

Boyle’s law The volume of a gas at con-
stant temperature is inversely propor-
tional to the pressure on it—doubling the
pressure on a gas will halve its volume.
In symbols, PV � constant, where 
P is pressure on a gas and V is its
volume.

Bubble chamber A device filled with a
transparent liquid heated beyond the
boiling point. A moving particle in a
bubble chamber leaves a distinctive trail
of bubbles in its wake, which is pho-
tographed for further study.

Buoyant force An upward force that lifts
objects toward the surface of water or
other fluid.

Caloric An invisible fluid once thought to
flow from a hotter to a cooler object.
This idea no longer is considered valid.

Capacitor A device for storing electric
charge.

Carnot cycle An ideal reversible cycle
devised by Carnot that is the model of a
heat engine with maximum efficiency.
The cycle consists of four steps, two
isothermal and two adiabatic.

Carnot efficiency The efficiency of an
ideal heat engine, or the maximum effi-
ciency possible of a heat engine operat-
ing between two specified temperatures.

Carnot engine An ideal reversible heat
engine using the Carnot cycle. Any heat
engine with an irreversible step in its
cycle will be less efficient.

Cathode A negative electrode.
Cathode rays Radiation emitted by a

cathode in an evacuated tube, since dis-
covered to be electrons.

Center of gravity The point on an object
about which its weight exerts no net
torque and the object will balance.

Centrifugal force An imaginary force
that seems to be directed outward as a
result of rotation.

Centripetal acceleration The rate of
change in velocity of an object’s direc-
tion on a circular or curved path.
Centripetal acceleration is always per-
pendicular to the velocity vector and
directed toward the center of the curve.

Centripetal force Any force or combina-
tion of forces that produces a centripetal
acceleration.

Chain reaction A fission reaction that, by
initiating several more reactions, becomes
self-sustaining.

Change of phase The process of a sub-
stance going from one physical state—
solid, liquid, or gas—to another. Also
called phase change.

Chaos Unpredictability or instability.
A system is chaotic if it is unstable or
unpredictable: weather is often chaotic.

Circuit A closed or complete path for an
electric current.

Classical physics The four branches of
physics—mechanics, thermodynamics,
electricity and magnetism, and 

optics—that were already well developed
by the beginning of the twentieth
century.

Cloud chamber A device containing air
or another gas saturated with water vapor.
The chamber is cooled so that fog forms
on a particle, and its track is then illumi-
nated for study.

Collider A type of particle accelerator
designed to cause circulating high-energy
beams to collide, thus producing new
particles for study.

Combustion Rapid combining of oxygen
with a fuel; burning.

Concave mirror A mirror in which light
is reflected from the inside of a curved
surface.

Condensed-matter physics The subfield
of physics that studies the properties of
matter in the solid and liquid states.

Conduction (thermal) The ability of heat
to flow through a material when objects
at different temperatures are placed in
contact.

Conductivity The ability of a material to
carry electric current.

Conductor A material that readily allows
charge to flow.

Conservation laws Principles of physics
that show how, under certain conditions,
a specified quantity in a system does not
change regardless of actions that may
take place. For example, in conservation
of angular momentum, the total angular
momentum of a system remains constant
as long as the total torque on the system
is zero. Conservation of energy means
that the amount of mechanical energy of
a system remains constant through physi-
cal changes or processes (if no work is
done on the system). Conservation of
momentum shows that the momentum of
a system remains constant (changes of
different parts of the system cancel) if no
net external force acts on it.

Conservative force A force such as grav-
ity or the elastic force that allows com-
plete recovery of energy when work is
done against it.

Control rods Rods that can be inserted
or removed from the core of a nuclear
reactor to maintain a desired rate of re-
action. The rods are made of a neutron-
absorbing substance, boron being the
most common.

Convection The transfer of heat by the
motion or circulation of a fluid (gas or
liquid) that contains thermal energy.

Convex mirror A mirror in which light is
reflected from the outside of a curved
surface.

494 Glossary

gri12117_Glos_493-502.qxd  31/7/08  10:34  Page 494



Confirming pages

Coolant The fluid (usually water) used to
remove heat from a nuclear reactor or
other heat engines.

Cosmology Study of the structure and ori-
gins of the universe.

Coulomb’s law A description of how
electrostatic force varies with quantity of
charge and distance: electrostatic force
is proportional to the size of each of the
charges and inversely proportional to the
square of the distance between two
charges.

Critical In describing nuclear reactors, the
state when each fission reaction produces
another fission reaction, which leads to a
chain reaction. If each reaction produces
more than one reaction, the reactor is
supercritical. If less, it is subcritical.

Critical mass A mass of fuel just large
enough to produce a self-sustaining
chain reaction.

Critical temperature In electric resis-
tance, the temperature below which a
substance becomes a superconductor of
electricity.

Dalton’s law of definite proportions
Dalton’s observation that the ratio of the
masses of certain elements needed in
chemical reactions did not vary, which
helped to clarify the relationships of the
masses of the atoms of elements.

de Broglie wave The probability wave
associated with particles of matter.
De Broglie proposed that the electron,
in particular, can be represented by a
standing wave about the atomic nucleus.

de Broglie wavelength A wavelength
derived from the momentum of a particle
and Planck’s constant indicating that par-
ticles like electrons have wavelike fea-
tures (� � h/p).

Density Mass per unit of volume.
Diffraction Interference of light and other

waves coming through different parts of
the same slit or opening.

Diffraction grating An instrument made
of closely spaced parallel lines on a sur-
face (glass or metal) used for diffracting
light to produce spectra and other optical
effects.

Digital logic Operations performed on
strings of discrete numbers, symbols, or
characters, as in a computer.

Diode An electronic device that allows
electric current to flow in one direction
only.

Dipole An object with separated (polar-
ized) positive and negative areas. In an
electric dipole, electric charge is sepa-
rated into positive and negative regions.
Magnetic dipoles have two magnetic

poles, often labeled N and S. All magnets
have at least two poles.

Direct current (dc) Electric current that
flows in a single direction.

Dispersion The variation of the index of
refraction of a transparent substance with
wavelength. In a prism, this results in
separation of light into its wavelengths,
producing color displays.

Displacement The linear or angular dis-
tance an object moves from its original
position. Also, the amount of fluid
displaced by a floating or submerged
object.

Doping Adding small amounts of 
a substance to a semiconductor to
enhance, customize, or alter its
properties.

Doppler effect Change in the detected
frequency of a wave because of move-
ment by either the source or the
observer.

Eclipse A planet’s passage into another
planet’s shadow. In a lunar eclipse, the
moon passes into the Earth’s shadow. In
a solar eclipse, the Earth passes into the
shadow of the moon.

Efficiency The ratio of the work an engine
produces to the input of heat energy,
usually given as a percentage.

Elastic collision A collision in which no
energy is lost. The objects bounce off
each other.

Elastic force Force exerted by objects that
can be deformed or stretched, such as a
bowstring or a spring.

Elastic potential energy Potential energy
in a system that depends on the displace-
ment from equilibrium of an elastic
object like a spring.

Electric charge The electromagnetic
property of an object that produces the
electrostatic force. A transfer of electrons
to or from an object makes it electrically
positive or negative.

Electric current The rate of flow of elec-
tric charge.

Electric dipole Consists of two equal-
magnitude electric charges opposite in
sign separated by a small distance.

Electric field The electric force per unit
of positive charge exerted on a charge if
it were placed at that point. It is a prop-
erty of space surrounding a distribution
of electric charges.

Electric potential The potential energy
per amount of positive electric charge;
voltage.

Electricity and magnetism The subfield
of physics that studies electric and mag-
netic forces and electric current.

Electromagnet A current-carrying coil of
wire with an iron core whose magnetic
field is produced by electric current.

Electromagnetic induction Production
of electric current by a changing mag-
netic flux.

Electromagnetic spectrum The array of
electromagnetic waves of different wave-
lengths. At the longer wavelength end of
the spectrum are radio waves and micro-
waves. Visible light begins with longer
red waves and progresses to violet.
Beyond violet (ultraviolet) are X rays
and gamma rays.

Electromagnetic wave A wave made up
of changing electric and magnetic fields.

Electromagnetism Study of the related
phenomena of electricity, magnetism,
electric fields, and magnetic fields, all of
which are aspects of the electromagnetic
force.

Electromotive force Potential energy
per unit of charge produced by a battery
or other source of electric energy. The
name is misleading, because it is a
potential difference, or voltage—not
a force.

Electron Extremely small, negatively
charged particles present in all atoms.

Electrostatic force The force exerted by
one stationary charge on another inde-
pendently of their motion. The electro-
static force holds atoms together and
binds one atom to another in liquids and
solids.

Electroweak force The electromagnetic
force and the weak nuclear force unified
into a single fundamental force.

Element A basic chemical substance that
consists of atoms of one kind.

Ellipse An oval curve with two foci—
the shape of the orbits of the planets.
A circle is a special case of an ellipse
with both foci at one point.

Emission lines Bright lines in the spec-
trum of a substance indicating the emis-
sion of electromagnetic radiation.

Empirical law A rule or generalization
derived from experience, which in 
the sciences would come from, and be
confirmed by, experiments and 
observations.

Enrichment Increasing the proportion of
the more reactive isotope of a nuclear
fuel by separating the isotopes.

Entropy The measure of the disorder or
randomness of a system.

Epicycle Imaginary circles made by the
planets on their main orbits, used in
the obsolete Ptolemaic model to explain
planetary motions.
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Equally tempered Tuning system based
upon equal ratios for all half-steps in a
musical scale.

Equation of state An equation that gives
the thermodynamic relation between
pressure, volume, and temperature for a
specific kind of system.

Equilibrium A state of balance when the
net force on an object is zero or when a
system stops undergoing change.

Ether Before scientists understood that
light may not require a medium, it was
widely believed that light traveled
through a massless medium pervading
space called the ether. Also called the
luminiferous (light-bearing) ether.

Experiment Observations made under
controlled conditions. An experiment
must be able to be tested and repeated
by other researchers.

Exponent The superscript indicating what
power a number or variable has been
raised to, for example, x3 or 109.

Exponential decay (or growth) Decay
(or growth) at a decreasing (or increas-
ing) rate over time, which is graphed as
an exponential curve.

Faraday’s law Induced voltage in a coil
equals the rate of change of the magnetic
flux through the coil, � � ��/t.

Field lines Graphic illustrations of electric
and magnetic fields.

Field theory The study of phenomena
that interact over space or distance,
including phenomena that involve elec-
tric, gravitational, or magnetic fields.

First law of thermodynamics The
change in internal energy of a system
equals the net amount of heat and work
transferred into the system (conservation
of energy).

Fission fragment Either of the two
lighter elements that emerge from the
splitting of a large radioactive atom dur-
ing nuclear fission. They tend to be
highly unstable and radioactive.

Fluid Something that flows—a gas or
liquid.

Fluid pressure Pressure exerted on or by
a fluid.

Focal length The distance from the center
of a lens or mirror to the focal point or
points.

Focal point The point where a lens
focuses or concentrates parallel beams of
light.

Focus In optics, the point where rays of
light are concentrated by reflection or
refraction and produce an image. In
geometry, one of the two points that

define the curve of an ellipse and give it
its characteristic shape.

Force The quantity that describes the
mechanical interaction of two objects,
causing the objects to accelerate as
described in Newton’s laws of motion.

Frame of reference A standpoint or ori-
entation from which we make measure-
ments and observations of motion and to
which we refer them. An inertial frame
of reference does not accelerate in rela-
tion to other inertial frames.

Free-body diagram A drawing com-
monly used in physics that identifies the
interactions and directions of forces on
objects.

Free fall The motion of a falling object
affected only by acceleration due to
gravity.

Frequency The number of pulses, repeti-
tions, or cycles per unit of time.

Frictional force A force that resists an
object’s movement.

Fulcrum A pivot point or support for a
lever.

Galaxy A rotating assemblage of stars
usually shaped like an ellipse or a 
disk with spiral arms. Our solar system
is in the Orion arm of the Milky Way
galaxy.

Galvanometer An instrument that detects
and measures the amount and direction
of electric currents.

Gamma decay See radioactive decay.
General theory of relativity Einstein’s

generalization of his special theory of
relativity to encompass accelerated
frames of reference. Relying on the prin-
ciple of equivalence, its basic postulate is
that an acceleration of a frame of refer-
ence cannot be distinguished from the
presence of gravity.

Generator A device that converts the
mechanical energy of a rotating coil to
electric energy by electromagnetic
induction.

Geocentric An adjective used to describe
a model of a solar system with the Earth
at the center and the planets and stars in
orbit around it, later replaced by the
heliocentric (sun-centered) model.

Geometric optics A branch of optics that
describes the behavior of light schemati-
cally using straight-line rays and the
laws of reflection and refraction.

Geothermal Relating to the Earth’s inter-
nal heat and to certain phenomena and
processes in which the Earth produces
(usable) heat, such as geysers and hot
springs.

Grand unified theories Theories that
seek to explain all of the elementary 
particles and the forces between them.
One result of these theories is the uniting
of the electroweak and the strong 
forces into a single fundamental 
force.

Gravitation Mutual attraction of two
objects proportional to the masses of the
objects—also called gravity.

Gravitational acceleration See accelera-
tion due to gravity.

Gravitational potential energy Stored
energy linked with the position of an
object in a gravitational field rather than
with the object’s motion.

Gravitational red shift A lengthening in
the wavelength of light toward the red
end of the spectrum as photons move
through a strong gravitational field.

Greenhouse effect The trapping of radia-
tion at long wavelengths (heat) in a sys-
tem such as a greenhouse or parked car.
Release of gases such as carbon dioxide
into the atmosphere may lead to a sim-
ilar outcome, increasing the Earth’s
temperature and leading to changes in
climate.

Hadron A meson or baryon.
Half-life The time needed for half of the

original number of atoms in a radioactive
isotope to decay. Each radioactive ele-
ment has a different half-life.

Halogen An element like iodine or chlo-
rine that readily combines with a metal
to form a salt.

Harmonic analysis Breaking down a
complex wave into its simple sine-wave
components.

Harmonic motion, simple The motion
of a system whose energy changes
smoothly from potential to kinetic
energy and back again. The motion is
symmetric about the point of equilibrium
and is graphed as a sinusoidal (sine)
curve.

Harmonic wave A wave shaped like a
sinusoidal curve.

Heat Energy that flows from an object to
another or to the surroundings when
regions of different temperatures are
involved.

Heat engine A device or motor that takes
in energy (heat), converts some of that
heat to mechanical work, and releases
leftover waste heat at a lower tempera-
ture into the surroundings.

Heat pump The opposite of a heat
engine, it moves heat from a colder
reservoir to a warmer one by work
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supplied from an external source. The
refrigerator is the best-known example.

Heisenberg uncertainty principle The
position and momentum of a particle
cannot both be known at the same time
with high precision: if we are highly cer-
tain about the position of a particle, we
will be almost completely uncertain
about its momentum, and vice versa.

Heliocentric The revolutionary model of
the solar system proposed by Copernicus
and championed by Galileo that placed
the sun rather than the Earth at the center
of the planets’ orbits. Ptolemy’s obsolete
model, in which the sun and other plan-
ets orbit the Earth, is a geocentric model.

High-grade heat Heat at temperatures of
about 500°C or higher that can be used
to run heat engines producing mechani-
cal work or electrical energy.

Hole In a semiconductor, an absence of an
electron that migrates through the mate-
rial and carries a positive charge, a result
of doping with certain elements.

Hologram A photograph of an interfer-
ence pattern produced by a laser that
forms a three-dimensional image when
illuminated.

Hydraulics The science of the effects and
applications of water and other fluids
under pressure or in motion.

Hydrodynamics The study of the mechan-
ics of fluids.

Hypothesis An educated guess or general-
ization grounded in experience and
observation that can be tested to examine
its consequences.

Ideal gas A gas in which the forces
between atoms (and potential energy) are
small enough to be ignored. The relation
between properties like temperature,
pressure, and volume is summarized in
the equation of state of an ideal gas,
PV � NkT. Most real gases behave like
ideal gases at sufficiently low pressures
and high temperatures.

Ideal heat engine A heat engine that
conforms to the Carnot cycle, which
would give it maximum efficiency.

Impulse The force acting on an object
multiplied by the time interval over
which the force acts.

Impulse-momentum principle The
impulse acting on an object produces a
change in the object’s momentum equal
in both size and direction to the impulse.

Incident Falling on or incoming, espe-
cially when applied to light.

Index of refraction A number that yields
the speed of light in a transparent mate-

rial (v � c/n). Different materials have
different indexes of refraction.

Induction The ability of an object to pro-
duce electric charge or magnetism in
another by the action of its field rather
than by touching.

Inelastic collision A collision in which
some kinetic energy is lost. In a partially
inelastic collision, the objects do not
stick together. A perfectly inelastic
collision is a collision in which the
objects stick together after colliding. The
most energy is lost in this kind of
collision.

Inertia An object’s resistance to a change
in its motion.

Inertial frame of reference A frame of
reference that does not accelerate in rela-
tion to other inertial frames—Newton’s
laws of motion apply.

Infrared light Electromagnetic waves
with wavelengths somewhat longer than
red light of the visible spectrum.

Instantaneous acceleration The rate at
which velocity is changing at a given
instant in time.

Instantaneous speed How fast an object
is moving at a particular instant. Instan-
taneous speed is related to average speed
for very short time intervals.

Instantaneous velocity A vector quantity
that is made up of an object’s instanta-
neous speed and its direction at that
instant.

Insulator A material that does not ordi-
narily permit a flow of charge through it.

Integrated circuit Many transistors,
diodes, resistors, and electrical connec-
tions all built into a single tiny chip of
semiconductor material.

Interference The combination or interac-
tion of two or more waves. In construc-
tive interference, the waves add together.
In destructive interference, the waves
cancel each other.

Interferometer An instrument that works
by splitting a beam of light and bringing
the rays back together to produce inter-
ference that can be used to make mea-
surements of velocities, wavelengths, and
distances.

Internal energy The sum of all kinetic
and potential energies of the atoms and
molecules inside a substance or system,
uniquely determined by the state of the
system.

Interstellar gas Gases that pervade the
galaxy.

Inverted In optics, an adjective describing
an image that is upside down.

Ion An atom or molecule that has gained
or lost an electron, which changes its
charge. Ionization is the formation of
ions.

Ionize To add or remove electrons from
an atom or molecule.

Isobaric An adjective describing any
process in which pressure is held
constant.

Isothermal An adjective describing any
process in which the temperature
remains the same.

Isotope A variety of an element that has
a specific number of neutrons that may
differ from other isotopes of the same
element. Carbon-12, the most common
isotope of carbon, has 6 neutrons, while
carbon-14 has 8.

Just tuning Tuning system based upon
the ideal frequency ratios between notes.

Kepler’s laws of planetary motion
Three descriptions of the movement of
the planets that illuminate how the solar
system works: The first law is that each
planet moves in an orbit that is an ellipse
with the sun at one focus. In the second
law, each planet sweeps through equal
areas in the ellipse of its orbit in equal
intervals of time. The third law says that
the square of the period of a planet’s rev-
olution around the sun is proportional to
the cube of its average distance from the
sun, so that T 2/r3 is a constant.

Kinetic energy The energy of an object
related to its motion—one-half the mass
multiplied by the square of the speed,

Kinetic force of friction The frictional
force between two objects sliding at the
point of contact of their surfaces.

Laminar Arranged in thin layers, as the
parallel streamlines in smooth flow of a
liquid.

Laser A source of a highly coherent
beam of light. Laser stands for light
amplification by stimulated emission of
radiation.

Latent heat The amount of heat needed
to produce a phase change without a
change in temperature. The latent heat of
fusion melts a substance, and the latent
heat of vaporization converts it to a gas.

Law of reflection When light is reflected
from a smooth surface, the angle the
reflected ray makes with the surface nor-
mal equals the angle the incident ray
makes with the surface normal.

Law of refraction When light passes
from one transparent medium to another,
the rays are bent toward the surface

KE �
1
2 mv2.
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normal if the speed of light is smaller in
the second medium than in the first. The
rays bend away if the speed of light in
the second medium is greater than the first.

Length contraction An effect of
relativity—an object moving at a high
speed is shortened compared with its
length at rest.

Lens A positive lens is a convex, converg-
ing lens and bends rays toward the axis.
It makes things look larger if the object
is inside the focal point. A negative lens
is a concave, diverging lens that bends
rays away from the axis. It makes things
look smaller.

Lenz’s law A description of the direction
of induced current: the current opposes
the change in magnetic flux producing it.

Lepton The lightest of subatomic parti-
cles, for example, electrons, positrons,
and neutrinos.

Lever arm The perpendicular distance
from the fulcrum to the line of action of
the force—a component of torque. Also
called moment arm.

Light In general, the visible portion of the
electromagnetic spectrum, although light
is sometimes used to encompass other
electromagnetic waves as well.

Light clock An “instrument” in a thought
experiment about relativity that uses the
speed of light over a set distance to
define a basic unit of time.

Linear displacement A vector represent-
ing how far, and in what direction, an
object has moved.

Linear motion An object’s motion from
one point to another in a straight line.

Longitudinal wave A wave whose dis-
placement or disturbance in the medium
is parallel to the direction the wave trav-
els. Sound waves are longitudinal waves.

Low-grade heat Heat at temperatures of
about 100°C or lower that is best used to
heat homes or buildings.

Magnetic dipole Consists of two equal
magnetic poles, north and south, sepa-
rated by a small distance, equivalent in
its magnetic effects to a small electric-
current loop.

Magnetic field Magnetic force per unit of
charge and unit of velocity. It is a prop-
erty of space in the region surrounding
moving charges or a magnet.

Magnetic flux A measure of the number
of magnetic field lines passing through
an area bounded by a current loop or
wire.

Magnetic force A force exerted by mov-
ing electric charges or currents on one
another.

Magnetic monopole A particle with a
single magnetic pole. Magnetic mono-
poles may have been present in the uni-
verse shortly after the Big Bang but
probably no longer exist.

Magnetic north North as indicated by a
compass. Earth’s magnetic north pole
shifts and is not the same as the geo-
graphic North Pole.

Magnetic pole A region of a magnet,
usually labeled N or S, for north-seeking
and south-seeking, that shows behavior
similar to electric charge. Like poles
repel, opposite poles attract.

Magnification The ratio of height of an
image produced by an instrument or lens
to the object’s actual height. The image
can be either enlarged or reduced. In
negative magnification, the image is
inverted.

Magnitude The size of something
expressed as a quantity.

Mass The measure of an object’s inertia,
the property that causes it to resist
change in its motion. The kilogram is the
basic metric unit for measurement of
mass.

Mass-energy equivalence Mass is
energy: increasing the mass of an object
increases its energy, and increasing the
energy of an object increases its mass.
This revolutionary idea was summarized
by Einstein in his well-known mass-
energy equation, E � mc2 (in which E is
energy, m is mass, and c is the velocity
of light).

Mass number The total number of neu-
trons and protons in an element or its
isotopes. Carbon-14 has 6 protons and
8 neutrons yielding a mass number
of 14.

Mechanical advantage The ratio of the
output force to the input force of a sim-
ple machine.

Mechanics The branch of physics that
studies forces and motion.

Meson A subatomic particle of intermedi-
ate weight, for example, a pion or a
kaon. All mesons lack spin.

Metal Any of a number of elements that
are opaque, shiny, conductive, and easy
to shape. Their atoms have one to three
electrons outside of a filled electron
shell.

Metric system The International System
of Units (Système international d’unités),
abbreviated SI, is a decimal system of
measurement. The seven fundamental SI
units (“base units”) are the meter (length),
kilogram (mass), second (time), ampere
(electric current), kelvin (temperature),

mole (amount of substance), and candela
(intensity of a light source).

Microscope An instrument that uses at
least two positive lenses to produce a
magnified image of a small object.

Microwave An electromagnetic wave
with wavelengths between the radio
waves and infrared waves of the electro-
magnetic spectrum and commonly used
in cooking and radar.

Moderator Material used in a nuclear
reactor to slow down the neutrons pro-
duced in fission reactions.

Modern physics The subfields of
physics—atomic, nuclear, particle, and
condensed matter—that largely came
into existence and made great advances
in the 1900s.

Molecule A combination of atoms of an
element or of a chemical compound.

Moment of inertia See rotational inertia.
Momentum The product of the mass of

an object and its velocity, p � mv, also
called quantity of motion by Newton.

Myopia A condition in which the lens
system of the eye is too strong, allow-
ing people to see near objects clearly
but not distant objects. Also called
nearsightedness.

Natural radioactivity Penetrating radia-
tion produced without need of special
preparation by ores or compounds con-
taining radioactive elements.

Negative lens A lens that causes light
rays to diverge more than when the rays
entered the lens.

Negative work Work done by a force
acting in a direction opposite to the
object’s motion.

Net force The vector sum of the forces
acting on an object.

Neutrino An elusive particle that is one
of the products of beta decay. Its anti-
particle is the antineutrino.

Neutron A particle with no charge,
roughly the mass of a proton, found in
atomic nuclei.

Newton The metric unit of force: mass
times acceleration, or kilograms times
meters per second squared.

Newton’s law of universal gravitation
The gravitational force between two
objects is proportional to the mass of
each object and inversely proportional to
the square of the distance between the
centers of the masses:

It is attractive and acts along the line that
joins the two objects.

F �
Gm1m2

r2
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Newton’s laws of motion The first law:
Unless a force is applied, an object
remains at rest or moves with constant
velocity. The second law: The accelera-
tion of an object is directly proportional
to the magnitude of the imposed force
and inversely proportional to the mass of
the object, a � Fnet /m, or Fnet � ma.
The third law: If object A exerts a force
on object B, object B exerts a force on
object A equal in magnitude and oppo-
site in direction to the force exerted
on B.

Noble gas Gases that do not react readily
with other elements because their outer
shells are closed. (See shell.) Found in
column VIIIA of the periodic table, the
noble gases are helium, neon, argon,
krypton, xenon, and radon.

Node The point in a standing wave where
there is no motion.

Normal force The component of force on
an object that acts perpendicular to the
surface of contact, as opposed to the fric-
tional force, which acts parallel.

Nuclear fission A nucleus-splitting reac-
tion accompanied by conversion of part
of the mass of the nucleus to kinetic
energy. The nucleus breaks into two
roughly equal parts (the fission frag-
ments) rather than just emitting a
particle, as in most other nuclear
reactions.

Nuclear fusion A reaction that combines
small nuclei to produce somewhat bigger
nuclei and a large release of energy.

Nuclear physics The subfield of physics
devoted to the study of the nucleus of
the atom.

Nuclear pile Another name for a nuclear
reactor, particularly the early reactors
built using carbon bricks.

Nuclear reaction Changes caused in the
nucleus of atoms, which may result in
one element turning into another.

Nucleon A particle that inhabits the
atomic nucleus: a proton or neutron.

Nucleus The small, dense, positively
charged center of an atom made up of
protons and neutrons.

Ohm’s law Current flowing through a
portion of a circuit equals the voltage
difference across that portion divided by
the resistance, I � �V/R.

Optics The subfield of physics devoted to
the study of light and vision.

Organic Referring to the chemistry of car-
bon compounds.

Oscillation A repeated cycle, vibration, or
movement about an equilibrium point,
extremely common phenomena in nature.

Oscilloscope An electronic device that
plots changes in electric voltages on a
screen.

Parallel circuit A circuit with elements
connected by more than one path so that
the current divides and rejoins.

Partially inelastic collision A collision
in which some energy is lost, but the
objects do not stick together after
collision.

Particle A single point of mass, often, a
molecule, atom, or even smaller basic
particle such as a quark.

Particle physics The subfield of physics
that studies subatomic particles (quarks,
etc.).

Pascal’s principle Any change in fluid
pressure is transmitted uniformly in all
directions in the fluid.

Perfectly inelastic collision A collision
in which the greatest portion of energy is
lost. Objects do not bounce at all but
instead stick together after collision.

Period In astronomy, the time it takes for
an object to return to the point where it
started, for example, a complete plane-
tary orbit. In physics, a complete cycle,
as of a wave.

Periodic table of the elements A table
that orders the elements by atomic
weight and atomic number. Beginning
with hydrogen, the lightest, the table also
groups elements (in vertical columns in
the typical format) with other elements
with like properties.

Periodic wave A wave made of pulses
separated by equal time intervals.

Perpetual-motion machine A perpetual-
motion machine of the first kind would
put out more energy as work or heat than
it takes in (a violation of the first law of
thermodynamics and the conservation of
energy). A perpetual-motion machine of
the second kind violates the second law
of thermodynamics by claiming to con-
vert heat completely to work or to sur-
pass the Carnot efficiency.

Phase From the word phasis, meaning
manner, aspect, or stage of being. Also,
a state of organization of matter, such as
solid, liquid, or a gas.

Phases of the moon The appearance or
aspect of the moon and other planets at
given times in their cycles.

Phosphor A substance that emits light
when struck by fast-moving particles.

Photon A quantum of electromagnetic
energy, especially a particle of light.

Physical optics The branch of optics that
treats light as an electromagnetic wave to
examine its effects and properties.

Pitch A musical term for height or 
depth of tone. The sound waves of
notes with higher pitches have higher
frequencies.

Planck’s constant A constant h, which
determines the size of a quantum of light
energy for a given frequency, as summa-
rized in the equation E � hf.

Polarize To separate positive and negative
areas of charge on an object, for exam-
ple, a magnetic or electrically charged
body. In optics, to select a specific direc-
tion of oscillation of the electric field in
a light wave.

Polarized light Light for which the elec-
tric field vector oscillates in a specific
direction.

Positive lens A lens that causes light rays
to converge more than when the rays
entered the lens.

Positron A positive electron; the antiparti-
cle of an electron. Positrons are emitted
in beta-plus decay.

Postulate A fundamental statement (pos-
sibly one of several) that is the founda-
tion of a theory.

Potential energy Stored energy associ-
ated with the position of an object rather
than the object’s motion.

Power The rate of doing work, found by
dividing the amount of work done by the
time, P � W/t.

Powers of 10 The basis of scientific nota-
tion, the powers of 10 give the multiples
of 10 as superscripts or exponents: for
example, 104 equals 10 � 10 � 10 � 10.

Pressure The ratio of a force to the area
over which it is applied, or force per unit
of area.

Principle of equivalence Part of the
foundation of the general theory of rela-
tivity, the principle of equivalence states
that it is impossible to distinguish an
acceleration of a frame of reference from
the effects of gravity. For example, the
mass of an object measured by its inertia
equals its mass measured by the action 
of a gravitational field on it.

Principle of relativity The statement that
the laws of physics are the same in any
inertial frame of reference.

Principle of superposition When two
or more waves combine, the disturbance
is equal to the sum of the individual
disturbances.

Probability The likelihood of an event
happening.

Programming language A set of
systematized instructions to the com-
puter that eases the programming 
of a computer. A high-level
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programming language is adapted to 
handle certain kinds of applications by
its designers. FORTRAN (Formula
Translation), for example, is designed
for mathematics.

Projectile motion The trajectories and
velocities of objects that have been
launched, shot, or thrown.

Propagate In physics, to transmit, espe-
cially a wave, over a distance.

Proper time The time interval between
two events measured in a frame of refer-
ence in which the two events occur at the
same point in space.

Proportion A comparison of the ratio 
of quantities to one another or to a
whole.

Proton A positively charged particle
found in atomic nuclei. The number of
protons in a nucleus determines an
atom’s chemical properties.

Quantization Division into the smallest
possible discrete amounts (quanta) of
energy or mass.

Quantum The smallest quantity of energy
or mass of a particular kind. For exam-
ple, a photon is a quantum of light.

Quantum mechanics Mechanics (the
study of forces and motion) applied to
the atomic and nuclear level and dealing
with photons and other quanta that show
both wave and particle behavior.

Quantum number One of a set of num-
bers that relate properties of electrons or
other particles at the subatomic level.
These quantum numbers determine an
electron’s orbit—no two electrons of an
atom can have the same set of quantum
numbers.

Quark One of the particles that make up
mesons and baryons (for example, neu-
trons and protons). There are six kinds of
quarks.

Radian A unit of angular measurement
found by dividing the distance traveled
along an arc length s by the radius of
the circle r, or s/r.
One revolution � 360° � 2	 radians.

Radiation The flow, emission, or propa-
gation of energy by electromagnetic
waves or particles.

Radioactive decay The change of an ele-
ment into another element or state as a
result of changes in its unstable atomic
nucleus. There are three kinds of decay,
named after their radioactive emissions:
alpha (helium ions), beta (electrons), and
gamma (X rays). Any nucleus with more
than 82 protons (the number in lead) is
inherently unstable.

Radioactivity Spontaneous emission of
particles from the nucleus of the atoms
of certain unstable elements.

Radius A straight line from the center of a
circle or sphere to its outer edge.

Rate One quantity divided by another,
especially a quantity divided by a unit of
time. Rates of time like miles per hour
and meters per second are important in
measuring motion.

Reaction force An oppositely directed
force in response to the initial force in an
interaction governed by Newton’s third
law of motion.

Real image An image formed by light
rays converging to the image point. Gen-
erally, real images formed by single
lenses or mirrors are inverted.

Recoil A brief interaction between two
objects that causes them to move in
opposite directions.

Reflection Light waves bouncing off a
surface (a mirror or the surface of a body
of water, for example) in such a way that
the angle of the incoming ray is the same
as the angle of the reflected ray.

Refraction Light waves passing through a
transparent surface (such as a lens or a
prism) and being bent by it.

Relativity The discovery that matter,
motion, space, and time are interdepen-
dent and that our frame of reference
often governs how we view and explain
their interactions.

Rem (roentgen equivalent in man) The
unit used to measure exposure to radia-
tion. The average American receives
about 360 millirems of radiation a year
from various sources.

Resistance The property in a component
in a circuit of opposing the flow of elec-
tric current and generating heat.

Resistivity The inherent property or ten-
dency of a material to resist the flow of
current as measured in a sample of the
material.

Rest energy Energy that an object 
has simply by virtue of its mass,
E0 � mc2, an expression of mass-energy
equivalence.

Rest length Length measured by an
observer at rest relative to the distance
measured.

Restoring force The force or system
of forces that returns an object to
equilibrium.

Retina A layer of cells at the back 
of the eye that detects light. The cells
are of two types, called rods and 
cones.

Retrograde motion Backward movement
of a planet in its orbit, an illusion caused
by the position of the planet with respect
to the Earth.

Reversible Describes a thermodynamic
process that is always near equilibrium
and can be turned around and run the
other way at any point in the process.

Revolution One complete cycle in the
motion of an object about some point.
The period of each of the Earth’s revolu-
tions about its axis is one day.

Right-hand rule To find the direction of a
rotational velocity vector, curl your fin-
gers in the direction of the rotation. Your
thumb will then point in the direction of
the vector. Other right-hand rules are
used to describe the directions of mag-
netic forces and fields.

Rotational acceleration The rate of
change of rotational velocity.

Rotational displacement The angular
measure of how far an object has rotated,
usually expressed in radians.

Rotational inertia Resistance of an
object to change in its rotational motion
that depends on an object’s mass and the
distribution of mass around the axis.
Also called moment of inertia.

Rotational motion Motion of an object
that turns on an axis.

Rotational velocity The rate of rotation—
how fast an object rotates. Revolutions
per minute (rpm) is a common unit of
measurement for it.

Rydberg constant A constant used in
computing the wavelengths and the
lines in atomic spectra, particularly for
hydrogen.

Satellite An object that orbits a planet.
The moon is the Earth’s only natural
satellite, although many artificial satel-
lites have recently been placed in orbit.

Scattering A process in which light is
absorbed and then re-emitted in different
directions.

Scattering experiment A kind of experi-
ment on atomic nuclei in which particles
are used as projectiles to produce
changes in target nuclei, among them
emission of other particles.

Scientific method The systematic study
of phenomena by people engaged in sci-
ence. The way scientists go about inves-
tigating phenomena normally begins with
observation and experiments to test gen-
eralizations and hypotheses that can be
incorporated into tested, comprehensive
theories. Theories often predict new 
areas to explore.
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Scientific notation A system for writing
numbers succinctly and clearly that relies
on the powers of ten, for example,
12 150 000 000 is written 1.215 � 1010.

Second law of thermodynamics No
engine working in a continuous cycle 
can take heat from a reservoir at a single
temperature and convert that heat com-
pletely to work (Kelvin’s statement).
Heat will not flow from a colder to a
hotter body unless some other effect is
also involved (Clausius’s statement).

Selective absorption A process in which
some wavelengths of light are absorbed
more than other wavelengths.

Self-induction Voltage induced in the
same coil that produces the changing
magnetic flux.

Semiconductor A substance with proper-
ties intermediate between electrical insu-
lators and conductors. A fast-growing 
use of semiconductors is computer chips,
where their properties can be customized.

Series circuit A circuit connected in a
single loop, so that current passes
through each component in succession.

Shell A grouping of electron orbits about
the atomic nucleus defined by similar
energy levels. Each shell accommodates
a certain number of electrons.

Simple harmonic motion See harmonic
motion, simple.

Simple machine Any elementary
mechanical device that multiplies the
effect of an applied force, for example,
levers, wedges, and pulleys.

Sink A place or device for disposing of
energy in a system.

Sinusoidal curve The graph of the
trigonometric sine function that illus-
trates simple harmonic motion. The
graph of alternating current is a sinu-
soidal curve. Also called a sine curve.

Slope The change in the vertical coordi-
nate of a graph divided by the change in
the horizontal coordinate. In a graph of
an object’s position plotted against time,
the slope at a point indicates how fast the
object is moving.

Software A computer program loaded
into a computer to make it run or per-
form specific tasks, as opposed to hard-
ware, the computer equipment (hard
drive, monitor, computer chips, etc.).

Solar system The sun and the planets,
moons, and other objects that orbit it.

Solid-state electronics Electronic cir-
cuits that contain semiconductor
devices—for example, transistors that
control current without relying on mov-
ing parts or vacuum tubes.

Sound wave A longitudinal wave that
propagates pressure variations through
air or other media. Human beings gener-
ally hear sound waves from 16 Hz to 
20 000 Hz in pitch.

Space-time continuum A four-
dimensional framework for describing
an event that recognizes that the three
dimensions of space and time are not
independent of each other and that space
is curved.

Special theory of relativity Einstein’s
“limited” theory, based on two basic pos-
tulates: the laws of physics have the
same form in any inertial frame of refer-
ence (the principle of relativity), and the
speed of light is the same in any inertial
frame of reference.

Specific heat capacity A property of
a material that is the quantity of heat
needed to change a unit of mass by a
unit of temperature (for example, to
change 1 g of a substance by 1°C).

Spectrum, atomic and electromagnetic
See atomic spectrum and electromagnetic
spectrum.

Speed How fast something is moving
without regard to direction of motion—
not a synonym for velocity.

Speed of light The speed of light is the
maximum speed in the universe and a
constant symbolized by c. The speed of
light is roughly equal to 3 � 108 m/s or
186 282 miles per second.

Spring constant A constant describing
the relation between how far a spring is
stretched or displaced and how much
force it takes to do the stretching: a stiff
spring has a large spring constant.

Standard model The evolving framework
currently in use for exploring the funda-
mental forces and particles at the sub-
atomic level that includes theories of
quarks, the electroweak force, and the
strong nuclear interaction.

Standing wave An unchanging pattern of
waves or oscillations formed by interfer-
ence of waves traveling in opposite
directions.

Static electricity The electric effects pro-
duced by charged objects that do not
depend on motion of the charges.

Static force of friction A frictional force
that does not involve motion in the direc-
tion of the force.

Steady state The relative equilibrium of 
a system if conditions are not changing
with time.

Step down To convert electric current
from a higher to a lower voltage. To

“step up” is the opposite process—from
lower to higher voltage.

Streamline Graphic illustrations of the
flow of water, air, and other fluids.

Strong nuclear interaction A fundamen-
tal force that binds together the quarks in
neutrons and protons (and other baryons
and mesons).

Subtractive color mixing The production
of different colors by absorbing different
wavelengths from white light.

Superconductivity The loss of all elec-
trical resistance to the flow of current
below a critical (usually very low)
temperature.

Superfluid A fluid that loses its viscosity
at a very low temperature.

Surface normal A line drawn perpendicu-
lar to a surface.

Symmetry A common quality among
objects, plants, and animals of having a
similar shape or arrangement on either
side of a line or lines drawn through
them.

Synchronous orbit An orbit timed to a
planet’s rotation to keep a satellite above
the same point of the planet’s surface.

System A specific set of parts or objects
that act together or on each other.

Telescope An instrument that uses two or
more lenses or mirrors to bring much
closer to the eye an image of a distant
object.

Temperature A quantity that tells which
direction heat will flow. If two objects
are at different temperatures, heat flows
from the higher to the lower temperature.

Terminal velocity The point at which air
resistance on a falling object equals the
gravitational force, producing a net force
of zero, which ends the object’s accelera-
tion. The object will continue down at
constant velocity.

Terrestrial telescope A type of
telescope—spyglasses, binoculars, and
opera glasses, especially—used mainly
for making observations of Earth-based
phenomena rather than the heavens.
Unlike astronomical telescopes, terres-
trial telescopes are designed to turn the
image right side up.

Theory An organized set of principles
used to explain known facts and to pre-
dict new phenomena as a guide to further
investigation.

Theory of everything A theory that
would succeed in unifying gravity with
the strong and electroweak forces to
encompass all of the forces of nature in
a single force.
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Thermal conductivity The property of a
substance that determines how swiftly it
conducts heat. Metals are better conduc-
tors than wood or plastic.

Thermal equilibrium The state at which
the physical properties, like volume, of
objects no longer vary with regard to
each other, and the objects reach the
same temperature.

Thermal power plant Produces electric-
ity by utilizing heat obtained from
sources such as coal, oil, natural gas,
nuclear fuels, or geothermal energy to
run a heat engine.

Thermodynamics The subfield of physics
concerned with temperature, heat, and
energy.

Thermonuclear An adjective describing
nuclear fusion chain reactions that go on
at very high temperatures, as in stars or
certain kinds of bombs.

Thin-film interference Interference of
light reflected from the top and bottom
surfaces of a very thin film of a transpar-
ent material.

Thought experiment A kind of experi-
ment devised by Einstein to test rela-
tivistic concepts. Although the velocities
involved are enormous, the consequences
can be imagined and explored. As equip-
ment has improved, a number of the
results of thought experiments have been
confirmed by observation.

Time dilation An effect of relativity in
which the observer of an extremely fast-
moving object experiences a longer span
of time than an observer moving with
that object.

Tokamak An experimental doughnut-
shaped nuclear-fusion reactor.

Torque The product of a force and its
lever arm (
 � Fl) that causes an object
to rotate.

Total internal reflection Reflection
inside a transparent object that causes all
light to be reflected. This occurs when
the angle of incidence exceeds a certain
value.

Trajectory The path of a projectile or
other object in motion.

Transformer A device that steps
(adjusts) alternating-current voltage up or
down to suit the needs of a particular
application.

Transistor An electronic device made
from semiconductors that carries out a
number of functions, among them, pro-
ducing variations in electric current,
amplifying radio signals, and serving as 
a voltage-controlled switch.

Transverse wave A wave whose distur-
bance or displacement is perpendicular 
to its direction of travel. Electromagnetic
waves are transverse waves.

Triple point of water The temperature at
which ice, water, and water vapor are all
in equilibrium, 0° in the Celsius scale.

Turbine A device for generating power
that is driven by a fluid (steam, for
example) moving through a system of
fixed and turning blades.

Turbulent flow More complicated, less
smooth flow of a fluid caused by random
fluctuations usually resulting from an
increase in speed or decrease in 
viscosity.

Ultraviolet light Electromagnetic waves
with wavelengths shorter than violet light
of the visible spectrum.

Unified field theory The theory seeking
to unite the four fundamental forces—the
strong nuclear interaction, electromag-
netic force, gravitational force, and weak
nuclear force—that relies on the behavior
of their fields to explore and analyze
them.

Uniform acceleration Acceleration with
a steady rate of change in velocity, the
simplest kind of accelerated motion.

Universal gravitational constant A con-
stant G that equals 6.67 � 10�11 N·m2/kg2.
Because this constant is so small, gravi-
tational forces between two objects of
ordinary size are almost unnoticeable.

Unpolarized light Light for which the
electric field vector oscillates in random
directions.

Vacuum The absence of matter, espe-
cially air.

Vector A quantity that has both magni-
tude and direction, often represented by
an arrow. The length of the arrow is pro-
portional to the size of the vector quan-
tity and the angle shows its direction.

Vector quantity Any quantity, such as
velocity or a force, for which both the
size and the direction are needed for a
complete description.

Velocity A vector quantity that describes
how fast an object is moving and which
direction it is moving.

Virtual image An image formed by light
rays that are diverging from where the
image appears to be. Generally, virtual
images formed by single lenses or mir-
rors are right side up.

Viscosity A measure of the frictional
forces between the layers of a fluid pro-
ducing resistance to flow. Highly viscous
liquids flow slowly.

Voltage A change or difference in electric
potential measured in volts.

Voltaic pile A battery made of alternating
disks of two different substances (Volta
used zinc and silver) with a moistened
soft substance (such as paper) layered
between paired disks.

Voltmeter An instrument for measuring
voltage.

Waste heat Heat released by a heat
engine at a lower temperature into its
surroundings.

Wave A movement of energy through
matter and space (and time).

Wavefront A surface within a wave for
which all points are at the same phase
(stage of oscillation).

Wavelength The distance between the
same points of successive pulses in a
wave. Its symbol is �.

Wave pulse A single brief wave traveling
through a substance or system.

Weak nuclear force A fundamental force
involved in the interactions of leptons in
beta decay.

Weight The gravitational force on an
object, in symbols, W � mg.

Work Force applied to an object times the
distance moved, W � Fd. The force acts
along the object’s line of motion. The
joule is the metric unit of work.

X rays Highly penetrating electromagnetic
waves with a very short wavelength, now
widely used in medicine to take pictures
of internal organs and bones.

Zeroth law of thermodynamics A basic
assumption of thermodynamics: objects
in thermal equilibrium have the same
temperature.
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alternating current, 271–275
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ammeters, 267–268
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bicycles and, 159–163
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antinodes, 315
antiparticles, 413, 459–460
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Newton and, 61–62
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Roman Catholic Church and, 60
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early Greeks and, 381, 383, 413
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Balmer’s formula, 397
banked curves, 84–86
barium, 419, 470
barometers, 174, 176
baryons, 459–460
baseball, 186
basketballs, 50–51
batteries

ammeters and, 268
dead, 264
electric circuits and, 258–264, 268
electrostatic force of, 263–264
magnets and, 285

Becker, Wilhelm, 410
Becquerel, Antoine–Henri, 393, 412
Bernoulli’s principle, 183–186
beta radiation, 394, 413, 415, 422
bicycles, 159–163
Big Bang, 433, 463–464
Big Dipper, 87
bimetallic strips, 272
binoculars, 375–376
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blood pressure, 175
boats, 180
Bohr, Niels, 381, 419
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features of, 398–400
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quantum mechanics and, 398, 402
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Brahe, Tycho, 88–89
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bubble chambers, 458
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buoyant force, 171, 178–180
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calories, 200–201
capacitors, 249
carbon compounds, 384
Carnot, Sadi, 216–220
Carnot efficiency, 218, 223–225
Carnot engine, 216

equilibrium and, 217–218
isothermal process and, 218
reversibility and, 217–220
second law of thermodynamics and, 218–220

cathode rays, 389–391
cathode ray tubes (CRTs)

electromagnetic spectrum and, 389–391
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television and, 390
X-rays and, 392–393
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cell membranes, 260–261
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Celsius temperature scale, 193–195
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centrifugal force, 438
centripetal forces
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Ferris wheels and, 83, 86
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Newton’s second law of motion and, 80–81, 86
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size of, 81–82
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subtractive mixing and, 337
thin films and, 340–342
wavelength and, 335–338
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bicycle gears, 162–163
blue sky, 338–339
car horn, 320
Chernobyl accident, 424–425
coffee pots, 5
curveballs, 186
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Newton’s third law of motion and, 67–70
normal, 68, 85–86
reaction, 70
restoring, 117
simple machines and, 103–104
sky diving and, 71
tablecloth trick and, 64–65
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Hahn, Otto, 419
hair dryers, 274
half-life, 415–416
halogens, 388
harmonic analysis, 321–325
harmonic motion, 115–118
harmonic waves, 315

creating, 312
music and, 319, 321–325

heat, 191
change of phase and, 197–198
conduction and, 204–205, 207
convection and, 205, 207
defined, 196
entropy and, 221–223
flow of, 204–207
freezing and, 197–198
high-grade, 225-226
ideal gas and, 202
isothermal process and, 218
latent, 197
low-grade, 225–226
melting and, 197–198
radiation and, 205–207
specific heat capacity and, 195–198, 202
temperature and, 196–197
thermal power plants and, 223–226
waste, 224
See also thermodynamics

heat engines
Carnot engine and, 216–220
cylinders and, 213

efficiency and, 214–220
first law of thermodynamics and, 214–216, 218
fuel and, 213–214
ideal, 218
operation of, 213–214
second law of thermodynamics and, 216–220
spark plugs and, 213

heat pumps, 220–221, 223
heat reservoir, 214
heavy water, 422
Heisenberg, Werner, 402
Heisenberg uncertainty principle, 402
heliocentric model, 60, 88, 90
helium, 180
Henry, Joseph, 294
Hertz, Heinrich, 332
high-grade heat, 225–226
high-temperature superconductors, 468–470
Hiroshima, 426
Hittorf, Johann, 389
holograms, 471–472
hot-air balloons, 180, 203–204
Hubble, Edwin, 462
Huygens, Christian, 305
hybrid automobiles, 216–217
hydraulic jacks, 172–173
hydrogen, 409

atomic spectrum and, 396–398
balloons and, 180
Thomson and, 391

hydrogen bomb, 427
hydrogen economy, 386–387
hydrogen fuel cells, 386–387
hypothesis, 3–4

ice skaters, 155–156
ideal gas, 202–204
image distance, 358, 360

curved mirrors and, 368–370
negative lens and, 366–367
positive lens and, 364–366

implosion, 426
impulse, 124

bouncing balls and, 125–126, 134–135
collisions and, 125–139
defined, 126
momentum and, 125–128
recoil and, 131–133

impulse-momentum principle, 126–128
index of refraction, 359
induction, 241–242

Faraday’s law and, 292–296
generators and, 296–297
self-induction and, 294
traffic light sensors and, 295
transformers and, 297–298

inelastic collisions, 133–136
inertia, 63

angular momentum and, 155–159
moment of, 152
rotational, 152–159
twirler’s baton and, 154

inertial frames of reference, 438
infrared light, 334
Inquisition, 17
instantaneous acceleration, 26
instantaneous speed, 21–22
instantaneous velocity, 24, 28
insulators, 240–244
integrated circuits (ICs), 467
interference, 314–315

diffraction and, 342–346
double-slit experiment and, 338–340
fringe patterns and, 339–342
gratings and, 345–346
light and, 338–342
thin-film, 340–342

internal energy, 199–200
ionization, 252, 414
ions, 260–261
isobaric processes, 203–204
isothermal processes, 202–203, 218
isotopes, 411–415

Japan, 426
jet engines, 215
Jewish persecution, 419
Joule, James Prescott, 198–200
joule (J), 199
junctions, 465
Jupiter, 183

kaons, 459
Kelvin, Lord (William Thomson), 218–219, 221–222
Kelvin temperature scale, 195
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Kepler, Johannes, 323
angular momentum and, 157, 159
planetary motion and, 89–96, 157–159

kilocalories, 200–201
kilowatt-hour (kWh), 270–271
kinetic energy, 106, 308, 337–338

Bernoulli’s principle and, 183–185
bouncing ball and, 125–126
collisions and, 125–139
conservation of energy and, 110–116
defined, 106
electric circuits and, 269
electric potential and, 250
elementary particles and, 458–459
entropy and, 222–223
harmonic motion and, 115–118
heat flow and, 204–207
ideal gas and, 202
internal energy and, 199–200
negative work and, 107
pendulums and, 110–113, 135
stopping distance and, 107
thermodynamics and, 199–201, 222–223 (see also

thermodynamics)
krypton, 419

laminar flow, 182–183
laser refractive surgery, 373
lasers, 373, 471–472
LASIK (laser assisted in situ keratomileusis), 373
latent heat, 197
latent heat of vaporization, 197
Latin, 60
Lavoisier, Antoine, 384
law of reflection, 357
law of refraction, 360
law of universal gravitation, 60–61, 90–93, 245–246
lead, 413
length

contraction and, 442–445, 451–452
relativity and, 442–445, 451–452
rest, 444

lenses
accommodating, 370, 372
binoculars and, 375–376
converging, 364–366
diverging, 366–367
eyeglasses and, 371–372
focal length and, 364–365
focal point and, 364
image distance and, 365–366
magnification and, 365–366
microscopes and, 372
negative, 366–367
objective, 372
positive, 364–366
ray-tracing and, 364–367
telescopes and, 372, 374–375

Lenz’s law, 293–294
leptons, 459–460
lever arm, 150
life sciences, 5–6
light, 330

aperture and, 345
atomic spectrum and, 396–400
birefringence and, 348–349
blackbody and, 398
black holes and, 452
coherent, 471–472
color and, 331, 335–338 (see also color)
de Broglie waves and, 400–401
diffraction and, 342–346
diffused, 337
dispersion and, 363–364
Doppler effect and, 320, 463
double-slit experiment and, 305, 338–340
eclipses and, 93
electromagnetic waves and, 205, 331–334
focusing, 367–370
fringe patterns and, 339–342, 348–349
geometric optics and, 356
gravitational field and, 450–451
holograms and, 471–472
human eye and, 370–376
image distance and, 365–366
image formation and, 355–380
infrared, 334
lenses and, 364–367, 370–376
luminiferous ether and, 438–439
Michelson-Morley experiment and, 439–441
particle/wave duality of, 305
photons and, 305, 398, 400–401
polarized, 346–349
prisms and, 337, 363–364
quantization of energy of, 398

rainbows and, 2–4, 10, 362–363
red shift and, 451
reflection and, 356–358
refraction and, 359–364
relativity and, 438–442, 450–451
resolution and, 345
scattered, 356
soap films and, 331, 340–342
spectrometers and, 346
speed of, 332–333, 438–442
stroboscopes and, 40
thin films and, 340–342
ultraviolet, 334
universal expansion and, 462–463
virtual image and, 358
wave interference and, 338–342
white, 337, 363–364

light bulbs
electric currents and, 258–267
parallel circuits and, 266–267
series circuits and, 265–266

light clock, 442–443
lightning, 252
linear displacement, 147
linear motion, 146
liquid crystal displays (LCDs), 390
liquid crystals, 470
liquid nitrogen, 469
lithium, 427–428
Little Boy bomb, 426
longitudinal waves, 309–310
Lopez, Ben, 114
low-grade heat, 225–226
luminiferous ether, 438–439
lunar eclipse, 93

magicians, 64
magnesium fluoride, 343
magnetic dipoles, 284
magnetic fields, 284, 287
magnetic flux, 293–294

generators and, 296–297
transformers and, 297–298

magnetic force, 282–284
amperage and, 286–287
basic nature of, 287
direction of, 287–288
electric current and, 285–288
on a moving charge, 287–288

magnetic monopoles, 284
magnetic poles, 282–284
magnetic resonance imaging (MRI), 470
magnetic torque, 289–290
magnetism

amperage and, 287
cathode rays and, 389
compass and, 284–286
Coulomb’s law and, 283–284
current loop effects and, 288–292
Earth and, 284–285
electric current and, 285–292
electromagnets and, 290–292
electrons and, 389, 391
Faraday’s law and, 292–296
generators and, 296–297
induction and, 292–296
Meissner effect and, 469
pole strength and, 283
superconductivity and, 468–470
torque and, 289–290
transformers and, 297–298
wave behavior and, 305

magnets, 281
batteries and, 285
field lines and, 284
Gilbert and, 285
magnetic force and, 282–285
making electromagnets and, 290–292
Oersted and, 285–286
poles and, 282–284
speakers and, 317–318
Volta and, 285

magnification, 366
binoculars and, 375–376
equation for, 365, 369, 374
microscope and, 273
telescope and, 372, 374–375

magnitude, 23
Manhattan Project, 420, 426–427
Mariotte, Edme, 177
Mars, 88
Marsden, Ernest, 394–395
mass

comparison of, 64–65
defined, 63–64

elementary particles and, 458–459
gravitational acceleration and, 66–67
harmonic motion and, 115–118
kinetic energy and, 106–107
momentum and, 125–139
potential energy and, 108
recoil and, 131–133
rotational motion and, 145–163
springs and, 116–118
weight and, 65–67

mass conservation, 384
mass-energy equivalence, 445–449
mass number, 412–413
Mathematical Principles of Natural Philosophy,

The (Newton), 17, 61
mathematics

algebra concepts, 475–477
balanced use of, xi–xii
calculus, 61
decimal fractions, 478
important role of, 7–9
Newton and, 61
percentages, 478–479
powers of ten operations, 480
proportion, 8
scientific notation, 479–480
sine function, 360n
slope, 28
vectors, 24, 482–485
See also equations

Maxwell, James Clerk, 205, 334
electromagnetic waves and, 331–333
ether and, 438–439
field lines and, 247
wave speed measurement and, 332–333

mechanics, 6
Meissner effect, 469
Meitner, Lise, 419
melting, 197–198
Mendeleev, Dmitri, 388–389
Mendez, Ricky, 64
mercury, 174, 176, 193, 243, 440
merry-go-rounds, 146–149, 152
mesons, 459–460
metric system, 8–9, 20, 174, 193–195
Michelson, Albert, 439–440
Michelson interferometer, 439–440
Michelson-Morley experiment, 439–441
microscopes, 372
microwaves, 390
Milky Way, 462, 464
mirrors

concave, 367–369
convex, 369–370
curved, 367–370
focal point and, 368
focusing and, 367–370
image distance and, 358, 368–370
light clock and, 442
magnification and, 369
Michelson-Morley experiment and, 439–441
object distance and, 358, 368–370
plane, 358
ray-tracing and, 367–370
reflection and, 356–358
surface normal and, 357
virtual image and, 358

moderators, 421, 424
modern physics, 6
molecules, 385, 338
moment of inertia, 152
momentum, 124

angular, 155–163, 399, 401
bicycles and, 159–163
bouncing balls and, 125–126, 134–135
collisions and, 125–139
conservation of, 128, 130, 155–159
defined, 126
egg toss and, 129
impulse and, 125–128
initial, 128
Kepler’s second law and, 157, 159
Newton’s second law and, 126–128
Newton’s third law and, 128, 130
as quantity of motion, 155
recoil and, 131–133
spinning tops and, 161–162
yo-yos and, 158

Moon
Kepler’s laws and, 94–95
phases of, 93–95
tides and, 94–95

Morley, Edward, 439–440
motion, 17–18, 38, 58

acceleration and, 19, 25–27, 31–33, 39–42 
(see also acceleration)
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motion—Cont
air resistance and, 41, 60, 71–72
Aristotle and, 61
average speed and, 19–21
basketballs and, 50–51
bouncing ball and, 125–126
bullets and, 49
centripetal, 80–86, 91–92
circular, 79–86
of connected objects, 72–73
displacement and, 482–483
ellipses and, 89–90, 95, 157, 159
epicycles and, 87–88
falling objects and, 39–46, 59–61, 71–72, 90–93
fluids and, 181–185, 204–207
footballs and, 49–50
force and, 61–64
frames of reference and, 435–439, 452
Galileo and, 39–41, 59–60
graphing of, 27–31
gravity and, 39–42
harmonic, 115–118
hitting a target and, 49–52
impulse and, 125–139
inertia and, 63
instantaneous speed and, 21–22
Kepler and, 89–97, 157, 159
kinetic energy and, 106–107 (see also kinetic energy)
linear, 146
mass and, 63
maximum distance and, 52
Michelson-Morley experiment and, 439–441
momentum and, 125–139
Newton and, 58–86, 91–92, 111, 126–133,

153–154, 313
pendulums and, 103, 110–113
periodic, 90, 96, 115–117
perpetual, 226–228
planetary, 87–96, 157, 159
projectile, 39, 46–52
relativity and, 435–452
retrograde, 87–88
rotational, 145–163
sky diving and, 71
throwing a ball and, 72
tidal, 94–95
time of flight and, 48–49
trajectory and, 46–49
vectors and, 24, 482–485
velocity and, 22–24
work and, 103–107

multimeters, 267–268
muons, 458
music, 316–317

beat frequency and, 324–325
dissonance and, 324
fifth harmonic, 323
fourth harmonic, 323
harmonic analysis and, 319–325
instrument tones and, 322
interval definition and, 322–324
major chords, 324
major third, 323
octaves, 323
physics of, 321–325
pitch, 325
scales, 322–325
tuning and, 323–324

Mylar, 180
Myopia, 371–372

Nagasaki, 426
National Aeronautics and Space Administration (NASA), 386
natural radioactivity, 392–393
navigation, 284
Nazis, 419, 426–427
negative charge, 239–240
negative lenses, 366–367
Neptune, 61
neurons, 260–261
neutral charge, 239–240
neutrinos, 413, 459–460
neutrons, 410–412, 458
New System of Chemical Philosophy, A (Dalton), 385
Newton, Isaac, 305, 435

applying laws of, 70–73
Aristotle and, 61–62
birth of, 60
color and, 335
energy concept and, 111
first law of motion and, 61–64, 80, 84
force and, 61–64
Galileo and, 60–63
influence of, 61
mass and, 64–67
mass-energy equivalence and, 445–449

momentum and, 126–127
Principia and, 17, 61
prisms and, 337
relativity and, 438, 441, 445–447
rotational motion and, 146
second law of motion and, 61–67, 80–81, 86,

91–92, 126–128, 153–154, 313
theory of mechanics and, 61
third law of motion and, 67–70, 128, 172, 130–133
universal gravitation and, 60–61, 90–93, 245–246
velocity and, 24
weight and, 65–67

newton (N), 63
nitrogen, 409, 469
noble gases, 403
nodes, 315, 319
normal force, 68
n-p-n transistor, 466
n-type material, 465
nuclear energy, 6, 223, 409

chain reactions and, 429–431
control rods and, 421
fission and, 418–420, 433
fusion and, 424–428, 433
moderators and, 421
reactors and, 420–424
weapons and, 424–428

nuclear fission, 418–420, 433
nuclear fusion

critical mass and, 425–426
power generation from, 428
reaction of, 427
weapons and, 424–428

nuclear pile, 420–421
nuclear power plants, 224–225
nuclear reactions

chain reactions and, 419–420
fission, 418–420
fusion, 424–428
mass/energy conversion and, 417–418
supercritical condition and, 421

nuclear reactors
Chernobyl disaster and, 424
controlled chain reactions and, 420–421
control rods and, 421
coolants and, 422–423
design features of, 422–423
enrichment and, 422–423
environmental issues and, 423–424
heavy water and, 422
moderators and, 421
plutonium production and, 421–422
poisons and, 423

nuclear weapons, 424–428
nucleons, 412
nucleus, 408

discovery of, 394–396
isotopes and, 411–412
mass number and, 412
neutrons and, 410–412
protons and, 410
quarks and, 458–461
radioactive decay and, 412–417
Rutherford and, 409–410, 412
structure of, 409–412

object distance, 358, 368–370
objective lens, 372
Oersted, Hans Christian, 285–286, 290, 292
Ohm, Georg, 263
Ohm’s law, 263–264, 266
oil tankers, 180
Onnes, Heike Kamerlingh, 468
opera glasses, 375–376
optics, 6

binoculars and, 375–376
dispersion and, 363–364
double-slit experiment and, 305
eyeglasses and, 371–372
focusing with curved mirrors and, 367–370
geometric, 36
human eye and, 370–376
image distance and, 358, 360, 365–366
image formation and, 355–380
lenses and, 364–367, 370–376
magnification and, 365–366, 369
microscope and, 372
object distance and, 358, 368–370
particle/wave nature of light and, 305 (see also light)
physical, 356
prisms and, 337, 363–364
rainbows and, 2–4, 10, 362–363
ray-tracing and, 364–367
telescopes and, 274–275, 372
total internal reflection and, 361–363
virtual image and, 358

orbital motion. See planetary motion
oscillations, 102

amplitude and, 118
elastic force and, 109
frequency and, 117
harmonic motion and, 115–118
pendulums and, 110–113
period and, 116–117
springs and, 109, 115–117

oxygen, 409

palladium, 428
parallel circuits, 266–268
partially inelastic collisions, 133–134
particle accelerators, 6, 459, 470
particle detectors, 458–461
Pascal, Blaise, 176
Pascal’s principle, 171–173, 178
peer review, 3
pendulums, 103, 110–113, 135
percentages, 478–479
perfectly inelastic collisions, 133–134
periodic table of the elements, 387–389, 402–403
periodic waves, 310–311
periods, 90, 96, 116–117
perpetual motion, 226–228
phase, 197–198, 314–315
philosophers, 2
photographic emulsions, 458
photons, 305, 398, 400–401
physics, 1

classical, 6
condensed-matter, 6
defining, 4–6
empirical laws and, 3–4
everyday phenomena and, 10–12
high-energy, 433
hypotheses and, 3–4
integrated circuits and, 467
mathematics and, 7–9
measurement and, 7–9
modern, 6
music and, 321–325
philosophers and, 2
satisfaction from, xi
scientific method and, 2–3, 5
scope of, 4–7
subfields of, 6–7
successful studying of, xix–xx
theory concept and, 3
thermodynamics and, 6

“Physics of Basketball” (Brancazio), 51
pions, 458–459
pitch, 317, 325
pith balls, 237–238
Planck, Max, 398, 400
Planck’s constant, 398–399
planetary motion

angular momentum and, 157, 159
artificial satellites and, 95–96
Copernicus and, 88
early models of, 87–90
ellipses and, 89–90, 95, 157, 159
epicycles and, 87–88
Galileo and, 88–91
geocentric model and, 87, 90
heliocentric model and, 88, 90
Kepler and, 89–96, 157–159
Moon and, 93–95
Newton’s law of universal gravitation and, 87–96
periods and, 90, 96
Ptolemy and, 87–88
retrograde motion and, 87–88
synchronous orbit and, 96

plastic crystals, 470
Plato, 87
plutonium, 421–422, 426–427
p-n-p transistor, 466
point charges, 246
point-contact transistors, 466
poison, 423
polarization, 242, 244, 309–310
polarized light, 346–349
polaroids, 347
pole strength, 283
pole vaulting, 113–114
polonium, 413, 415–416
polymers, 347–349
positive charge, 239–240
positive lenses, 364–366
positrons, 459
potential energy, 108

bouncing balls and, 125–126
conservation of energy and, 110–116
elastic, 109–110
electric circuits and, 261–263, 269
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electric potential and, 248–251
electromotive force and, 264
essence of, 108
gravitational, 108
harmonic motion and, 115–118
internal energy and, 199–200
pendulums and, 135
spring constant and, 109

power, 215
alternating current and, 271–275
defined, 106
distribution systems for, 270–271
effective, 271, 273
electric, 268–271
ratings and, 275
thermal, 223–226
transformers and, 298
work and, 105–106

powers of ten, 480
pressure

absolute zero and, 194–195
Archimedes’ principle and, 178–180
atmospheric, 173–186, 203–204
Bernoulli’s principle and, 183–186
blood, 175
Boyle’s law and, 177
buoyant force and, 171, 178–180
compressibility and, 172–173, 176–178
defined, 171–172
fluid flow and, 181–185
hydraulics and, 172–173
isobaric processes and, 203–204
Pascal’s principle and, 171–173, 178
temperature and, 198
thermodynamics and, 201–202
variance in pipes and hoses, 184–185
volume and, 177–178
work and, 201–202

Princeton University, 294
principle of equivalence, 450
principle of relativity, 438
principle of superposition, 314–315
prisms, 337

bending light and, 363–364
binoculars and, 375–376

projectile motion, 39
basketballs and, 50–51
bullets and, 49
footballs and, 49–50
hitting a target and, 49–52
time of flight and, 48–49
trajectory and, 46–49

proportion, 8
proton exchange membrane (PEM) fuel cell, 386
protons, 410, 458
Ptolemy, Claudius, 87–88, 323
p-type material, 465
Pythagoras, 323

quadrants, 88
quanta unit, 398
quantity of motion. See momentum
quantum chromodynamics, 460
quantum electrodynamics, 460
quantum mechanics, 5, 381, 433

blackbody radiation and, 398
Bohr model and, 398–400, 402
conservation of energy and, 111–112
Heisenberg uncertainty principle and, 402
particle waves and, 400–403
periodic table of the elements and, 402–403
photons and, 398
Planck’s constant and, 398–399

quantum numbers, 403
quarks, 457

antiquarks and, 459
baryons, 459–460
bottom, 459
charge and, 459
charmed, 459
down, 459
leptons, 459–460
mesons, 459–460
particle detectors and, 460–461
quantum chromodynamics and, 460
quantum electrodynamics and, 460
standard model and, 458
strange, 459
top, 459
up, 459

radians, 146–147
radiation, 298

blackbody, 398
cosmic background, 416–417

of heat, 205–207
nucleus and, 409–410
smoke detectors and, 414

radioactive decay
alpha, 412–413
beta, 413, 415, 422
daughter element and, 413
exponential, 416
gamma, 413, 415
half-life and, 415–416
health hazards of, 416–417
rate of, 415–416

radioactivity
atomic nucleus and, 393–396
discovery of, 393
natural, 392–393
types of, 393–394
X-rays and, 392–393

radio waves, 333
radium, 412
radius, 90
radon, 413, 415
rainbows, 2–4, 10, 362–363
Rayleigh scattering, 338
ray-tracing, 364–370
reaction force, 70
recoil, 131–133
red shift, 451
reflection

image formation and, 356–358
law of, 357
rainbows and, 362
total internal, 361–363
wavefronts and, 256–257

refraction
double, 348–349
index of, 359
laser refractive surgery and, 373
law of, 359–360
rainbows and, 362
total internal reflection and, 361–363

refrigerators, 220–221, 223
relativity, 434

black holes and, 452
Einstein and, 435, 438–449, 452
ether and, 438–442
frames of reference and, 435–439, 452
general, 435, 449–452
gravitational field and, 450–451
inertial reference frames and, 438
kinetic energy and, 337–338
length contraction and, 442–445, 451–452
light and, 450–451
mass-energy equivalence and, 445–449
Michelson-Morley experiment and, 439–441
Newton and, 445–449
principle of, 437–438
principle of equivalence and, 449–450
space-time continuum and, 451–452
special, 435, 440–442
speed of light and, 438–442
time dilation and, 442–443, 451–452
twin paradox and, 445–447
velocity addition and, 435–437

Renaissance, 284
resistance

batteries and, 263–264
effective voltage and, 271, 273
electric circuits and, 260–264
electrostatic force and, 263–264
Ohm’s law and, 263–264
parallel, 267
power and, 269–270
total series, 266

rest energy, 448–449
resting potential, 261
restoring force, 117
retrograde motion, 87–88
reverse bias, 465
Ritz, Walter, 397–398
rockets, 132–133
rods, 336
Roentgen, Wilhelm, 391–392
roentgen equivalent in man (Rem), 416
Roman Catholic Church, 60
Roosevelt, Franklin D., 420
Rossberg, Klaus, xii
rotational acceleration, 147–148
rotational displacement, 146–149
rotational inertia, 152–155
rotational motion, 145

angular momentum and, 155–159
balance and, 149–152
bicycle riding and, 159–161
center of gravity and, 151–152, 157

ice skaters and, 155–156
inertia and, 152–155
linear displacement and, 147
merry-go-rounds and, 146–149, 152
Newton and, 146
radian measurement and, 146–147
spinning tops and, 161–162
torque and, 150–151, 153–154, 156, 158
twirler’s baton and, 154
yo-yos and, 158

rotational velocity, 146–149
Royds, T. D., 394
Russia, 424
Rutherford, Ernest

nucleus and, 409–410, 412
radiation studies of, 393–396, 399
radioactive decay and, 412
scattering experiment of, 394–396, 458–459

Rydberg constant, 397, 399–400
Rydberg-Ritz formula, 397–399

satellites, 95–96
scales, 322–325
scattering, 338, 394–396, 458–459
Schrödinger, Erwin, 402
scientific method, 2–3, 5
scientific notation, 9, 92, 479–480
scintillation detectors, 309
seat belts, 84–85
selective absorption, 336–337
self-induction, 294
semiconductors, 241, 464–468
series circuits, 264–266, 268
Shoemaker, Mark, 111
shotguns, 132
simple harmonic motion, 115–117
simple machines, 103–104, 172–173
sine function, 360n
sinusoidal curves, 271
sleds, 113, 115
Slinky, 307–308, 311–312
slits

diffraction and, 342–346
double-slit experiment and, 338–340

slope, 28
smoke detectors, 414
smoke emissions, 243
soap films, 340–342
solar collectors, 206–207
solar eclipse, 93
solar energy, 206–207, 223
solar system. See planetary motion
sound waves

displacement node and, 319
Doppler effect and, 320
music and, 319, 321–325
nature of, 317–318
pressure variation and, 318
speed of, 318–319

space-time continuum, 442–443, 451–452
spark plugs, 213
special theory of relativity, 435, 440–442
specific heat capacity, 195–198, 202
spectrometers, 346
speed

acceleration and, 27 (see also acceleration)
average, 19–21
fluid flow and, 181
instantaneous, 21–22
kinetic energy and, 107
metric system and, 20
Newton’s first law of motion and, 62
traffic flow and, 22–23
units of, 20–21
velocity and, 22–23 (see also velocity)

spinning tops, 161–162
split-ring commutator, 291
spring constant, 109
Sputnik, 96
standard model. See quarks
standing waves, 315
steam turbines, 215, 223–224
Strassmann, Fritz, 419
stroboscopes, 40
strong nuclear interaction, 461
Styrofoam, 242
subatomic particles, 391
subtractive color mixing, 337
sulfur, 243
sunglasses, 348
supercolliders, 458, 470
superconductors, 458, 468–470
superfluids, 468
superheated fluids, 458
supersaturated vapors, 458
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synapses, 260–261
synchronous orbit, 96

targets, 49–52
tea kettles, 215
telescopes, 87–90, 372, 374–375
television, 390
Teller, Edward, 419
temperature, 191

absolute, 194–195, 202–204
atmospheric pressure and, 198
bimetallic strips and, 272
Celsius scale and, 193–195
change of phase and, 197–198
defined, 193, 197
entropy and, 221–223
Fahrenheit scale and, 193–194
freezing and, 197–198
heat and, 196–197 (see also heat)
ideal gas and, 202
internal energy and, 199–200, 202
isobaric processes and, 203–204
isothermal processes and, 202–203
Kelvin scale and, 195
measurement of, 192–195
melting and, 197–198
mercury levels and, 193
refrigerators and, 220–221, 223
thermal equilibrium and, 193, 197–198
thermal power plants and, 223–226
work and, 198–203
zeroth law of thermodynamics and, 193 (see also

thermodynamics)
terminal velocity, 71
theory, 3
thermal chain reaction, 427
thermal conductivity, 204–205
thermal equilibrium, 193, 197–198
thermal power plants, 223–226
thermodynamics, 6, 212

adiabatic processes and, 202–203
Carnot and, 216–220, 223–225
Clausius and, 221–222
entropy and, 221–223
equation of state and, 203–204
first law of, 199–204, 214–216, 218, 226–227
gas behavior and, 201–204
heat engines and, 213–223
heat flow and, 204–207
heat pumps and, 220–221, 223
ideal gas and, 202
internal energy and, 199–200
isobaric processes and, 203–204
isothermal processes and, 202–203
Joule and, 198–200
Kelvin and, 218–219, 221–222
kinetic energy and, 199–201
perpetual motion and, 226–228
pressure and, 201–202
refrigerators and, 220–221, 223
second law of, 216–221, 226–227
temperature measurement and, 192–195
thermal equilibrium and, 193, 197–198
thermal power plants and, 223–226
Thompson and, 198–199
work and, 198–203
zeroth law of, 193

thermometers, 192–195, 199
thermonuclear bombs, 427–428
thin-film interference, 340–342
Thompson, Benjamin (Count Rumford), 198–199
Thompson, William (Lord Rayleigh), 338
Thomson, J. J., 389, 391, 394, 458
thorium, 393, 416
tides, 94–95
time, 72

beginning of, 462–464
cosmology and, 462–464
dilation formula and, 442–443
falling objects and, 39–46
of flight, 48–49
frames of reference and, 435–439, 452
light clock and, 442–443
projectile motion and, 46–52
proper, 443
relativity and, 442–443, 451–452

toasters, 272, 274
Tokamak reactor, 428
torque, 150–151

angular momentum and, 156
magnetic, 289–290
Newton’s second law and, 153–154

yo-yos and, 158
Torricelli, Evangelista, 173–174, 176
torsion balance, 283
total internal reflection, 361–363
traffic accidents, 84–85, 137
traffic flow, 22–23
traffic lights, 295
trajectories, 46–49
transformers, 297–298
transistors, 465–467
transverse waves, 309–310
Truman, Harry S, 427
tuning, 323–324
turbulent flow, 182–183
twin paradox, 445–447
twirler’s baton, 154

ultraviolet light, 334
unified field theory, 461–462
uniform acceleration, 31–33
universal gravitation, 60–61, 90–93, 245–246
unpolarized light, 347
uranium

critical mass and, 425–426
enrichment of, 422
nuclear reactors and, 420–422, 428
radiation and, 393–394, 412, 416, 419

vacuum, 439
vectors, 24

adding, 482–484
components of, 484–485
describing, 482
displacement and, 482–483
graphical method and, 483
subtracting, 484
tail-to-head technique and, 483

velocity
acceleration and, 25–27 (see also acceleration)
distance traveled and, 29, 31
falling objects and, 39–46
frame of reference and, 435–439, 452
graphs and, 28–29
gravity and, 39–42
instantaneous, 24, 28
kinetic energy and, 106–107, 138 (see also kinetic energy)
magnitude and, 23
Newton’s first law of motion and, 62 (see also motion)
projectile motion and, 46–52
recoil and, 131–133
relativity and, 435–437
rotational, 145–163
slope and, 28
speed and, 22–23
terminal, 71
variance with time and, 42
vectors and, 24

virtual image, 358
viscosity, 181–182
Volta, Alessandro, 260, 285
voltage

action potential and, 261
back, 294
cathode rays and, 389–390
effective, 271, 273
electric current and, 259–260 (see also electric current)
electric potential and, 248–251
Faraday’s law and, 293
generators and, 296–297
household circuits and, 273–275
line, 275
measurement of, 249–251
neurons and, 260–261
Ohm’s law and, 263–264, 266
power and, 269–270, 275
resting potential and, 261
transformers and, 297–298
transistors and, 466–467

voltmeters, 267–268
volume, 178

Boyle’s law and, 177
isobaric processes and, 203–204
pistons and, 201–202

von Guericke, Otto, 174, 176
Voyager spacecraft, 183

wafers, 467
waste heat, 224
Watts, Robert, 186
wavefronts

reflection and, 356–358
refraction and, 359–364

wavelength, 310, 335–338
wave pulses, 307–308, 311
waves, 306

amplitude and, 314–315
birefringence and, 348–349
combination of, 314–315
de Broglie, 400–401
diffraction and, 342–346
dispersion and, 363–364
double-slit experiment and, 338–340
electricity generation and, 308–309
electromagnetic, 331–334 (see also electromagnetism)
Fourier analysis and, 312, 322n
frequency and, 117, 310–325, 363–364
fringe patterns and, 339–346
fundamental, 315, 321–325
general features for motion of, 307–311
graphing of, 311–312
guitar strings and, 316–317
harmonic, 312, 315, 319, 321–325
interference and, 305, 314–315, 338–342
kinetic energy and, 308
light and, 305, 348–349 (see also light)
local compression and, 307–308
longitudinal, 309–310
music and, 316–317, 321–325
nodes and, 315, 319, 321
particle, 400–403
periodic, 310–311
phase and, 314–315
photons and, 305
pitch and, 317
polarization and, 309–310
principle of superposition and, 314–315
pulses and, 307–308, 311
quantum mechanics and, 400–403
radiation and, 205–207
reflection and, 305, 356–358
refraction and, 305, 359–364
on a rope, 311–315
Slinky toy and, 307–308, 311–312
sound, 316–325
speed of, 310–313
standing, 315
thin films and, 340–342
transverse, 309–310
types of, 305
water, 307–309

weak nuclear force, 461
websites, xvi–xvii
weight, 67

balance and, 149
buoyant force and, 171, 178–180
of column of air, 176–177
defined, 65–66
fulcrums and, 149
universal gravitation and, 92–93

white light, 337, 363–364
White Sands, New Mexico, 426
wind energy, 268–269
work

adiabatic processes and, 202
conservation of energy and, 110–115
defined, 104–105
efficiency and, 214–220
entropy and, 221–223
first law of thermodynamics and, 214–216
fluid flow and, 183
heat engines and, 213–223
hydraulics and, 172–173
isothermal processes and, 202–203
kinetic energy and, 106–107
negative, 107
power and, 105–106
pressure and, 201–202
simple machines and, 103–104
thermodynamics and, 198–203

World War II, 381, 419, 426

X-rays, 333–334
de Broglie waves and, 401
discovery of, 391–393
health hazards and, 416

Young, Thomas, 305, 338–340
yo-yos, 158

zeroth law of thermodynamics, 193
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Conversion Factors

LENGTH
1 in = 2.54 cm
1 cm = 0.394 in
1 ft = 30.5 cm
1 m = 39.4 in = 3.281 ft
1 km = 0.621 mi
1 mi = 5280 ft = 1.609 km
1 light-year = 9.461 × 1015 m

MASS AND WEIGHT
1 lb ⇒ 0.4536 kg (where g = 9.80 m/sec2)
1 kg ⇒ 2.205 lb (where g = 9.80 m/sec2)
1 atomic mass unit (u) = 1.66061 × 10−27 kg

VOLUME
1 liter = 1.057 quarts = 0.2643 gallons
1 in3 = 16.4 cm3

1 gallon = 3.786 liter
1 ft3 = 2.832 × 10−2 m3

ENERGY AND POWER
1 cal = 4.186 J
1 J = 0.239 cal
1 kWhr = 3.60 × 106 J = 860 cal
1 hp = 746 W
1 J = 6.24 × 1018 eV
1 eV = 1.6022 × 10−19 J

TEMPERATURE
Absolute zero (0 K) = −273.15� C

SPEED
1 km/hr = 0.278 m/sec = 0.621 MPH
1 m/sec = 3.60 km/hr = 2.237 MPH = 3.281 ft/sec
1 MPH = 1.609 km/hr = 0.447 m/sec = 1.47 ft/sec
1 ft/sec = 0.305 m/sec = 0.682 MPH

FORCE
1 N = 0.2248 lb
1 lb = 4.448 N

PRESSURE
1 atm = 1.013 bar = 1.013 × 105 N/m2 = 14.7 lb/in2

1 lb/in2 = 6.90 × 103 N/m2

1 Pa = 1 N/m2

ANGLE
1 rad = 57.30�
1� = 0.01745 rad
1 rev = 360� = 2π rad

METRIC PREFIXES
Prefix Symbol Meaning
Giga- G 1 000 000 000 times the unit
Mega- M 1 000 000 times the unit
Kilo- k 1 000 times the unit
Hecto- h 100 times the unit
Deka- da 10 times the unit

Base Unit
Deci- d 0.1 of the unit
Centi- c 0.01 of the unit
Milli- m 0.001 of the unit
Micro- µ 0.000 001 of the unit
Nano- n 0.000 000 001 of the unit

PHYSICAL CONSTANTS AND DATA
Quantity Approximate Value
Acceleration of gravity

(near the earth’s surface) g = 9.80 m/sec2

Gravitational law constant G = 6.67 × 10−11 N · m2/kg2

Earth radius (mean) 6.38 × 106 m
Earth mass 5.98 × 1024 kg
Earth-sun distance (mean) 1.50 × 1011 m
Earth-moon distance (mean) 3.84 × 108 m
Fundamental charge e = 1.60 × 10−19 C
Coulomb law constant k = 9.00 × 109 N · m2/C2

Electron rest mass 9.11 × 10−31 kg
Proton rest mass 1.6726 × 10−27 kg
Neutron rest mass 1.6750 × 10−27 kg
Bohr radius 5.29 × 10−11 m
Avogadro’s number 6.02 × 1023/mole
Boltzmann’s constant 1.38 × 10−23 J/K
Planck’s constant 6.626 × 10−34 J · s
Speed of light (vacuum) 3.00 × 108 m/s

MATHEMATICAL CONSTANTS
AND FORMULAS
Pi 3.1416
Area of circle πr2

Circumference of circle 2πr
Area of sphere 4πr2

Volume of sphere 4/3 πr3

gri28625_ifc.qxd  5/5/08  2:29 PM  Page 2



Sixth Edition

A Conceptual Introduction to Physics

W. Thomas Griffith

Juliet W. Brosing

ThePhysicsyy
of  Everyday Phenomena

On the cover
This imposing wave is seen breaking on the Oregon Coast in the United States’ Pacifi c 
Northwest. How are waves created? How do waves travel? What affects their speed and 
frequency? What do water waves have in common with light and sound waves? Can we use 
the energy of ocean waves to generate electric power? How can knowledge of wavelengths 
and frequencies be applied to examination of the galaxies and the current hypothesis 
that the universe is expanding? The answers to these questions and many more can all be 
learned through your study of The Physics of Everyday Phenomena.

Website www.mhhe.com/griffi th
The text-specifi c website provides students with useful study tools designed to help 
improve their understanding of the material presented in the text and class. For the 
instructor, the website is designed to help ease the time burdens of the course by 
providing valuable presentation and preparation tools.

For Students
• Student study guide

  – Mastery quiz
  – Know
  – Understand
  – Study hints
  – Practice problems
• Animations
•  Answers to selected questions 

from the text

For Instructors
• All student content
• Instructor’s manual
• PowerPoint lectures
•  PowerPoint fi les of the text’s 

images
•  Sample syllabi, including an 

energy-themed course
• Clicker questions

• Formula summaries

Griffith
Brosing

Sixth
Edition

Physics
of  Everyday Phenom

ena
The

M
D

 D
A

L
IM

 #971965 7/14/08 C
Y

A
N

 M
A

G
 Y

E
L

O
 B

L
K

http://www.mhhe.com/griffi

	Cover Page
	Title Page
	Copyright Page
	brief contents
	Contents
	Preface
	Secrets to Success in Studying Physics
	About the authors
	Acknowledgments
	Chapter 1: Physics, the Fundamental Science
	1.1 The Scientific Enterprise
	1.2 The Scope of Physics
	1.3 The Role of Measurementand Mathematics in Physics
	1.4 Physics and Everyday Phenomena
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Unit 1: The Newtonian Revolution 
	Chapter 2: Describing Motion
	2.1 Average and Instantaneous Speed
	2.2 Velocity
	2.3 Acceleration
	2.4 Graphing Motion
	2.5 Uniform Acceleration
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 3: Falling Objects and Projectile Motion
	3.1 Acceleration Due to Gravity
	3.2 Tracking a Falling Object
	3.3 Beyond Free Fall: Throwinga Ball Upward
	3.4 Projectile Motion
	3.5 Hitting a Target
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 4: Newton’s Laws: Explaining Motion 
	4.1 A Brief History
	4.2 Newton’s First and Second Laws
	4.3 Mass and Weight
	4.4 Newton’s Third Law
	4.5 Applications of Newton’s Laws
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 5: Circular Motion, the Planets, and Gravity
	5.1 Centripetal Acceleration
	5.2 Centripetal Forces
	5.3 Planetary Motion
	5.4 Newton’s Law of Universal Gravitation
	5.5 The Moon and Other Satellites
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 6: Energy and Oscillations
	6.1 Simple Machines, Work, and Power
	6.2 Kinetic Energy
	6.3 Potential Energy
	6.4 Conservation of Energy
	6.5 Springs and Simple Harmonic Motion
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 7: Momentum and Impulse
	7.1 Momentum and Impulse
	7.2 Conservation of Momentum
	7.3 Recoil
	7.4 Elastic and Inelastic Collisions
	7.5 Collisions at an Angle
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 8: Rotational Motion of Solid Objects
	8.1 What Is Rotational Motion?
	8.2 Torque and Balance
	8.3 Rotational Inertia and Newton’s Second Law
	8.4 Conservation of Angular Momentum
	8.5 Riding a Bicycle and Other Amazing Feats
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations


	Unit 2: Fluids and Heat
	Chapter 9: The Behavior of Fluids
	9.1 Pressure and Pascal’s Principle
	9.2 Atmospheric Pressure and the Behavior of Gases
	9.3 Archimedes’ Principle
	9.4 Fluids in Motion
	9.5 Bernoulli's Principle
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 10: Temperature and Heat
	10.1 Temperature and Its Measurement
	10.2 Heat and Specific Heat Capacity
	10.3 Joule’s Experiment and the First Law of Thermodynamics
	10.4 Gas Behavior and the First Law
	10.5 The Flow of Heat
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 11: Heat Engines and the Second Law of Thermodynamics
	11.1 Heat Engines
	11.2 The Second Law of Thermodynamics
	11.3 Refrigerators, Heat Pumps,and Entropy
	11.4 Thermal Power Plants and Energy Resources
	11.5 Perpetual Motion and Energy Frauds
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations


	Unit 3: Electricity and Magnetism
	Chapter 12: Electrostatic Phenomena
	12.1 Effects of Electric Charge
	12.2 Conductors and Insulators
	12.3 The Electrostatic Force: Coulomb’s Law
	12.4 The Electric Field
	12.5 Electric Potential
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 13: Electric Circuits
	13.1 Electric Circuits and Electric Current
	13.2 Ohm’s Law and Resistance
	13.3 Series and Parallel Circuits
	13.4 Electric Energy and Power
	13.5 Alternating Current and Household Circuits
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 14: Magnets and Electromagnetism
	14.1 Magnets and the Magnetic Force
	14.2 Magnetic Effects of Electric Currents
	14.3 Magnetic Effects of Current Loops
	14.4 Faraday’s Law: Electromagnetic Induction
	14.5 Generators and Transformers
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations


	Unit 4: Wave Motion and Optics
	Chapter 15: Making Waves
	15.1 Wave Pulses and Periodic Waves
	15.2 Waves on a Rope
	15.3 Interference and Standing Waves
	15.4 Sound Waves
	15.5 The Physics of Music
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 16: Light Waves and Color

	16.1 Electromagnetic Waves
	16.2 Wavelength and Color
	16.3 Interference of Light Waves
	16.4 Diffraction and Gratings
	16.5 Polarized Light
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 17: Light and Image Formation
	17.1 Reflection and Image Formation
	17.2 Refraction of Light
	17.3 Lenses and Image Formation
	17.4 Focusing Light with Curved Mirrors
	17.5 Eyeglasses, Microscopes,and Telescopes
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations


	Unit 5: The Atom and Its Nucleus unit
	Chapter 18: The Structure of the Atom
	18.1 The Existence of Atoms:Evidence from Chemistry
	18.2 Cathode Rays, Electrons, and X Rays
	18.3 Radioactivity and the Discovery of the Nucleus
	18.4 Atomic Spectra and the Bohr Model of the Atom
	18.5 Particle Waves and Quantum Mechanics
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 19: The Nucleus and Nuclear Energy
	19.1 The Structure of the Nucleus
	19.2 Radioactive Decay
	19.3 Nuclear Reactions and Nuclear Fission
	19.4 Nuclear Reactors
	19.5 Nuclear Weapons and Nuclear Fusion
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations


	Unit 6: Relativity and Beyond
	Chapter 20: Relativity
	20.1 Relative Motionin Classical Physics
	20.2 The Speed of Light and Einstein’s Postulates
	20.3 Time Dilation and Length Contraction
	20.4 Newton’s Laws and Mass-Energy Equivalence
	20.5 General Relativity
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations

	Chapter 21: Beyond Everyday Phenomena
	21.1 Quarks and Other Elementary Particles
	21.2 Cosmology and the Beginning of Time
	21.3 Semiconductors and Microelectronics
	21.4 Superconductors and Other New Materials
	summary
	key terms
	questions
	exercises
	synthesis problems
	home experiments and observations


	Appendix A: Using Simple Algebra
	Basic Concepts
	Other Examples
	Exercises

	Appendix B: Decimal Fractions, Percentages, and Scientific Notation
	Decimal Fractions
	What Are Percentages?
	Why Is Scientific Notation Used?
	Multiplying and DividingUsing Powers of Ten
	Exercises

	Appendix C: Vectors and Vector Addition
	How Do We Describe a Vector?
	How Do We Add Vectors?
	How Do We Subtract Vectors?
	What Are Vector Components?
	Exercises

	Appendix D: Answers to Selected Questions, Exercises, and Synthesis Problems
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Appendix A
	Appendix B
	Appendix C

	Glossary

	Photo credits
	Index



