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preface

T

A he satisfaction of understanding how rainbows are
formed, how ice skaters spin, or why ocean tides roll in and
out—phenomena that we have all seen or experienced—
is one of the best motivators available for building sci-
entific literacy. This book attempts to make that sense of
satisfaction accessible to non-science majors. Intended
for use in a one-semester or two-quarter course in con-
ceptual physics, this book is written in a narrative style,
frequently using questions designed to draw the reader
into a dialogue about the ideas of physics. This inclusive
style allows the book to be used by anyone interested in
exploring the nature of physics and explanations of
everyday physical phenomena.

“Griffith has done a very respectable job in present-

ing his conceptual physics course in a clear, useable

fashion. It is a fine work that is evidently quickly
evolving into a top-notch textbook.”

—Michael Bretz,

University of Michigan

How This Book Is Organized

With the exception of the reorganization of chapters
15, 16, and 17 introduced in the fourth edition, we
have retained the same order of topics as in the previ-
ous editions. It is traditional with some minor varia-
tions. The chapter on energy (chapter 6) appears prior to
that on momentum (chapter 7) so that energy ideas can
be used in the discussion of collisions. Wave motion is
found in chapter 15, following electricity and magnetism
and prior to chapters 16 and 17 on optics. The chapter
on fluids (chapter 9) follows mechanics and leads into
the chapters on thermodynamics. The first 17 chapters
are designed to introduce students to the major ideas of
classical physics and can be covered in a one-semester
course with some judicious paring.

The complete 21 chapters could easily support a two-
quarter course, and even a two-semester course in which
the ideas are treated thoroughly and carefully. Chapters 18
and 19 on atomic and nuclear phenomena, are considered

viii

essential by many instructors, even in a one-semester
course. If included in such a course, we recommend cur-
tailing coverage in other areas to avoid student overload.
Sample syllabi for these different types of courses can be
found on the Instructor Center of the Online Learning
Center.

Some instructors would prefer to put chapter 20 on
relativity at the end of the mechanics section or just prior
to the modern physics material. Relativity has little to
do with everyday phenomena, of course, but is included
because of the high interest that it generally holds for stu-
dents. The final chapter (21) introduces a variety of topics
in modern physics—including particle physics, cosmol-
ogy, semiconductors, and superconductivity—that could
be used to stimulate interest at various points in a
course.

One plea to instructors, as well as to students using
this book: Don’t try to cram too much material into too
short a time! We have worked diligently to keep this book
to a reasonable length while still covering the core con-
cepts usually found in an introduction to physics. These
ideas are most enjoyable when enough time is spent in
lively discussion and in consideration of questions so that
a real understanding develops. Trying to cover material
too quickly defeats the conceptual learning and leaves stu-
dents in a dense haze of words and definitions. Less can be
more if a good understanding results.

Mathematics in a Conceptual
Physics Course

The use of mathematics in a physics course is a formida-
ble block for many students, particularly non-science
majors. Although there have been attempts to teach con-
ceptual physics without any mathematics, these attempts
miss an opportunity to help students gain confidence in
using and manipulating simple quantitative relationships.

Clearly mathematics is a powerful tool for express-
ing the quantitative relationships of physics. The use of
mathematics can be carefully limited, however, and sub-
ordinated to the physical concepts being addressed. Many
users of the first edition of this text felt that mathematical



expressions appeared too frequently for the comfort of some
students. In response, we substantially reduced the use of
mathematics in the body of the text in the second edition.
Most users have indicated that the current level is about
right, so we have not changed the mathematics level in sub-
sequent editions.

“The level of presentation is pitch-perfect for a college
physics course. | happen to have a need for a book at just
this level, compromising between a math-free conceptual
book and one that goes for the full college-level (but not
university-level) treatment. The brevity of presentation also
lends itself well to a one-semester survey course format.”
—Brent Royuk,
Concordia University

Logical coherence is a strong feature of this book. For-
mulas are introduced carefully after conceptual arguments
are provided, and statements in words of these relation-
ships generally accompany their introduction. We have
continued to fine tune the example boxes that present sam-
ple exercises and questions. Most of these provide simple
numerical illustrations of the ideas discussed. No mathe-
matics prerequisite beyond high school algebra should be
necessary. A discussion of the basic ideas of very simple
algebra is found in appendix A, together with some prac-
tice exercises, for students who need help with these ideas.

New to This Edition

We have made several significant changes to the sixth edition.
As the book has evolved, however, we have tried to remain
faithful to the principles that have guided the writing of the
book from the outset. One of these has been to keep the book
to a manageable length, both in the number of chapters and
the overall content. Many books become bloated as users and
reviewers request more and more pet topics, We have tried to
add material judiciously and have pared material elsewhere
so that the overall length of the book has not changed. The
changes include the following:

1. New Everyday Phenomenon Boxes. We have added
five new everyday phenomenon boxes to this edition.
Three of these are related to energy issues designed to
better support instructors interested in building an energy
emphasis into their courses. The new boxes are:

everyday phenomenon box 6.1 Conservation of Energy
everyday phenomenon box 7.1 The Egg Toss
everyday phenomenon box 12.1 Cleaning Up the
Smoke

everyday phenomenon box 15.1 Electric Power
from Waves

everyday phenomenon box 19.1 Smoke Detectors

2. New Sample Exercises. Many users have pointed out
a need for more sample exercises in some chapters. We

have added several new sample exercises in places
where the need was apparent. Except for the first and
the last chapter, most chapters now have three or four
sample exercises.

3. Building an Energy Emphasis. Although this book
remains a basic conceptual physics text, we are work-
ing to make the book better serve instructors who want
to teach a conceptual physics course with an energy
emphasis. This is reflected in the new everyday phe-
nomenon boxes, but also in other places within the
body of the text. In the past few editions, we have
added everyday phenomenon boxes on fuel cells and
hybrid automobiles, and boxes on solar collectors and
nuclear reactors were already included. We have
enhanced the discussion of the greenhouse effect in
everyday phenomenon box 10.1. A syllabus for instruc-
tors wishing to teach a course with an energy emphasis
can be found on the Instructor Center of the text website.
We plan to continue building this emphasis in future
editions.

4. New Home Experiments. We have added several new
home experiments and have also added a few new syn-
thesis problems. Many users have found these features
to be very useful.

5. Continued Refinements in Artwork and Textual Clarity.
Although the textual clarity of this text has been exten-
sively praised by many reviewers and users, it can
always be improved. Reviewers continue to point out
places where either the art or text can be improved, and
we have responded to many of these suggestions. To this
end, we have made many changes, often subtle, to both
the art and text. More noticeable changes include an
improved and simplified discussion of planetory motion
and Kepler’s Laws in chapter 5 and on updated discus-
sion of integrated circuits in chapter 21.

Learning Aids

The overriding theme of this book is to introduce physical
concepts by appealing to everyday phenomena whenever
possible. To achieve this goal, this text includes a variety of
features to make the study of The Physics of Everyday Phe-
nomena more effective and enjoyable. A few key concepts
form the basis for understanding physics, and the textual fea-
tures described here reinforce this structure so that the reader
will not be lost in a flurry of definitions and formulas.

“The presentation is outstanding: Clear, concise, not

too complicated, not trivial either. The style is refresh-

ing. Students are invited to think; they are not over-
whelmed by complicated explanations. . .

—Klaus Rossberg,

Oklahoma City University




Chapter Openers

Each chapter begins with an illustration from everyday
experience and then proceeds to use it as a theme for intro-
ducing relevant physical concepts. Physics can seem
abstract to many students, but using everyday phenomena
and concrete examples reduces that abstractness. The chapter
overview previews the chapter’s contents and what students
can expect to learn from reading the chapter. The overview
introduces the concepts to be covered, facilitating the integra-
tion of topics, and helping students to stay focused and
organized while reading the chapter for the first time. The
chapter outline includes all the major topic headings within
the body of the chapter. It also contains questions that pro-
vide students with a guide of what they will be expected to
know in order to comprehend the major concepts of the
chapter. (These questions are then correlated to the end-of-
chapter summaries.)

Momentum and
Impulse

chapter overview

In this chapter, we explore momentum and impulse and examine the use
of these concepts in analyzing events such as a collision between a
fullback and defensive back. The principle of conservation of momentum
is introduced and its limits explained. A number of examples will shed
light on how these ideas are used, particularly conservation of
momentum. Momentum is central to all of these topics—it is a powerful
tool for understanding a lot of life’s sudden changes.

chapter outline

] Momentum and impulse. How can rapid changes in motion be
described using the ideas of momentum and impulse? How do these
ideas relate o Newton's second law of motion?

2 Conservation of momentum. What i the principle of conservation of
momentum, and when is it valid? How does this principle follow from
Newton's laws of motion?

3 Recoil. How can we explain the recoil of a rifle or shotgun using
momentum? How is this similar to what happens in firing a rocket?

4 Elastic and inelastic collisions. How can collisions be analyzed using
conservation of momentum? What is the difference between an elastic
and an inelastic collision?

; Collisions at an angle. How can we extend momentum ideas to two
dimensions? How does the game of pool resemble automobile
collisions?

unit one

124

“Very good chapter overview and chapter outline for
each chapter and for each unit. Very clear introduc-
tion and illustration of physics phenomena, concepts,
and principles, and excellent exercises, problems, and
home experiments/observations at the end of each
chapter”
—Hai-Sheng Wu,
Minnesota State University, Mankato

The chapter outlines, questions, and summaries provide a
clear framework for the ideas discussed in each chapter. One
of the difficulties that students have in learning physics (or
any subject) is that they fail to construct the big picture of
how things fit together. A consistent chapter framework can
be a powerful tool in helping students see how ideas mesh.

Other Text Features

Running summary paragraphs are found at the end
of each chapter section to supplement the more general
summary at the end of the chapter.

Rotational displacement, rotational velocity, and rotational
acceleration are the quantities that we need to fully describe
the motion of a rotating object. They describe how far the
object has rotated (rotational displacement), how fast it

is rotating (rotational velocity), and the rate at which the
rotation may be changing (rotational acceleration). These
definitions are analogous to similar quantities used to
describe linear motion. They tell us how the object is
rotating, but not why. Causes of rotation are considered
next.

“| found the liberal use of questions such as “Do you
believe in atoms? And, if so, why?” to motivate the dis-
cussion to be outstanding. | also found the interwoven
history used to guide the discussion to be excellent. |
often use that approach myself. It usually leads to a nat-
ural flow of concepts and also informs the student how
we know what we know, as well as giving them training
in scientific thinking and showing them how science is
done in real life. . . . Only someone who actively resis-
ted understanding could fail to understand Griffith’s
text. He writes clearly, logically, and interestingly.”
—Charles W. Rogers,
Southwestern Oklahoma
State University

Subsection headings are often cast in the form of ques-
tions to motivate the reader and pique curiosity.

What is the difference between
speed and velocity?

Imagine that you are driving a car around a curve (as illus-

trated in figure 2.5) and that you maintain a constant speed

of 60 km/h. Is your velocity also constant in this case?

The answer is no, because velocity involves the direction

of motion as well as how fast the object is going. The

direction of motion is changing as the car goes around the
rve.




Study hints and study suggestions provide students with pointers on their use of the textbook, tips on applying the principles

of physical concepts, and suggestions for home experiments.

Everyday phenomenon boxes relate physical concepts
discussed in the text to real-world topics, societal issues,
and modern technology, underscoring the relevance of
physics and how it relates to our day-to-day lives. The list
of topics includes:

The Case of the Malfunctioning Coffee Pot
(chapter 1)

Transitions in Traffic Flow (chapter 2)

The 100-m Dash (chapter 2)

Shooting a Basketball (chapter 3)

The Tablecloth Trick (chapter 4)

Riding an Elevator (chapter 4)

Seat Belts, Air Bags, and Accident Dynamics
(chapter 5)

Explaining the Tides (chapter 5)

Conservation of Energy (chapter 6)

Energy and the Pole Vault (chapter 6)

study hint

Visualizing these angular momentum vectors and their
changes can be an abstract and difficult task. The effect
will seem much more real if you can directly experience it.
If a bicycle wheel mounted on a hand-held axle (such as
that pictured in figure 8.23) is available, try the tilt effect
yourself. Grasp the wheel with both hands by the handles
on each side and have someone give it a good spin with
the wheel in a vertical plane. Then try tilting the wheel
downward to the left to simulate a fall. The wheel will
seem to have a mind of its own and will turn to the left
as suggested by figure 8.22.

everyday phenomenon box o1

Measuring Blood Pressure

The Egg Toss (chapter 7)

An Automobile Collision (chapter 7)

Achieving the State of Yo (chapter 8)

Bicycle Gears (chapter 8)

Measuring Blood Pressure (chapter 9)

Throwing a Curveball (chapter 9)

Solar Collectors and the Greenhouse Effect
(chapter 10)

Hybrid Automobile Engines (chapter 11)

A Productive Pond (chapter 11)

Cleaning Up the Smoke (chapter 12)

Lightning (chapter 12)

Electrical Impulses in Nerve Cells (chapter 13)

The Hidden Switch in Your Toaster (chapter 13)

Direct-Current Motors (chapter 14)

Vehicle Sensors at Traffic Lights (chapter 14)

Electric Power from Waves (chapter 15)

A Moving Car Horn and the Doppler Effect
(chapter 15)

Why Is the Sky Blue? (chapter 16)

Antireflection Coatings on Eyeglasses
(chapter 16)

Rainbows (chapter 17)

Laser Refractive Surgery (chapter 17)

Fuel Cells and the Hydrogen Economy
(chapter 18)

Electrons and Television (chapter 18)

Smoke Detectors (chapter 19)

What Happened at Chernobyl? (chapter 19)

The Twin Paradox (chapter 20)

Holograms (chapter 21)

The Situation. When you visit your doctor’s office, the nurse
will almost always take your blood pressure before the doctor
spends time with you. A cuff is placed around your upper arm
(as shown in the photograph) and air is pumped into the cuff,
producing a feeling of tightness in your arm. Then the air is
slowly released while the nurse listens to something with a
stethoscope and records some numbers, such as 125 over 80.

most vists to a doctor's office. How does this process work?

What is the significance of these two numbers? What is
blood pressure and how is it measured? Why are these read-
ings an important factor, along with your weight, tempera-
ture, and medical history, in assessing your health?

The Analysis. Your blood flows through an elaborate system
of arteries and veins in your body. As we all know, this flow is
driven by your heart, which is basically a pump. More accu-
rately, the heart is a double pump. One-half pumps blood
through your lungs, where the blood cells pick up oxygen and
discard carbon dioxide. The other half of the heart pumps blood
through the rest of your body to deliver oxygen and nutrients.
Arteries carry blood away from the heart into small capillaries
that interface with other cells in muscles and organs. The veins.
collect blood from the capillaries and carry it back to the heart.

We measure the blood pressure in a major artery in your
upper arm at about the same height as your heart. When air
is pumped into the cuff around your upper arm, it compresses
this artery so that the blood flow stops. The nurse places the
stethoscope, a listening device, near this same artery at a
lower point in the arm and listens for the blood flow to
restart as the air in the cuff is released.

The heart is a pulsating pump that pumps blood most
strongly when the heart muscle is most fully compressed. The
pressure therefore fluctuates between high and low values.
The higher reading in the blood pressure measurement, the
systolic pressure, is taken when the blood just begins to spurt

through the compressed artery at the peak of the heart's cycle.
The lower reading, the diastolic pressure, is taken when blood
flow occurs even at the low point in the cycle. There are distinc-
tive sounds picked up by the stethoscope at these two points.
The pressure recorded is actually the pressure in the air

cuff for these two conditions. It is a gauge pressure, meaning
that it is the pressure difference between the pressure being
measured and atmospheric pressure. It is recorded in the
units mm of mercury, which is the common way of recording
atmospheric pressure. Thus a reading of 125 means that the
pressure in the cuff is 125 mm of mercury above atmospheric
pressure. A mercury manometer that s open to the air on one
side (see the drawing) will measure gauge pressure directly.

/

[Open end

Release valve|

Stethoscope

An open-ended manometer can be used to measure the gauge
pressure of the cuff, The stethoscope is used to lsten for sounds
indicating the restart of blood flow:

High blood pressure can be a symptom of many health prob-
lems, but most specifically, it is a warning sign for heart attacks
and strokes. When arteries become constricted from the buildup
of plaque deposits inside, the heart must work harder to pump
blood through the body. Over time this can weaken the heart
muscle. The other danger is that blood vessels might burst in the
brain, causing a stroke, or blood clots might break loose and
block smaller arteries in the heart or brain. In any case, high
blood pressure is an important indicator of a potential problem.

Low blood pressure can also be a sign of problems. It can
cause dizziness when not enough blood is reaching the brain.
When you stand up quickly, you sometimes experience a feel-
ing of “light-headedness” because it takes a brief time for
the heart to adjust to the new condition where your head is
higher. Giraffes have a blood pressure about three times
higher than humans (in gauge pressure terms). Why do you
suppose this is s0?

“This book compared to others is simply interesting.

Topics like physics of music and color perception really

engaged me, even as | read most of the chapters in one

sitting. It indeed does a good job at getting at everyday
phenomena.”

—Tim Bolton,

Kansas State University




Xii

Example boxes are included within the chapter and con-
tain one or more concrete, worked examples of a problem
and its solution as it applies to the topic at hand. Through
careful study of these examples, students can better appre-
ciate the many uses of problem solving in physics.

End-of-Chapter Features

e The summary highlights the key elements of the chap-

example box 2.4

Sample Exercise: Uniform Acceleration

a

t
\'

Summary —»

a. v, = 10 m/s %

4 m/s?
=65
= 9

A car traveling due east with an initial velocity of 10 m/s
accelerates for 6 seconds at a constant rate of 4 m/s?.

a. What is its velocity at the end of this time?

b. How far does it travel during this time?

v, + at

10 m/s + (4 m/s?)(6 s)
10 m/s + 24 m/s

34 m/s

v = 34 m/sdue east

\J

summary

ter and correlates to the questions asked about the chap-

ter’s major concepts on the chapter opener.

Key Terms\

e Key terms are page-referenced to
where students can find the terms
defined in context.

e Questions are designed to challenge
students to demonstrate their under-
standing of the key concepts. Selected
answers are provided in appendix D
to assist students with their study of
more difficult concepts.

Questions

Exercises

e Exercises and synthesis problems are
intended to help students test their grasp of
problem-solving. The odd-numbered exer-
cises have answers in appendix D. By
working through the odd-numbered exer-
cises and checking the answer in appendix
D, students can gain confidence in tackling
the even-numbered exercises, and thus
reinforce their problem-solving skills.

Impulse-momentum principle, 124

b key terms
Impuise, 124 Consevation of momentum, 126 Elastc colls
Momentum, 124 Recoll, 120 Parialy inel

study hint

B

xcept for the examples involving impulse, most of the sit

uations described inthis chapter highiight the principle of
conservation of momentum. The basic ideas used in apply-
ing conservation of momentum are:

1

2

Extemal forces are assumed to be much smallr than
the very strong forces of nteraction in a colsion or
other brief event, I extemal forcs acting on the sys-
tem can be ignored, momentum s conserved.

The total momentum o the system before the colision
or other bief interaction Py i €qual o the momen-
tum after the event py,o. Momentum is conserved and
does not change.

questions

Perfectly inelastic collsion, 130

3. Equality of momentum before
be used to obtain other inform)
of the objects.

For review, look back at how the
in each o the examples in this ch]
tum of the system before and aft
found by adding the momentum
objects as vector. You should be
nitude and direction of this total
the examples

more open-ended question, requiring lenginier responses, suitble

for roup discussion

0

sampl responses are avaiable in appencix D

Q = sample responses re avalale on the websie

QL

@

@

ar.

Q.

Does the length of time that a force acts on an object have:

any effect on the strength of the impulse produced? Explain

Two forces produce equal impulses, but the second force

acts for a time twice that of the first force. Which force, if

eithr, is larger? Explain

Is it possible for a baseball to have as large a momentum

uch more massive bowling ball? Explain

‘Are impulse and force the same thing? Explain.

‘Ave impulse and momentu the same thing? Explain.

1 a ball bounces off a wall so that is velocity coming back

has the same magnitude that it had prior to bouncing

. I there a change in the momentum of the ball? Explain

b. Is there an impulse acting on the ball during ifs colli-
sion with the wall? Explain

s there an advantage to following through when hitting a

baseball with a bat, thereby maintaining a longer contact

between the bat and the ball? Explain.

‘What s the advantage of a padded dashboard compared to

a rigid dashboard in reducing injuries during collsions?

Explain using momentum and impulse ideas

Q9. What s the advantage of an|
during collisions? Explain u

In this chapter, we recast Newton's second law in terms of im-
pulse and momentum to_describe interactions between objects,
such as collisions, that involve strong interaction forces acting
over brief time intervals. The principle of conservation of mo-
mentum, which follows from Newton's second and third laws,
plays a central role.

| Momentum and impulse. Newto'ssecond law can
e rcast n tems of momenum and impule, ieig te sat-
et that the et impuleacing onan oject el the change n
omentum of th abject, Impulse s defne i the verag foce
actng on an cbject Mt by th time el cring whie
ine 610 act. Momentum is doined a5 the s of an objet

times ts velocity.
C 2

Frdl=3p, p=mv

Impulse

2 Conservation of momentum. Newton’s second and
i laws combine to yield th principl of conservation of mo-
mentum: if the net exteral force acting on a system is zro, the
total momentum of the system is a constant

setore st
, .
o—= Og0—
o

Pra = constant

3 Recoil. If an explosion or push occurs between two ob-
jects initially at res, conservation of momentum dictaes that the
total momentum after the event must sil be zero if there is no net
external force. The final momentum vectors of the two objects are
equal in size but opposite in direction.

”V [

P2=-py

Elastic and inelastic collisions. A perfectly inelas-
tic collsion s one in which the objects stick together after the
collision. If external forces can be ignored, the total momentum is
conserved. An elastc collision is one in which the total kinetic
energy is also conserved.

v

Perfectly

Elastic inelastic

Collisions at an angle. Conservetion of momentum

s not restricted to one-dimensional motion. When objects colide

at an angle, the total momentum of the system before and after

the collsion i found by adding the momentum vectors of th in-
dividual objects.

Before

O—

After

“QL0. 1f an ai bag inflates to0 rapi

same velocity. Which, if either, wil
pulse to bring it t0 @ halt? Explain

Explain

Ty QU Co
sion, it can sometimes o more harm than good in low-
velocity collisions. Explain using impulse and momentum

1f you catch a baseball or softball with your bare hand,
will the force exerted on your hand by the ball be reduced
i you pull your am back during the catch? Explain.

A truck and a bicycle are moving side by side with the

15 the principle of conservation of momentum always valid,
or arethere special conditions necessary for it to be valid?

il require the larger im-

Synthesis Problems

A ball is accelerated cown
the influence of the force of
of the ball conserved in this
Two objects colide under cof
conserved. s the momentum|
the collision? Explan.

‘Which of Newton's laws of
ing the principle of conserva

synthesis problems

SPL. A fast ball thrown with a velocity of 40 ms (approximately.
90 MPH) is struck by a baseball bat, and a line drive
‘comes back toward the pitcher with a velocity of 60 s
“The ball is in contact with the bat for a time of just 0.04 s

P4 A car traveling at a speed of 18 /s (approximately 40 MPH)
crashes into a solid concrete wall. The driver has & mass of
90 ke
a. What is the change in momentum of the driver as he

this process?

mentum? Explain,

“The baseball has a mass of 120 g (0.120 kg).
a. Whatis the change in momentum of the baseball during

Is the change in momentum greater than the final mo-

. What is the magnitude of the impulse required to pro-

comes 10 2 stop?

What impulse is required in order to produce this change
in momentum?

How does the application and magnitude of this force
differ in two cases: the first, in which the driver is wear-
ing a seat belt, and the second, in which he s not wearing

| exercises

EL. An average force of 300 N acts for a ime interval of 0.04 5
on a golf ball
. What s the magnitude of the impulse acting on the golf
ball?
b. What s the change in the golf ball's momentum?

What s the momentum of a 1200-kg car traveling with a
speed of 27 ms (60 MPH)?

A bowling ball has a mass of 6 kg and a speed of 15 ms.
A baseball has a mass of 0.12 kg and a speed of 40 mis.
Which ball has the larger momentum?

A force of 45 N acts on a ball for 0.2 5. If the ball is ini-
tially at rest:

a What s the impulse on the ball?>

b. What s the final momentum of the ball?

A 0.12-kg ball traveling with a speed of 40 mis is brought
o rest in a catcher's mitt. What is the size of the impulse
exerted by the mitt on the ball?

A ball experiences a change in momentum of 24 kg s

. What s the impulse acting on the ball?

b If the time of interaction is 0.15 s, wht is the magni-
tude of the average force acting on the ball?

E10. A fullback with a mass of 100 kg and a velocity of 35 mis
due west collides head-on with a defensive back with a
mas of 80 kg and a velociy of 6 mis due east.

a. What i the initial momentu of each player?
b, What s the total momentum of the system befor the
collsion?

1 they tick together and external orces can be ignored,

what direction will they be traveling immediately after

they colide?

An ice skater with a mass of 80 kg pushes off against a

second skater with a mass of 32 kg. Both skaters are ini-

tally at rest,

a. What s the total momentum of the system after they

push o

b 1f the larger skater moves off with a speed of 3 mis,

whatis the corresponding speed of the smaller skater?

A ifle with & mass of 1.2 kg fires a bullet ith a mass of

6.0 g (0.006 ko). The bullet moves with a muzzle velocity

of 600 s after the rifle i fired.

2. What s the momentum of the bullt after the rfle is

fired?

b 1f extemal forces acting on the rifle can be ignored.

what i the recoil velocity of the rifle?

a seat belt and is stopped instead by contact with the
windshield and steering column? Will the time of action
of the stopping force change? Explain.

rce that acts on

gonablockof S
mis and a mass
of 1L2kgand is

5. A 1500-kg car raveling due north with a speed of 25 mis
collides head-on with a 4500-kg truck traveling due south
with a speed of 15 ms. The two vehicles stick together after

e in the block. the collision.
a. What s the total momentum of the system prior to the
. find the veloc- collision?
I the collision. b, What is the velocity of the two vehicles just after the
that acts on the collision?
. Whatis the total kinetic energy of the system before the
oulet equal that collision?
d. Whatis the total Kinetic energy just after the collision?

2
s thrown against Is the collision elastic? Explain.
A, the bal sticks
the ball bounces

 in momentum
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e Because many courses for non-science majors do not
have a laboratory component, home experiments and
observations are found at the end of each chapter.
The spirit of these home experiments is to enable
students to explore the behavior of physical phe-
nomena using easily available rulers, string, paper
clips, balls, toy cars, flashlight batteries, and so on.
Many instructors have found them useful for putting
students into the exploratory and observational frame
of mind that is important to scientific thinking. This is
certainly one of our objectives in developing scientific
literacy.

Home Experiments
and Observations

\

home experiments and observations

HEL. Take two marbles or steel balls of the same size and prac-
tice shooting one into the other. Make these observations:

a. If you produce a head-on collision with the second
marble initialy at rest, does the first marble come 0 @
complete stop after the collision?

b. If the collision with a second marble occurs at an angle,
is the angle between the paths of the two marbles after
the collision a right angle (90°)?

c. I marbles of different sizes and masses are used, how.
do the results of parts a and b differ from those ob-
tained with marbles of the same mass?

b. Can you devise an explanation for these results using
impulse and Newton's third law? (Consider the force
between the basketball and the floor as well as that be-
tween the tennis ball and the basketball for the case
where they are dropped together.)

HE4. Place a cardboard box on a smooth tile or wood floor.
Practice rolling a basketball or soccer ball at different
speeds and allowing the ball o collide with the box. Ob-
serve the motion of both the box and the ball just after the
collision
a. How do the results of the collision vary for different

HE2. If you have access to a pool table, try parts a and b of speeds of the ball (slow, medium, fast)?
the observations in home experiment 1 on the pool table. b. If we increase the weight of the box by placing books
‘What effect does putting spin on the first ball have on the inside, how do the results of the collision change for
collisions? the cases in part a7

c. Can you explain your results using conservation of

HES. If you have both a basketball and a tennis ball, try drop- momentum?

ping the two of them onto a floor with a hard surface, first

individually and then with the tennis ball placed on top of

the basketball before the two are dropped together.

a. Compare the height of the bounce of each ball in these.
different cases. The case where the two are dropped to-
gether may surprise you.

“The selection of problems and questions at the end of
each chapter is excellent. They provide students with a
comprehensive review of the chapters and at the same
time present challenges to reinforce the concepts. . . .
Many students taking an introductory physics course do
not have a chance to take a lab component with the
course. The home experiments can go a long way toward
addressing this deficiency.”
—TFarhang Amiri,
Weber State University

Supplements

Text Website

A text-specific website that provides students with useful
study tools designed to help improve their understanding of
the material presented in the text and class. For the instruc-
tor, the website is designed to help ease the time burdens of
the course by providing valuable presentation and prepara-
tion tools.

For Students

Student Study Guide Integration
e Mastery Quiz
* Know
« Understand
e Study Hints
« Practice Problems
* Answers to Selected Questions
Animations
Crossword Puzzles
Links Library
Chapter Summary
Chapter Objectives

For Instructors

All Student Content

PowerPoint Lectures

Instructor’s Manual

Sample Syllabi

CPS elnstruction Questions for Personal Response Systems
Powerpoints of Art and Photos from the Text

Test Bank

Formula Summaries

e
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Personal Response Systems

Personal Response Systems (clickers) can bring interactivity
into the classroom or lecture hall. Wireless response sys-
tems give the instructor and students immediate feedback
from the entire class. The wireless response pads are essen-
tially remotes that are easy to use and engage students,
allowing instructors to motivate student preparation, inter-
activity, and active learning. Instructors receive immediate
feedback to gauge which concepts students understand.
Questions covering the content of The Physics of Everyday
Phenomena text are formatted in PowerPoint and are avail-
able on the text website.
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Computerized Test Bank Online

A comprehensive bank of test questions is provided on the
text website within a computerized test bank powered by
McGraw-Hill's flexible electronic testing program EZ Test
Online (www.eztestonline.com). EZ Test Online allows you
to create paper and online tests or quizzes in this easy to
use program!

Imagine being able to create and access your test or quiz
anywhere, at any time, without installing the testing soft-
ware. Now, with EZ Test Online, instructors can select
questions from multiple McGraw-Hill test banks, or author
their own, and then either print the test for paper distribu-
tion or give it online.

Test Creation

» Author/edit questions online using the 14 different
question type templates

 Create printed tests or deliver online to get instant
scoring and feedback.

« Create question pools to offer multiple versions online—
great for practice

» Export your tests for use in WebCT, Blackboard, Page-
Out, and Apple's iQuiz

» Compatible with EZ Test Desktop tests you have already
created

 Sharing tests with collegues, adjuncts, TAs is easy

Online Test Management

« Set availability dates and time limits for your quiz or test

 Control how your test will be presented

 Assign points by question or question type with drop-
down menu

 Provide immediate feedback to students or delay until
all finish the test

« Create practice tests online to enable student mastery

 Your roster can be uploaded to enable student self-
registration

Online Scoring and Reporting

e Automated scoring for most of EZ Test's numerous
question types

« Allows manual scoring for essay and other open response
questions

« Manual re-scoring and feedback is also available

e EZ Test's grade book is designed to easily export to
your grade book

 View basic statistical reports

Support and Help

 User's Guide and built-in page-specific help

Flash tutorials for getting started on the support site
 Support Website - www.mhhe.com/eztest

 Product specialist available at 1-800-331-5094
 Online Training: http://auth.mhhe.com/mpss/workshops/

Electronic Books

If you or your students are ready for an alternative version
of the traditional textbook, McGraw-Hill brings you inno-
vative and inexpensive electronic textbooks. By purchasing
e-books from McGraw-Hill, students can save as much as
50% on selected titles delivered on the most advanced e-
book platforms available.

E-books from McGraw-Hill are smart, interactive, searchable,
and portable, with such powerful tools as detailed searching,
highlighting, note taking, and student-to-student or instructor-
to-student note sharing. E-books from McGraw-Hill will help
students to study smarter and quickly find the information
they need. Students will also save money. Contact your
McGraw-Hill sales representative to discuss e-book packag-
ing options.
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Secrets t0 Success in Studying Physics

First of all, we should admit that there are no secrets. Conscientious work
and follow-through with reading, problem assignments, and class partici-
pation will reap the rewards that students can expect from such efforts in
other courses. Failing to do so will also lead to expected results.

There are some ways, however, in which studying physics is dif-
ferent from your studies in biology, history, or many other courses.
Physics is not an area of study that can be mastered by memorizing
discrete facts or by cramming before tests. Students sometimes bring
study strategies to physics that have worked in other courses and are
disappointed when they fail to work in their physics class. The sugges-
tions that follow are sure-fire steps to getting the most out of your
physics course and this textbook.

1. Experiment. Experiments play a key role in the development of
physics but also in the growth of understanding for anyone
approaching physics concepts. We often suggest in the text that you
try simple experiments that might involve throwing a ball, walking
across a room, or other very rudimentary activities. Do them right
away as they arise in the text. Not only will you gain the benefit of
increased blood flow to various parts of the body including the
brain, but what follows in your reading will make more sense.
Experience with everyday phenomena cannot be gained passively.

2. Get the big picture. Physics is a big-picture subject. Your under-
standing of Newton’s laws of motion, for example, cannot be
encapsulated by a formula or by memorizing the laws them-
selves. You need to see the entire context, understand the defini-
tions, and work with how the laws are applied. The outlines and
summaries provided at the beginning and end of each chapter
can help to provide the context. They cannot stand alone, how-
ever. You need to place the examples and descriptions provided
in the classroom and text in the framework provided by the out-
lines and summaries. If you grasp the big picture, the details will
often follow.

3. Explore questions. The textbook provides a list of conceptual
questions at the end of each chapter, but also raises questions in
the body of the text. The greatest benefit is gained by attacking
these questions first on your own and then by discussion with
classmates. Write out answers to these questions using full sen-
tences, not just short-answer phrases. Compare your answers with
those provided at the back of the text for selected questions, but
only after having a good crack at answering the questions yourself.

4. Try the exercises. The textbook also provides exercises and syn-
thesis problems at the end of each chapter. Their purpose is to
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provide practice with simple numerical applications of physics
concepts. They are only useful if you do them yourself and write
out the solution steps in such a way that you can follow your
work. Copying answers and steps from classmates or other
sources may gain points on the assignment but provides no bene-
fit in understanding. As in sports and many other activities, suc-
cess on physics exams will come to those who practice.

5. Be there. College students set their own priorities for use of time,
and sometimes class attendance is not at the top of the list. In
some classes, this may be justified by the nature of the benefit of
class activities, but that is seldom the case in physics. The demon-
strations, explanations, working of exercises, and class discus-
sions that are usually part of what occurs during a physics class
provide an invaluable aid to grasping the big picture and filling in
holes in your understanding. The demonstrations alone are often
worth the price of admission. (You do pay—it’s called tuition.)

6. Ask questions. If the explanations of demonstrations or other
issues are not clear, ask questions. If you are confused, chances
are good that many other students are likewise befuddled. They
will love you for raising the flag. Unless the instructor is unusu-
ally insecure, he or she will also love you for providing the
opportunity to achieve better clarity. Physics instructors already
know this stuff, so they sometimes have difficulty seeing where
student hang-ups may lie. Questions provide the lubrication for
moving things forward.

7. Review understanding. Preparing for tests should not be a matter
of last-minute cramming and memorization. Instead, you should
review your understanding of the big picture and question yourself
on why we did what we did in answering questions and working
exercises done previously. Memorization is usually pointless
because many physics instructors provide or permit formula sheets
that may include definitions and other information. Late-night
cramming is counterproductive because it detracts from getting a
good night’s sleep. Sleep can be critical to having a clear head the
next day to meet the challenges provided by the test.

Although there is an element of common sense in most of these sug-
gestions, you will probably not be surprised to learn that many students do
not approach things following these guidelines. Old habits are hard to
break and peer pressure can also be a negative influence at times. Students
fall into patterns that they know are ineffective, but are unable to climb
out of the rut. We have done our duty in disclosing these secrets. You are
on your own if you choose a different path. Let us know if it works.
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Physics, the
Fundamental Science

chapter overview

The main objective of this chapter is to help you understand what
physics is and where it fits in the broader scheme of the sciences.

A secondary purpose is to acquaint you with the metric system of units
and the advantages of the use of simple mathematics.

chapter outline

l The scientific enterprise. What is the scientific method? How do
scientific explanations differ from other types of explanation?

2 The scope of physics. What is physics? How is it related to the other
sciences and to technology? What are the major subfields of physics?

3 The role of measurement and mathematics in physics. Why are
measurements so important? Why is mathematics so extensively used
in science? What are the advantages of the metric system of units?

4 Physics and everyday phenomena. How is physics related to everyday
experience and common sense? What are the advantages of using
physics to understand common experience?

unit one
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Imagine that you are riding your bike on a country road
on an Indian-summer afternoon. The sun has come out
after a brief shower, and as the rain clouds move on, a
rainbow appears in the east (fig. 1.1). A leaf flutters to
the ground, and an acorn, shaken loose by a squirrel,
misses your head by only a few inches. The sun is warm on
your back, and you are at peace with the world around
you.

No knowledge of physics is needed to savor the mo-
ment, but your curiosity may bring some questions to
mind. Why does the rainbow appear in the east rather
than in the west, where it may also be raining? What
causes the colors to appear? Why does the acorn fall
more rapidly than the leaf? Why is it easier to keep your
bicycle upright while you are moving than when you are
standing still?

Your curiosity about questions like these is similar to
what motivates scientists. Learning to devise and apply
theories or models that can be used to understand, ex-
plain, and predict such phenomena can be a rewarding
intellectual game. Crafting an explanation and testing it
with simple experiments or observations is fun. That
enjoyment is often missed when the focus of a science
course is on accumulating facts.

This book can enhance your ability to enjoy the phe-
nomena that are part of everyday experience. Learning
to produce your own explanations and to perform sim-
ple experimental tests can be gratifying. The questions
posed here lie in the realm of physics, but the spirit of
inquiry and explanation is found throughout science

and in many other areas of human activity. The greatest
rewards of scientific study are the fun and excitement
that come from understanding something that has not
been understood before. This is true whether we are
talking about a physicist making a major scientific break-
through or about a bike rider understanding how rain-
bows are formed.

figure 1.1 A rainbow appears to the east in the Columbia
River Gorge in Oregon. How can this phenomenon be explained?
(See pages 354-355.)

study hint

If you have a clear idea of what you want to accomplish
before you begin to read a chapter, your reading will be
more effective. The questions in the chapter outline—as
well as those in the subheadings of each section—can
serve as a checklist for measuring your progress as you
read. A clear picture of what questions are going to be
addressed and where the answers will be found forms a
mental road map to guide you through the chapter. Take a
few minutes to study the outline and fix this road map in
your mind. It will be time well spent.

1.1 The Scientific Enterprise

How do scientists go about explaining something like the
rainbow described in the introduction to this chapter? How
do scientific explanations differ from other types of expla-
nations? Can we count on the scientific method to explain
almost anything? It is important to understand what sci-
ence can and cannot do.

Philosophers have devoted countless hours and pages
to questions about the nature of knowledge, and of scien-
tific knowledge in particular. Many issues are still being

refined and debated. Science grew rapidly during the twen-
tieth century and has had a tremendous impact on our lives.
Innovations in medicine, communications, transportation,
and computer technology all have resulted from advances
in science. What is it about science that explains its impres-
sive advances and steady expansion?

Science and rainbows

Let’s consider a specific example of how a scientific expla-
nation comes to be. Where would you turn for an explana-
tion of how rainbows are formed? If you returned from
your bike ride with that question on your mind, you might
turn to an encyclopedia or a textbook on physics, look up
rainbow in the index, and read the explanation found there.
Are you behaving like a scientist?

The answer is both yes and no. Many scientists would
do the same if they were unfamiliar with the explanation.
When we do this, we appeal to the authority of the text-
book author and to those who preceded the author in in-
venting the explanation. Appeal to authority is one way of
gaining knowledge, but you are at the mercy of your source
for the validity of your explanation. You are also hoping
that someone has already raised the same question and
done the work to create and test an explanation.
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Suppose you go back three hundred years or more and
try the same approach. One book might tell you that a rain-
bow is a painting of the angels. Another might speculate
on the nature of light and its interactions with raindrops but
be quite tentative in its conclusions. Either of these books
might have seemed authoritative in its day. Where, then, do
you turn? Which explanation will you accept?

If you are behaving like a scientist, you might begin by
reading the ideas of other scientists about light and then
test these ideas against your own observations of rainbows.
You would carefully note the conditions when rainbows ap-
pear, the position of the sun relative to you and the rainbow,
and the position of the rain shower. What is the order of the
colors in the rainbow? Have you observed that order in
other phenomena?

You would then invent an explanation or hypothesis
using current ideas on light and your own guess about what
happens as light passes through a raindrop. You could de-
vise experiments with water drops or glass beads to test
your hypothesis. (See chapter 17 for a modern view of how
rainbows are formed.)

If your explanation is consistent with your observations
and experiments, you could report it by giving a paper or
talk to scientific colleagues. They may criticize your expla-
nation, suggest modifications, and perform their own exper-
iments to confirm or refute your claims. If others confirm
your results, your explanation will gain support and eventu-
ally become part of a broader theory* about phenomena
involving light. The experiments that you and others do
may also lead to the discovery of new phenomena, which
will call for refined explanations and theories.

What is critical to the process just described? First is the
importance of careful observation. Another aspect is the idea
of testability. An acceptable scientific explanation should
suggest some means to test its predictions by observations
or experiment. Saying that rainbows are the paintings of
angels may be poetic, but it certainly is not testable by mere
humans. It is not a scientific explanation.

Another important part of the process is a social one, the
communication of your theory and experiments to col-
leagues (fig. 1.2). Submitting your ideas to the criticism (at
times blunt) of your peers is crucial to the advancement of
science. Communication is also important in assuring your
own care in performing the experiments and interpreting the
results. A scathing attack by someone who has found
an important error or omission in your work is a strong
incentive for being more careful in the future. One person
working alone cannot hope to think of all of the possible
ramifications, alternative explanations, or potential mistakes

*The concept of a theory, as used in science, is often misunderstood. It is
much more than a simple hypothesis. A theory consists of a set of basic
principles from which many predictions can be deduced. The basic princi-
ples involved in the theory are often widely accepted by scientists working
in the field.

figure 1.2 A scientific meeting. Communication and debate
are important to the development of scientific explanations. The
speaker is Albert Einstein.

in an argument or theory. The explosive growth of science
has depended heavily on cooperation and communication.

What is the scientific method?

Is there something we could call scientific method within
this description, and if so, what is it? The process just de-
scribed is a sketch of how the scientific method works.
Although there are variations on the theme, this method is
often described as shown in table 1.1.

The steps in table 1.1 are all involved in our description
of how to develop an explanation of rainbows. Careful ob-
servation may lead to empirical laws for when and where
rainbows appear. An empirical law is a generalization de-
rived from experiments or observations. An example of an
empirical law is the statement that we see rainbows with
the sun at our backs as we look at the rainbow. This is an

Steps in the Scientific Method
1. Careful observation of natural phenomena.

2. Formulation of rules or empirical laws based on
generalizations from these observations and experiences.

3. Development of hypotheses to explain the observations
and empirical laws, and the refinement of hypotheses into
theories.

4. Testing of the hypotheses or theories by further experiment
or observation.
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important clue for developing our hypothesis, which must
be consistent with this rule. The hypothesis, in turn, sug-
gests ways of producing rainbows artificially that could lead
to experimental tests and, eventually, to a broader theory.

This description of the scientific method is not bad, al-
though it ignores the critical process of communication. Few
scientists are engaged in the full cycle that these steps suggest.
Theoretical physicists, for example, may spend all of their
time with step 3. Although they have some interest in experi-
mental results, they may never do any experimental work
themselves. Today, little science is done simply by observing,
as implied by step 1. Most experiments and observations take
place to test a hypothesis or existing theory. Although the sci-
entific method is presented here as a stepwise process, in real-
ity these steps often happen simultaneously with much cycling
back and forth between steps (fig. 1.3).

Observation
or
experiments

Hypothesis
Generalization or

theory

figure 1.3 The scientific method cycles back to observations
or experiments as we seek to test our hypotheses or theories.

The scientific method is a way of testing and refining
ideas. Note that the method only applies when experimen-
tal tests or other consistent observations of phenomena are
feasible. Testing is crucial for weeding out unproductive
hypotheses; without tests, rival theories may compete end-
lessly for acceptance. Example box 1.1 provides a sample
question and response illustrating these ideas.

example box 1.1

Sample Question: How Reliable Is Astrology?

Question: Astrologers claim that many events in our lives
are determined by the positions of the planets relative to
the stars. Is this a testable hypothesis?

Answer: Yes, it could be tested if astrologers were willing to
make explicit predictions about future events that could be
verified by independent observers. In fact, astrologers usually
carefully avoid doing this, preferring to cast their predictions
as vague statements subject to broad interpretation. This
prevents clean tests. Astrology is not a science!

How should science be presented?

Traditional science courses focus on presenting the results
of the scientific process rather than the story of how scien-
tists arrived at these results. This is why the general public
often sees science as a collection of facts and established
theories. To some extent, that charge could be made against
this book since it describes theories that have resulted from
the work of others without giving the full picture of their
development. Building on the work of others, without need-
ing to repeat their mistakes and unproductive approaches,
is a necessary condition for human and scientific progress.

This book attempts to engage you in the process of
making your own observations and developing and testing
your own explanations of everyday phenomena. By doing
home experiments or observations, constructing explana-
tions of the results, and debating your interpretations with
your friends, you will appreciate the give-and-take that is
the essence of science.

Whether or not we are aware of it, we all use the scien-
tific method in our everyday activities. The case of the
malfunctioning coffee pot described in everyday phenome-
non box 1.1 provides an example of scientific reasoning
applied to ordinary troubleshooting.

The process of science begins with, and returns to,
observations of or experiments on natural phenomena.
Observations may suggest empirical laws, and these
generalizations may be incorporated into a more compre-
hensive hypothesis. The hypothesis is then tested against
more observations or by controlled experiments to form a
theory. Working scientists are engaged in one or more of
these activities, and we all use the scientific method on
everyday problems.

1.2 The Scope of Physics

Where does physics fit within the sciences? Since this book
is about physics, rather than biology, chemistry, geology, or
some other science, it is reasonable to ask where we draw
the lines between the disciplines. It is not possible, how-
ever, to make sharp distinctions among the disciplines or to
provide a definition of physics that will satisfy everyone.
The easiest way to give a sense of what physics is and does
is by example, that is, by listing some of its subfields and
exploring their content. First, let’s consider a definition,
however incomplete.

How is physics defined?

Physics can be defined as the study of the basic nature of
matter and the interactions that govern its behavior. It is the
most fundamental of the sciences. The principles and theo-
ries of physics can be used to explain the fundamental inter-
actions involved in chemistry, biology, and other sciences at
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everyday phenomenon

The Case of the Malfunctioning Coffee Pot

The Situation. It is Monday morning, and you are, as usual,
only half-awake and feeling at odds with the world. You are
looking forward to reviving yourself with a freshly brewed
cup of coffee when you discover that your coffeemaker
refuses to function. Which of these alternatives is most likely
to work?

1. Pound on the appliance with the heel of your hand.

2. Search desperately for the instruction manual that you
probably threw away two years ago.

3. Call a friend who knows about these things.

4. Apply the scientific method to troubleshoot the problem.

Fixing a malfunctioning coffee pot—alternative 1.

The Analysis. All of these alternatives have some chance
of success. The sometimes positive response of electrical or
mechanical appliances to physical abuse is well documented.
The second two alternatives are both forms of appeal to
authority that could produce results. The fourth alternative,
however, may be the most productive and quickest, barring
success with alternative 1.

How would we apply the scientific method as outlined in
table 1.1 to this problem? Step 1 involves calmly observing the
symptoms of the malfunction. Suppose that the coffeemaker

simply refuses to heat up. When the switch is turned on,
no sounds of warming water are heard. You notice that no
matter how many times you turn the switch on or off, no heat
results. This is the kind of simple generalization called for in
step 2.

We can now generate some hypotheses about the cause
of the malfunction, as suggested in step 3. Here are some
candidates:

The coffee pot is not plugged in.

The external circuit breaker or fuse has tripped.

The power is off in the entire house or neighborhood.
An internal fuse in the coffee pot has blown.

A wire has come loose or burned through inside the
coffeemaker.

f. The internal thermostat of the coffeemaker is broken.

®on oo

No detailed knowledge of electrical circuits is needed to
check these possibilities, although the last three call for more
sophistication (and are more trouble to check) than the first
three. The first three possibilities are the easiest to check and
should be tested first (step 4 in our method). A simple remedy
such as plugging in the pot or flipping on a circuit breaker
may put you back in business. If the power is off in the build-
ing, other appliances (lights, clocks, and so on) will not work
either, which provides an easy test. There may be little that
you can do in this case, but at least you have identified the
problem. Abusing the coffee pot will not help.

The pot may or may not have an internal fuse. If it is
blown, a trip to the hardware store may be necessary.

A problem like a loose wire or a burnt-out connection often
becomes obvious by looking inside after you remove the
bottom of the pot or the panel where the power cord comes
in. (You must unplug the pot before making such an inspec-
tion!) If one of these alternatives is the case, you have iden-
tified the problem, but the repair is likely to take more time
or expertise. The same is true of the last alternative.

Regardless of what you find, this systematic (and calm)
approach to the problem is likely to be more productive and
satisfying than the other approaches. Troubleshooting, if done
this way, is an example of applying the scientific method on a
small scale to an ordinary problem. We are all scientists if we
approach problems in this manner.

the atomic or molecular level. Modern chemistry, for exam-
ple, uses the physical theory of quantum mechanics to
explain how atoms combine to form molecules. Quantum
mechanics was developed primarily by physicists in the
early part of this century, but chemists and chemical knowl-
edge also played important roles. Ideas about energy that

arose initially in physics are now used extensively in chem-
istry, biology, and other sciences.

The general realm of science is often divided into the
life sciences and the physical sciences. The life sciences
include the various subfields of biology and the health-
related disciplines that deal with living organisms. The
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physical sciences deal with the behavior of matter in both
living and nonliving systems. In addition to physics, the
physical sciences include chemistry, geology, astronomy,
oceanography, and meteorology (the study of weather).
Physics underlies all of them.

Physics is also generally regarded as the most quantitative
of the sciences. It makes heavy use of mathematics and
numerical measurements to develop and test its theories.
This aspect of physics has often made it seem less accessible
to students, even though the models and ideas of physics can
be described more simply and cleanly than those of other
sciences. As we will discuss in section 1.3, mathematics
serves as a compact language, allowing briefer and more
precise statements than would be possible without its use.

What are the major subfields of physics?

The primary subfields of physics are listed and identified in
table 1.2. Mechanics, which deals with the motion (or lack
of motion) of objects under the influence of forces, was the
first subfield to be explained with a comprehensive theory.
Newton’s theory of mechanics, which he developed in the
last half of the seventeenth century, was the first full-fledged
physical theory that made extensive use of mathematics. It
became a prototype for subsequent theories in physics.

The first four subfields listed in table 1.2 were well de-
veloped by the beginning of the twentieth century, although
all have continued to advance since then. These subfields—
mechanics, thermodynamics, electricity and magnetism, and
optics—are sometimes grouped as classical physics. The
last four subfields—atomic physics, nuclear physics, parti-
cle physics, and condensed-matter physics—are often under
the heading of modern physics, even though all of the sub-
fields are part of the modern practice of physics. The dis-
tinction is made because the last four subfields all emerged
during the twentieth century and only existed in rudimen-
tary forms before the turn of that century. In addition to
the subfields listed in table 1.2, many physicists work in

The Major Subfields of Physics
Mechanics. The study of forces and motion.

Thermodynamics. The study of temperature, heat, and energy.

Electricity and Magnetism. The study of electric and
magnetic forces and electric current.

Optics. The study of light.

Atomic Physics. The study of the structure and behavior of
atoms.

Nuclear Physics. The study of the nucleus of the atom.
Particle Physics. The study of subatomic particles (quarks, etc.).

Condensed-Matter Physics. The study of the properties of
matter in the solid and liquid states.

J

figure 1.4  An optics experiment
using a laser.

figure 1.5 An infrared photograph showing patterns of
heat loss from a house is an application of thermodynamics.

interdisciplinary fields such as biophysics, geophysics, or
astrophysics.

The photographs in this section (figs. 1.4-1.7) illustrate
characteristic activities or applications of the subfields.
The invention of the laser has been an extremely important
factor in the rapid advances now taking place in optics
(fig. 1.4). The development of the infrared camera has pro-
vided a tool for the study of heat flow from buildings,
which involves thermodynamics (fig. 1.5). The rapid growth
in consumer electronics, as seen in the availability of home
computers, pocket calculators, and many other gadgets,
has been made possible by developments in condensed-
matter physics (fig. 1.6). Particle physicists use particle
accelerators (fig. 1.7) to study the interactions of subatomic
particles in high-energy collisions.
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figure 1.6  An integrated circuit employing semiconductor
devices developed from knowledge of condensed-matter physics.
Magpnification: x50.

figure 1.7 A Super—Proton-Synchrotron (SPS) particle
accelerator used to study interactions of subatomic particles at
high energies. It is located at CERN, the European particle-physics
laboratory in Switzerland.

Science and technology depend on each other for prog-
ress. Physics plays an important role in the education and
work of engineers, whether they specialize in electrical, me-
chanical, nuclear, or other engineering fields. In fact, peo-
ple with physics degrees often work as engineers when they
are employed in industry. The lines between physics and en-
gineering, or research and development, often blur. Physi-
cists are generally concerned with developing a fundamental
understanding of phenomena, and engineers with applying
that understanding to practical tasks or products, but these
functions often overlap.

One final point: physics is fun. Understanding how a
bicycle works or how a rainbow is formed has an appeal that
anyone can appreciate. The thrill of gaining insight into the
workings of the universe can be experienced at any level.
In this sense, we can all be physicists.

Physics is the study of the basic characteristics of matter
and its interactions. It is the most fundamental of the
sciences; many other sciences build on ideas from physics.
The major subfields of physics are mechanics, electricity
and magnetism, optics, thermodynamics, atomic and
nuclear physics, particle physics, and condensed-matter
physics. Physics plays an important role in engineering and
technology, but the real fun of physics comes from under-
standing how the universe works.

1.3 The Role of Measurement
and Mathematics in Physics

If you go into your college library, find a volume of Physi-
cal Review or some other major physics journal, and open
it at random, you are likely to find a page with many math-
ematical symbols and formulas. It would probably be in-
comprehensible to you. In fact, even many physicists who
are not specialists in the particular subfield covered by the
article might have difficulty making sense of that page,
because they would not be familiar with the particular sym-
bols and definitions.

Why do physicists make such extensive use of mathe-
matics in their work? Is knowledge of mathematics essential
to understanding the ideas being discussed? Mathematics is
a compact language for representing the ideas of physics
that makes it easier to precisely state and manipulate the
relationships between the quantities that we measure in
physics. Once you are familiar with the language, its mys-
tery disappears and its usefulness becomes more obvious.
Still, this book uses mathematics in a very limited manner,
because most ideas of physics can be discussed without
extensive use of mathematics.

Why are measurements so important?

How do we test theories in physics? Without careful mea-
surements, vague predictions and explanations may seem rea-
sonable, and making choices between competing explana-
tions may not be possible. A quantitative prediction, on the
other hand, can be tested against reality, and an explanation
or theory can be accepted or rejected based on the results of
measurements. If, for example, one hypothesis predicts that a
cannonball will land 100 meters from us and another predicts
a distance of 200 meters under the same conditions, firing the
cannon and measuring the actual distance provides persuasive
evidence for one hypothesis or the other (fig. 1.8). The rapid
growth and successes of physics began when the idea of mak-
ing precise measurements as a test was accepted.

Everyday life is full of situations in which measure-
ments, as well as the ability to express relationships be-
tween measurements, are important. Suppose, for example,
that you normally prepare pancakes on Sunday morning
for three people, but on a particular Sunday there is an
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figure 1.8 Cannonballs and a measuring tape: the proof lies in the measurement.

extra mouth to feed. What will you do—double the recipe
and feed the rest to the dog? Or will you figure out just
how much the quantities in the recipe should be increased
to come out right?

Let’s say that the normal recipe calls for 1 cup of milk.
How much milk will you use if you are increasing the recipe
to feed four people instead of three? Perhaps you can solve
this problem in your head, but some might find that process
dangerous. (Let’s see, 1 cup is enough for three people, so ¥3
cup is needed for each person, and 4 times ¥3 equals %3 or
1Y%s cups. See figure 1.9.) If you had to describe this opera-
tion to someone else, for the milk and all the other ingredi-
ents, you might find yourself using a lot of words. If you
looked closely at the person you were talking to, you might
also notice his eyes glazing over and confusion setting in.

How can mathematics help?

You can reduce the confusion by creating a statement that
works for all of the ingredients in the recipe, thus avoiding
the need to repeat yourself. You could say, “The quantity
of each ingredient needed for four people is related to the
quantity needed for three people as 4 is to 3.” That still
takes quite a few words and might not be clear unless the
person you were talking to was familiar with this way of
stating a proportion. If a piece of paper was handy, you
might communicate this statement in writing as:

Quantity for four : Quantity for three = 4 : 3.

To make the statement even briefer, you could use the
symbol Q, to represent the quantity of any given ingredient
needed to feed four people, and the symbol Q, to represent

N2 cups —— 2 cups N2 cups —— 2 cups
\ T-eup T-eup \ 1cup ——1lcup
\ J \

figure 1.9 Two measuring cups, one containing enough
milk to make pancakes to feed three people and the other
enough for four people.

the quantity needed for three people. Then the statement
can be expressed as a mathematical equation,

Q_4

Q 3

Using symbols is simply a compact way of saying the
same thing that we expressed in words earlier. This compact
statement also has the advantage of making manipulations
of the relationship easier. For example, if you multiply both
sides of this equation by Q,, it takes the form

4
Qs = §Q3,

which in words says that the quantity needed for four peo-
ple is 43 times what is needed for three people. If you are
comfortable with fractions, you could use this relationship
to find the proper amount for any ingredient quickly.

There are two points to this example. The first is that
making measurements is both a routine and important part
of everyday experience. The second is that using symbols
to represent quantities in a mathematical statement is a
shorter way of expressing an idea involving numbers than
the same statement in words would be. Using mathematics
also makes it easier to manipulate relationships to construct
concise arguments. These are the reasons that physicists (and
many other people) find mathematical statements useful.

Despite the brevity and apparent clarity of mathematical
statements, many people are still more comfortable with
words. This is a matter of personal choice and experience,
although some fear of mathematics may also be involved.
For this reason, word statements are provided in this book
with most of the simple mathematical expressions that we
will use. Together with the mathematical statement and the
drawings, these word statements will help you to under-
stand the concepts we will be discussing.

Why are metric units used?

Units of measurement are an essential part of any measure-
ment. We do not communicate clearly if we just state a
number. If you just talked about adding 1¥3 of milk, for
example, your statement would be incomplete. You need
to indicate whether you are talking about cups, pints, or
milliliters.
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The liter and milliliter are metric units of volume. Cups,
pints, quarts, and gallons are holdovers from the older Eng-
lish system of units. Most countries have now adopted the
metric system, which has several advantages over the Eng-
lish system still used in the United States. The main advan-
tage of the metric system is its use of standard prefixes to
represent multiples of 10, making unit conversion within
the system quite easy. The fact that a kilometer (km) is
1000 meters and a centimeter (cm) is Y100 of a meter, and
that the prefixes kilo and centi always mean 1000 and %100,
makes these conversions easy to remember (see table 1.3).
To convert 30 centimeters to meters, all we have to do is
move the decimal point two places to the left to get 0.30
meter. Moving the decimal point two places to the left is
equivalent to dividing by 100.

Table 1.3 is a list of the common prefixes used in the
metric system. (See appendix B for a discussion of the
powers of 10 or scientific notation used for describing
very large and very small numbers.) The basic unit of vol-
ume in the metric system is the liter (L), which is slightly
larger than a quart (1 liter = 1.057 quarts). A milliliter (mL)
is Y1000 of a liter, a convenient size for quantities in recipes.
One milliliter is also equal to 1 cm?, or 1 cubic centimeter,
so there is a simple relationship between the length and vol-
ume measurements in the metric system. Such simple rela-
tionships are hard to find in the English system, where 1
cup is ¥4 of quart, and a quart is 67.2 cubic inches.

The metric system predominates in this book. English
units will be used occasionally because they are familiar
and can help in learning new concepts. Most of us still
relate more readily to distances in miles than in kilome-
ters, for example. That there are 5280 feet in a mile is a
nuisance, however, compared to the tidy 1000 meters in
1 kilometer. Becoming familiar with the metric system is
a worthy objective. Your ability to participate in interna-
tional trade (for business or pleasure) will be enhanced
if you are familiar with the system of units used in most

Commonly Used Metric Prefixes

Meaning

in scientific
Prefix in figures notation in words
tera 1000 000 000 000 = 10" = 1 trillion
giga 1 000 000 000 = 10° = 1 billion
mega 1000 000 = 106 = 1 million
kilo 1000 = 10° = 1 thousand
centi Y400 =001 =107 = 1 hundredth
milli 1/1000 = 0.001 = 1073 = 1 thousandth
micro /1000 000 = e = 10"° = 1 millionth
nano  '1owoooooo = Yiee = 107° = 1 billionth
pico = Yz = 1077 = 1 trillionth

example box 1.2

Sample Exercise: Length Conversions

If you are told that there are 2.54 cm in 1 inch,
a. How many centimeters are there in 1 foot (12 inches)?
b. How many meters does 1 foot represent?

a. 1inch = 2.54 cm
1 foot = 12 inches
1 foot = ? (in cm)

124\ / 2.54cm
(1ﬁ)(ﬁ>( Tin )— 30.5cm 1foot = 30.5cm

b. 1 foot = 30.5 cm
Tm=100cm
1 foot = ? (in m)

30.5 e 1m
s ZE)( 20— 005

1 foot = 0.305m

Lines drawn through the units indicate cancellation.

of the world. Example boxes 1.2 and 1.3 provide unit
conversion exercises involving metric units.

Stating a result or prediction in numbers lends precision
to otherwise vague claims. Measurement is an essential
part of science and of everyday life. Using mathematical
symbols and statements is an efficient way of stating

the results of measurements and eases manipulating the
relationships between quantities. Units of measurement
are an essential part of any measurement, and the metric
system of units used in most of the world has a number
of advantages over the older English system.

example box 1.3

Sample Exercise: Rate Conversions

If the rate of flow in an automatic watering system is 2
gallons/hour, how many milliliters per minute is this?

1 gallon = 3.786 liters

1 liter = 1000 ml

2 gal/hr = ? (in ml/min)

( Zgal-lens)( 3.786 m)( 1000 ml>< 1hea+=>
hew: 1 gaten 1 hter 60 min
= 126.2 ml/min

2 gallons/hour = 126.2 ml/min
Lines drawn through the units indicate cancellation.
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figure 1.10 A bicycle wheel, a model of an atom, and a galaxy all involve the concept of angular momentum.

1.4 Physics and Everyday Phenomena

Studying physics can and will lead us to ideas as earth-
shaking as the fundamental nature of matter and the struc-
ture of the universe. With ideas like these available, why
spend time on more mundane matters like explaining how a
bicycle stays upright or how a flashlight works? Why not
just plunge into far-reaching discussions of the fundamen-
tal nature of reality?

Why study everyday phenomena?

Our understanding of the fundamental nature of the uni-
verse is based on concepts such as mass, energy, and elec-
tric charge that are abstract and not directly accessible to
our senses. It is possible to learn some of the words asso-
ciated with these concepts and to read and discuss ideas
involving them without ever acquiring a good understand-
ing of their meaning. This is one risk of playing with the
grand ideas without laying the proper foundation.

Using everyday experience to raise questions, introduce
concepts, and practice devising physical explanations has
the advantage of dealing with examples that are familiar
and concrete. These examples also appeal to your natural
curiosity about how things work, which, in turn, can moti-
vate you to understand the underlying concepts. If you can
clearly describe and explain common events, you gain con-
fidence in dealing with more abstract concepts. With famil-
iar examples, the concepts are set on firmer ground, and
their meaning becomes more real.

For example, why a bicycle (or a top) stays upright
while moving but falls over when at rest involves the con-
cept of angular momentum, which is discussed in chapter
8. Angular momentum also plays a role in our understand-
ing of atoms and the atomic nucleus—both in the realm of
the very small—and the structure of galaxies at the opposite
end of the scale (fig. 1.10). You are more likely to under-

stand angular momentum, though, by discussing it first in
the context of bicycle wheels or tops.

The principles explaining falling bodies, such as the
acorn mentioned in the chapter introduction, involve the
concepts of velocity, acceleration, force, and mass, which
are discussed in chapters 2, 3, and 4. Like angular momen-
tum, these concepts are also important to our understanding
of atoms and the universe. Understanding how rainbows
are formed involves the behavior of light, discussed in
chapter 17. The behavior of light also plays a major role in
how we think about atoms and the universe.

Our “common sense” sometimes misleads us in our
understanding of everyday phenomena. Adjusting common
sense to incorporate well-established physical principles
is one of the challenges we face in dealing with everyday
experience. By performing simple experiments, either at
home (as is often suggested in this book) or in laboratories
and demonstrations associated with your course in physics,
you can take an active part in building your own scientific
worldview.

Although it may seem like an oxymoron, everyday ex-
perience is extraordinary. A bright rainbow is an incredi-
ble sight. Understanding how rainbows originate does not
detract from the experience. It adds excitement to explain
such a beautiful display with just a few elegant concepts.
In fact, people who understand these ideas see more rain-
bows because they know where to look. This excitement,
and the added appreciation of nature that is a part of it, is
accessible to all of us.

Studying everyday phenomena can make abstract ideas more
accessible. These ideas are needed to understand the funda-
mental nature of matter and the universe, but they are best
encountered first in familiar examples. Being able to explain
common phenomena builds confidence in using the ideas
and enhances our appreciation of what happens around us..
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study hint:

How to Use the Features
of This Book

This book has a number of features designed to make it
easier for you to organize and grasp the concepts that we
will explore. These features include the chapter overview
and outline at the beginning of each chapter and the sum-
mary at the end of each chapter, as well as the structure
of individual sections of the chapters. The questions, exer-
cises, and synthesis problems at the end of each chapter
also play an important role. How can these features be
used to the best advantage?

Chapter outlines and summaries

Knowing where you are heading before you set out on a
journey can be the key to the success of your mission. Stu-
dents get a better grasp of concepts if they have some struc-
ture or framework to help them to organize the ideas. Both
the chapter overview and outline at the beginning of each
chapter and the summary at the end are designed to provide
such a framework. Having a clear idea of what you are trying

The chapter outline and chapter summary provide related frameworks for organizing concepts.

to accomplish before you invest time in reading a chapter will
make your reading more effective and enjoyable.

The list of topics and questions in the chapter outline
can be used as a checklist for measuring your progress as
you read. Each numbered topic in the outline, with its
associated questions, pertains to a section of the chapter.
The outline is designed to stimulate your curiosity by pro-
viding some blanks (unanswered questions) to be filled in
by your reading. Without the blanks, your mind has no
organizational structure to store the information. Without
structure, recall is more difficult. You can use the questions
in the outline to check the effectiveness of your reading.
Can you answer all of the questions when you are done?
Each section of a chapter also begins with questions, and
the section subheadings are likewise often cast as ques-
tions. At the end of each section there is also an indented
summary paragraph designed to help you tie the ideas in
that section together.

The end-of-chapter summary gives a short description of
the key ideas in each section, often cast in the form of
answers to the questions raised in the outline (see diagram).
Summaries provide a quick review, but they are no substi-
tute for a careful reading of the main text. By following
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the same organizational structure as the outline, the sum-
mary reminds you where to find a more complete discussion
of these ideas. The purpose of both the outlines and the
summaries is to make your reading more organized and
effective.

Studying any new discipline requires forming new pat-
terns of thought that can take time to gel. The summaries
at the end of each section, as well as at the end of the
chapter, can help this gelling to take place. A structure is
often built layer by layer, and the later layers will be shaky
if the base is unstable.

How should the questions
and exercises be used?

At the end of each chapter you will find a group of ques-
tions, followed by a group of exercises, and, finally, by a
small number of synthesis problems. Your grasp of the chap-
ter will improve if you write out answers to the questions
and exercises, either as assigned by your instructor

or in independent study. The ideas contained in each chapter
cannot be thoroughly mastered without this kind of practice.

The questions are crucial to helping you fix the impor-
tant concepts and distinctions in your mind. Most of the
questions call for a short answer as well as an explana-
tion. A few of the questions, marked with asterisks, are
more open-ended and call for lengthier responses. It is a
good idea to write out the explanations in clear sentences
when you answer these questions, because it is only
through reinforcement that ideas become a part of you.
Also, if you can explain something clearly to someone else,
you understand it. A sample question and answer appears
in example box 1.1.

The exercises are designed to give you practice in using
the ideas and the related formulas to do simple computa-
tions. The exercises also help to solidify your understanding
of concepts by giving you a sense of the units and the sizes
of the quantities involved. Even though many of the exer-
cises are straightforward enough to work in your head
without writing much down, we recommend writing out the
information given, the information sought, and the solution
in the manner shown in example boxes 1.2 and 1.3 in sec-
tion 1.3. This develops careful work habits that will help you

avoid careless mistakes. Most students find the exercises
easier than the questions. The sample exercises scattered
through each chapter can help you get started.

The synthesis problems are more wide-ranging than the
questions or exercises. They often involve features of both.
Although not necessarily harder than the questions or exer-
cises, they do take more time and are sometimes used to
extend ideas beyond what was discussed in the chapter.
Doing one or two of these in each chapter should build
your confidence. They are particularly recommended for
those students who have worked the exercises and want to
explore the topic in more depth.

Answers to the odd-numbered exercises, odd-numbered
synthesis problems, and selected questions are found in
the back of the book in appendix D. Looking up the
answer before attempting the problem is self-defeating. It
deprives you of practice in thinking things through on your
own. Checking answers after you have worked an exercise
can be a confidence builder. Answers should be used only
to confirm or improve your own thinking.

Home experiments and everyday
phenomenon boxes

Reading or talking about physical ideas is useful, but there
is no substitute for hands-on experience with the phenom-
ena. You already have a wealth of experience with many of
these phenomena, but you probably have not related it to
the physical concepts you will be learning. Seeing things in
new ways will make you a more astute observer.

In addition to the home experiments at the end of each
chapter, we often suggest some simple experiments in the
main text or in the study hints. We strongly recommend
making these observations and doing the experiments. Lec-
ture demonstrations can help, but doing something yourself
imprints it vividly on your mind. There is excitement in dis-
covering things yourself and seeing them in a new light.

The boxes that discuss everyday phenomena also give
you practice in applying physical concepts. Most of the
phenomena discussed in these boxes are familiar. The boxes
allow us to explore these examples more thoroughly. Par-
ticipating in these investigations of everyday phenomena
can help bring the ideas home.
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summary
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the scope of physics, and the use of mathematics and measure-
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stood with a minimum of mathematics.

4 Physics and everyday phenomena. Many of the
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phenomena. Being able to understand and explain familiar phe-
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questions

* = more open-ended questions, requiring lengthier responses, suitable
for group discussion

Q = sample responses are available in appendix D

Q = sample responses are available on the website

*QL.

Q2.

Q3.

*Q4.

Q5.

Q6.

*Q7.

Q8.

Which of these criteria best distinguish between explana-
tions provided by science and those provided by religion:
truth, testability, or appeal to authority? How do religious
explanations differ from scientific explanations?

A person claiming to have paranormal powers states that
she can predict which card will come up next in a shuffled
deck of cards simply by exercising her mental powers. Is
this a testable claim? Explain.

Historians sometimes develop theories to explain observed
patterns in the history of different countries. Are these theo-
ries testable in the same sense as a theory in physics?
Explain.

Over the years, there have been several credible claims by
experienced observers of sightings of Unidentified Flying
Objects (UFOs). Despite this, scientists have shied away
from taking up serious study of UFOs, although there are
ongoing searches for signals from extraterrestrial intelligent
beings. Can you think of reasons why scientists have not
taken UFOs seriously? What problems can you see in try-
ing to study UFQOs?

Suppose that your car will not start and you form the hy-
pothesis that the battery is dead. How would you test this
hypothesis? Explain.

Suppose that your phone has not rung in several days, but a
friend tells you he has tried to call. Develop two hypothe-
ses that could explain why the phone has not rung and state
how you would test these hypotheses.

Suppose that a friend states the hypothesis that the color of
socks that he wears on a given day, brown or black, will
determine whether the stock market will go up or down. He
can cite several instances in which this hypothesis has been
apparently verified. How would you go about evaluating
this hypothesis?

Which of the three science fields: biology, chemistry, or
physics, would you say is the most fundamental? Explain
by describing in what sense one of these fields may be
more fundamental than the others.

exercises

Qo.

Q10.

Q11.

Q12.

Q13.

Q14.

Q15.

Q16.

Q17.

Q1s.

Q10.

Q20.

Based upon the brief descriptions provided in table 1.2,
which subfield of physics would you say is involved in the
explanation of rainbows? Which subfield is involved in
describing how an acorn falls? Explain.

Based upon the descriptions provided in table 1.2, which
subfields of physics are involved in explaining why an ice
cube melts? Which subfields are involved in explaining
how an airplane flies? Explain.

Suppose that you are told that speed is defined by the rela-
tionship s = d/t, where s represents speed, d represents dis-
tance, and t represents time. State this relationship in
words, using no mathematical symbols.

Impulse is defined as the average force acting on an object
multiplied by the time the force acts. If we let | represent
impulse, F the average force, and t the time, is | = F/t a
correct way of expressing this definition? Explain.

The distance that an object travels when it starts from rest
and undergoes constant acceleration is one-half the acceler-
ation multiplied by the square of the time. Invent your own
symbols and express this statement in symbolic form.

What are the primary advantages of the metric system of
units over the older English system of units? Explain.

What are the advantages, if any, of continuing to use the
English system of units in industry and commerce rather
than converting to the metric system? Explain.

Which system of units, the metric system or English sys-
tem, is used more widely throughout the world? Explain.

The width of a man’s hand was used as a common unit of
length several hundred years ago. What are the advantages
and disadvantages of using such a unit? Explain.

A pirate map indicates that a treasure is buried 50 paces
due east and 120 paces due north of a big rock. Will you
know where to dig? Explain.

List the following volumes in descending order: gallon, quart,
liter, milliliter. The conversion factors given on the inside
front cover may be useful.

List the following lengths in descending order: kilometer,
feet, mile, centimeter, inch. The conversion factors given on
the inside front cover may be useful.

El

E2.

Suppose that a pancake recipe designed to feed three peo-
ple calls for 600 mL of flour. How many milliliters of flour
would you use if you wanted to extend the recipe to feed
five people?

Suppose that a cupcake recipe designed to produce twelve
cupcakes calls for 900 mL of flour. How many milliliters
of flour would you use if you wanted to make only eight
cupcakes?

E3.

E4.

It is estimated that six large pizzas are about right to serve
a physics club meeting of 30 students. How many pizzas
would be required if the group grows to 50 students?

A man uses his hand to measure the width of a tabletop. If
his hand has a width of 12 cm at its widest point, and he
finds the tabletop to be 10.5 hands wide, what is the width
of the tabletop in cm? In meters?



Home Experiments and Observations 15

ES.

E6.

E7.

E8.

EQ.

A woman’s foot is 9 inches long. If she steps off the length
of a room by placing one foot directly in front of the other,
and finds the room to be 15 foot-lengths long, what is the
length of the room in inches? In feet?

A book is 220 mm in width. What is this width in centime-
ters? In meters?

A crate has a mass of 8.60 kg (kilograms). What is this
mass in grams? In milligrams?

A tank holds 2.18 kL (kiloliters) of water. How many liters
is this? How many milliliters?

A mile is 5280 ft long. The sample exercise in example
box 1.2 shows that 1 foot is approximately 0.305 m. How
many meters are there in a mile? How many kilometers
(km) are there in a mile?

synthesis problems

E10.

E11.

E12.

E13.

If a mile is 5280 ft long and a yard contains 3 ft, how many
yards are there in a mile?

Area is found by multiplying the length of a surface times
the width. If a floor measures 6.25 m?, how many square
centimeters does this represent? How many square cen-
timeters are there in 1 m??

A common speed limit in Vancouver, British Columbia, is
80 km/hr. If you are going 55 MPH, are you speeding?
Show by converting 55 MPH to km/hr using the conversion
factors on the inside front cover.

If gas costs 80¢ a liter, how much does a gallon of gas
cost? Show by converting gallons to liters using the conver-
sion factors on the inside front cover.

SP1.

SP2.

home experiments and observations

Astrologers claim that they can predict important events in
your life by the configuration of the planets and the astro-
logical sign under which you were born. Astrological pre-
dictions, called horoscopes, can be found in most daily
newspapers. Find these predictions in a newspaper and ad-
dress the questions:

a. Are the astrological predictions testable?

b. Choosing the prediction for your own sign, how would
you go about testing its accuracy over the next month
or so?

¢. Why do newspapers print these readings? What is their
appeal?

In the United States a common quantity of hard liquor was
historically a fifth, which represents a fifth of a US gallon.
However, since the US wants to market its alcohol globally,
and everyone else uses the metric system, it has retooled its
packaging, so a common quantity is now 750 ml.

a. How many liters are in a fifth?
b. How many milliliters are in a fifth?
c. Which is larger, 750 ml or a fifth of a gallon?

SP3.

An energy-efficient bulb claims to have the brightness of a
75W bulb but only uses 15W of electrical power.

a. If you have this light bulb on for 5 hours a day, for 350
days during a year, how many hours is it on?

b. A kilowatt is 1000 watts. The kilowatt-hour is a com-
mon unit for energy, obtained by multiplying the power
in kilowatts by the time used in hours. How many kilo-
watt-hours (kWh) will you use when burning the 75W
bulb for the year?

c. How many kilowatt-hours (kWh) will you use when
burning the 15W bulb for the year?

d. Assuming that the cost of electricity is 15¢ per kWh,
what is the cost of using the 75W bulb for the year?

e. Assuming this same cost, what is the cost of using the
15W bulb for the year?

f. How much do you save by using the 15W bulb?

g. How much would you save if you replaced 20 of the
75W bulbs with the 15W bulbs?

HE1.

Look around your house, car, or dormitory room to see what
measuring tools (rulers, measuring cups, speedometers, etc.)
you have handy. Which of these tools, if any, provides both
English and metric units? For those that do, determine the
conversion factor needed to convert the English units to
metric units.






The Newtonian
Revolution

In 1687, Isaac Newton published his Philosophiae
Naturalis Principia Mathematica or Mathematical Prin-
ciples of Natural Philosophy. This treatise, often called
simply Newton'’s Principia, presented his theory of
motion, which included his three laws of motion and
his law of universal gravitation. Together these laws
explain most of what was then known about the mo-
tion of ordinary objects near Earth’s surface (terres-
trial mechanics) as well as the motion of the planets
around the sun (celestial mechanics). Along the way,
Newton had to invent the mathematical techniques
that we call calculus.

Newton’s theory of mechanics described in the Prin-
cipia was an incredible intellectual achievement that
revolutionized both science and philosophy. The revo-
lution did not begin with Newton, though. The true
rebel was the Italian scientist, Galileo Galilei, who died
just a few months after Newton was born in 1642.
Galileo championed the sun-centered view of the
solar system proposed a hundred years earlier by
Nicolaus Copernicus and stood trial under the Inquisi-
tion for his pains. Galileo also challenged the conven-
tional wisdom, based on Aristotle’s teachings, about the
motion of ordinary objects. In the process, he devel-
oped many of the principles of terrestrial mechanics
that Newton later incorporated into his theory.
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Although Newton’s theory of motion does not
accurately describe the motion of very fast objects
(which are now described using Einstein’s theory of
relativity) and very small objects (where quantum
mechanics must be used), it is still used extensively in
physics and engineering to explain motion and to ana-
lyze structures. Newton's theory has had enormous
influence over the last three hundred years in realms
of thought that extend well beyond the natural sci-
ences and deserves to be understood by anyone claim-
ing to be well educated.

Central to Newton's theory is his second law of mo-
tion. It states that the acceleration of an object is pro-
portional to the net force acting on the object and
inversely proportional to the mass of the object. Push
an object and that object accelerates in the direction
of the applied force. Contrary to intuition and to
Aristotle’s teachings, acceleration, not velocity, is pro-
portional to the applied force. To understand this idea,
we will thoroughly examine acceleration, which in-
volves a change in the motion of an object.

Rather than plunging into Newton’s theory, we
begin this unit by studying Galileo’s insights into
motion and free fall. This provides the necessary foun-
dation to tackle Newton'’s ideas. To see well, we need
to stand on the shoulders of these giants.



unit one

Describing Motion

chapter overview

The main purpose of this chapter is to provide clear definitions and
illustrations of the terms used in physics to describe motion, such as the
motion of the car described in this chapter’s opening example. Speed,
velocity, and acceleration are crucial concepts for the analysis of motion
in later chapters. Precise description is the first step to understanding.
Without it, we remain awash in vague ideas that are not defined well
enough to test our explanations.

Each numbered topic in this chapter builds on the previous section,
so it is important to obtain a clear understanding of each topic before
going on. The distinctions between speed and velocity and velocity and
acceleration are particularly important.

chapter outline

l Average and instantaneous speed. How do we describe how fast an
object is moving? How does instantaneous speed differ from average
speed?

2 Velocity. How do we introduce direction into descriptions of motion?
What is the distinction between speed and velocity?

3 Acceleration. How do we describe changes in motion? What is the
relationship between velocity and acceleration?

4 Graphing motion. How can graphs be used to describe motion? How
can the use of graphs help us gain a clearer understanding of speed,
velocity, and acceleration?

5 Uniform acceleration. What happens when an object accelerates at a
steady rate? How do the velocity and distance traveled vary with time
when an object is uniformly accelerating?

18




2.1 Average and Instantaneous Speed 19

Imagine that you are in your car stopped at an inter-
section. After waiting for cross traffic, you pull away from
the stop sign, accelerating eventually to a speed of 56
kilometers per hour (35 miles per hour). You maintain
that speed until a dog runs in front of your car and you
hit the brakes, reducing your speed rapidly to 10 km/h
(fig. 2.1). Having missed the dog, you speed up again to
56 km/h. After another block, you come to another stop
sign and reduce your speed gradually to zero.

We can all relate to this description. Measuring speed
in miles per hour (MPH) may be more familiar than the
use of kilometers per hour (km/h), but speedometers in
cars now show both. The use of the term acceleration to
describe an increase in speed is also common. In physics,
however, these concepts take on more precise and spe-
cialized meanings that make them even more useful in
describing exactly what is happening. These meanings

are sometimes different from those in everyday use. The
term acceleration, for example, is used by physicists to
describe any situation in which velocity is changing,
even when the speed may be decreasing or the direc-
tion of the motion may be changing.

How would you define the term speed if you were
explaining the idea to a younger brother or sister? Does
velocity mean the same thing? What about acceleration—
is the notion vague or does it have a precise meaning?
Is it the same thing as velocity? Clear definitions are
essential to developing clear explanations. The language
used by physicists differs from our everyday language,
even though the ideas are related and the same words
are used. What are the exact meanings that physicists
attach to these concepts, and how can they help us to
understand motion?

figure 2.1 As the car brakes for the dog, there is a sudden change in speed.

2.1 Average and Instantaneous Speed

Since driving or riding in cars is a common activity in our
daily lives, we are familiar with the concept of speed. Most
of us have had experience in reading a speedometer (or per-
haps failing to read it carefully enough to avoid the attention
of law enforcement). If you describe how fast something is
moving, as we did in our example in the introduction, you
are talking about speed.

How is average speed defined?

What does it mean to say that we are traveling at a speed
of 55 MPH? It means that we would cover a distance of
55 miles in a time of 1 hour if we traveled steadily at that
speed. Carefully note the structure of this description: there
is @ number, 55, and some units or dimensions, miles per
hour. Numbers and units are both essential parts of a de-
scription of speed.

The term miles per hour implies that miles are divided
by hours in arriving at the speed. This is exactly how we
would compute the average speed for a trip: suppose, for

example, that we travel a distance of 260 miles in a time of
5 hours, as shown on the road map of figure 2.2. The aver-
age speed is then 260 miles divided by 5 hours, which is
equal to 52 MPH. This type of computation is familiar to
most of us.

We can also express the definition of average speed in a
word equation as

Average speed equals the distance traveled divided by the
time of travel.

or

distance traveled

Average speed = —; :
gesp time of travel

We can represent this same definition with symbols by
writing

d
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Flagstaff

Kingman

Phoenix

figure 2.2 A road map showing a trip of 260 miles, with
driving times for the two legs of the trip.

where the letter s represents the speed, d represents dis-
tance, and t represents the time. As noted in chapter 1, let-
ters or symbols are a compact way of saying what could be
said with a little more effort and space with words. Judge
for yourself which is the more efficient way of expressing
this definition of average speed. Most people find the sym-
bolic expression easier to remember and use.

The average speed that we have just defined is the rate
at which distance is covered over time. Rates always repre-
sent one quantity divided by another. Gallons per minute,
pesos per dollar, and points per game are all examples of
rates. If we are considering time rates, the quantity that we
divide by is time, which is the case with average speed.
Many other quantities that we will be considering involve
time rates.

What are the units of speed?

Units are an essential part of the description of speed. Sup-
pose you say that you were doing 70—without stating the
units. In the United States, that would probably be under-
stood as 70 MPH, since that is the unit most frequently
used. In Europe, on the other hand, people would probably
assume that you are talking about the considerably slower
speed of 70 km/h. If you do not state the units, you will
not communicate effectively.

It is easy to convert from one unit to another if the con-
version factors are known. For example, if we want to con-
vert kilometers per hour to miles per hour, we need to know
the relationship between miles and kilometers. A kilometer
is roughly 10 of a mile (0.6214, to be more precise). As
shown in example box 2.1, 70 km/h is equal to 43.5 MPH.
The process involves multiplication or division by the ap-
propriate conversion factor.

example box 2.1

Sample Exercise: Speed Conversions

Convert 90 kilometers per hour to (a) miles per hour and
(b) meters per second.

a. 1km = 0.6214 miles
90 km/hr = ? (in MPH)

<90 km)( 0.6214 miles
hr e}

90 km/hr = 55.9 MPH
b. 1 km = 1000 m

( %0 m)( 1000 m) — 90,000 m/hr

) = 55.9 MPH

hr e
60 i 60
However (1 h;)( m) (ﬂ) = 3600 sec
R+ et
90,000 m 1k _
( e >(3600 sec) = 25.0m/sec

90 km/hr = 25.0 m/sec

Part b can also be done using the conversion factors for
speed on the inside front cover:

1 km/hr = 0.278 m/sec
0.278 m/sec
1 etk

90 km/hr = 25.0 m/sec

(90 kerrthF) ( ) = 25.0 m/sec

Lines drawn through the units indicate cancellation.

Units of speed will always be a distance divided by a
time. In the metric system, the fundamental unit of speed
is meters per second (m/s). Example box 2.1 also shows the
conversion of kilometers per hour to meters per second,
done as a two-step process. As you can see, 70 km/h can
also be expressed as 19.4 m/s or roughly 20 m/s. This is a
convenient size for discussing the speeds of ordinary
objects. (As shown in example box 2.2, the convenient unit
for measuring the growth of grass has a very different size.)
Table 2.1 shows some familiar speeds expressed in miles

Familiar Speeds in Different Units

20MPH = 32km/h = 9mi/s
40 MPH = 64 km/h = 18 m/s
60 MPH = 97 km/h = 27 m/s
80 MPH = 130 km/h = 36 m/s

100 MPH = 160 km/h = 45 m/s
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example box 2.2

Sample Question: Watching Grass Grow

Question: The units km/h or m/s have an appropriate
size for moving cars or people. Many other processes
move much more slowly, though. What units would have
an appropriate size for measuring the average speed with
which a blade of grass grows?

Answer: When grass is well fertilized and watered, it is
not unusual for it to grow 3 to 6 centimeters in the course
of a week. This can be seen by measuring the length of
the clippings after mowing. If we measured the speed in
m/s, we would obtain an extremely small number that
would not provide a good intuitive sense of the rate of
growth. The units of cm/week or mm/day would provide

a better indication of this speed.

per hour, kilometers per hour, and meters per second to
give you a sense of their relationships.

What is instantaneous speed?

If we travel a distance of 260 miles in 5 hours, as in our ear-
lier example, is it likely that the entire trip takes place at a
speed of 52 MPH? Of course not; the speed goes up and
down as the road goes up and down, when we overtake slower
vehicles, when rest breaks occur, or when the highway patrol
looms on the horizon. If we want to know how fast we are
going at a given instant in time, we read the speedometer,
which displays the instantaneous speed (fig. 2.3).

How does instantaneous speed differ from average speed?
The instantaneous speed tells us how fast we are going at a
given instant but tells us little about how long it will take
to travel several miles, unless the speed is held constant.
The average speed, on the other hand, allows us to com-
pute how long a trip might take but says little about the vari-
ation in speed during the trip. A more complete description of

figure 2.3 A speedometer with two scales for measuring
instantaneous speed, MPH and km/h.
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5 10 15 20
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figure 2.4 Variations in instantaneous speed for a portion
of a trip on a local highway.

how the speed of a car varies during a portion of a trip could
be provided by a graph such as that shown in figure 2.4. Each
point on this graph represents the instantaneous speed at the
time indicated on the horizontal axis.

Even though we all have some intuitive sense of what
instantaneous speed means from our experience in reading
speedometers, computing this quantity presents some prob-
lems that we did not encounter in defining average speed.
We could say that instantaneous speed is the rate that dis-
tance is being covered at a given instant in time, but how
do we compute this rate? What time interval should we
use? What is an instant in time?

Our solution to this problem is simply to choose a very
short interval of time during which a very short distance
is covered and the speed does not change drastically. If
we know, for example, that in 1 second a distance of
20 meters was covered, dividing 20 meters by 1 second to
obtain a speed of 20 m/s would give us a good estimate of
the instantaneous speed, provided that the speed did not
change much during that single second. If the speed was
changing rapidly, we would have to choose an even shorter
interval of time. In principle, we can choose time intervals
as small as we wish, but in practice, it can be hard to
measure such small quantities.

If we put these ideas into a word definition of instanta-
neous speed, we could state it as

Instantaneous speed is the rate at which distance is being cov-
ered at a given instant in time. It is found by computing the
average speed for a very short time interval in which the speed
does not change appreciably.
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everyday phenomenon

Transitions in Traffic Flow

The Situation. Jennifer commutes into the city on a freeway
every day for work. As she approaches the city, the same pat-
terns in traffic flow seem to show up in the same places each
day. She will be moving with the flow of traffic at a speed of
approximately 60 MPH when suddenly things will come to a
screeching halt. The traffic will be stop-and-go briefly and
then will settle into a wavelike mode with speeds varying
between 10 and 30 MPH. Unless there is an accident, this
will continue for the rest of the way into the city.
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The traffic in the upper lanes is flowing freely with adequate spacing
to allow higher speeds. The higher-density traffic in the lower lanes
moves much more slowly.

What causes these patterns? Why does the traffic stop
when there is no apparent reason such as an accident?
Why do ramp traffic lights seem to help the situation?
Questions like these are the concern of the growing field
of traffic engineering.

The Analysis. Although a full analysis of traffic flow is com-
plex, there are some simple ideas that can explain many of the
patterns that Jennifer observes. The density of vehicles, meas-
ured in vehicles per mile, is a key factor. Adding vehicles at
entrance ramps increases this vehicle density.

When Jennifer and other commuters are traveling at
60 MPH, they need to keep a spacing of several car lengths
between vehicles. Most drivers do this without thinking about
it, although there are always some who follow too closely or
tailgate. Tailgating runs the risk of rear-end collisions when
the traffic suddenly slows.

When more vehicles are added at an entrance ramp, the
density of vehicles increases, reducing the distance between
vehicles. As the distance between vehicles decreases, drivers
should reduce their speed to maintain a safe stopping dis-
tance. If this occurred uniformly, there would be a gradual
decrease in the average speed of the traffic to accommodate
the greater density. This is not what usually happens,
however.

Instantaneous speed is closely related to the concept of
average speed but involves very short time intervals. When
discussing traffic flow, average speed is the critical issue,
as shown in everyday phenomenon box 2.1.

We find an average speed by dividing the distance traveled
by the time required to cover that distance. Average speed
is therefore the average rate at which distance is being
covered. Instantaneous speed is the rate that distance

is being covered at a given instant in time and is found
by considering very small time intervals or by reading a
speedometer. Average speed is useful for estimating how
long a trip will take, but instantaneous speed is of more
interest to the highway patrol.

2.2 Velocity

Do the words speed and velocity mean the same thing?
They are often used interchangeably in everyday language,

(continued)

but physicists make an important distinction between the
two terms. The distinction has to do with direction: which
way is the object moving? This distinction turns out to
be essential to understanding Newton’s theory of motion
(introduced in chapter 4), so it is not just a matter of whim
or jargon.

What is the difference between
speed and velocity?

Imagine that you are driving a car around a curve (as illus-
trated in figure 2.5) and that you maintain a constant speed
of 60 km/h. Is your velocity also constant in this case?
The answer is no, because velocity involves the direction
of motion as well as how fast the object is going. The
direction of motion is changing as the car goes around the
curve.

To simply state this distinction, speed as we have de-
fined it tells us how fast an object is moving but says noth-
ing about the direction of the motion. Velocity includes the



2.2 Velocity 23

A significant proportion of drivers will attempt to main-
tain their speed at 50 to 60 MPH even when densities have
increased beyond the point where this is advisable. This
creates an unstable situation. At some point, usually near
an entrance ramp, the vehicle density becomes too large to
sustain these speeds. At this point there is a sudden drop in
average speed and a large increase in the local density. As
shown in the drawing, cars can be separated by less than a
car length when they are stopped or moving very slowly.

Once the average speed of a few vehicles has slowed to
less than 10 MPH, vehicles moving at 50 to 60 MPH begin to
pile up behind this slower moving jam. Because this does not
happen smoothly, some vehicles must come to a complete
stop, further slowing the flow. At the front end of the jam, on
the other hand, the density is reduced due to the slower flow
behind. Cars can then start moving at a speed consistent with
the new density, perhaps around 30 MPH. If every vehicle
moved with the appropriate speed, flow would be smooth
and the increased density could be safely accommodated.
More often, however, overanxious drivers exceed the appro-
priate speed, causing fluctuations in the average speed as
vehicles begin to pile up again.

Notice that we are using average speed with two different
meanings in this discussion. One is the average speed of an
individual vehicle as its instantaneous speed increases and

decreases. The other is the average speed of the overall
traffic flow involving many vehicles. When the traffic is flow-
ing freely, the average speed of different vehicles may differ.
When the traffic is in a slowly moving jam, the average
speeds of different vehicles are essentially the same, at least
within a given lane.

Traffic lights at entrance ramps that permit vehicles to
enter one-at-a-time at appropriate intervals can help to
smoothly integrate the added vehicles to the existing flow.
This reduces the sudden changes in speed caused by a rapid
increase in density. Once the density increases beyond the
certain level, however, a slowing of traffic is inevitable. The
abrupt change from low-density, high-speed flow to higher-
density, slow flow is analogous to a phase transition from a
gas to a liquid. (Phase transitions are discussed in chapter 10.)
Traffic engineers have used this analogy to better understand
the process.

If we could automatically control and coordinate the
speeds of all the vehicles on the highway, the highway might
carry a much greater volume of traffic at a smooth rate of
flow. Speeds could be adjusted to accommodate changes in
density and smaller vehicle separations could be maintained
at higher speeds because the vehicles would all be moving
in a synchronized fashion. Better technology may someday
achieve this dream.

figure 2.5 The direction of the velocity changes as the car
moves around the curve, so that the velocity v, is not the same
as the velocity v, even though the speed has not changed.

idea of direction. To specify a velocity, we must give both
its size or magnitude (how fast) and its direction (north,
south, east, up, down, or somewhere in between). If you
tell me that an object is moving 15 m/s, you have told me
its speed. If you tell me that it is moving due west at 15 m/s,
you have told me its velocity.

At point A on the diagram in figure 2.5, the car is trav-
eling due north at 60 km/h. At point B, because the road
curves, the car is traveling northwest at 60 km/h. Its veloc-
ity at point B is different from its velocity at point A
(because the directions are different). The speeds at points
A and B are the same. Direction is irrelevant in specifying
the speed of the object. It has no effect on the reading on
your speedometer.

Changes in velocity are produced by forces acting upon
the car, as we will discuss further in chapter 4. The most
important force involved in changing the velocity of a car
is the frictional force exerted on the tires of the car by the
road surface. A force is required to change either the size
or the direction of the velocity. If no net force were acting
on the car, it would continue to move at constant speed in
a straight line. This happens sometimes when there is ice
or oil on the road surface, which can reduce the frictional
force to almost zero.
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study hint

Science has always relied on pictures and charts to get
points across. Throughout the book, a number of concepts
will be introduced and illustrated. In the illustrations, the
same color will be used for certain phenomena.

Blue arrows are velocity vectors.
Green arrows depict acceleration vectors.

Red arrows depict force vectors.

1]

Purple arrows show momentum, a
concept we will explore in chapter 7.

What is a vector?

Velocity is a quantity for which both the size and direction
are important. We call such quantities vectors. To describe
these quantities fully, we need to state both the size and
the direction. Velocity is a vector that describes how fast
an object is moving and in what direction it is moving.
Many of the quantities used in describing motion (and in
physics more generally) are vector quantities. These
include velocity, acceleration, force, and momentum, to
name a few.

Think about what happens when you throw a rubber ball
against a wall, as shown in figure 2.6. The speed of the ball
may be about the same after the collision with the wall as it
was before the ball hit the wall. The velocity has clearly
changed in the process, though, because the ball is moving
in a different direction after the collision. Something has
happened to the motion of the ball. A strong force had to
be exerted on the ball by the wall to produce this change in
velocity.

The velocity vectors in figures 2.5 and 2.6 are repre-
sented by arrows. This is a natural choice for depicting
vectors, since the direction of the arrow clearly shows the

Viinal

Vinitial

figure 2.6 The direction of the velocity changes when a
ball bounces from a wall. The wall exerts a force on the ball in
order to produce this change.

m 10 m/s
m 20 m/s

figure 2.7 The length of the arrow shows the size of the
velocity vector.

direction of the vector, and the length can be drawn pro-
portional to the size. In other words, the larger the velocity,
the longer the arrow (fig. 2.7). In the text, we will represent
vectors by printing their symbols in boldface and larger
than other symbols: v is thus the symbol for velocity. A
fuller description of vectors can be found in appendix C.

How do we define instantaneous velocity?

In considering automobile trips, average speed is the most
useful quantity. We do not really care about the direction of
motion in this case. Instantaneous speed is the quantity of
interest to the highway patrol. Instantaneous velocity,
however, is most useful in considering physical theories of
motion. We can define instantaneous velocity by drawing
on our earlier definition of instantaneous speed.

Instantaneous velocity is a vector quantity having a size equal
to the instantaneous speed at a given instant in time and hav-
ing a direction corresponding to that of the object’s motion at
that instant.

Instantaneous velocity and instantaneous speed are
closely related, but velocity includes direction as well as
size. It is changes in instantaneous velocity that require the
intervention of forces. These changes will be emphasized
when we explore Newton’s theory of mechanics in chapter
4. We can also define the concept of average velocity, but
that is a much less useful quantity for our purposes than
either instantaneous velocity or average speed.*

To specify the velocity of an object, we need to state

both how fast and in what direction the object is moving;
velocity is a vector quantity. Instantaneous velocity has a
magnitude equal to the instantaneous speed and points in
the direction that the object is moving. Changes in instan-
taneous velocity are where the action is, so to speak, and
we will consider these in more detail when we discuss
acceleration in section 2.3.

*Strictly speaking, velocity is the change in displacement divided by time,
where displacement is a vector representing the change in position of an
object. See Appendix C and figure C.2 for a discussion of displacement
vectors. In one-dimensional motion when an object does not change direc-
tion, the distance traveled is equal to the magnitude of the displacement.
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2.3 Acceleration

Acceleration is a familiar idea. We use the term in speak-
ing of the acceleration of a car away from a stop sign or
the acceleration of a running back in football. We feel the
effects of acceleration on our bodies when a car’s velocity
changes rapidly and even more strikingly when an elevator
lurches downward, leaving our stomachs slightly behind
(fig. 2.8). These are all accelerations. You can think of your
stomach as an acceleration detector—a roller-coaster gives
it a real workout!

Understanding acceleration is crucial to our study of
motion. Acceleration is the rate at which velocity changes.
(Note that we said velocity, not speed.) It plays a central
role in Newton’s theory of motion. How do we go about
finding a value of an acceleration, though? As with speed,
it is convenient to start with a definition of average accel-
eration and then extend it to the idea of instantaneous
acceleration.

How is average acceleration defined?

How would we go about providing a quantitative descrip-
tion of an acceleration? Suppose that your car, pointing due
east, starts from a full stop at a stop sign, and its velocity
increases from zero to 20 m/s as shown in figure 2.9. The
change in velocity is found simply by subtracting the initial
velocity from the final velocity (20 m/s — 0 m/s = 20 m/s).

Acceleration
detector

a

figure 2.8  Your acceleration detector senses the downward
acceleration of the elevator.

v=0 v=20m/s
t=0 t=5s

figure 2.9 A car, starting from rest, accelerates to a velocity
of 20 m/s due east in a time of 5 s.

To find its rate of change, however, we also need to
know the time needed to produce this change. If it took
just 5 seconds for the velocity to change, the rate of change
would be larger than if it took 30 seconds.

Suppose that a time of 5 seconds was required to pro-
duce this change in velocity. The rate of change in velocity
could then be found by dividing the size of the change
in velocity by the time required to produce that change.
Thus the size of the average acceleration, a, is found by
dividing the change in velocity of 20 m/s by the time of
5 seconds,

a— 20 m/s
5s

= 4 m/s/s.

The unit m/s/s is usually written m/s? and is read as
meters per second squared. It is easier to understand it,
however, as meters per second per second. The car’s veloc-
ity (measured in m/s) is changing at a rate of 4 m/s every
second. Other units could be used for acceleration, but they
will all have this same form: distance per unit of time
per unit of time. In discussing the acceleration of a car on
a drag strip, for example, the unit miles per hour per sec-
ond is sometimes used.

The quantity that we have just computed is the size of the
average acceleration of the car. The average acceleration
is found by dividing the total change in velocity for some
time interval by that time interval, ignoring possible differ-
ences in the rate of change of velocity that might be occur-
ring within the time interval. Its definition can be stated in
words as

Average acceleration is the change in velocity divided by the
time required to produce that change.

We can restate it in symbols as

change in velocity
elapsed time

Acceleration =

or
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Because change is so important in this definition, we
have used the special symbol A (the Greek letter delta) to
mean a change in a quantity. Thus Av is a compact way of
writing the change in velocity, which otherwise could be
expressed as v; — Vv;, Where v; is the final velocity and v, is
the initial velocity. Because the concept of change is criti-
cal, this delta (A) notation will appear often.

The idea of change is all-important. Acceleration is not
velocity over time. It is the change in velocity divided by
time. It is common for people to associate large accelera-
tions with large velocities, when in fact the opposite is
often true. The acceleration of a car may be largest, for
example, when it is just starting up and its velocity is near
zero. The rate of change of velocity is greatest then. On the
other hand, a car can be traveling at 100 MPH but still
have a zero acceleration if its velocity is not changing.

What is instantaneous acceleration?

I nstantaneous acceleration is similar to average acceler-
ation with an important exception. Just as with instanta-
neous speed or velocity, we are now concerned with the
rate of change at a given instant in time. It is instanta-
neous acceleration that our stomachs respond to. It can be
defined as

Instantaneous acceleration is the rate at which velocity is
changing at a given instant in time. It is computed by finding
the average acceleration for a very short time interval during
which the acceleration does not change appreciably.

If the acceleration is changing with time, choosing a very
short time interval guarantees that the acceleration com-
puted for that time interval will not differ too much from
the instantaneous acceleration at any time within the inter-
val. This is the same idea used in finding an instantaneous
speed or instantaneous velocity.

What is the direction of an acceleration?

Like velocity, acceleration is a vector quantity. Its direction
is important. The direction of the acceleration vector is that
of the change in velocity Av. If, for example, a car is mov-
ing in a straight line and its velocity is increasing, the
change in velocity is in the same direction as the velocity
itself, as shown in figure 2.10. The change in velocity Av
must be added to the initial velocity v; to obtain the final
velocity v;. All three vectors point forward. The process of
adding vectors can be readily seen when we represent the
vectors as arrows on a graph. (More information on vector
addition can be found in appendix C.)

If the velocity is decreasing, however, the change in ve-
locity Av points in the opposite direction to the two velocity

v;i=8m/s AV =12 m/s v¢=20m/s
v, TS = Vf
\ Av \Z
— + - = -
a
_>

figure 2.10 The acceleration vector is in the same direction
as the velocity vectors when the velocity is increasing.

vectors, as shown in figure 2.11. Because the initial veloc-
ity v; is larger than the final velocity vy, the change in
velocity must point in the opposite direction to produce a
shorter v; arrow. The acceleration is also in the opposite
direction to the velocity, since it is in the direction of the
change in velocity. In Newton’s theory of motion, the force
required to produce this acceleration would also be oppo-
site in direction to the velocity. It must push backward on
the car to slow it down.

The term acceleration describes the rate of any change
in an object’s velocity. The change could be an increase (as
in our initial example), a decrease, or a change in direction.
The term applies even to decreases in velocity (decelera-
tions). To a physicist these are simply accelerations with a
direction opposite that of the velocity. If a car is braking
while traveling in a straight line, its velocity is decreasing
and its acceleration is negative if the velocity is positive.
This situation is illustrated in the sample exercise in exam-
ple box 2.3.

The minus sign is an important part of the result in
the example in example box 2.3 because it indicates that
the change in velocity is negative. The velocity is getting
smaller. We can call it a deceleration if we like, but it is

i Av \
— - ilff— T —-
a
——

figure 2.11 The velocity and acceleration vectors for
decreasing velocity: Av and a are now opposite in direction to
the velocity. The acceleration a is proportional to Av.
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example box 2.3

Sample Exercise: Negative Accelerations

The driver of a car steps on the brakes, and the velocity
drops from 20 m/s due east to 10 m/s due east in a time
of 2.0 seconds. What is the acceleration?

AV VY

v, = 20 m/s due east a=TV: ft :
v; = 10 m/s due east
t = 20s _ lom/s — 20m/s
a=7? 20s

_—

2.0s
= —5m/s?

a = 5.0 m/s? due west

Notice that when we are dealing just with the magnitude
of a vector quantity, we do not use the boldface notation.
The sign can indicate direction, however, in a problem
involving straight-line motion.

the same thing as a negative acceleration. One word,
acceleration, covers all situations in which the velocity is
changing.

Can a car be accelerating when
its speed is constant?

What happens when a car goes around a curve at constant
speed? Is it accelerating? The answer is yes, because the di-
rection of its velocity is changing. If the direction of the
velocity vector is changing, the velocity is changing. This
means that there must be an acceleration.

This situation is illustrated in figure 2.12. The arrows
in this drawing show the direction of the velocity vector
at different points in the motion. The change in velocity
Av is the vector that must be added to the initial velocity
v; to obtain the final velocity v;. The vector representing
the change in velocity points toward the center of the
curve, and therefore, the acceleration vector also points
in that direction. The size of the change is represented by
the length of the arrow Av. From this we can find the
acceleration.

Acceleration is involved whenever there is a change in
velocity, regardless of the nature of that change. Cases like
figure 2.12 will be considered more fully in chapter 5
where circular motion is discussed.

V.

RN

a

figure 2.12 A change in the direction of the velocity vector
also involves an acceleration, even though the speed may be
constant.

Acceleration is the rate of change of velocity and is found
by dividing the change in the velocity by the time required
to produce that change. Any change in velocity involves an
acceleration, whether an increase or a decrease in speed,
or a change in direction. Acceleration is a vector having a
direction corresponding to the direction of the change in
velocity, which is not necessarily the same direction as
the instantaneous velocity itself. The concept of change is
crucial. The graphical representations in section 2.4 will
help you visualize changes in velocity as well as in other
quantities.

2.4 Graphing Motion

It is often said that a picture is worth a thousand words,
and the same can be said of graphs. Imagine trying to
describe the motion depicted in figure 2.4 precisely in
words and numbers. The graph provides a quick overview
of what took place. A description in words would be much
less efficient. In this section, we will show how graphs can
also help us to understand velocity and acceleration.

What can a graph tell us?

How can we produce and use graphs to help us describe
motion? Imagine that you are watching a battery-powered
toy car moving along a meter stick (fig. 2.13). If the car is
moving slowly enough, you could record the car’s position
while also recording the elapsed time using a digital
watch. At regular time intervals (say, every 5 seconds), you
would note the value of the position of the front of the car
on the meter stick and write these values down. The results
might be something like those shown in table 2.2.
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figure 2.13 A toy car moving along a meter stick. Its
position can be recorded at different times.

How do we graph these data? First, we create evenly
spaced intervals on each of two perpendicular axes, one for
distance traveled (or position) and the other for time. To
show how distance varies with time, we usually put time
on the horizontal axis and distance on the vertical axis.
Such a graph is shown in figure 2.14, where each data
point from table 2.2 is plotted and a line is drawn through
the points. To make sure that you understand this process,
choose different points from table 2.2 and find where they
are located on the graph. Where would the point go if the
car was at 21 centimeters at 25 seconds?

The graph summarizes the information presented in the
table in a visual format that makes it easier to grasp at a

Position of the Toy Car along the Meter Stick
at Different Times

Time Position
0s 0cm
5s 4.1 cm

10s 7.9 cm

15s 12.1 cm
20s 16.0 cm

255 16.0 cm

30s 16.0 cm

35s 18.0 cm

40 s 20.1 cm

45s 21.9 cm

50s 24.0 cm

555 22.1 cm

60 s 20.0 cm

glance. The graph also contains information on the velocity
and acceleration of the car, although that is less obvious.
For example, what can we say about the average velocity
of the car between 20 and 30 seconds? Is the car moving
during this time? A glance at the graph shows us that the
distance is not changing during that time interval, so the
car is not moving. The velocity is zero during that time,
which is represented by a horizontal line on our graph of
distance versus time.

What about the velocity at other points in the motion?
The car is moving more rapidly between 0 and 20 seconds
than it is between 30 and 50 seconds. The distance curve is
rising more rapidly between 0 and 20 seconds than be-
tween 30 and 50 seconds. Since more distance is covered
in the same time, the car must be moving faster there. A
steeper slope to the curve is associated with a larger speed.

In fact, the slope of the distance-versus-time curve at
any point on the graph is equal to the instantaneous veloc-
ity of the car.* The slope indicates how rapidly the dis-
tance is changing with time at any instant in time. The rate
of change of distance with time is the instantaneous speed
according to the definition given in section 2.1. Since the
motion takes place along a straight line, we can then repre-
sent the direction of the velocity with plus or minus signs.
There are only two possibilities, forward or backward. We
then have the instantaneous velocity, which includes both
the size (speed) and direction of the mation.

When the car travels backward, its distance from the
starting point decreases. The curve goes down, as it does
between 50 and 60 seconds. We refer to this downward-
sloping portion of the curve as having a negative slope and
also say that the velocity is negative during this portion of
the motion. A large upward slope represents a large instan-
taneous velocity, a zero slope (horizontal line) a zero veloc-
ity, and a downward slope a negative (backward) velocity.
Looking at the slope of the graph tells us all we need to
know about the velocity of the car.

Velocity and acceleration graphs

These ideas about velocity can be best summarized by plot-
ting a graph of velocity against time for the car (fig. 2.15).
The velocity is constant wherever the slope of the distance-
versus-time graph of figure 2.14 is constant. Any straight-
line segment of a graph has a constant slope, so the velocity
changes only where the slope of the graph in figure 2.14
changes. If you compare the graph in figure 2.15 to the
graph in figure 2.14 carefully, these ideas should become
clear.

*Since the mathematical definition of slope is the change in the vertical
coordinate Ad divided by the change in the horizontal coordinate At, the
slope, Ad/At, is equal to the instantaneous velocity, provided that At is
sufficiently small. It is possible to grasp the concept of slope, however,
without appealing to the mathematical definition.
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figure 2.14 Distance plotted against time for the motion
of the toy car. The data points are those listed in table 2.2.
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figure 2.15 Instantaneous velocity plotted against time for

the motion of the toy car. The velocity is greatest when distance
traveled is changing most rapidly.
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figure 2.16  An approximate sketch of acceleration plotted
against time for the toy-car data. The acceleration is non-zero
only when the velocity is changing.

What can we say about the acceleration from these
graphs? Since acceleration is the rate of change of velocity
with time, the velocity graph (fig. 2.15) also provides in-
formation about the acceleration. In fact, the instantaneous
acceleration is equal to the slope of the velocity-versus-
time graph. A steep slope represents a rapid change in
velocity and thus a large acceleration. A horizontal line has
zero slope and represents zero acceleration. The accelera-
tion turns out to be zero for most of the motion described
by our data. The velocity changes at only a few points in
the motion. The acceleration would be large at these points
and zero everywhere else.

Since our data do not indicate how rapidly the changes
in velocity actually occur, we do not have enough informa-
tion to say just how large the acceleration is at those few
points where it is not zero. We would need measurements
of distance or velocity every tenth of a second or so to get
a clear idea of how rapid these changes are. As we will see
in chapter 4, we know that these changes in velocity cannot
occur instantly. Some time is required. So we can sketch an
approximate graph of acceleration versus time, as shown in
figure 2.16.

The spikes in figure 2.16 occur when the velocity is
changing. At 20 seconds, there is a rapid decrease in the
velocity represented by a downward spike or negative
acceleration. At 30 seconds, the velocity increases rapidly
from zero to a constant value, and this is represented by an
upward spike or positive acceleration. At 50 seconds, there
is another negative acceleration as the velocity changes
from a positive to a negative value. If you could put your-
self inside the toy car, you would definitely feel these
accelerations. (Everyday phenomenon box 2.2 provides
another example of how a graph is useful for analyzing
motion.)

Can we find the distance traveled
from the velocity graph?

What other information can be gleaned from the velocity-
versus-time graph of figure 2.15? Think for a moment about
how you would go about finding the distance traveled if
you knew the velocity. For a constant velocity, you can get
the distance simply by multiplying the velocity by the time,
d = vt. In the first 20 seconds of the motion, for example,
the velocity is 0.8 cm/s and the distance traveled is 0.8 cm/s
times 20 seconds, which is 16 cm. This is just the reverse
of what we used in determining the velocity in the first
place. We found the velocity by dividing the distance traveled
by the time.

How would this distance be represented on the velocity
graph? If you recall formulas for computing areas, you may
recognize that the distance d is the area of the shaded rec-
tangle on figure 2.15. The area of a rectangle is found by
multiplying the height times the width, just what we have
done here. The velocity, 0.8 cm/s, is the height and the
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everyday phenomenon

The 100-m Dash

The Situation. A world-class sprinter can run 100 m in a
time of a little under 10 s. The race begins with the runners in
a crouched position in the starting blocks, waiting for the
sound of the starter’s pistol. The race ends with the runners
lunging across the finish line, where their times are recorded
by stopwatches or automatic timers.

Runners in the starting blocks, waiting for the starter’s pistol to fire.

What happens between the start and finish of the race?
How do the velocity and acceleration of the runners vary dur-
ing the race? Can we make reasonable assumptions about
what the velocity-versus-time graph looks like for a typical
runner? Can we estimate the maximum velocity of a good
sprinter? Most importantly for improving performance, what
factors affect the success of a runner in the dash?

The Analysis. Let's assume that the runner covers the 100-m
distance in a time of exactly 10 s. We can compute the aver-
age speed of the runner from the definition s = d/t:
100 m
= T0s 10 m/s.

Clearly, this is not the runner’s instantaneous speed through-
out the course of the race, since the runner’s speed at the
beginning of the race is zero and it takes some time to accel-
erate to the maximum speed.

The objective in the race is to reach a maximum speed
as quickly as possible and to sustain that speed for the rest
of the race. Success is determined by two things: how quickly
the runner can accelerate to this maximum speed and the
value of this maximum speed. A smaller runner often has bet-
ter acceleration but a smaller maximum speed, while a larger
runner sometimes takes longer to reach top speed but has a
larger maximum speed.

The typical runner does not reach top speed before travel-
ing at least 10 to 20 m. If the average speed is 10 m/s, the

runner’s maximum speed must be somewhat larger than this
value, since we know that the instantaneous speed will be
less than 10 m/s while the runner is accelerating. These ideas
are easiest to visualize by sketching a graph of speed plot-
ted against time, as shown. Since the runner travels in a
straight line, the magnitude of the instantaneous velocity is
equal to the instantaneous speed. The runner reaches top
speed at approximately 2 to 3 s into the race.

2
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—~ _ Zero acceleration
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A graph of speed versus time for a hypothetical runner in the
100-m dash.

The average speed (or velocity) during the time that the run-
ner is accelerating is approximately half of its maximum value if
the runner's acceleration is more or less constant during the first
2 s. If we assume that the runner's average speed during this
time is about 5.5 m/s (half of 11 m/s), then the speed through
the remainder of the race would have to be about 11.1 m/s to
give an average speed of 10 m/s for the entire race. This can be
seen by computing the distance from these values:

d = (655m/s)(2s) + (11.1 m/s)(8 s)
=11m + 8 m = 100 m.

What we have done here is to make some reasonable
guesses for these values that will make the average speed
come out to 10 m/s; we then checked these guesses by com-
puting the total distance. This suggests that the maximum
speed of a good sprinter must be about 11 m/s (25 MPH). For
sake of comparison, a distance runner who can run a 4-min
mile has an average speed of about 15 MPH, or 6.7 m/s.

The runner’s strategy should be to get a good jump out of
the blocks, keeping the body low initially and leaning forward
to minimize air resistance and maximize leg drive. To maintain
top speed during the remainder of the race, the runner needs
good endurance. A runner who fades near the end needs more
conditioning drills. For a given runner with a fixed maximum
speed, the average speed depends on how quickly the runner
can reach top speed. This ability to accelerate rapidly depends
upon leg strength (which can be improved by working with
weights and other training exercises) and natural quickness.
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time, 20 seconds, is the width of this rectangle on the
graph.

It turns out that we can find the distance this way even
when the areas involved on the graph are not rectangles,
although the process is more difficult when the curves are
more complicated. The general rule is that the distance trav-
eled is equal to the area under the velocity-versus-time
curve. When the velocity is negative (below the time axis
on the graph), the object is traveling backward and its dis-
tance from the starting point is decreasing.

Even without computing the area precisely, it is possible
to get a rough idea of the distance traveled by studying the
velocity graph. A large area represents a large distance.
Quick visual comparisons give a good picture of what is
happening without the need for lengthy calculations. This
is the beauty of a graph.

A good graph can present a picture of motion that is rich
in insight. Distance traveled plotted against time tells us
not only where the object is at any time, but its slope also
indicates how fast it was moving. The graph of velocity
plotted against time also contains information on accelera-
tion and on the distance traveled. Producing and studying
such graphs can give us a more general picture of the
motion and the relationships between distance, velocity,
and acceleration.

2.5 Uniform Acceleration

If you drop a rock, it falls toward the ground with a con-
stant acceleration, as we will see in chapter 3. An unchang-
ing or uniform acceleration is the simplest form of accel-
erated motion. It occurs whenever there is a constant force
acting on an object, which is the case for a falling rock as
well as for many other situations.

How do we describe the resulting motion? The impor-
tance of this question was first recognized by Galileo, who
studied the motion of balls rolling down inclined planes as
well as objects in free fall. In his famous work, Dialogues
Concerning Two New Sciences, published in 1638 near the
end of his life, Galileo developed the graphs and formulas
that are introduced in this section and that have been stud-
ied by students of physics ever since. His work provided
the foundation for much of Newton’s thinking a few
decades later.

How does velocity vary in uniform
acceleration?

Suppose a car is moving along a straight road and acceler-
ating at a constant rate. We have plotted the acceleration
against time for this situation in figure 2.17. The graph is
very simple, but it illustrates what we mean by uniform
acceleration. A uniform acceleration is one that does not

change as the motion proceeds. It has the same value at any
time, which produces a horizontal-line graph.

The graph of velocity plotted against time for this same
situation tells a more interesting story. From our discussion
in section 2.4, we know that the slope of a velocity-versus-
time graph is equal to the acceleration. For a uniform posi-
tive acceleration, the velocity graph should have a constant
upward slope; the velocity increases at a steady rate. A
constant slope produces a straight line, which slopes up-
ward if the acceleration is positive as shown in figure 2.18.
In plotting this graph, we assumed that the initial velocity
is zero.

This graph can also be represented by a formula. The
velocity at any time t is equal to the original velocity plus
the velocity that has been gained because the car is acceler-
ating. The change in velocity Av is equal to the acceleration
times the time, Av = at since acceleration is defined as
Av/t. These ideas result in the relationship

vV =V, + at

The first term on the right, v,, is the original velocity
(assumed to be zero in figure 2.18), and the second term,

t

figure 2.17 The acceleration graph for uniform acceleration
is a horizontal line. The acceleration does not change with time.
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figure 2.18 Velocity plotted against time for uniform
acceleration, starting from rest. For this special case, the average
velocity is equal to one-half the final velocity.
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at, represents the change in velocity due to the acceleration.
Adding these two terms together yields the velocity at
any later time t.

A numerical example applying these ideas to an acceler-
ating car is found in part a of example box 2.4. The car
could not keep on accelerating indefinitely at a constant
rate because the velocity would soon reach incredible val-
ues. Not only is this dangerous, but physical limits imposed
by air resistance and other factors prevent this from
happening.

What happens if the acceleration is negative? Velocity
would decrease rather than increase, and the slope of the
velocity graph would slope downward rather than upward.
Because the acceleration is then negative, the second term
in the formula for v would subtract from the first term,
causing the velocity to decrease from its initial value. The
velocity then decreases at a steady rate.

How does distance traveled vary with time?

If the velocity is increasing at a steady rate, what effect
does this have on the distance traveled? As the car moves
faster and faster, the distance covered grows more and
more rapidly. Galileo showed how to find the distance for
this situation.

We find distance by multiplying velocity by time, but in
this case we must use an average velocity since the velocity
is changing. By appealing to the graph in figure 2.18, we
can see that the average velocity should be just half the
final velocity, v. If the initial velocity is zero, the final

example box 2.4

Sample Exercise: Uniform Acceleration

A car traveling due east with an initial velocity of 10 m/s
accelerates for 6 seconds at a constant rate of 4 m/s?.

a. What is its velocity at the end of this time?

b. How far does it travel during this time?

a. v, = 10 m/s v =1y, + at
a = 4m/s? = 10 m/s + (4 m/s?)(6 s)
t=26s = 10m/s + 24 m/s
v =7 = 34 m/s

v = 34 m/sdue east

b. d = vt + 3 at?
= (10 m/s)(6'S) + 3 (4 m/s?)(6 5)?
= 60m + (2m/s?)(36s?)
=60m + 72m = 132m

t

figure 2.19  As the car accelerates uniformly, the distance
covered grows more and more rapidly with time because the
velocity is increasing.

velocity is at, so multiplying the average velocity by the
time yields

d = %atz.

The time t enters twice, once in finding the average
velocity and then again when we multiply the velocity by
time to find the distance.*

The graph in figure 2.19 illustrates this relationship; the
distance curve slopes upward at an ever-increasing rate as
the velocity increases. This formula and graph are only
valid if the object starts from rest as shown in figure 2.18.
Since distance traveled is equal to the area under the
velocity-versus-time curve (as discussed in section 2.4), this
expression for distance can also be thought of as the area
under the triangle in figure 2.18. The area of a triangle is
equal to one-half its base times its height, which produces
the same result.

If the car is already moving before it begins to acceler-
ate, the velocity graph can be redrawn as pictured in figure
2.20. The total area under the velocity curve can then be
split in two pieces, a triangle and a rectangle, as shown.
The total distance traveled is the sum of these two areas,

d = vyt + %atz.

The first term in this formula represents the distance the
object would travel if it moved with constant velocity vy,
and the second term is the additional distance traveled
because the object is accelerating (the area of the triangle
in figure 2.20). If the acceleration is negative, meaning that
the object is slowing down, this second term will subtract
from the first.

*Expressing this argument in symbolic form, it becomes

PR 1 1
The average velocity v =3V = ; at

d=vt=(;ath=;at
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figure 2.20 The velocity-versus-time graph redrawn for an
initial velocity different from zero. The area under the curve is
divided into two portions, a rectangle and a triangle.

This more general expression for distance may seem
complex, but the trick to understanding it is to break it down
into its parts, as just suggested. We are merely adding two
terms representing different contributions to the total
distance. Each one can be computed in a straightforward

summary

manner, and it is not difficult to add them together. The two
portions of the graph in figure 2.20 represent these two
contributions.

The sample exercise in example box 2.4 provides a
numerical example of these ideas. The car in this example
accelerates uniformly from an initial velocity of 10 m/s due
east to a final velocity of 34 m/s due east and covers a dis-
tance of 132 meters while this acceleration is taking place.
Had it not been accelerating, it would have gone only
60 meters in the same time. The additional 72 meters
comes from the acceleration of the car.

Acceleration involves change, and uniform acceleration
involves a steady rate of change. It therefore represents the
simplest kind of accelerated motion that we can imagine.
Uniform acceleration is essential to an understanding of
free fall, discussed in chapter 3, as well as to many other
phenomena. Such motion can be represented by either the
graphs or the formulas introduced in this section. Looking
at both and seeing how they are related will reinforce
these ideas.

The main purpose of this chapter is to introduce concepts that are
crucial to a precise description of motion. To understand accelera-
tion, you must first grasp the concept of velocity, which in turn
builds on the idea of speed. The distinctions between speed and
velocity, and between velocity and acceleration, are particularly
important.

] Average and instantaneous speed. Average speed
is defined as the distance traveled divided by the time. It is the
average rate at which distance is covered. Instantaneous speed is
the rate at which distance is being covered at a given instant in time
and requires that we use very short time intervals for computation.

[M

2 Velocity. The instantaneous velocity of an object is a
vector quantity that includes both direction and size. The size of
the velocity vector is equal to the instantaneous speed, and the
direction is that of the object’s motion.

/M

v = speed and direction

3 Acceleration. Acceleration is defined as the time rate of
change of velocity and is found by dividing the change in velocity
by the time. Acceleration is also a vector quantity. It can be com-
puted as either an average or an instantaneous value. A change
in the direction of the velocity can be as important as a change in
magnitude. Both involve acceleration.

III\

7 Av Vi
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4 Graphing motion. Graphs of distance, speed, velocity,
and acceleration plotted against time can illustrate relationships
between these quantities. Instantaneous velocity is equal to the
slope of the distance-time graph. Instantaneous acceleration is
equal to the slope of the velocity-time graph. The distance trav-
eled is equal to the area under the velocity-time graph.

5 Uniform acceleration. When an object accelerates at
a constant rate producing a constant-slope graph of velocity versus
time, we say that it is uniformly accelerated. Graphs help us to
understand the two formulas describing how velocity and distance
traveled vary with time for this important special case.

Y
d v
5 § —>
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vV =vg+at

d=vot+ 1at?
key terms
Speed, 19 Magnitude, 23 Average acceleration, 25
Average speed, 19 Vector, 24 Instantaneous acceleration, 26
Rate, 20 \ector quantity, 24 Slope, 28
Instantaneous speed, 21 Instantaneous velocity, 24 Uniform acceleration, 31
\elocity, 22 Acceleration, 25
questions

* = more open-ended questions, requiring lengthier responses,
suitable for group discussion

Q = sample responses are available in appendix D

Q = sample responses are available on the website

Q1. Suppose that critters are discovered on Mars who measure
distance in boogles and time in bops.
a. What would the units of speed be in this system?
Explain.
b. What would the units of velocity be? Explain.
¢. What would the units of acceleration be? Explain.

Q2. Suppose that we choose inches as our basic unit of dis-
tance and days as our basic unit of time.
a. What would the units of velocity and acceleration be in
this system? Explain.
b. Would this be a good choice of units for measuring the
acceleration of an automobile? Explain.

Q3. What units would have an appropriate size for measuring
the rate at which fingernails grow? Explain.

Q4. A tortoise and a hare cover the same distance in a race. The
hare goes very fast for brief intervals, but stops frequently,

whereas the tortoise plods along steadily and finishes the

race ahead of the hare.

a. Which of the two racers has the greater average speed
over the duration of the race? Explain.

b. Which of the two racers is likely to reach the greatest
instantaneous speed during the race? Explain.

Q5. A driver states that she was doing 80 when stopped by the
police. Is that a clear statement? Would this be interpreted
differently in England than it would be in the United
States? Explain.

Q6. Does the speedometer on a car measure average speed or
instantaneous speed? Explain.

Q7. Is the average speed over several minutes more likely to
be close to the instantaneous speed at anytime for a car
traveling in freely flowing, low-density traffic or for one
traveling in high-density traffic? Explain.

*Q8. The highway patrol sometimes uses radar guns to identify
possible speeders and at other times uses associates in air-
planes who note the time taken for a car to pass between
two marks some distance apart on the highway. What do each
of these methods measure, average speed or instantaneous
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Qo.

Q10.

*Q11.

Q12.

Q13.

Q14.

Q15.

Q16.

Q17.

Q18.

speed? Can you think of situations in which either one
of these methods might unfairly penalize a driver? Explain.

A ball is thrown against a wall and bounces back toward
the thrower with the same speed as it had before hitting the
wall. Does the velocity of the ball change in this process?
Explain.

A ball attached to a string is whirled in a horizontal circle

such that it moves with constant speed.

a. Does the velocity of the ball change in this process?
Explain.

b. Is the acceleration of the ball equal to zero? Explain.

A ball tied to a string fastened at the other end to a rigid

support forms a pendulum. If we pull the ball to one side

and release it, the ball moves back and forth along an arc

determined by the string length.

a. Is the velocity constant in this process? Explain.

b. Is the speed likely to be constant in this process? What
happens to the speed when the ball reverses direction?

A dropped ball gains speed as it falls. Can the velocity of
the ball be constant in this process? Explain.

A driver of a car steps on the brakes, causing the velocity
of the car to decrease. According to the definition of accel-
eration provided in this chapter, does the car accelerate in
this process? Explain.

At a given instant in time, two cars are traveling at different
velocities, one twice as large as the other. Based upon this
information is it possible to say which of these two cars
has the larger acceleration at this instant in time? Explain.

A car just starting up from a stop sign has zero velocity at
the instant that it starts. Must the acceleration of the car
also be zero at this instant? Explain.

A car traveling with constant speed rounds a curve in the
highway. Is the acceleration of the car equal to zero in this
situation? Explain.

A racing sports car traveling with a constant velocity of
100 MPH due west startles a turtle by the side of the road
who begins to move out of the way. Which of these two
objects is likely to have the larger acceleration at that
instant? Explain.

In the graph shown here, velocity is plotted as a function

of time for an object traveling in a straight line.

a. Is the velocity constant for any time interval shown?
Explain.

b. During which time interval shown does the object have
the greatest acceleration? Explain.

t(s)
Q18 Diagram

Q19.

Q20.

Q21

Q22.

Q23.

Q24.

Q25.

A car moves along a straight line so that its position (dis-

tance from some starting point) varies with time as de-

scribed by the graph shown here.

a. Does the car ever go backward? Explain.

b. Is the instantaneous velocity at point A greater or less
than that at point B? Explain.

d

Q19 Diagram

For the car whose distance is plotted against time in ques-
tion 19, is the velocity constant during any time interval
shown in the graph? Explain.

A car moves along a straight section of road so that its

velocity varies with time as shown in the graph.

a. Does the car ever go backward? Explain.

b. At which of the labeled points on the graph, A, B, or
C, is the magnitude of the acceleration the greatest?
Explain.

| B |
| |
| | C
A | |
| | |
| | |
| | |
Il 1 1
2 4 6
t(s)
Q21 Diagram

For the car whose velocity is plotted in question 21, in
which of the equal time segments 0-2 seconds, 2—4 sec-
onds, or 4-6 seconds, is the distance traveled by the car
the greatest? Explain.

Look again at the velocity-versus-time graph for the toy

car shown in figure 2.15.

a. Is the instantaneous speed greater at any time during
this motion than the average speed for the entire trip?
Explain.

b. Is the car accelerated when the direction of the car is
reversed at t = 50 s? Explain.

Suppose that the acceleration of a car increases with time.
Could we use the relationship vV = v, + at in this situation?
Explain.

When a car accelerates uniformly from rest, which of these
quantities increases with time: acceleration, velocity, and/or
distance traveled? Explain.
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Q26. The velocity-versus-time graph of an object curves as
shown in the diagram. Is the acceleration of the object
constant? Explain.

Y

Q26 Diagram
Q27. For a uniformly accelerated car, is the average acceleration
equal to the instantaneous acceleration? Explain.

Q28. A car traveling in the forward direction experiences a neg-
ative uniform acceleration for 10 seconds. Is the distance
covered during the first 5 seconds equal to, greater than, or

exercises

Q29.

Q30.

Q31.

*Q32.

less than the distance covered during the second 5 sec-
onds? Explain.

A car starts from rest, accelerates uniformly for 5 seconds,
travels at constant velocity for 5 seconds, and finally decel-
erates uniformly for 5 seconds. Sketch graphs of velocity
versus time and acceleration versus time for this situation.

Suppose that two runners run a 100-meter dash, but the
first runner reaches maximum speed more quickly than the
second runner. Both runners maintain constant speed once
they have reached their maximum speed and cross the fin-
ish line at the same time. Which runner has the larger
maximum speed? Explain.

Sketch a graph showing velocity-versus-time curves for the
two runners described in question 30. (Sketch both curves
on the same graph, so that the differences are apparent.)

A physics instructor walks with increasing speed across
the front of the room then suddenly reverses direction and
walks backward with constant speed. Sketch graphs of
velocity and acceleration consistent with this description.

E1. A traveler covers a distance of 460 miles in a time of 8 hours.
What is the average speed for this trip?

E2. A walker covers a distance of 1.8 km in a time of 30 min-
utes. What is the average speed of the walker for this dis-
tance in km/h?

E3. Grass clippings are found to have an average length of
4.8 cm when a lawn is mowed 12 days after the previous
mowing. What is the average speed of growth of this grass
in cm/day?

E4. A driver drives for 2.5 hours at an average speed of 54 MPH.
What distance does she travel in this time?

E5. A woman walks a distance of 240 m with an average speed
of 1.2 m/s. What time was required to walk this distance?

E6. A person in a hurry averages 62 MPH on a trip covering
a distance of 300 miles. What time was required to travel
that distance?

E7. A hiker walks with an average speed of 1.2 m/s. What
distance in kilometers does the hiker travel in a time of
1 hour?

E8. A car travels with an average speed of 22 m/s.
a. What is this speed in km/s?
b. What is this speed in km/h?

E9. A car travels with an average speed of 58 MPH. What is
this speed in km/h? (See example box 2.1.)

E10. Starting from rest and moving in a straight line, a runner
achieves a velocity of 7 m/s in a time of 2 s. What is the

average acceleration of the runner?

E11. Starting from rest, a car accelerates at a rate of 4.2 m/s? for
a time of 5 seconds. What is its velocity at the end of this

time?

El2.

E13.

E14.

E15.

E16.

E17.

E18.

The velocity of a car decreases from 30 m/s to 18 m/s in a
time of 4 seconds. What is the average acceleration of the
car in this process?

A car traveling with an initial velocity of 12 m/s acceler-
ates at a constant rate of 2.5 m/s? for a time of 2 seconds.
a. What is its velocity at the end of this time?

b. What distance does the car travel during this process?

A runner traveling with an initial velocity of 2.0 m/s accel-
erates at a constant rate of 1.2 m/s? for a time of 2 seconds.
a. What is his velocity at the end of this time?

b. What distance does the runner cover during this process?

A car moving with an initial velocity of 30 m/s slows down
at a constant rate of —3 m/s?.

a. What is its velocity after 3 seconds of deceleration?

b. What distance does the car cover in this time?

A runner moving with an initial velocity of 4.0 m/s slows
down at a constant rate of —1.5 m/s? over a period of
2 seconds.

a. What is her velocity at the end of this time?

b. What distance does she travel during this process?

If a world-class sprinter ran a distance of 100 meters start-
ing at his top speed of 11 m/s and running with constant
speed throughout, how long would it take him to cover the
distance?

Starting from rest, a car accelerates at a constant rate of

3.0 m/s? for a time of 5 seconds.

a. Compute the velocity of the carat1s,2s,3s, 4 s, and
5 s and plot these velocity values against time.

b. Compute the distance traveled by the car for these same
times and plot the distance values against time.
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synthesis problems

SP1.

SP2.

home experiments and observations

A railroad engine moves forward along a straight section of
track for a distance of 80 m due west at a constant speed
of 5 m/s. It then reverses its direction and travels 20 m due
east at a constant speed of 4 m/s. The time required for this
deceleration and reversal is very short due to the small
speeds involved.

a. What is the time required for the entire process?

b. Sketch a graph of average speed versus time for this
process. Show the deceleration and reacceleration upon
reversal as occurring over a very short time interval.

c. Using negative values of velocity to represent reversed
motion, sketch a graph of velocity versus time for the
engine.

d. Sketch a graph of acceleration versus time for the
engine.

The velocity of a car increases with time as shown in the

graph.

a. What is the average acceleration between 0 seconds and
4 seconds?

b. What is the average acceleration between 4 seconds and
8 seconds?

c. What is the average acceleration between 0 seconds and
8 seconds?

d. Isthe result in part c equal to the average of the two val-
ues in parts a and b? Compare and explain.
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SP3.

SP4.

SP5.

A car traveling due west on a straight road accelerates at
a constant rate for 10 seconds increasing its velocity from
0 to 24 m/s. It then travels at constant speed for 10 sec-
onds and then decelerates at a steady rate for the next
5 seconds to a velocity of 10 m/s. It travels at this velocity

for 5 seconds and then decelerates rapidly to a stop in a

time of 2 seconds.

a. Sketch a graph of the car’s velocity versus time for the
entire motion just described. Label the axes of your
graph with the appropriate velocities and times.

b. Sketch a graph of acceleration versus time for the car.

c. Does the distance traveled by the car continually
increase in the motion described? Explain.

A car traveling in a straight line with an initial velocity

of 14 m/s accelerates at a rate of 2.0 m/s? to a velocity of

24 m/s.

a. How much time does it take for the car to reach the
velocity of 24 m/s?

b. What is the distance covered by the car in this process?

c. Compute values of the distance traveled at 1-second
intervals and carefully draw a graph of distance plotted
against time for this motion.

Just as car A is starting up, it is passed by car B. Car B

travels with a constant velocity of 10 m/s, while car A

accelerates with a constant acceleration of 4.5 m/s?, starting

from rest.

a. Compute the distance traveled by each car for times of
1s,2s,3s,and4s.

b. At what time, approximately, does car A overtake car B?

¢. How might you go about finding this time exactly?
Explain.

HE1.

HE2.

How fast do you normally walk? Using a meter stick or a
string of known length, lay out a straight course of 40 or
50 meters. Then use a watch with a second hand or a stop-
watch to determine:

a. Your normal walking speed in m/s.

b. Your walking speed for a brisk walk.

¢. Your jogging speed for this same distance.

d. Your sprinting speed for this distance.

Record and compare the results for these different cases. Is
your sprinting speed more than twice your speed for a brisk
walk?

The speed with which hair or fingernails grow provides
some interesting measurement challenges. Using a millimeter

rule, estimate the speed of growth for one or more of:
fingernails, toenails, facial hair if you shave regularly, or
hair near your face (such as sideburns) that will provide
an easy reference point. Measure the average size of clip-
pings or of growth at regular time intervals.

a. What is the average speed of growth? What units are
most appropriate for describing this speed?

b. Does the speed appear to be constant with time? Does
the speed appear to be the same for different nails
(thumb versus fingers, fingernails versus toenails), or in
the case of hair, for different positions on your face?



unit one

Falling Objects and
Projectile Motion

chapter overview

Our main purpose in this chapter is to explore how objects move under
the influence of the gravitational acceleration near the Earth’s surface.
Uniform acceleration, introduced in chapter 2, plays a prominent role.
We begin by considering carefully the acceleration of a dropped object,
and then we will extend these ideas to thrown objects or objects
projected at an angle to the ground.

chapter outline

l Acceleration due to gravity. How does a dropped object move under
the influence of the Earth’s gravitational pull? How is its acceleration
measured, and in what sense is it constant?

2 Tracking a falling object. How do velocity and distance traveled vary
with time for a falling object? How can we quickly estimate these
values knowing the gravitational acceleration?

3 Beyond free fall: Throwing a ball upward. What changes when a ball
is thrown upward rather than being dropped? Why does the ball
appear to hover near the top of its flight?

4 Projectile motion. What determines the motion of an object that is
fired horizontally? How do the velocity and position of the object
change with time in this case?

5 Hitting a target. What factors determine the trajectory of a rifle
bullet or football that has been launched at some angle to the
horizontal to hit a target?
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Have you ever watched a leaf or a ball fall to the
ground? At times during your first few years of life, you
probably amused yourself by dropping an object repeat-
edly and watching it fall. As we grow older, that experi-
ence becomes so common that we usually do not stop
to think about it or to ask why objects fall as they do.
Yet this question has intrigued scientists and philoso-
phers for centuries.

To understand nature, we must first carefully observe it.
If we control the conditions under which we make our
observations, we are doing an experiment. The observa-
tions of falling objects that you performed as a young
child were a simple form of experiment, and we would
like to rekindle that interest in experimentation here.
Progress in science has depended on carefully controlled
experiments, and your own progress in understanding
nature will depend on your active testing of ideas through
experiments. You may be amazed at what you discover.

Look around for some small, compact objects. A short
pencil, a rubber eraser, a paper clip, or a small ball will
all do nicely. Holding two objects at arm’s length,
release them simultaneously and watch them fall to the
floor (fig. 3.1). Be careful to release them from the same
height above the floor without giving either one an
upward or downward push.

How would you describe the motion of these falling
objects? Is their motion accelerated? Do they reach the
floor at the same time? Does the motion depend on
the shape and composition of the object? To explore
this last question, you might take a small piece of paper

Tb
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figure 3.1 An experimenter dropping objects of different
mass. Do they reach the ground at the same time?
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and drop it at the same time as an eraser or a ball. First,
drop the paper unfolded. Then, try folding it or crum-
pling it into a ball. What difference does this make?

From these simple experiments, we can draw some
general conclusions about the motion of falling objects.
We can also try throwing or projecting objects at differ-
ent angles to study the motion of a projectile. We will
find that a constant downward gravitational accelera-
tion is involved in all of these cases. This acceleration
affects virtually everything that we do when we move
or play on the surface of this Earth.

3.1 Acceleration Due to Gravity

If you dropped a few objects as suggested in the introduc-
tion, you already know the answer to one of the questions
posed there. Are the falling objects accelerated? Think for
a moment about whether the velocity is changing. Before
you release an object, its velocity is zero, but an instant
after the object is released, the velocity has some value dif-
ferent from zero. There has been a change in velocity. If
the velocity is changing, there is an acceleration.

Things happen so rapidly that it is difficult, just from
watching the fall, to say much about the acceleration. It
does appear to be large, because the velocity increases rap-
idly. Does the object reach a large velocity instantly, or does
the acceleration occur more uniformly? To answer this
question, we must slow the motion down somehow so that
our eyes and brains can keep up with what is happening.

How can we measure the gravitational
acceleration?

There are several ways to slow down the action. One was pio-
neered by the Italian scientist, Galileo Galilei (1564-1642), who

was the first to accurately describe the acceleration due to grav-
ity. Galileo’s method was to roll or slide objects down a slightly

inclined plane. This allows only a small portion of the gravita-
tional acceleration to come into play, just that part in the direc-
tion of motion along the plane. Thus a smaller acceleration
results. Other methods (not available to Galileo) use time-lapse
photography, ultrasonic motion detectors, or video recording to
locate the position of the falling object at different times.

If you happen to have a grooved ruler and a small ball
or marble handy, you can make an inclined plane yourself.
Lift one end of the ruler slightly by placing a pencil under
one end, and let the ball or marble roll down the ruler under
the influence of gravity (fig. 3.2). Can you see it gradually
pick up speed as it rolls? Is it clearly moving faster at the
bottom of the incline than it was halfway down?

Galileo was handicapped by a lack of accurate timing
devices. He often had to use his own pulse as a timer.
Despite this limitation, he was able to establish that the
acceleration was uniform, or constant, with time and to
estimate its value using inclined planes. We are more for-
tunate. We have devices that allow us to study the motion
of a falling object more directly. One such device is a
stroboscope, a rapidly blinking light whose flashes occur
at regular intervals in time. Figure 3.3 is a photograph
taken using a stroboscope to illuminate an object as it
falls. The position of the object is pinpointed every time
the light flashes.
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figure 3.2 A marble rolling down a ruler serving as an
inclined plane. Does the velocity of the marble increase as it rolls
down the incline?

If you look closely at figure 3.3, you will notice that the
distance covered in successive time intervals increases reg-
ularly. The time intervals between successive positions of
the ball are all equal. (If the stroboscope light flashes every
Y20 of a second, you are seeing the position of the ball
every ¥20 of a second.) Since the distance covered by the
ball in equal time intervals is increasing, the velocity must
be increasing. Figure 3.3 shows a ball whose velocity is
steadily increasing in the downward direction.

figure 3.3 A falling ball
is illuminated by a rapidly
blinking stroboscope. The
stroboscope blinks at regular
time intervals.

Computing values of the average velocity for each time
interval will make this even clearer. The computation can
be done if we know the time interval between flashes and
can measure the position of the ball from the photograph,
knowing the distance between the grid marks. Table 3.1
displays data obtained in this manner. It shows the position
of a ball at intervals of ¥20 of a second (0.05 second).

To see that the velocity is indeed increasing, we com-
pute the average velocity for each successive time interval.
For example, between the second and third flashes, the ball
traveled a distance of 3.6 centimeters, which is found by
subtracting 1.2 centimeters from 4.8 centimeters. Dividing
this distance by the time interval of 0.05 second yields the
average size of the velocity:

V= 3.6cm
0.05s

= 72 cm/s.

You could verify the other values shown in the third col-
umn of table 3.1 by doing similar computations.

It is clear in table 3.1 that the velocity values steadily in-
crease. To see that velocity is increasing at a constant rate,
we can plot velocity against time (fig. 3.4). Notice that each
velocity data point is plotted at the midpoint between the
two times (or flashes) from which it was computed. This is
because these values represent the average velocity for the
short time intervals between flashes. For constant accelera-
tion, the average velocity for any time interval is equal to
the instantaneous velocity at the midpoint of that interval.

Did you notice that the slope of the line is constant in
figure 3.4? The velocity values all fall approximately on a
constant-slope straight line. Since acceleration is the slope

Distance and Velocity Values for a Falling Ball

Time Distance Velocity
0 0

24 cmls
0.05s 1.2 cm

72 cm/s
0.10 s 4.8 cm

124 cmls
0.15s 11.0 cm

174 cmls
0.20 s 19.7 cm

218 cm/s
0.25s 30.6 cm

268 cm/s
0.30s 44.0 cm

320 cm/s
0.35s 60.0 cm

368 cm/s
0.40s 78.4 cm

416 cm/s
0.45s 99.2 cm

464 cm/s
0.50s 122.4 cm
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figure 3.4 Velocity plotted against time for the falling ball.
The velocity values are those shown in table 3.1.

of the velocity-versus-time graph, the acceleration must also
be constant. The velocity increases uniformly with time.

To find the value of the acceleration, we choose two
velocity values that lie on the straight line and calculate
how rapidly the velocity is changing. For example, the last
velocity value, 464 cm/s, and the second value, 72 cm/s,
are separated by a time interval corresponding to 8 flashes
or 0.40 second. The increase in velocity Av is found by
subtracting 72 cm/s from 464 cm/s, obtaining 392 cm/s. To
find the acceleration, we divide this change in velocity by
the time interval (a = Av/t),

~ 392 cm/s

— 2 _ 2
045 980 cm/s 9.8 m/s?.

This result gives us the acceleration due to gravity for
objects falling near the Earth’s surface. Its value actually
varies slightly from point to point on the Earth’s surface
because of differences in altitude and other effects. This
acceleration is used so often that it is given its own symbol
g where

g = 9.8m/s2

Called the gravitational acceleration or acceleration due to
gravity, it is valid only near the Earth’s surface and thus is
not a fundamental constant.

How did Galileo’s ideas on falling objects
differ from Aristotle’s?

There is another sense in which the gravitational accelera-
tion is constant, which takes us back to the experiments
suggested in the chapter opener, p. 39. When you drop ob-
jects of different sizes and weights, do they reach the floor
at the same time? Except for an unfolded piece of paper, it
is likely that all of the objects that you test, regardless of
their weight, reach the floor at the same time when
released simultaneously. This finding suggests that the

gravitational acceleration does not depend on the weight
of the object.

Galileo used similar experiments to prove this point.
His experiments contradicted Aristotle’s view that heavier
objects fall more rapidly. How could Aristotle’s idea have
been accepted for so long when simple experiments can
disprove it? Experimentation was not part of the intellec-
tual outlook of Aristotle and his followers; they valued
pure thought and logic more highly. Galileo and other sci-
entists of his time broke new ground by using experiments
as an aid to thinking. A new tradition was emerging.

On the other hand, Aristotle’s view agrees with our intui-
tion that heavy objects do fall more rapidly than some lighter
objects. If, for example, we drop a brick together with a
feather or unfolded piece of paper (fig. 3.5), the brick will
reach the floor first. The paper or feather will not fall in
a straight line but instead will flutter to the floor much as a
leaf falls from a tree. What is happening here?

You will probably recognize that the effects of air resis-
tance impede the fall of the feather or paper much more
than the fall of the brick, a steel ball, or a paper clip. When
we crumple the piece of paper into a ball and drop it
simultaneously with a brick or other heavy object, the two
objects reach the floor at approximately the same time. We
live at the bottom of a sea of air, and the effects of air
resistance can be substantial for objects like leaves, feath-
ers, or pieces of paper. These effects produce a slower and
less regular flight for light objects that have a large surface
area.

If we drop a feather and a brick simultaneously in a vac-
uum or in the very thin atmosphere of the moon, they do
reach the ground at the same time. Moonlike conditions are
not part of our everyday experience, however, so we are used
to seeing feathers fall more slowly than rocks or bricks.
Galileo’s insight was that the gravitational acceleration is
the same for all objects, regardless of their weight, provided
that the effects of air resistance are not significant. Aristotle
did not separate the effect of air resistance from that of
gravity in his observations.

U

figure 3.5 The brick reaches the floor first when a brick
and a feather are dropped at the same time.
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The gravitational acceleration for objects near the Earth’s
surface is uniform and has the value of 9.8 m/s?. It can be
measured by using stroboscopes or similar techniques to
record the position of a falling object at regular, very small
time intervals. This acceleration is constant in time. Contrary
to Aristotle’s belief, it also has the same value for objects
of different weight.

3.2 Tracking a Falling Object

Imagine yourself dropping a ball from a sixth-story win-
dow, as in figure 3.6. How long does it take for the ball to
reach the ground below? How fast is it traveling when it
gets there? Things happen quickly, so the answers to these
questions are not obvious.

If we assume that air-resistance effects are small for the
object we are tracking, we know that it accelerates toward
the ground at the constant rate of 9.8 m/s?. Let’s make
some quick estimates of how these values change with time
without doing detailed computations.

How does the velocity vary with time?

In making estimates of velocity and distance for a falling ob-
ject, we often take advantage of the fact that the gravitational-
acceleration value of 9.8 m/s? is almost 10 m/s? and round
it up. (Here we are choosing the downward direction as
positive.) This makes the numerical values easier to calcu-
late without sacrificing much in accuracy. Multiplying by
10 is quicker than multiplying by 9.8.

How fast is our dropped ball moving after 1 second? An
acceleration of 10 m/s?> means that the velocity is increas-
ing by 10 m/s each second. If its original velocity is zero,
then after 1 second its velocity has increased to 10 m/s, in
2 seconds to 20 m/s, and in 3 seconds to 30 m/s. For each
additional second, the ball gains 10 m/s in velocity.*

To help you appreciate these values, look back at table
2.1, which shows unit comparisons for familiar speeds. A
velocity of 30 m/s is roughly 70 MPH, so after 3 seconds
the ball is moving quickly. After just 1 second, it is moving
with a downward velocity of 10 m/s, which is over 20 MPH.
The ball gains velocity at a faster rate than is possible for a
high-powered automobile on a level surface.

How far does the ball fall in different times?

The high velocities are more meaningful if we examine how
far the ball falls during these times. As the ball falls, it gains
speed, so it travels farther in each successive time inter-
val, as in the photograph in figure 3.3. Because of uniform

*In section 2.5, we noted that the velocity of an object moving with uni-
form acceleration is v = v, + at, where v is the original velocity and the
second term is the change in velocity, Av = at. When a ball is dropped,
Vo, = 0, so v is just at, the change in velocity.
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figure 3.6 A ball is dropped from a sixth-story window.
How long does it take to reach the ground?

acceleration, the distance increases at an ever-increasing
rate.

During the first second of motion, the velocity of the
ball increases from zero to 10 m/s. Its average velocity
during that first second is 5 m/s, and it travels a distance of
5 meters in that second. This can also be found by using
the relationship between distance, acceleration, and time in
section 2.5. If the starting velocity is zero, we found that
d= %atz. After 1 second, the ball has fallen a distance

d =3 (10 m/s?)(Ls)> = 5m.

Since the height of a typical story of a multistory building
is less than 4 meters, the ball falls more than one story in
just a second.
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During the next second of motion, the velocity increases
from 10 m/s to 20 m/s, yielding an average velocity of
15 m/s for that interval. The ball travels 15 meters in that
second, which, when added to the 5 meters covered in the
first second, yields a total of 20 meters. After 2 seconds,
the distance fallen is four times as large as the 5 meters
traveled after 1 second.* Since 20 meters is roughly five
stories in height, the ball dropped from the sixth story will
be near the ground after 2 seconds.

Figure 3.7 gives the velocity and distance fallen at half-
second time intervals for a ball dropped from a six-story
building. Notice that in just half a second, the ball falls
1.25 meters. An object dropped to the floor from an out-
stretched arm therefore hits the floor in roughly half a sec-
ond. This makes it difficult to time with a stopwatch. (See
example box 3.1.)

The change in velocity is proportional to the size of the
time interval selected. In 1 second the change in velocity is
10 m/s, so in half a second the change in velocity is 5 m/s.
In each half-second the ball gains approximately 5 m/s in
velocity, illustrated in figure 3.7. As the velocity gets larger,
the arrows representing the velocity vectors grow. If we
plotted these velocity values against time, we would get a
simple upward-sloping straight-line graph as in figure 3.4.

What does the graph of the distance values look like?
The distance values increase in proportion to the square of
the time, which means that they increase more and more
rapidly as time elapses. Instead of being a straight-line
graph, the graph of the distance values curves upward as in
figure 3.8. The rate of change of distance with time is itself
increasing with time.

Throwing a ball downward

Suppose that instead of just dropping the ball, we throw it
straight down, giving it a starting velocity v, different from
zero. How does this affect the results? Will the ball reach
the ground more rapidly and with a larger velocity? You
would probably guess correctly that the answer is yes.

In the case of the velocity values, the effect of the start-
ing velocity is not difficult to see. The ball is still being
accelerated by gravity so that the change in velocity for
each second of motion is still Av = 10 m/s, or for a half-
second, 5 m/s. If the initial downward velocity is 20 m/s,
after half a second, the velocity is 25 m/s, and after 1 sec-
ond, it is 30 m/s. We simply add the change in velocity to
the initial velocity as indicated by the formulav = v, + at.

In the case of distance, however, the values increase
more rapidly. The full expression for distance traveled by a
uniformly accelerated object (introduced in section 2.5) is

d= vt + %atz.

*This is a result of the time being squared iln the formula for distance.
Putting 2 s in place of 1 s in the formula d = 5 at> multiplies the result by
a factor of 4 (22 = 4), yielding a distance of 20 m.
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figure 3.7 Velocity and distance values for the dropped
ball shown at half-second time intervals.

example box 3.1

Sample Question: Using a Pulse Rate to Time
a Falling Object

Question: Suppose that Galileo's resting pulse rate was
60 beats per minute. Would his pulse be a useful timer for
getting position-versus-time data for an object dropped
from the height of 2 to 3 meters?

Answer: A pulse rate of 60 beats per minute corresponds
to 1 beat per second. In the time of 1 second, a dropped
object falls a distance of approximately 5 m. (It falls 1.22 m
in just half a second as seen in table 3.1.) Thus this pulse
rate (or most pulse rates) would not be an adequate timer
for an object dropped from a height of a few meters. It
could be slightly more effective for an object dropped
from a tower several stories in height.
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figure 3.8 A plot of distance versus time for the dropped
ball.

The first term is the distance that the ball would travel if it
continued to move with just its original velocity. This dis-
tance also increases with time. The second term is due to
the acceleration and has the same values as shown in fig-
ures 3.7 and 3.8.

In the sample exercise in example box 3.2, we calculate
velocity and distance traveled during the first 2 seconds of
motion for a ball thrown downward. Notice that after 2 sec-
onds the ball has traveled a distance of 60 meters, much
larger than the 20 meters when the ball is simply dropped.

example box 3.2

Sample Exercise: Throwing a Ball Downward

A ball is thrown downward with an initial velocity of
20 m/s. Using the value 10 m/s? for the gravitational
acceleration, find (a) the velocity and (b) the distance
traveled at 1-s time intervals for the first 2 s of motion.

a. Vg = 20m/s v =y, + at

a = 10 m/s? for t = 1s

v =7 v = 20m/s + (10 m/s?)(1s)
= 20 m/s + 10 m/s
= 30m/s

t=2s v =20m/s + (10 m/s?)(25s)

= 20m/s + 20m/s = 40 m/s

b.d =2 d=vyt+;ap

t=1s d= (0mis)(1s) + (10 mis?)(1s)?
=20m +5m = 25m
t=2s d=(0mhs)2s) + (10 M/s?)(2s)?

40m + 20m = 60m

After just 1 second the ball has already traveled 25 meters,
which means that it would be near the ground if thrown
from our sixth-story window.

Keep in mind, though, that we have ignored the effects
of air resistance in arriving at these results. For a compact
object falling just a few meters, the effects of air resistance
are very small. These effects increase as the velocity
increases, however, so that the farther the object falls, the
greater the effects of air resistance. In chapter 4, we will
discuss the role of air resistance in more depth in the con-
text of sky diving.

When an object is dropped, its velocity increases by
approximately 10 m/s every second due to the gravita-
tional acceleration. The distance traveled increases at an
ever-increasing rate because the velocity is increasing. In
just a few seconds, the object is moving very rapidly and
has fallen a large distance. In section 3.3, we will explore
the effects of gravitational acceleration on an object
thrown upward.

3.3 Beyond Free Fall: Throwing
a Ball Upward

In section 3.2, we discussed what happens when a ball is
dropped or thrown downward. In both of these cases, the
ball gains velocity as it falls due to the gravitation accelera-
tion. What if the ball is thrown upward instead, as in figure
3.9? How does gravitational acceleration affect the ball’s
motion? What goes up must come down—but when and how
fast are interesting questions with everyday applications.

figure 3.9 A ball thrown upward returns to the ground.
What are the magnitude and direction of the velocity at different
points in the flight?
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The directions of the acceleration and velocity vectors
merit our close attention. The gravitational acceleration is
always directed downward toward the center of the Earth,
because that is the direction of the gravitational force that
produces this acceleration. This means that the acceleration
is in the opposite direction to the original upward velocity.

How does the ball’s velocity change?

Suppose that we throw a ball straight up with an original
velocity of 20 m/s. Many of us can throw a ball at this ve-
locity: it is approximately 45 MPH. This is a lot less than
a 90-MPH fastball, but throwing a ball upward with good
velocity is harder than throwing it horizontally.

Once the ball leaves our hand, the primary force acting
on it is gravity, which produces a downward acceleration
of 9.8 m/s? or approximately 10 m/s2. (If we now choose
the upward direction as positive, this acceleration is nega-
tive because it is downward.) Every second, there is a
change in velocity of 10 m/s. This change in velocity is
directed downward, however, opposite to the direction of
the original velocity. It subtracts from the original velocity
rather than adding to it.

Once you are aware of how important direction is in ob-
serving the ball thrown upward, finding the velocity at dif-
ferent times is not hard. After 1 second, the velocity of the
ball has decreased by 10 m/s, so if it started at +20 m/s
(choosing the positive direction to be upward in this case),
it is now moving upward with a velocity of just +10 m/s.
After 2 seconds, it loses another 10 m/s, so its velocity is
then zero. It does not stop there, of course. In another second
(3 seconds from the start), its velocity decreases by another
10 m/s, and it is then moving downward at —10 m/s. The
sign of the velocity indicates its direction. All of these val-
ues can be found from the relationship v = v, + at, where
Vo = +20 m/s and a = —10 m/s?.

Clearly, the ball has changed direction, as you might
expect. Just as before, the velocity changes steadily at
—10 m/s each second, due to the constant downward accel-
eration. After 4 seconds, the ball is moving downward with
a velocity of —20 m/s and is back at its starting position.
These results are illustrated in figure 3.10. The high point
in the motion occurs at a time 2 seconds after the ball is
thrown, where the velocity is zero. If the velocity is zero,
the ball is moving neither upward nor downward, so this is
the turnaround point.

An interesting question, a favorite on physics tests (and
often missed by students), asks for the value of accelera-
tion at the high point in the motion. If the velocity is zero
at this point, what is the value of the acceleration? The
quick, but incorrect, response given by many people is that
the acceleration must also be zero at that point. The correct
answer is that the acceleration is still —10 m/s2. The grav-
itational acceleration is constant and does not change. The
velocity of the ball is still changing at that instant, from a
positive to a negative value, even though the instantaneous

t =2s
d=20m
v =20
a = —10 m/s?
t =1s t = 3s
d=15m d=15m
v = +10 m/s v = =10 m/s
a = —-10 m/s? a = —-10 m/s?
t =0 t =4s
d=o0 d=20
v = +20m/s v = =20m/s
a = —10 m/s?

figure 3.10 The changing velocity is indicated by the blue
velocity vectors at different points in the flight of a ball thrown
upward with a starting velocity of +20 m/s. The constant downward
acceleration is shown as a green vector at each point.

velocity is zero. Acceleration is the rate of change of ve-
locity and is unrelated to the size of the velocity.

What would a graph of velocity plotted against time
look like for the motion just described? If we make the up-
ward direction of motion positive, the velocity starts with
a value of +20 m/s and changes at a steady rate, decreas-
ing by —10 m/s each second. This is a straight-line graph,
sloping downward as in figure 3.11. The positive values
of velocity represent upward motion, where the size of the
velocity is decreasing, and the negative values of velocity
represent downward motion. If the ball did not hit the
ground, but was thrown from the edge of a cliff, it would
continue to gain negative velocity as it moved downward.

How high does the ball go?

The position or height of the ball at different times can be
computed using the methods in section 3.2. These distance
computations involve the formula for uniform acceleration
developed in section 2.5. In the sample exercise in example
box 3.3, we compute the height or distance traveled at
1-second intervals for the ball thrown upward at +20 m/s,
using —10 m/s? for the gravitational acceleration.
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1 2 3 4 t(s)

figure 3.11 A plot of the velocity versus time for a ball
thrown upward with an initial velocity of +20 m/s. The negative
values of velocity represent downward motion.

What should you notice about these results? First, the
high point of the motion is 20 meters above the starting
point. The high point is reached when the velocity is zero,
and we determined earlier that this occurs at a time of
2 seconds. This time depends on how fast the ball is thrown
initially. The larger the original velocity, the greater the
time to reach the high point. Knowing this time, we can
use the distance formula to find the height.

You should also notice that after just 1 second, the ball
has reached a height of 15 meters. It covers just five addi-
tional meters in the next second of motion, and then falls
back to 15 meters in the following second. The ball spends
a full 2 seconds above the height of 15 meters, even
though it only reaches a height of 20 meters. The ball is
moving more slowly near the top of its flight than it is at
lower points—this is why the ball appears to “hang” near
the top of its flight.

example box 3.3

Sample Exercise: Throwing a Ball Upward

A ball is thrown upward with an initial velocity of 20 m/s.
Find its height at 1-s intervals for the first 4 s of its flight.
d=2 d=yt+;at
t=1s = (20m/s)(1s) + 3 (—10 m/s?)(1 s)?
=20m —5m = 15m

t=2s d= (20m/s)2s) + 3 (—10 m/s?)(2s)?
=40m — 20m = 20m

t=3s d= (20m/s)3s) + 3 (—10 m/s?)(3s)?
=60m — 45m = 15m

t=4s d= (20m/s)(4s) + 3 (—10 m/s?)(4s)?

=8m —8m =0m

Finally, the time taken for the ball to fall back to its
starting point from the high point is equal to the time taken
for the ball to reach the high point in the first place. It
takes 2 seconds to reach the high point and another 2 sec-
onds for it to return to the starting point. The total time of
flight is just twice the time needed to reach the high point,
in this case, 4 seconds. A larger starting velocity would
produce a higher turnaround point and a greater “hang
time” for the ball.

A ball thrown upward is slowed by the downward gravita-
tional acceleration until its velocity is reduced to zero at
the high point. The ball then falls from that high point
accelerating downward at the same constant rate as when
it was rising. The ball travels more slowly near the top of
its flight, so it appears to “hang” there. It spends more
time in the top few meters than it does in the rest of the
flight. We will find that these features are also present
when a ball is projected at an angle to the horizontal, as
discussed in section 3.5.

3.4 Projectile Motion

Suppose that instead of throwing a ball straight up or down,
you throw it horizontally from some distance above the
ground. What happens? Does the ball go straight out until
it loses all of its horizontal velocity and then starts to fall
like the perplexed coyote in the Roadrunner cartoons (fig.
3.12)? What does the real path, or trajectory, look like?

Cartoons give us a misleading impression. In fact, two
different things are happening at the same time: (1) the ball
is accelerating downward under the influence of gravity,
and (2) the ball is also moving sideways with an approxi-
mately constant horizontal velocity. Combining these two
motions gives the overall trajectory or path.

figure 3.12 A cartoon coyote falling off a cliff. Is this a
realistic picture of what happens?
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What does the trajectory look like?

You can perform a simple experiment to help you visualize
the path that the projectile follows. Take a marble or small
ball, roll it along the top of a desk or table, and let it roll
off the edge. What does the path of the ball look like as it
travels through the air to the floor? Is it like the coyote in
figure 3.12? Roll the ball at different velocities and see
how the path changes. Try to sketch the path after making
these observations.

How do we go about analyzing this motion? The key
lies in thinking about the horizontal and vertical compo-
nents of the motion separately and then combining them to
get the actual path (fig. 3.13).

The acceleration of the horizontal motion is zero, pro-
vided that air resistance is small enough to be ignored.
This implies that the ball moves with a constant horizontal
velocity once it has rolled off the table or has left the hand.
The ball travels equal horizontal distances in equal time
intervals, as shown across the top of figure 3.13. In con-
structing this diagram, we assumed an initial horizontal
velocity of 2 m/s for the ball. Every tenth of a second,
then, the ball travels a horizontal distance of 0.2 meter.

At the same time that the ball travels with constant hor-
izontal velocity, it accelerates downward with the constant
gravitational acceleration g. Its vertical velocity increases
exactly like that of the falling ball photographed for fig-
ure 3.3. This motion is depicted along the left side of
figure 3.13. In each successive time interval, the ball falls
a greater distance than in the time interval before, because
the vertical velocity increases with time.

Combining the horizontal and vertical motions, we get
the path shown curving downward in figure 3.13. For each
time shown, we draw a horizontal dashed line locating the
vertical position of the ball, and a vertical dashed line for
the horizontal position. The position of the ball at any
time is the point where these lines intersect. The resulting
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figure 3.13 The horizontal and vertical motions combine
to produce the trajectory of the projected ball. The vertical and
horizontal positions are shown at regular time intervals.

trajectory (the solid curve) should look familiar if you have
performed the simple experiments suggested in the first
paragraph on this page.

If you understand how we obtained the path of the ball,
you are well on your way to understanding projectile
motion. The total velocity of the ball at each position pic-
tured is in the direction of the path at that point, since this is
the actual direction of the ball’s motion. This total veloc-
ity is a vector sum of the horizontal and vertical compo-
nents of the velocity (fig. 3.14). (See appendix C for a
discussion of vector components.) The horizontal velocity
remains constant, because there is no acceleration in that
direction. The downward (vertical) velocity gets larger and
larger.

study hint

If you are not familiar with vectors, you should take the
time to read and work the exercises in appendix C.
Appendix C describes what vectors are, how they are
added using simple graphical procedures, and how vector
components are defined. In this section, we use the ideas
that a vector quantity such as velocity can have both
horizontal and vertical components and that these
components add to give the total velocity. These concepts
are critical to your understanding of projectile motion.
Vector addition and vector components are also used in
many other situations that we will encounter in later
chapters.

The actual shape of the path followed by the ball de-
pends on the original horizontal velocity given the ball by
throwing it or rolling it from the tabletop. If this initial hor-
izontal velocity is small, the ball does not travel very far
horizontally. Its trajectory will then be like the smallest
starting velocity v, in figure 3.15.

The three trajectories shown in figure 3.15 have three
different starting velocities. As you would expect, the ball

Vhorizontal

Vvertical
Viotal

figure 3.14 The total velocity at any point is found by
adding the vertical component of the velocity to the horizontal
component.
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Vi V2 V3

figure 3.15 Trajectories for different initial velocities of a
ball rolling off a table: v; is larger than v,, which in turn is larger
than v,. The positions are shown at equal time intervals.

travels greater horizontal distances when projected with a
larger initial horizontal velocity.

What determines the time of flight?

Which of the three balls in figure 3.15 would hit the floor
first if all three left the tabletop at the same time? Does the
time taken for the ball to hit the floor depend on its hori-
zontal velocity? There is a natural tendency to think that
the ball that travels farther takes a longer time to reach the
floor.

In fact, the three balls should all reach the floor at the
same time. The reason is that they are all accelerating
downward at the same rate of 9.8 m/s2. This downward
acceleration is not affected by how fast the ball travels hor-
izontally. The time taken to reach the floor for the three
balls in figure 3.15 is determined strictly by how high
above the floor the tabletop is. The vertical motion is inde-
pendent of the horizontal velocity.

This fact often surprises people. It contradicts our intu-
itive sense of what is going on but can be confirmed by
doing simple experiments using two similar balls (fig.
3.16). If you throw one ball horizontally at the same time
that you simply drop the second ball from the same height,
the two balls should reach the floor at roughly the same
time. They may fail to hit at the same time, most likely
because it is hard to throw the first ball completely hori-
zontally and to release both balls at the same time. A spe-
cial spring gun, often used in demonstrations, will do this
more precisely.

If we know how far the ball falls, we can compute the
time of flight. This can then be used to determine the hori-
zontal distance that the ball will travel, if we know the ini-
tial horizontal velocity. The sample exercise in example
box 3.4 shows this type of analysis. Notice that the hori-
zontal distance traveled is determined by two factors: the
time of flight and the initial velocity.

example box 3.4

Sample Exercise: Projectile Motion

A ball rolls off a tabletop with an initial velocity of 3 m/s.
If the tabletop is 1.25 m above the floor,
a. How long does it take for the ball to hit the floor?
b. How far does the ball travel horizontally?

a. In figure 3.7, we saw that a ball will fall a distance of
1.25 m in approximately half a second. This could be
found directly from

1
dvertical = 125m dvertical =2 at?

a=g = 10m/s? Solving for t2:

_ 2 4
t=7 e = %a
_125m
5 m/s?
= 0.25¢?
Taking the square root to get t:
t = 05s

b. Knowing the time of flight t, we can now compute the
horizontal distance traveled:

Vo = 3m/s Ohorizontat = Vot
t = 05s = (3.0 m/s)(0.50 s)
dhorizontal = = 15m

figure 3.16 A ball is dropped at the same time that a
second ball is projected horizontally from the same height.
Which ball reaches the floor first?
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figure 3.17 A target shooter fires at a distant target. The bullet falls as it travels to the target.

Treating the vertical motion independently of the horizon-
tal motion and then combining them to find the trajectory
is the secret to understanding projectile motion. A horizon-
tal glide combines with a vertical plunge to produce a
graceful curve. The downward gravitational acceleration
behaves the same as for any falling object, but there is

no acceleration in the horizontal direction if air resistance
can be ignored. The projectile moves with constant hori-
zontal velocity while it is accelerating downward.

3.5 Hitting a Target

As long as humans have been hunters or warriors, they
have wanted to predict where a projectile such as a cannon-
ball will land after it is fired. Being able to hit a target such
as a bird in a tree or a ship at sea has obvious implications
for survival. Being able to hit a catcher’s mitt with a base-
ball thrown from center field is also a highly valued skill.

Does the bullet fall when a rifle is fired?

Imagine that you are firing a rifle at a small target some
distance away, with the rifle and target at exactly the same
distance above the ground (fig. 3.17). If the rifle is fired
directly at the target in a horizontal direction, will the bul-
let hit the center of the target? If you think of the ball
rolling off the table in section 3.4, you should conclude
that the bullet will strike the target slightly below the cen-
ter. Why? The bullet will be accelerated downward by
Earth’s gravitational pull and will fall slightly as it travels
to the target.

Since the time of flight is small, the bullet does not fall
very far, but it falls far enough to miss the center of the target.
How do you compensate for the fall of the bullet? You aim a
little high. You correct your aim either through trial and error
or by adjusting your rifle sight so that your aim is automati-
cally a little above center. Rifle sights are often adjusted for
some average distance to the target. For longer distances you
must aim high, for shorter distances a little low.

If you aim a little high, the bullet no longer starts out in
a completely horizontal direction. The bullet travels up
slightly during the first part of its flight and then comes
down to meet the target. This also happens when you fire a
cannon or throw a ball at a distant target.

A frequent demonstration to illustrate the independence
of the vertical and horizontal motions of projectiles is

often referred to as “Shoot the Monkey” or “Monkey in a
Tree.” A projectile is aimed directly at a toy monkey (or
other suitable target) hanging from the ceiling. An elec-
tronic trigger allows the target to drop at the same time the
projectile is launched. The target falls straight down at a
rate governed by the acceleration of gravity. The projectile
starts to move toward the initial position of the target, but
also starts to fall at a rate governed by the acceleration of
gravity.

Due to the fact that both the projectile and target begin
falling in the vertical direction at the exact same time and
with the same downward acceleration, the projectile will
always hit the target (fig. 3.18). It is crucial to recognize
that the projectile hits below where it was aimed by an
amount equal to the vertical distance the target drops since
the acceleration of gravity has the same effect on both the
projectile and the target. It is also important that the target
is released and the projectile is fired at the exact same
time. If the target was stationary, the projectile would have
to be aimed above the target to compensate for the vertical
drop due to the acceleration of gravity.

The flight of a football

Whenever you throw a ball such as a football at a somewhat
distant target, the ball must be launched at an angle above the
horizontal so that the ball does not fall to the ground too
soon. A good athlete does this automatically as a result of

line of sight to target

trajectory of projectile

figure 3.18 If the projectile is launched at the same time
the target is dropped, will it hit the target?
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figure 3.19 The flight of a football launched at an angle of 30° to the horizontal. The vertical and horizontal positions

of the ball are shown at regular time intervals.

practice. The harder you throw, the less you need to direct the
ball upward, because a larger initial velocity causes the ball to
reach the target more quickly, giving it less time to fall.

Figure 3.19 shows the flight of a football thrown at an
angle of 30° above the horizontal. The vertical position of
the ball is plotted on the left side of the diagram, as in fig-
ure 3.13 for the horizontally projected ball. The horizontal
position of the ball is shown across the bottom of the dia-
gram. We have assumed that air resistance is small, so the
ball travels with a constant horizontal velocity. Combining
these two motions yields the overall path.

As the football climbs, the vertical component of its
velocity decreases because of the constant downward grav-
itational acceleration. At the high point, this vertical com-
ponent of the velocity is zero, just as it is for a ball thrown
straight upward. The velocity of the ball is completely hor-
izontal at this high point. The ball then begins to fall, gain-
ing downward velocity as it accelerates. Unlike the ball
thrown straight upward, however, there is a constant hori-
zontal component to the velocity throughout the flight. We
need to add this horizontal motion to the up-and-down
motion that we described in section 3.3.

everyday phenomenon

Shooting a Basketball

The Situation. Whenever you shoot a basketball, you
unconsciously select a trajectory for the ball that you believe
will have the greatest likelihood of getting the ball to pass
through the basket. Your target is above the launch point
(with the exception of dunk shots and sky hooks), but the
ball must be on the way down for the basket to count.

What factors determine the best trajectory? When is a
high, arching shot desirable, and when might a flatter trajec-
tory be more effective? Will these factors be different for a
free throw than for a shot taken when you are guarded by
another player? How can our understanding of projectile
motion help us to answer these questions?

In throwing a ball, you can vary two quantities to help
you hit your target. One is the initial velocity, which is
determined by how hard you throw the ball. The other is the
launch angle, which can be varied to fit the circumstances.
A ball thrown with a large initial velocity does not have to
be aimed as high and will reach the target more quickly. It
may not clear the onrushing linemen, however, and it might
be difficult to catch because of its large velocity.

There is no time like the present to test these ideas. Take
a page of scrap paper and crumple it into a compact ball.
Then take your wastebasket and put it on your chair or desk.
Throwing underhand, experiment with different throwing
speeds and launch angles to see which is most effective in
making a basket. Try to get a sense of how the launch angle
and throwing speed interact to produce a successful shot. A
low, flat-trajectory shot should require a greater throwing
speed than a higher, arching shot. The flatter shot must also
be aimed more accurately, since the effective area of the
opening in the basket is smaller when the ball approaches at
a flat angle. The ball “sees” a smaller opening. (This effect
is discussed in everyday phenomenon box 3.1.)

The Analysis. The diameter of the basketball and the
diameter of the basket opening limit the angle at which

the basketball can pass cleanly through the hoop. The second
drawing shows the range of possible paths for a ball coming
straight down and for one coming in at a 45° angle to the
basket. The shaded area in each case shows how much the
center of the ball can vary from the center line if the ball is
to pass through the hoop. As you can see, a wider range of
paths is available when the ball is coming straight down.
The diameter of the basketball is a little more than half the
diameter of the basket.

(continued)
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This second drawing illustrates the advantage of an
arched shot. There is a larger margin of error in the path that
the ball can take and still pass through the hoop cleanly.

For the dimensions of a regulation basketball and basket,
the angle must be at least 32° for a clean shot. As the angle
gets larger, the range of possible paths increases. At smaller

Different possible trajectories for a basketball free throw. Which
has the greatest chance of success?

Possible paths for a basketball coming straight down and for one
coming in at a 45° angle. The ball coming straight down has a
wider range of possible paths.

angles, appropriate spin on the basketball will sometimes
cause the ball to rattle through, but the smaller the angle, the
less the likelihood of that happening.

The disadvantage of the arched shot is less obvious.
As you get farther away from the basket, launching condi-
tions for an arched shot must be more precise for the ball to
travel the horizontal distance to the basket. If an arched shot
is launched from 30 ft, it must travel a much higher path than
a shot launched at the same angle closer to the basket, as
shown in the third drawing. Since the ball stays in the air for
a longer time, small variations in either the release speed or
angle can cause large errors in the distance traveled. This
distance depends on both the time of flight and the hori-
zontal component of the velocity.

An arched shot launched from a large distance stays in the air
longer than one launched at the same angle from much closer to
the basket.

A highly arched shot is more effective when you are
close to the basket. You can then take advantage of the
greater range of paths available to the arched shot without
suffering much from the uncertainty in the horizontal dis-
tance. Away from the basket, the desirable trajectories gradu-
ally become flatter, permitting more accurate control of the
shot. An arched shot is sometimes necessary from anywhere
on the court, however, to avoid having the shot blocked.

The spin of the basketball, the height of the release, and
other factors all play a role in the success of a shot. A fuller
analysis can be found in an article by Peter J. Brancazio in the
American Journal of Physics (April 1981) entitled “Physics of
Basketball.” A good understanding of projectile motion might
improve the game of even an experienced player.
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figure 3.20 cannonball paths for different launch angles
but the same initial launch speed.

How can we achieve maximum distance?

In firing a rifle or cannon, the initial velocity of the projec-
tile is usually set by the amount of gunpowder in the shell.
The launch angle is then the only variable we can change
in attempting to hit a target. Figure 3.20 shows three possi-
ble paths, or trajectories, for a cannonball fired at different
launch angles for the same initial speed. For different launch
angles, we tilt the cannon barrel by different amounts from
the position shown.

Note that the greatest distance is achieved using an inter-
mediate angle, an angle of 45° if the effects of air resist-
ance are negligible. The same considerations are involved
in the shot put in track-and-field events. The launch angle
is very important and, for the greatest distance, will be near
45°. Air resistance and the fact that the shot hits the ground
below the launch point are also factors, so the most effec-
tive angle is somewhat less than 45° in the shot put.

Thinking about what happens to the horizontal and ver-
tical components of the initial velocity at different launch
angles will show us why the angle for maximum distance is
approximately 45°. (See figure 3.21.) Velocity is a vector,
and its horizontal and vertical components can be found by
drawing the vector to scale and adding dashed lines to the
horizontal and vertical directions (fig. 3.21). This process
is described more fully in appendix C.

For the lowest launch angle 20°, we see that the hori-
zontal component of the velocity is much larger than the
vertical. Since the initial upward velocity is small, the ball
does not go very high. Its time of flight is short, and it hits
the ground sooner than in the other two cases shown. The
ball gets there quickly because of its large horizontal veloc-
ity and short travel time, but it does not travel very far
before hitting the ground.

The high launch angle of 70° produces a vertical com-
ponent much larger than the horizontal component. The
ball thus travels much higher and stays in the air for a
longer time than at 20°. It does not travel very far horizon-
tally, however, because of its small horizontal velocity. The
ball travels the same horizontal distance as for the 20°

20° 45° 70°
figure 3.21 Vector diagrams showing the horizontal and

vertical components of the initial velocity for the three cases
illustrated in figure 3.20.

launch, but it takes longer getting there.* (If we shot it
straight up, the horizontal distance covered would be zero,
of course.)

The intermediate angle of 45° splits the initial velocity
into equal-sized horizontal and vertical components. The
ball therefore stays in the air longer than in the low-angle
launch but also travels with a greater horizontal velocity
than in the high-angle launch. In other words, with relatively
large values for both the vertical and horizontal com-
ponents of velocity, the vertical motion keeps the ball in the
air long enough for the horizontal velocity to be effective.
This produces the greatest distance of travel.

The time of flight and the horizontal distance traveled
can be found if the launch angle and the size of the initial
velocity are known. It is first necessary to find the hori-
zontal and vertical components of the velocity to do these
computations, however, and this makes the problem more
complex than those discussed earlier. The ideas can be
understood without doing the computations. The key is to
think about the vertical and horizontal motions separately
and then combine them.

For a projectile launched at an angle, the initial velocity
can be broken down into vertical and horizontal compo-
nents. The vertical component determines how high the
object will go and how long it stays in the air, while the
horizontal component determines how far it will go in
that time. The launch angle and the initial speed interact
to dictate where the object will land. Through the entire
flight, the constant downward gravitational acceleration
is at work, but it changes only the vertical component of
the velocity. Producing or viewing such trajectories is a
common part of our everyday experience.

*The angles 20° and 70° are complementary because their sum is 90°. Any
pair of complementary launch angles (30° and 60°, for example) yield
the same horizontal range as one another.
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summary

The primary aim in this chapter has been to introduce you to the
gravitational acceleration for objects near the Earth’s surface and
to show how that acceleration affects the motion of objects
dropped or launched in various ways.

l Acceleration due to gravity. To find the accelera-
tion due to gravity, we use measurements of the position of a
dropped object at different times. The gravitational acceleration is
9.8 m/s?. It does not vary with time as the object falls, and it has
the same value for different objects regardless of their weight.

@ 0 0 00

2 Tracking a falling object. The velocity of a falling
object increases by approximately 10 m/s every second of its
fall. Distance traveled increases in proportion to the square of the
time, so that it increases at an ever-increasing rate. In just 1 sec-
ond, a dropped ball is moving with a velocity of 10 m/s and has
traveled 5 meters.

Nl=

V=vp+at d

3 Beyond free fall: Throwing a ball upward. The
speed of an object thrown upward first decreases due to the down-
ward gravitational acceleration, passes through zero at the high

key terms

point, and then increases as the object falls. The object spends
more time near the top of its flight because it is moving more

slowly there.
®
LV
I
| t
[

4 Projectile motion. If an object is launched horizon-
tally, it moves with a constant horizontal velocity at the same
time that it accelerates downward due to gravity. These two
motions combine to produce the object’s curved trajectory.

5 Hitting a target. There are two factors, the launch
speed and the launch angle, that can be varied to determine the
path of an object launched at an angle to the horizontal. Once
again, the horizontal and vertical motions combine to produce the
overall motion as the projectile moves toward a target.

Acceleration due to gravity, 41
Air resistance, 41

Trajectory, 46

Projectile motion, 47
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questions

* = more open-ended questions, requiring lengthier responses, suitable
for group discussion

Q = sample responses are available in appendix D

Q = sample responses are available on the website

Q1. A small piece of paper is dropped and flutters to the floor.
Is the piece of paper accelerating at any time during this
motion? Explain.

Q2. The diagram shows the positions at intervals of 0.10 sec-
onds of a ball moving from left to right (as in a photograph
taken with a stroboscope that flashes every tenth of a sec-
ond). Is the ball accelerated? Explain.

Q00000
Q2 Diagram

Q3. The diagram shows the positions at intervals of 0.05 sec-
onds of two balls moving from left to right. Are either or
both of these balls accelerated? Explain.

- 00000000
5 ---@--@-0-0-0-000 -

Q3 Diagram

Q4. A lead ball and an aluminum ball, each 1 in. in diameter,
are released simultaneously and allowed to fall to the
ground. Due to its greater density, the lead ball has a sub-
stantially larger mass than the aluminum ball. Which of
these balls, if either, has the greater acceleration due to
gravity? Explain.

Q5. Two identical pieces of paper, one crumpled into a ball
and the other left uncrumpled, are released simultaneously
from the same height above the floor. Which one, if either,
do you expect to reach the floor first? Explain.

Q6. Two identical pieces of paper, one crumpled into a ball
and the other left uncrumpled, are released simultaneously
from inside the top of a large evacuated tube. Which one,
if either, do you expect will reach the bottom of the tube
first? Explain.

*Q7. Avristotle stated that heavier objects fall faster than lighter
objects. Was Aristotle wrong? In what sense could Aristotle’s
view be considered correct?

Q8. A rock is dropped from the top of a diving platform into
the swimming pool below. Will the distance traveled by the
rock in a 0.1-second interval near the top of its flight be
the same as the distance covered in a 0.1-second interval
just before it hits the water? Explain.

Q9. The graph shows the velocity plotted against time for a
certain falling object. Is the acceleration of this object
constant? Explain.

Q10.

Q11.

Q12

Q13.

Q14.

Q15.

*Q16.

Q17.

Q18.

Q19.

velocity

time
Q9 Diagram

A ball is thrown downward with a large starting velocity.

a. Will this ball reach the ground sooner than one that is
just dropped at the same time from the same height?
Explain.

b. Will this ball accelerate more rapidly than one that is
dropped with no initial velocity? Explain.

A ball thrown straight upward moves initially with a de-
creasing upward velocity. What are the directions of the
velocity and acceleration vectors during this part of the
motion? Does the acceleration decrease also? Explain.

A rock is thrown straight upward reaching a height of
20 meters. On its way up, does the rock spend more time in
the top 5 meters of its flight than in its first 5 meters of its
flight? Explain.

A ball is thrown straight upward and then returns to the
Earth. Choosing the positive direction to be upward,
sketch a graph of the velocity of this ball against time.
Where does the velocity change direction? Explain.

A ball is thrown straight upward. At the very top of its
flight, the velocity of the ball is zero. Is its acceleration at
this point also zero? Explain.

A ball is thrown straight upward and then returns to the
Earth. Does the acceleration change direction during this
motion? Explain.

A ball rolls up an inclined plane, slows to a stop, and then
rolls back down. Do you expect the acceleration to be
constant during this process? Is the velocity constant? Is
the acceleration equal to zero at any point during this
motion? Explain.

A hball rolling rapidly along a tabletop rolls off the edge
and falls to the floor. At the exact instant that the first ball
rolls off the edge, a second ball is dropped from the same
height. Which ball, if either, reaches the floor first?
Explain.

For the two balls in question 17, which, if either, has the
larger total velocity when it hits the floor? Explain.

Is it possible for an object to have a horizontal component
of velocity that is constant at the same time that the object
is accelerating in the vertical direction? Explain by giving
an example, if possible.
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Q20.

Q21

Q22.

Q23.

A ball rolls off a table with a large horizontal velocity.
Does the direction of the velocity vector change as the
ball moves through the air? Explain.

A ball rolls off a table with a horizontal velocity of 5 m/s.
Is this velocity an important factor in determining the
time that it takes for the ball to hit the floor? Explain.

An expert marksman aims a high-speed rifle directly at
the center of a nearby target. Assuming that the rifle sight
has been accurately adjusted for more distant targets, will
the bullet hit the near target above or below the center?
Explain.

In the diagram, two different trajectories are shown for a
ball thrown by a center fielder to home plate in a baseball
game. Which of the two trajectories (if either), the higher
one or the lower one, will result in a longer time for the
ball to reach home plate? Explain.

Q27.

Q2s.

cannon. Will the 70° shot travel a greater horizontal dis-
tance than the 45° shot? Explain.

Will a shot fired from a cannon at a 20° launch angle travel
a longer horizontal distance than a 45° shot? Explain.

The diagram shows a wastebasket placed behind a chair.
Three different directions are indicated for the velocity of
a ball thrown by the kneeling woman. Which of the three
directions—A, B, or C—is most likely to result in the ball
landing in the basket? Explain.

=

Q28 Diagram

Q29. In the situation pictured in question 28, is the magnitude
of the velocity important to the success of the shot?

/@\wv« Explain.

. In shooting a free throw in basketball, what is the primary
% Q30. In shooting a free throw in basketball, what is the pri
Q23 Diagram advantage that a high, arching shot has over one with a
flatter trajectory? Explain.

Q24. For either of the trajectories shown in the diagram for 31 In shoofi basketball f han free-th
question 23, is the velocity of the ball equal to zero at the Q3L In's ootmg_a as .et all from greater t an ree-t row
high point in the trajectory? Explain. range, what is the primary disadvantage of a high, arching

shot? Explain.

Q25. Assuming that the two trajectories in the diagram for . . . .
question 23 represent throws by two different center Q32. A fgotball qua_rterbgck must r_"t a moving target while
fielders, which of the two is likely to have been thrown eluding onrushing linemen. Discuss the advantages and
by the player with the stronger arm? Explain disadvantages of a hard low-trajectory throw to a higher-

' ' lofted throw.

Q26. A cannonball fired at an angle of 70° to the horizontal
stays in the air longer than one fired at 45° from the same

exercises

E1l. A steel ball is dropped from a diving platform (with an b. How far does an object fall in this time when dropped

initial velocity of zero). Using the approximate value of from rest?
g = 10 m/s?, E5. A ball is thrown downward with an initial velocit
; . . . y of
a. x:/lr;gtsels the velocity of the ball 0.8 seconds after its 12 mis. Using the approximate value of g = 10 m/s?, what
b What is‘ its velocity 1.6 seconds after its release? is the velocity of the ball 1.0 seconds after it is released?
E2. For the ball in exercise 1: E6. A ball is dropped from a high building. Using the approxi-
. : B ) e . .
a. Through what distance does the ball fall in the first mate value OT g = 10 m/s’, find the_ chapge i velocity
0.8 seconds of its flight? (Assume g = 10 m/s2.) between the first and fourth second of its flight.
b. How far does it fall in the first 1.6 seconds of its flight? E7. A ball is thrown upward with an initial velocity of 15 m/s.

E3. A large rock is dropped from the top of a high cliff. Assum- Using the approximate value of g = 10 mys?, what are the

ing that air resistance can be ignored and that the acceleration magnitude and direction of the ball’s velocity:

has the constant value of 10 m/s2, how fast would the rock be a. 1 second after it is thrown?

traveling 5 seconds after it is dropped? What is this speed in b. 2 seconds after it is thrown?

MPH? (See inside front cover for conversion factors.) E8. How high above the ground is the ball in exercise 7:

E4. Suppose Galileo’s pulse rate was 80 beats per minute. a. 1 second after it is thrown?

a. What is the time in seconds between consecutive pulse
beats?

b. 2 seconds after it is thrown?
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EQ.

E10.

E11.

E12.

At what time does the ball in exercise 7 reach the high point
in its flight? (Use the approximate value of g = 10 m/s?,
and remember that the velocity is equal to zero at the high
point.)

Suppose that the gravitational acceleration on a certain

planet is only 3.0 m/s?. A space explorer standing on this

planet throws a ball straight upward with an initial velocity

of 18 m/s.

a. What is the velocity of the ball 4 seconds after it is
thrown?

b. How much time elapses before the ball reaches the high
point in its flight?

A bullet is fired horizontally with an initial velocity of

900 m/s at a target located 150 m from the rifle.

a. How much time is required for the bullet to reach the
target?

b. Using the approximate value of g = 10 m/s?, how far
does the bullet fall in this time?

A ball rolls off a shelf with a horizontal velocity of 6 m/s.
At what horizontal distance from the shelf does the ball
land if it takes 0.4 s to reach the floor?

synthesis problems

E13.

El4.

E15.

E16.

A ball rolls off a table with a horizontal velocity of 4 m/s.
If it takes 0.5 seconds for the ball to reach the floor, how
high above the floor is the tabletop? (Use g = 10 m/s2.)

A ball rolls off a table with a horizontal velocity of 5 m/s.

If it takes 0.6 seconds for it to reach the floor:

a. What is the vertical component of the ball’s velocity
just before it hits the floor? (Use g = 10 m/s?.)

b. What is the horizontal component of the ball’s velocity
just before it hits the floor?

A ball rolls off a platform that is 5 meters above the ground.

The ball’s horizontal velocity as it leaves the platform is

6 m/s.

a. How much time does it take for the ball to hit the
ground? (See example box 3.3, use g = 10 m/s2.)

b. How far from the base of the platform does the ball hit
the ground?

A projectile is fired at an angle such that the vertical com-

ponent of its velocity and the horizontal component of its

velocity are both equal to 30 m/s.

a. Using the approximate value of g = 10 m/s?, how long
does it take for the ball to reach its high point?

b. What horizontal distance does the ball travel in this time?

SP1.

SP2.

SP3.

SP4.

A ball is thrown straight upward with an initial velocity of

16 m/s. Use g = 10 m/s? for computations listed here.

a. What is its velocity at the high point in its motion?

b. How much time is required to reach the high point?

c. How high above its starting point is the ball at its high
point?

d. How high above its starting point is the ball 2 seconds
after it is released?

e. Is the ball moving up or down 2 seconds after it is
released?

Two balls are released simultaneously from the top of a tall

building. Ball A is simply dropped with no initial velocity,

and ball B is thrown downward with an initial velocity of

12 m/s.

a. What are the velocities of the two balls 1.5 seconds
after they are released?

b. How far has each ball dropped in 1.5 seconds?

c. Does the difference in the velocities of the two balls
change at any time after their release? Explain.

Two balls are rolled off a tabletop that is 0.8 m above the

floor. Ball A has a horizontal velocity of 3 m/s and that of

ball B is 5 m/s.

a. Assuming g = 10 m/s?, how long does it take each ball
to reach the floor after it rolls off the edge?

b. How far does each ball travel horizontally before hitting
the floor?

c. If the two balls started rolling at the same time at a
point 1.2 m behind the edge of the table, will they reach
the floor at the same time? Explain.

A cannon is fired over level ground at an angle of 30° to the
horizontal. The initial velocity of the cannonball is 400 m/s,

SP5.

SP6.

but because the cannon is fired at an angle, the vertical

component of the velocity is 200 m/s and the horizontal

component is 346 m/s.

a. How long is the cannonball in the air? (Use g = 10 m/s?
and the fact that the total time of flight is twice the time
required to reach the high point.)

b. How far does the cannonball travel horizontally?

c. Repeat these calculations, assuming that the cannon
was fired at a 60° angle to the horizontal, resulting in a
vertical component of velocity of 346 m/s and a hori-
zontal component of 200 m/s. How does the distance
traveled compare to the earlier result?

A good pitcher can throw a baseball at a speed of 90 MPH.

The pitcher’s mound is approximately 60 ft from home plate.

a. What is the speed in m/s?

b. What is the distance to home plate in meters?

¢. How much time is required for the ball to reach home
plate?

d. If the ball is launched horizontally, how far does the
ball drop in this time, ignoring the effects of spin?

An archeologist is running at 7 m/s with her hands out-

stretched above her head (1.95 m from feet to fingertips)

while being chased by a tiger. She runs exactly horizontally

off of a chasm and attempts to grab onto the opposite side.

a. If the chasm is 4.55 meters wide, how long does she
take to cover this distance?

b. During this time, what distance has she fallen vertically
(use g = 10 m/s?)?

c. How far above or below the edge of the opposite side do
her fingertips fall? (Use + to indicate distances above
the edge and — to indicate distances below the edge.)
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home experiments and observations

HEL.

HE2.

HES3.

Gather numerous small objects and drop them from equal
heights, two at a time. Record which objects fall signifi-
cantly more slowly than a compact dense object such as a
marble or similar object. Rank order these slower objects
by their time of descent. What factors seem to be important
in determining this time?

Working with a partner, you can get an estimate of your
reaction time by catching a falling meter stick. Have your
partner hold the meter stick from a point near the top while
you place the finger and thumb of your catching hand about
an inch apart on either side of the 50 cm mark. Without giv-
ing any cues, your partner then drops the meter stick, and
when you see it move, you react to catch it by closing your
finger and thumb. Record the distance that the meter stick
moves between the time that your partner releases it and
you catch it.

a. Repeat this process several times for each partner and
compute the average distance the meter stick traveled
for each partner. Tabulate your results.

b. Since the distance traveled in the time t that it takes for you

. . . /2d
to react is d = 1/2 gt?, the time of travel ist = E Use

a calculator to compute the reaction time t for each part-
ner from the average distance d (expressed in meters). Use
g = 10 m/s%. How does your average reaction time
compare to your partner’s?

c. A ‘normal’ reaction time is between 0.2 and 0.25 sec. Is
your reaction time close to this? If not, explain why you
think your reaction time is different.

Try dropping a ball from one hand at the same time that

you throw a second ball with your other hand. At first, try

to throw the second ball horizontally, with no upward or

downward component to its initial velocity. (It may take

some practice.)

a. Do the balls reach the floor at the same time? (It helps
to enlist a friend for making this judgment.)

b. If the second ball is thrown slightly upward from the
horizontal, which ball reaches the ground first?

HEA4.

HES.

HE®G.

HE7.

c. If the second ball is thrown slightly downward from the
horizontal, which ball reaches the ground first?

Take a ball outside and throw it straight up in the air as hard
as you can. By counting seconds yourself, or by enlisting a
friend with a watch, estimate the time that the ball remains
in the air. From this information, can you find the initial
velocity that you gave to the ball? (The time required for the
ball to reach the high point is just half the total time of
flight.)

Take a stopwatch to a football game and estimate the hang
time of several punts. Also note how far (in yards) each
punt travels horizontally. Do the highest punts have the
longest hang times? Do they travel the greatest distances
horizontally?

Using rubber bands and a plastic rule or other suitable sup-
port, design and build a marble launcher. By pulling the rub-
ber band back by the same amount each time, you should
be able to launch the marble with approximately the same
speed each time. (Warning: Leave yourself ample room
free of breakable objects!)

a. Produce a careful drawing of your launcher and note the
design features that you used. (Prizes may be available
for the best design.)

b. Placing your launcher at a number of different angles to
the horizontal, launch marbles over a level surface and
measure the distance that they travel from the point of
launch. Which angle yields the greatest distance?

c. Fire the marbles at different angles from the edge of a
desk or table. Which angle yields the greatest horizontal
distance?

Try throwing a ball or a wadded piece of paper into a waste-

basket placed a few meters from your launch point.

a. Which is most effective, an overhanded or underhanded
throw? (Five practice shots followed by ten attempts for
each might produce a fair test.)

b. Repeat this process with a barrier such as a chair placed
near the wastebasket.



unit one

Newton's Laws:
Explaining Motion

chapter overview

The primary purpose of this chapter is to explain Newton'’s three laws of
motion and how they apply in familiar situations. We begin with a
historical sketch of their development and then proceed to a careful
discussion of each law. The concepts of force, mass, and weight play
critical roles in this discussion. We conclude the chapter by applying
Newton'’s theory to several familiar examples.

chapter outline

l A brief history. Where do our ideas and theories about motion come
from? What roles were played by Aristotle, Galileo, and Newton?

2 Newton’s first and second laws. How do forces affect the motion of
an object? What do Newton'’s first and second laws of motion tell us,
and how are they related to one another?

3 Mass and weight. How can we define mass? What is the distinction
between mass and weight?

4 Newton’s third law. Where do forces come from? How does Newton'’s
third law of motion help us to define force, and how is the third law
applied?

5 Applications of Newton’s laws. How can Newton'’s laws be applied in
different situations such as pushing a chair, sky diving, throwing a ball,
and pulling two connected carts across the floor?

58
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A large person gives you a shove, and you move in
the direction of that push. A child pulls a toy wagon with
a string, and the wagon lurches along. An athlete kicks a
football or a soccer ball, and the ball is launched toward
the goal. These are familiar examples involving forces in
the form of pushes or pulls that cause changes in motion.

To pick a less complex example, imagine yourself push-
ing a chair across a wood or tile floor (fig. 4.1). Why
does the chair move? Will it continue its motion if you
stop pushing? What factors determine the velocity of
the chair? If you push harder, will the chair’s velocity
increase? Up to this point, we have introduced ideas use-
ful in describing motion, but we have not talked much
about what causes changes in motion. Explaining mo-
tion is more challenging than describing it.

You already have some intuitive notions about what
causes the chair to move. Certainly, the push that you
exert on the chair has something to do with it. But is
the strength of that push more directly related to the
velocity of the chair or to its acceleration? At this point,
intuition often serves us poorly.

Over two thousand years ago, the Greek philosopher
Aristotle (384-322 B.c.) attempted to provide answers
to some of these questions. Many of us would find that
his explanations match our intuition for the case of the
moving chair, but they are less satisfactory in the case
of a thrown object where the push is not sustained.
Aristotle’s ideas were widely accepted until they were
replaced by a theory introduced by Isaac Newton in the
seventeenth century. Newton’s theory of motion has
proved to be a much more complete and satisfactory
explanation of motion, and it permits quantitative pre-
dictions that were largely lacking in Aristotle’s ideas.

Newton’s three laws of motion form the foundation
of his theory. What are these laws and how are they
used in explaining motion? How do Newton’s ideas dif-
fer from those of Aristotle, and why do Aristotle’s ideas
often seem to fit our commonsense notions of what is

figure 4.1 Moving a chair. Will the chair continue to move
when the person stops pushing?

happening? A good understanding of Newton'’s laws will
permit you to analyze and explain almost any simple
motion. This understanding will provide you with in-
sights useful in driving a car, moving heavy objects, and
many other everyday activities.

4.1 A Brief History

Did some genius, sitting under an apple tree, concoct a
full-blown theory of motion in a sudden, blinding flash of
inspiration? Not quite. The story of how theories are devel-
oped and gain acceptance involves many players over long
periods of time.

Let’s highlight the roles of a few key people whose in-
sights produced major advances. A glimpse of this history
can help you appreciate the physical concepts we will dis-
cuss by showing when and how the theories emerged. It is
important, for example, to know whether a theory was just
proposed yesterday or has been tried and tested over a long
time. Not all theories carry equal weight in their accept-
ance and use by scientists. Aristotle, Galileo, and Newton
were major players in shaping our views of the causes of
motion.

Aristotle’s view of the cause of motion

Questions about the causes of motion and changes in
motion had perplexed philosophers and other observers of
nature for centuries. For over a thousand years, Aristotle’s
views prevailed. Aristotle was a careful and astute philos-
pher of nature. Aristotle investigated an incredible range of
subjects, and he (or perhaps his students) produced exten-
sive writings on topics such as logic, metaphysics, politics,
literary criticism, rhetoric, psychology, biology, and physics.

In his discussions of motion, Aristotle conceived of force
much as we have talked about it to this point: as a push or
pull acting on an object. He believed that a force had to act
for an object to move and that the velocity of the object
was proportional to the strength of the force. A heavy ob-
ject would fall more quickly toward the Earth than a lighter
object, because there was a larger force pulling the object
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to the Earth. The strength of this force could be appreciated
simply by holding the object in your hand.

Aristotle was also aware of the resistance that a medium
offers the motion of an object. A rock falls more rapidly
through air than through water. Water provides greater re-
sistance to motion than air, as you surely know from trying to
walk through waist-deep water at the beach. Aristotle thus
saw the velocity of the object as being proportional to the
force acting on it and inversely related to the resistance, but he
never defined the concept of resistance quantitatively. He did
not distinguish acceleration from velocity, and he spoke of
velocity by stating the time required to cover a fixed distance.

Aristotle was an observer of nature rather than an ex-
perimenter. He did not make quantitative predictions that
he checked by experiment. Even without such tests, how-
ever, some problems with his basic ideas of motion trou-
bled Aristotle himself, as well as later thinkers. For example,
in the case of a thrown ball or rock, the force that initially
propels the object no longer acts once the ball leaves the
hand. What keeps the ball moving?

Since the ball does keep moving for some time after leav-
ing the hand that throws it, a force was necessary, according
to Aristotle’s theory. He suggested that the force that main-
tains the motion once the ball leaves the hand is provided by
air rushing around to fill the vacuum in the spot where the
ball has just been (fig. 4.2). This flow of air then pushes the
ball from behind. Does this seem reasonable?

Following the decline of the Roman Empire, only frag-
ments of Aristotle’s writings were known to European
thinkers for several centuries. His complete works, which
had been preserved by Arab scholars, did not resurface in
Europe until the twelfth century. Along with the work of
other Greek thinkers, Aristotle’s works were translated into
Latin during the twelfth and thirteenth centuries.

How did Galileo challenge Aristotle’s views?

By the time that the Italian scientist Galileo Galilei (1564—
1642) came on the scene, Aristotle’s ideas were well estab-
lished at European universities, including the universities of

figure 4.2 Aristotle pictured air rushing around a thrown
object to continue pushing the object forward. Does this picture
seem reasonable?

Pisa and Padua where Galileo studied and taught. In fact,
education at the universities was organized around the dis-
ciplines defined by Aristotle, and much of Aristotle’s natu-
ral philosophy had been incorporated into the teaching of
the Roman Catholic Church. The Italian theologian Thomas
Aquinas had carefully interwoven Aristotle’s thinking with
the theology of the church.

To challenge Aristotle was equivalent to challenging the
authority of the church and could carry heavy consequences.
Galileo was not alone in questioning Aristotle’s ideas on
motion; others had noted that dropped objects of similar
form but radically different weights fall at virtually the same
rate, contrary to Aristotle’s theory. Although Galileo may
never have dropped objects from the Leaning Tower of Pisa,
he did perform careful experiments with dropped objects
and actively publicized his results.

Galileo’s primary problems with the church came from
advocating the ideas of Copernicus. Copernicus had pro-
posed a sun-centered (heliocentric) model of the solar sys-
tem (discussed in chapter 5), which opposed the prevailing
Earth-centered models of Aristotle and others. Galileo was
an activist on several fronts in challenging Aristotle and
the traditional thinking. This placed him in conflict with
many of his university colleagues and with members of the
church hierarchy. He was eventually tried by the Inquisition
and found guilty of heresy. He was placed under house
arrest and forced to retract some of his teachings.

In addition to his work on falling objects, Galileo devel-
oped new ideas on motion that contradicted Aristotle’s
theory. Galileo argued that the natural tendency of a mov-
ing object is to continue moving: no force is required to
maintain this motion. (Think about the pushed chair again.
Does this statement make sense in that situation?) Build-
ing on the work of others, Galileo also developed a mathe-
matical description of motion that included acceleration.
The relationship d = 3 at? for the distance covered by a uni-
formly accelerating object was carefully demonstrated by
Galileo. He published many of these ideas near the end of
his life in his famous Dialogues Concerning Two New
Sciences.

What did Newton accomplish?

Isaac Newton (1642-1727; fig. 4.3) was born in England
within a year of Galileo’s death in Italy. Building on the
work of Galileo, he proposed a theory of the causes of
motion that could explain the motion of any object—the
motion of ordinary objects such as a ball or chair as well as
the motion of heavenly bodies such as the moon and the
planets. In the Greek tradition, celestial motions were thought
of as an entirely different realm from Earthbound motions,
thus requiring different explanations. Newton abolished this
distinction by explaining both terrestrial and celestial mechan-
ics with one theory.

The central ideas in Newton’s theory are his three laws
of motion (discussed in sections 4.2 and 4.4) and his law
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figure 4.3 A portrait of Isaac Newton.

of universal gravitation (discussed in chapter 5). Newton’s
theory provided successful explanations of aspects of mo-
tion already known and offered a framework for many new
studies in physics and astronomy. Some of these studies
led to predictions of phenomena not previously observed.
For example, calculations applying Newton’s theory to ir-
regularities in the orbits of the known planets led to the
prediction of the existence of Neptune, which was quickly
confirmed by observation. Confirmed predictions are one
of the marks of a successful theory. Newton’s theory
served as the basic theory of mechanics for over two hun-
dred years and is still used extensively in physics and
engineering.

Newton developed the basic ideas of his theory around
1665, when he was still a young man. To avoid the plague,
he had returned to his family’s farm in the countryside
where he had time to engage in serious thought with little
interruption. The story has it that seeing an apple fall led to
his insight that the moon also falls toward the Earth and
that the force of gravity is involved in both cases. (See
chapter 5.) Flashes of insight or inspiration were surely a
part of the process.

Although Newton developed much of his theory and its
details in 1665, he did not formally publish his ideas until
1687. One reason for this delay was his need to develop
some of the mathematical techniques required to calculate
the effects of the proposed gravitational force on objects
such as planets. (He is generally credited with being the
coinventor of what we now call calculus.) The English title
of Newton’s 1687 treatise is The Mathematical Principles of
Natural Philosophy (Philosophiae Naturalis Principia Math-
ematica in Latin), which is often referred to as Newton’s
Principia.

Scientific theories like Newton’s do not just emerge in
an intellectual vacuum. They are products of their time and

the state of knowledge and worldview current then. They
usually replace earlier and often cruder theories. The ac-
cepted theory of motion in Newton’s day was still that of
Aristotle, although it had come under attack by Galileo and
others. Its shortcomings were generally recognized. Newton
provided the capstone for a revolution in thought that was
already well under way.

Although Avristotle’s ideas on motion are now consid-
ered unsatisfactory and are worthless for making quantita-
tive predictions, they do have an intuitive appeal much like
our own untrained thinking about motion. For this reason,
we often speak of the need to replace Aristotelian ideas
about motion with Newtonian concepts as we learn me-
chanics. Even though our own naive ideas about motion
are not usually as fully developed as those of Aristotle, you
may find that some of your commonsense notions will re-
quire modification.

Newton’s theory, in turn, has been partially superseded
by more sophisticated theories that provide more accurate
descriptions of motion. These include Einstein’s theory of
relativity as well as the theory of quantum mechanics,
both of which arose early in the twentieth century.
Although the predictions of these theories differ substan-
tially from Newton’s theory in the realm of the very fast
(in the case of relativity) and the very small (quantum
mechanics), they differ insignificantly for the motion of
ordinary objects traveling at speeds much less than that of
light. Newton’s theory was a tremendous step forward and
is still used extensively to analyze motion of ordinary
objects.

Aristotle’s ideas on motion, although not capable of
making quantitative predictions, provided explanations
that were widely accepted for many centuries and that
fit well with some of our own commonsense thinking.
Galileo challenged Aristotle’s ideas on free fall as well
as his general assumption that a force was required to
keep an object in motion. Building on Galileo’'s work,
Newton developed a more comprehensive theory of
motion that replaced Aristotle’s ideas. Newton's theory
is still widely used to explain the motion of ordinary
objects.

4.2 Newton'’s First and Second Laws

If we push a chair across the floor, what causes the chair to
move or to stop moving? Newton’s first two laws of motion
address these questions and, in the process, provide part of
a definition of force. The first law tells us what happens in
the absence of a force, and the second describes the effects
of applying a force to an object.

We discuss the first and second laws of motion together
because the first law is closely related to the more general
second law. Newton felt the need to state the first law sep-
arately, however, to counter strongly held Aristotelian ideas
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about motion. In doing so, Newton was following the lead
of Galileo, who had stated a principle similar to Newton’s
first law several years earlier.

Newton'’s first law of motion

In language not too different from his own, Newton’s first
law of motion can be stated as

An object remains at rest, or in uniform motion in a straight
line, unless it is compelled to change by an externally imposed
force.

In other words, unless there is a force acting on the object,
its velocity will not change. If it is initially at rest, it will
remain at rest; if it is moving, it will continue to do so with
constant velocity (fig 4.4).

Notice that, in paraphrasing Newton’s first law, we have
used the term velocity rather than the term speed. Constant
velocity implies that neither the direction nor the magnitude
of the velocity changes. When the object is at rest, its veloc-
ity is zero, and that value remains constant in the absence of
a force. If there is no force acting on the object, the acceler-
ation of the object is zero. The velocity does not change.

Although this law seems simple enough, it directly con-
tradicts Aristotle’s ideas (and perhaps your own intuition
as well). Aristotle believed that a force is required to keep
an object moving. His views make intuitive sense if we are
talking about moving a heavy object such as the chair men-
tioned in our introduction. If you stop pushing, the chair
stops moving. This view encounters problems, however, if
we consider the motion of a thrown ball, or even a chair
moving on a slippery surface. These objects continue to
move after the initial push. Newton (and Galileo) made the

IfF=0

O

v remains equal to 0
(at rest)

- —— - — -

Vv remains constant
(uniform motion in a straight line)

figure 4.4 Newton's first law: In the absence of a force, an
object remains at rest or moves with constant velocity.

strong statement that no force is needed to keep an object
moving.

How can Aristotle’s ideas be so different from those of
Newton and Galileo and yet seem so reasonable in some
situations? The key to answering that question involves the
existence of resistive or frictional forces. The chair does
not move far after you stop pushing because the frictional
forces of the floor acting on the chair cause the velocity to
quickly decrease to zero. A thrown ball would eventually
stop moving, even if it did not fall to the ground, because
the force of air resistance is pushing against it. It is really
quite difficult to find a situation in which there are no
forces acting upon an object. Aristotle recognized the pres-
ence of air resistance and similar effects but did not treat
them as forces in his theory.

How is force related to acceleration?

Newton’s second law of motion is a more complete state-
ment about the effect of an imposed force on the motion of
an object. Stated in terms of acceleration, it says

The acceleration of an object is directly proportional to the
magnitude of the imposed force and inversely proportional to
the mass of the object. The acceleration is in the same direc-
tion as that of the imposed force.

This statement is most easily grasped in symbolic form.
By choosing appropriate units for force, we can state the
proportionality of Newton’s second law as the equation:

F

net
m .

where a is the acceleration, F, is the total or net force act-
ing on the object, and m is the mass of the object. Since the
acceleration is directly proportional to the imposed force, if
we double the force acting on the object, we double the
acceleration of the object. The same force acting on an
object with a larger mass, however, will produce a smaller
acceleration (fig. 4.5).

Note that the acceleration is directly related to the im-
posed force, not the velocity. Aristotle did not make a clear
distinction between acceleration and velocity. Many of
us also fail to make the distinction when we think infor-
mally about motion. In Newton’s theory, this distinction is
critical.

Newton’s second law is the central idea of his theory of
motion. According to this law, the acceleration of an object
is determined by two quantities: the net force acting on
the object and the mass of the object. In fact, the concepts
of force and mass are, in part, defined by the second law.
The net force acting on the object is the cause of its ac-
celeration, and the magnitude of the force is defined by the
size of the acceleration that it produces. Newton’s third law,
discussed in section 4.4, completes the definition of force by
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my
F
g a
figure 4.5 The smaller-mass object experiences a larger

acceleration than the larger-mass object when identical forces
are applied to the two objects.

noting that forces result from interaction of the object with
other objects.

The mass of an object is a quantity that tells us how
much resistance an object has to a change in its motion, as
indicated by the second law. We call this resistance to a
change in motion inertia, following Galileo. (See every-
day phenomenon box 4.1.) We can define mass as

Mass is a measure of an object’s inertia, the property that
causes it to resist a change in its motion.

The standard metric unit for mass is the kilogram (kg). We
will say more about the determination of mass and its rela-
tionship to the weight of an object shortly (section 4.3).
Units of force can also be derived from Newton’s sec-
ond law. If we solve for F., by multiplying both sides of
the second-law equation by the mass, it can be expressed as

F.. = ma.

The appropriate unit for force must therefore be the product
of a unit of mass and a unit of acceleration, or in the metric
system, kilograms times meters per second squared. This
frequently used unit is called the newton (N). Accordingly,

1newton = 1N = 1kg- m/s2

How do forces add?

Our version of the second law implies that the imposed
force is the total or net force acting on the object. Force is
a vector quantity whose direction is clearly important. If
there is more than one force acting on an object, as there
often is, we must then add these forces as vectors, taking
into account their directions.

This process is illustrated in figure 4.6 and the sample
exercise in example box 4.1. A block is being pulled across a
table by a force of 10 N applied through a string attached to
the block. A frictional force of 2 N acts on the block, a result

f=2N 5 kg

F=10N %

figure 4.6 A block being pulled across a table. Two
horizontal forces are involved.

example box 4.1

Sample Exercise: Finding the Net Force

A block with a mass of 5 kg is being pulled across a
tabletop by a force of 10 N applied by a string tied to the
front end of the block (fig 4.6). The table exerts a 2-N
frictional force on the block. What is the acceleration of
the block?

Fstring =10N (tO the right) Fnet = Fstring - ftable
fpe = 2 N (to the left) =10N-2N=8N

m = 5 kg F..: = 8 N (to the right)
a="7?

_ I:net

P =
m

8N

~ 5kg

= 1.6 m/s

(@ = 1.6 m/s? to theright)

of contact with the table. What is the total force acting on the
block?

Is the net force the numerical sum of the two forces, 10 N
plus 2 N or 12 N? Looking at the diagram in figure 4.6
should convince you that this cannot be true. The two forces
oppose one another. Because the forces are in opposite direc-
tions, the net force is found by subtracting the frictional force
from the force applied by the string, resulting in a net force of
8 N. We cannot ignore the directions of the forces involved.

That forces are vectors whose directions must be taken
into account when finding the net force is an important as-
pect of the second law. For forces restricted to one dimen-
sion, as in example box 4.1, finding the net force is not
difficult. In problems involving forces in two or three di-
mensions, addition is more complex but can be accom-
plished using techniques described in appendix C. In this
chapter we will only consider one-dimensional cases.

A final point about Newton’s first and second laws bears
repeating: the first law is contained within the second law, but
it was very important for Newton to state the first law as a sep-
arate law to counter long-standing beliefs about motion. The
relationship between the two laws can be demonstrated by ask-
ing what happens, according to the second law, when the net
force acting on an object is zero. In this case, the acceleration
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Foet o
a= ﬁ must also be zero. If the acceleration is zero, the

velocity must be constant. The first law tells us that if the net
force is zero, the object moves with constant velocity (or
remains at rest). Newton’s first law addresses the special
case of the second law in which the net force acting on an
object is zero.

The central principle in Newton's theory of motion is his
second law of motion. This law states that the acceleration
of an object is proportional to the net force applied to the
object and inversely proportional to the mass of the object.
The mass of an object is its inertia or resistance to change
in motion. Newton's first law follows from the second law
when the net force acting on the object is zero. To find the
net force acting on the object, we take into account the
directions of the individual forces and add them as vectors.

everyday phenomenon

The Tablecloth Trick

The Situation. When he was a child, Ricky Mendez saw a
magician do the tablecloth trick. A full dinner place setting
including a filled wineglass sat on a tablecloth covering a
small table. The magician, with appropriate fanfare, pulled
the tablecloth from the table without disturbing the dinner-
ware. Ricky ended up in the doghouse, however, when he
tried this at home with disastrous results.

More recently Ricky saw his physics instructor do a
similar trick with a simpler place setting. The students were
told that the demonstration had something to do with
inertia. Why does the trick work, and how is inertia involved?
Why did the trick not work when Ricky tried it at home as
a child?

The Analysis. The magician’s trick, which is frequently used
as a physics demonstration, is indeed an illustration of the
effects of inertia. Since the nature of frictional forces also
plays a role, the choice of a smooth material for the table-
cloth is important. (Butcher paper is sometimes substituted
in physics demonstrations.) Some practice is usually essential
to the successful execution of the trick.

The performer, be it a magician, instructor, or student,
must pull the cloth or paper very quickly, giving it a large
initial acceleration. Pulling slightly downward across the

4.3 Mass and Weight

What exactly is weight? Is your weight the same as your
mass, or is there a difference in the meaning of these two
terms? Clearly, mass plays an important role in Newton’s
second law. Weight is a familiar term often used inter-
changeably with mass in everyday language. Here again,
physicists make a distinction between mass and weight that
is important to Newton’s theory.

How can masses be compared?

From the role that mass plays in Newton’s second law, we
can devise experimental methods of comparing masses.
Mass is defined as the property of matter that determines
how much an object resists a change in its motion. The
greater the mass, the greater the inertia or resistance to
change, and the smaller the acceleration provided by a given
force. Imagine, for example, trying to decelerate a bowling

edge of the table helps to assure that there is no upward
component to the acceleration and that the acceleration is
reasonably uniform across the width of the tablecloth. As the
tablecloth accelerates, it exerts a frictional force upon the
tableware. If we pulled slowly, this frictional force would pull
the dishes and glasses along with the tablecloth.

Inertia is the tendency of an object (related to its mass)
to resist a change in its motion. When an object is at rest, it
remains at rest unless a force is applied. There is a force act-
ing on the plates and glasses, however—the frictional force
exerted by the tablecloth. If the tablecloth is pulled quickly
enough, the frictional force is in effect for only a very short
time so the acceleration of the objects is very brief. The
objects will accelerate slightly, but not nearly as much as
the tablecloth.

There are two aspects of the frictional force that are
important to our understanding of what happens. One is that
the force of static friction (in effect when the surfaces are not
sliding relative to one another) has a maximum value that is
determined by the nature of the contacting surfaces and by
the force pushing the surfaces together. The second is that
once the objects start to slide, kinetic or sliding friction comes
into play. The force of kinetic friction is usually smaller than
that of static friction.

(continued)
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ball and a ping-pong ball that are moving initially with
equal velocities (fig. 4.7). A much greater force is required
to decelerate the bowling ball than the ping-pong ball
because of the difference in mass. According to the second
law, the force required is proportional to the mass.

In effect, we are using Newton’s second law to define
mass. If we used the same force to accelerate different
masses, the different accelerations could be used to com-
pare the masses involved. If we choose one mass as a stan-
dard, any other mass can be measured against the standard
mass by comparing the accelerations produced by equal
forces. We could, in principle, determine the mass of any
object this way.

How do we define weight?

In practice, the method just described is not convenient for
comparing masses because of the difficulty of measuring ac-
celeration. The more common method of comparing masses

~f———
a

figure 4.7 stopping a bowling ball and a ping-pong ball.
A much larger force is required to produce the same rate of
change in velocity for the larger mass.

When the tablecloth is given a large lateral acceleration,
the force needed to also accelerate the tableware (F, o, = ma)
exceeds the maximum force of static friction between the
dish or glass and the tablecloth. The tablecloth then begins to
slide underneath the dish, reducing the size of the frictional
force. If the surfaces are smooth, the frictional force is never
large enough to produce an acceleration of the dish or glass
that is anywhere near the size of the acceleration of the
tablecloth. In the fraction of a second that this force acts, it
does not have a chance to increase the velocity very much
or to move the object very far. (See synthesis problem 3.)
Once the tablecloth is no longer in contact with the object,
the frictional force exerted by the table quickly decelerates
the object.

You can test these ideas yourself with a pencil, cup, or
similar object (preferably nonbreakable) and a sheet of
smooth tablet paper. Place the paper on a smooth desk or
table surface with the end of the paper extending over the
edge. Grasping the paper with both hands near the corners,
as shown in the drawing, pull it downward across the edge
of the desk or table. Notice that a slow pull brings the object
along with the paper, but a very rapid pull leaves the object
essentially in place. (The objects will usually move slightly in
the direction of the pull.)

Before you graduate to tablecloths and full dinner place
settings, a few cautions are in order. Objects that can tip, like
filled wineglasses, are more difficult to work with. The bottom

Grasp the paper near the corners and pull slightly downward across
the edge of the table. A quick pull will leave the pencil near its initial
position.

may start to move while the top portion (with its greater iner-
tia) remains in place causing the glass to tip and spill the
wine or water. Also, the larger the tablecloth, the more diffi-
cult it is to pull it clear of the table—your hands must move
very rapidly through a large distance in the pull. Practice is
essential, which is the case for most of the tricks that magi-
cians (and physics instructors) perform.
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is to “weigh” the objects on a balance or scale (fig. 4.8).
What we actually do in weighing is to compare the gravita-
tional force acting on the mass we wish to measure with
that acting on some standard mass. The gravitational force
acting on an object is the weight of the object. As a force,
weight has different units (newtons) than mass (kilograms).

How is weight related to mass? From our discussion of
gravitational acceleration in chapter 3, we know that ob-
jects of different mass experience the same gravitational
acceleration near the Earth’s surface (g = 9.8 m/s?). This
acceleration is caused by the gravitational force exerted by
the Earth on the object, which is the weight of the object.
By Newton’s second law, the force (the weight) is equal to
the mass times the acceleration or

W = mg.

The symbol W represents the weight. It is a vector whose
direction is straight down toward the center of the Earth.

If we know the mass of an object, we can then compute
its weight. An example is provided in example box 4.2,
where we show that a woman with a mass of 50 kg has a
weight of 490 N. Since we are more used to expressing
weights in the English system, we also convert her weight
in newtons to pounds (Ib), which yields a weight of 110 Ib.
The pound is most commonly used as a unit of force, not
mass, in the English system. A mass of 1 kg weighs ap-
proximately 2.2 lb near the Earth’s surface.

Although weight is proportional to mass, it also depends
on the gravitational acceleration g. Since g varies slightly
from place to place on the surface of the Earth—and has a
much smaller value on the moon or the smaller planets—
the weight of an object clearly depends on where that ob-
ject is. On the other hand, the mass of an object is a prop-
erty of the object related to the quantity of matter making
up that object and does not depend on the location of the
object.

Wstandards
y y

figure 4.8 Comparing an unknown mass to standard
masses on a balance.

Wunknown

example box 4.2

Sample Exercise: Computing Weights

Suppose that a woman has a mass of 50 kg. What is her

weight in
a. newtons?
b. pounds?
a. m = 50 kg W = mg
W =72 = (50 kg)(9.8 m/s?)
= 490 N
b. W = ? in pounds
490 N
1lb =445N W = 2.45 N/Ib
=1101b

The gravitational acceleration on the moon is approxi-
mately one-sixth that on the Earth’s surface. If we trans-
ported the woman whose weight we have just determined
to the moon, her weight would decrease to about 18 Ib (or
82 N), one-sixth her weight on Earth. The woman’s mass
would still be 50 kg, provided that the trip did not take too
much out of her. The mass of an object changes only if we
add or subtract matter from it.

Why is the gravitational acceleration
independent of mass?

The distinction between weight and mass can provide
insight into why the gravitational acceleration is indepen-
dent of mass. Let’s turn to the case of a falling object and
consider its motion using Newton’s second law. Reversing
the argument that we used in defining weight, we use the
gravitational force (the weight) to determine the accelera-
tion. By Newton’s second law, the acceleration can be
found by dividing the force (W = mg) by the mass:

_M9 _
===

a g.

Mass cancels out of the equation when we compute the
acceleration for a falling object. The gravitational force is
proportional to the mass, but by Newton’s second law, the
acceleration is inversely proportional to the mass: these
two effects cancel one another. This only holds true for
falling objects. In most other cases, the net force does not
depend directly on the mass.

Force and acceleration are not the same, although they
are closely related by Newton’s second law. A heavy object
experiences a larger gravitational force (its weight) than a
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figure 4.9 Different gravitational forces (weights) act on
falling objects of different masses, but because acceleration is
inversely proportional to mass, the objects have the same
acceleration.

lighter object, but the two objects will have the same grav-
itational acceleration (fig. 4.9). Because the gravitational
force is proportional to mass, we find the same accelera-
tion for different masses. The gravitational force will be
discussed further in chapter 5 when we take up Newton’s
law of gravitation, a critical piece of his overall theory of
motion.

Weight and mass are not the same. Weight is the gravita-
tional force acting on an object, and mass is an inherent
property related to the amount of matter in the object.
Near the Earth’s surface, weight is equal to the mass mul-
tiplied by the gravitational acceleration (W = mg), but
the weight would change if we took the object to another
planet where g has a different value. The reason that all
objects experience the same gravitational acceleration
near the Earth’s surface is that the gravitational force is
proportional to the mass of the object, but acceleration is
equal to the force divided by the mass.

4.4 Newton'’s Third Law

Where do forces come from? If you push on a chair to
move it across the floor, does the chair also push back on
you? If so, how does that push affect your own motion?
Questions like these are important to what we mean by
force. Newton’s third law provides some answers.

Newton’s third law of mation is an important part of
his definition of force. It is an essential tool for analyzing
the motion or lack of motion of real objects, but it is often
misunderstood. For this reason, it is good to take a careful
look at the statement and use of the third law.

How does the third law help us
to define force?

If you push with your hand against a large chair or any
large object, such as the wall of your room, you will feel
the object push back against your hand. A force is acting on
your hand that you can sense as it compresses your hand.
Your hand is interacting with the chair or wall, and that ob-
ject pushes back against your hand as you push against the
object.

Newton’s third law contains the idea that forces are
caused by such interactions of two objects, each exerting a
force on the other. It can be stated as

If object A exerts a force on object B, object B exerts a force
on object A that is equal in magnitude but opposite in direc-
tion to the force exerted on B.

The third law is sometimes referred to as the action/
reaction principle—for every action there is an equal but
opposite reaction. Note that the two forces always act on
two different objects, never on the same object. Newton’s
definition of force includes the idea of an interaction be-
tween objects. The forces represent that interaction.

If you exert a force F, on the chair with your hand, the
chair pushes back on your hand with a force F, that is equal
in size, but opposite in direction (fig. 4.10). Using this
notation, Newton’s third law can be stated in symbolic
form as

F, = —F,.

The minus sign indicates that the two forces have opposite
directions. The force F, acts on your hand and partly deter-
mines your own mation, but it has nothing to do with the
motion of the chair. Of this pair of forces, the only one that

F2:—F1

figure 4.10 The chair pushes back on the hand with a
force F, that is equal in size but opposite in direction to the force
F, exerted by the hand on the chair.
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affects the motion of the chair is the one acting on the
chair, F,

Our definition of force is now complete. Newton’s sec-
ond law tells us how the motion of an object is affected by
a force, and his third law tells where forces come from.
They come from interactions with other objects. With a
suitable definition of mass, which also depends upon the
second law, we know how to measure the size of forces by
determining the acceleration that they produce (F = ma).
Both the second and third laws are necessary to define
what we mean by force.

How can we use the third law
to identify forces?

How do we identify the forces that act on an object to ana-
lyze how that object will move? First, we identify other
objects that interact with the object of interest. Consider a
book lying on a table (fig. 4.11). What objects are interact-
ing with the book? Since it is in direct contact with the
table, the book must be interacting with the table, but it also
interacts with the Earth through the gravitational attraction.

The downward pull of gravity that the Earth exerts on the
book is the book’s weight W. The object interacting with
the book to produce this force is the Earth itself. The book
and the Earth are attracted to one another (through gravity)
with equal and opposite forces that form a third-law pair.
The Earth pulls down on the book with the force W, and
the book pulls upward on the Earth with the force —W.
Because of the Earth’s enormous mass, the effect of this
upward force on the Earth is extremely small.

The second force acting on the book is an upward force
exerted on the book by the table. This force is often called the
normal force, where the word normal means “perpendicular”

-w

Earth

figure 4.11 Two forces, N and W, act on a book resting
on a table. The third-law reaction forces —N and —W act on
different objects, the table and the Earth.

rather than “ordinary” or “usual.” The normal force N is
always perpendicular to the surfaces of contact. The book, in
turn, exerts an equal but oppositely directed downward force
—N on the table. These two forces, N and —N, constitute
another third-law pair. They result from the mutual compres-
sion of the book and table as they come into contact with one
another. You could think of the table as a large and very stiff
spring that compresses ever so slightly when the book is
placed on it (fig. 4.12).

The two forces acting on the book, the force of gravity
and the force exerted by the table, also happen to be equal
in size and opposite to one another, but this is not due
to the third law. How do we know that they must be equal?
Since the book’s velocity is not changing, its accelera-
tion must be zero. According to Newton’s second law, the
net force F,, acting on the book must then be zero, since
F... = ma and the acceleration a is zero. The only way that
the net force can be zero is for the two contributing forces,
W and N, to cancel one another. They must be equal in
magnitude and opposite in direction for their sum to be
zero.

Even though equal in size and opposite in direction, these
two forces do not constitute a third-law action/reaction pair.
They both act on the same object, the book, and the third
law always deals with interactions between different objects.
So, W and N are equal in size and opposite in direction in
this case as a consequence of the second law rather than
the third law. If they did not cancel one another, the book
would accelerate away from the tabletop. (Both the second
and third laws are critical to the analysis of the elevator ex-
ample in everyday phenomenon box 4.2.)

Can a mule accelerate a cart?

Consider the story of the stubborn mule who, having had a
brief exposure to physics, argued to his handler that there
was no point in pulling on the cart to which he was con-
nected. According to Newton’s third law, the mule argued,
the harder he pulls on the cart, the harder the cart pulls
back on him (fig. 4.13). The net result is, therefore, noth-
ing. Is he right, or is there a fallacy in his argument?

figure 4.12 An uncompressed spring and the same spring
supporting a book. The compressed spring exerts an upward
force on the book.
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everyday phenomenon

Riding an Elevator

The Situation. We have all had the experience of riding an
elevator and feeling sensations of heaviness or lightness as
the elevator accelerates up or down. The feeling of lightness
as the elevator accelerates downward is generally more
striking, particularly if the acceleration is not smooth.

Do we really weigh more or less than usual in these situa-
tions? If you took a bathroom scale into the elevator, would
it read your true weight when the elevator is accelerating?
How can we apply Newton's laws of motion to explore these
questions?

A woman standing on a bathroom scale inside an accelerating
elevator. Will she read her true weight on the scale?

The Analysis. The first step in analyzing any situation using
Newton's laws is to isolate the body of interest and carefully
identify the forces that act on just that body. Different choices
are possible for which objects to isolate, but some choices
will be more productive than others. In this case, it makes
sense to isolate the person standing on the scale, since her
weight is the focus of our questions. The second drawing
shows a free-body diagram of the woman indicating just
those forces that act on her.

In this case, just two other objects interact with the
woman, resulting in two forces. The Earth pulls downward on
the woman through the force of gravity W. The scale pushes
upward on her feet with a force N, the normal force. The
vector sum of these two forces determines her acceleration.
If the elevator is accelerating upward with an acceleration a,
the woman must also be accelerating upward at that rate.
The net force must also be upward, which implies that the
normal force N is larger than the gravitational force W.
Using signs to indicate direction, and letting the positive
direction be upward, Newton's second law requires that

Fee = N - W = ma.

A free-body diagram of the woman in the
elevator when accelerating upward. Why
is the normal force N larger than the
weight W?

What about the scale reading? By Newton's third law, the
woman exerts a downward force on the scale equal in size to
the normal force N, but opposite in direction. Since this is the
force pushing down on the scale, the scale should read the
value N, the magnitude of the normal force. The woman's true
weight has not changed, but her apparent weight as mea-
sured by the scale has increased by an amount equal to ma.
(Rearranging the second-law equation yields N = W + ma.)

What happens when the elevator is accelerating down-
ward? In that case, the net force acting upon the woman
must be downward, and the normal force must be less than
her weight. The scale reading N will then be less than the
woman'’s true weight by the amount ma, perhaps producing
a smile rather than a scowl.

If the elevator cable breaks, we have a particularly inter-
esting special case. Both the woman and the elevator will
accelerate downward with the gravitational acceleration g.
Since the woman’s weight is all that is required to give her
that acceleration, the normal force acting on her feet must
then be zero. The scale reading will likewise be zero, and the
woman is apparently weightless!

The sensation of our own weight is produced in part by
the pressure on our feet and forces in our leg muscles needed
to maintain our posture. The woman will feel weightless in
this situation even though her true weight (the gravitational
force acting on her) has not changed. In fact, she would be
able to float around in the elevator as the astronauts do in
the orbiting space shuttle. (The space shuttle is also falling
toward the Earth as it moves laterally in its orbit.) This happy
scenario will come to a crashing halt for the woman, how-
ever, when the elevator reaches the bottom of the shaft.
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figure 4.13 A mule and a cart. Does Newton’s third law
prevent the mule from moving the cart?

The fallacy is simple but perhaps not obvious. The
motion of the cart is affected by only one of the two forces
that the mule is talking about, namely, the force that acts on
the cart. The other force in this third-law pair acts on the
mule and must be considered in conjunction with other
forces that act on the mule to determine how he will move.
The cart will accelerate if the force exerted by the mule on
the cart is larger than the frictional forces acting on the
cart. Try placing yourself in the role of the handler and
explain the fallacy to the mule.

What force causes a car to accelerate?

As with the mule, the reaction force to a push or pull
exerted by an object is often extremely important in
describing the motion of the object itself. Consider the
acceleration of a car. The engine cannot push the car
because it is part of the car. The engine drives either the
rear or front axle of the car, which causes the tires to
rotate. The tires in turn push against the road surface
through the force of friction f between the tires and the
road (fig. 4.14).

According to Newton’s third law, the road must then
push against the tires with an equal but oppositely directed
force —f. This external force causes the car to accelerate.
Obviously, friction is desirable in this case. Without fric-
tion, the tires would spin, and the car would go nowhere.
The case of the mule is similar. The frictional force exerted
by the ground on his hooves causes him to accelerate for-
ward. This frictional force is the reaction to his pushing
against the ground.

Think about this next time you find yourself walking.
What external force causes you to accelerate as you start
out? What is your role and that of friction in producing
this force? How would you walk on an icy or slippery
surface?

To figure out what forces are acting on any object, we
need first to identify the other objects with which it is in-
teracting. Some of these will be obvious. Any object in
direct contact with the object of interest will presumably
contribute a force. Interactions producing other forces, such
as air resistance or gravity, may be less obvious but still

figure 4.14 The car pushes against the road, and the road,
in turn, pushes against the car.

recognizable with a little thought. The third law is the prin-
ciple we use to identify any of these forces.

Newton's third law of motion completes his definition

of force. The third law notes that forces arise from inter-
actions between different objects. If object A exerts a force
on object B, object B exerts an equal-size but oppositely
directed force on A. We use the third law to identify the
external forces that act on an object in order to apply

the second law of motion.

4.5 Applications of Newton's Laws

We have now introduced Newton’s laws of motion and dis-
cussed the definitions of force and mass within these laws.
To appreciate their usefulness, however, we must be able to
apply them to some familiar examples such as pushing a
chair or throwing a ball. How do Newton’s laws help us
make sense of these motions? Do they provide a satisfac-
tory picture of what is going on?

What forces are involved in moving a chair?

We have returned from time to time to the example of a
chair being pushed but have not yet analyzed how and why
it moves. As we indicated in section 4.4, the first step in
any analysis is to identify the forces that act on the chair.
As shown in figure 4.15, four forces act on the chair from
four separate interactions:*

1. The force of gravity (the weight) W due to interaction
with the Earth.

2. The upward (normal) force N exerted by the floor due
to compression of the floor.

3. The force exerted by the hand of the person pushing, P.

4. The frictional force f exerted by the floor.

Two of these forces, the normal force N and the frictional
force f, are actually due to interactions with a single object, the

*A figure such as figure 4.15, showing all the forces acting on an object, is
often called a free body diagram. See also everyday phenomenon box 4.2
on page 69.
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figure 4.15  Four forces act on a chair being pushed across
the floor, the weight W, the normal force N, the force P exerted
by the person pushing, and the frictional force f.

floor. Since they are due to different effects and are perpen-
dicular to one another, they are usually treated separately.

The effects of the two vertical forces acting on the chair,
the weight W and the normal force N, cancel one another.
Like the book on the table in section 4.4, this results
because there is no acceleration of the chair in the vertical
direction. By Newton’s second law, the sum of the vertical
forces must then be zero, which implies that the weight W
and the normal force N are equal in size but opposite in
direction. They play no direct role in the horizontal motion
of the chair.

The other two forces, the push of the hand P and the
frictional force f, do not necessarily cancel. These two
forces together determine the horizontal acceleration of the
chair. The push P must be larger than the frictional force f
for the chair to accelerate. In the most likely scenario for
moving the chair, you first give a push with your hand that
is larger than the frictional force. This produces a total
force, with magnitude P — f, in the forward direction,
causing the chair to accelerate.

Once you have accelerated the chair to a reasonable ve-
locity, you reduce the strength of your push P so that it is
equal in size to the frictional force. The net horizontal
force becomes equal to zero, and the horizontal accelera-
tion is also zero by Newton’s second law. If you sustain
the push at this level, the chair moves across the floor with
constant velocity.

Finally, you remove your hand and its push P, and the
chair quickly decelerates to zero velocity under the influ-
ence of the frictional force f. If you happen to have a chair
and a smooth floor handy, try to produce the motion that we
have just been describing. See if you can feel differences
in the force that you are exerting with your hand at various
points in the motion. The force should be largest at the be-
ginning of the motion.

The size of the force needed to keep the chair mov-
ing with constant velocity is determined by the strength
of the frictional force, which, in turn, is influenced by the
weight of the chair and the condition of the floor surface.
If you fail to recognize the importance of the frictional
force, you may be led, like Aristotle, to think that a force is
always needed to keep an object moving. Frictional forces
are almost always present, but they are not as obvious as
the forces applied directly.

Does a sky diver continue to accelerate?

In chapter 3, we considered the fact that an object falls
with constant acceleration g if air resistance is not a sig-
nificant factor. What about objects such as sky divers who
fall for large distances? Do they continue to accelerate at
this rate gaining larger and larger downward velocities?
Any person with experience in sky diving knows that this
does not happen. Why not?

If air resistance were not a factor, a falling object would
experience only the gravitational force (its weight) and
would indeed continue to accelerate. In sky diving, air re-
sistance is an important factor, and its effects get larger as
the velocity of the sky diver (or any object) increases. The
sky diver has an initial acceleration of g, but as her veloc-
ity increases, the force of air resistance becomes signifi-
cant. Her acceleration decreases (fig. 4.16).

For small velocities, the air-resistive force R is small,
and the weight is the dominant force. As the velocity in-
creases, the air-resistive force gets larger, causing the total
magnitude of the downward force, W — R, to decrease.
Since the net force is responsible for the acceleration, the
acceleration will also decrease. Ultimately, as the velocity
continues to increase, the air-resistive force reaches a value
equal in size to the gravitational force. The net force is
then zero, and the sky diver stops accelerating. We say that
she has reached terminal velocity, and from there on, she
moves downward with constant velocity. This terminal ve-
locity is usually between 100 and 120 MPH.

Frictional or resistive forces play a critical role in ana-
lyzing the motion. Aristotle did not have the opportunity to
try sky diving (nor have many of us), so this example was
not a part of his experience. He did observe the terminal
velocity, however, of very light objects such as feathers or
leaves. The weight of such objects is small and the surface
area is large relative to the weight, so the air-resistive force
R becomes equal in size to the weight much sooner than
for a heavier object.

Try tearing a small corner from a piece of paper and
watching it fall. Does it appear to reach a constant (termi-
nal) velocity? It will flutter as it falls, but it does not seem
to accelerate much for most of its downward motion. You
can see why Aristotle concluded that heavier objects fall
faster than lighter objects. Dropping heavier objects through
water can also show the terminal velocity. Water exerts a
larger resistive force at lower velocities than air.
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figure 4.16 The force of air resistance R acting on a sky
diver increases as the velocity increases.

What happens when a ball is thrown?

Aristotle had trouble explaining the motion of a thrown
object such as a ball, once it had left the thrower’s hand.
Let’s reconsider this example from a Newtonian perspec-
tive. Do we need a force to keep the ball moving? Not
according to Newton’s first law. Three forces, however, are
involved in the flight of the ball: the initial push by the
thrower, the downward pull of gravity, and (once again) air
resistance (fig 4.17).

To highlight Newton’s approach, it is best to break the
motion down into two different spans of time. The first is
the process of throwing, when the hand is in contact with
the ball. During this interval, the force P exerted by the
hand dominates the motion. The combined effects of the
other forces (gravity and air resistance) must be smaller
than the force P if the ball is to accelerate. Thus P accelerates

the ball to a velocity that we often refer to as the initial veloc-
ity. The magnitude and direction of the initial velocity are
determined by the strength and direction of the force P and
the length of time that it acts on the ball. Since this force usu-
ally varies with time, a full analysis of the process of throw-
ing gets quite complex.

Once the ball leaves the hand, however, we are in the
second time period, where P is no longer a consideration.
During this interval, the gravitational force W and the air-
resistive force R produce changes in the ball’s velocity. From
this point on, the problem becomes one of projectile motion
(section 3.4). The gravitational force accelerates the ball
downward, and the air-resistive force acts in a direction op-
posite to the velocity, gradually reducing the ball’s velocity.

Contrary to Aristotle’s view, no forces are needed to
keep the ball moving once it has been thrown. In fact, if an
object is thrown in deep space, where air resistance is non-
existent and gravitational forces are very weak, it would
keep moving with constant velocity, as stated in Newton’s
first law. So, be careful with your tools when you are
working in space outside of your spacecraft.

Because the air-resistive force or the push exerted by a
person throwing a ball varies with time, we have avoided
working out numerical examples for these situations. Just
identifying the forces involved and their causes due to
third-law interactions with other objects provides a useful
description of what is happening.

How do we analyze the motion
of connected objects?

Verification of Newton’s laws of motion came initially
from simpler examples that can be easily set up in the lab-
oratory. One example not difficult to picture and set up in
a physics laboratory (or even at home if suitable toys are
available) is two connected carts accelerated by the pull of
a string (fig. 4.18). To keep things simple, we will assume
that the carts have excellent wheel bearings, so that they
roll with very little friction. We will also assume that a
scale is available to determine the masses of the carts and
their contents.

To measure the magnitude of the force applied by the
string, we would have to insert a small spring balance
somewhere between the hand and the carts. The trickiest
part of the entire experiment is applying a steady force
with this arrangement while the carts are accelerating.

figure 4.17 Three forces act on a thrown ball, the initial push P, the weight W, and air resistance R.
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figure 4.18 Two connected carts being accelerated by a
force F applied by a string.

If we know the masses of the carts and their contents,
and the magnitude of the force applied by the string, we
should be able to predict the value of the acceleration of the
system from Newton’s second law. (See example box 4.3.)
For the masses given in the example, and an applied force
of 36 N, we find an acceleration of 2.0 m/s? for the two
carts. The acceleration could be verified experimentally by
measuring the time required for the carts to travel a fixed
distance and using the equations developed for constant
acceleration in chapter 2 to calculate an experimentally
determined value.

In example box 4.3, we first treated the two carts as a
single system to find the acceleration. Suppose, however,
that we wanted to know the magnitude of the force exerted
by the hooks connecting the two carts. In this case, it
makes sense to treat the motion of the individual carts sep-
arately. Once we know the acceleration, we again apply
Newton’s second law to find the net force acting on each
cart. This computation is done in the second part of exam-
ple box 4.3 and is illustrated in figure 4.19.

For the second cart, a force of 16 N is required to pro-
duce the acceleration of 2 m/s2. By Newton’s third law,
there should then be a force of 16 N pulling back on the
first cart. Combined with the forward force of 36 N ap-
plied by the string, this results in a net force of 20 N act-
ing on the first cart (36 N — 16 N). This is exactly the
value required to give the first cart an acceleration of
2 m/s.

From this example, we see that Newton’s laws provide
a completely consistent picture of the forces and accelera-
tions of the different parts of the connected-cart system.
This is a necessary condition for us to accept the laws as
valid. Obviously, another condition is that any predictions
be confirmed by experimental measurements. This has
been done many times over by experiments similar to the
one we have dealt with here.

We could try many variations on this experiment in the
laboratory to see if the results agree with predictions de-
rived from Newton’s laws. Even with careful experimental
technique using accurate stopwatches and balances, how-
ever, our results are unlikely to agree exactly with our pre-
dictions. It is impossible to eliminate the effects of friction
completely, and none of our measurements can be made
with infinite precision. The art of the experimentalist is to
reduce these inaccuracies to a minimum as well as to pre-
dict how they affect our results.

example box 4.3

Sample Exercise: Connected Objects

Two connected carts are pulled across the floor under the
influence of a force of 36 N applied by a string (fig. 4.18).
The forward cart and its contents have a mass of 10 kg,
and the second cart and contents have a mass of 8 kg.
Assuming that frictional forces are negligible:

a. What is the acceleration of the two carts?

b. What is the net force acting on each cart?

a. Defining the system as both carts, as discussed in text:

m, = 10 kg Free = Ma
m, = 8Kg =
F=23N o a=-"-_ 36N
a =2 m 10 kg + 8 kg
36N
=——=20m/s
18 kg m

a = 2.0 m/s? in the forward direction

b. Treating each cart separately:

Fret = ? first cart
(for each cart) Fet = Ma
= (10 kg)(2 m/s?)
= 20N
second cart
Foete = ma
= (8 kg)(2 m/s?)
= 16N

16 N 36 N
m e

figure 4.19 The interaction between the two carts
illustrates Newton'’s third law.

Newton'’s laws of motion provide both qualitative and
quantitative explanations of any familiar motion. First, we
identify the forces acting on the object by examining
interactions with other objects. The relative sizes of these
forces, when added together, give the acceleration of the
object. The acceleration may change as the forces change
with time, as in the case of a sky diver. Newton's laws
have been verified many times over by experimental tests
of their quantitative predictions. They are a much more
consistent theory of the causes of motion than the older
Aristotelian view.
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summary

In 1685, Newton published his Principia, in which he introduced
three laws of motion as the foundation of his theory of mechan-
ics. These laws continue to serve as an extremely useful model
for explaining the causes of motion and for predicting how ob-
jects will move in many familiar situations.

] A brief history. Newton’s theory was constructed on
ground-work laid by Galileo and replaced a much earlier and
less quantitative model developed by Aristotle to explain motion.
Newton’s theory had much greater predictive power than Aristotle’s
ideas. Although we now recognize its limitations, Newton’s theory
is still used extensively to explain the motion of ordinary objects.

Z Newton’s first and second laws. Newton’s second
law states that the acceleration of an object is proportional to the
net external force acting on that object and inversely propor-
tional to the mass of the object. The first law, a special case of the
second law, describes what happens when the net force is zero.
The acceleration must then be zero, and the object moves with
constant velocity.

_ net
a= ﬁe
3 Mass and weight. Newton’s second law defines the
inertial mass of an object as the property that causes the object to
resist a change in its motion. The weight of an object is the grav-
itational force acting on the object and is equal to the mass multi-
plied by the gravitational acceleration g. The weight of an object
may vary as g varies, but mass is an inherent property of the ob-
ject related to its quantity of matter.

4 Newton’s third law. Newton’s third law completes
the definition of force by showing that forces result from inter-
actions between objects. If object A exerts a force on object B,
then object B exerts an equal-size but oppositely directed force on
object A.

A B
- | -
Fg Fa
FA = - FB

5 Applications of Newton’s laws. In analyzing the
motion of an object using Newton’s laws, the first step is to iden-
tify the forces that act on the object due to interactions with other
objects. The strength and direction of the net force then deter-
mine how the object’s motion will change.
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questions

* = more open-ended questions, requiring lengthier responses, suitable
for group discussion

Q = sample responses are available in appendix D

Q = sample responses are available on the website

Q1

Q2

Q3

*Q4

Q5

Q6

Q7

Qo.

Q10

Q11

Q12

. Did Galileo’s work on motion precede in time that of
Avistotle or Newton? Explain.

. Why did Aristotle believe that heavier objects fall faster
than lighter objects? Explain.

. Aristotle believed that a force was necessary to keep an
object moving. Where, in his view, did this force come
from in the case of a ball moving through the air? Explain.

. How did Aristotle explain the continued motion of a
thrown object. Does this explanation seem reasonable to
you? Explain.

. Did Galileo develop a more complete theory of motion
than that of Newton? Explain.

. Two equal forces act on two different objects, one of
which has a mass ten times as large as the other. Will the
more massive object have a larger acceleration, an equal
acceleration, or a smaller acceleration than the less mas-
sive object? Explain.

. A 3-kg block is observed to accelerate at a rate twice that of
a 6-kg block. Is the net force acting on the 3-kg block there-
fore twice as large as that acting on the 6-kg block? Explain.

. Two equal-magnitude horizontal forces act on a box as
shown in the diagram. Is the object accelerated horizon-
tally? Explain.

—F F
B e ——

Q8 Diagram

Is it possible that the object pictured in question 8 is mov-
ing, given the fact that the two forces acting on it are equal
in size but opposite in direction? Explain.

. Suppose that a bullet is fired from a rifle in outer space
where there are no appreciable forces due to gravity or air
resistance acting on the bullet. Will the bullet slow down
as it travels away from the rifle? Explain.

. Two equal forces act on an object in the directions pictured
in the diagram below. If these are the only forces involved,
will the object be accelerated? Explain, using a diagram.

A

F F
1

Q11 Diagram

. An object moving horizontally across a table is observed
to slow down. Is there a non-zero net force acting on the
object? Explain.

Q13

*Q14.

Q15.

Q16.

Q17.

Q1s.

Q19.

Q20.

Q21.

Q22.

Q23.

. A car goes around a curve traveling at constant speed.
a. Is the acceleration of the car zero in this process?
Explain.
b. Is there a non-zero net force acting on the car?
Explain.

Is Newton’s first law of motion explained by the second
law? Explain. Why did Newton state the first law as a sep-
arate law of motion?

Is the mass of an object the same thing as its weight?
Explain.

The gravitational force acting on a lead ball is much larger
than that acting on a wooden ball of the same size. When
both are dropped, does the lead ball accelerate at the same
rate as the wooden ball? Explain, using Newton’s second
law of motion.

The acceleration due to gravity on the moon is approxi-
mately one-sixth the gravitational acceleration near the
Earth’s surface. If a rock is transported from Earth to
the moon, will either its mass or its weight change in the
process? Explain.

Is mass a force? Explain.

Two identical cans, one filled with lead shot and the other

with feathers, are dropped from the same height by a stu-

dent standing on a chair.

a. Which can, if either, experiences the greater force due
to the gravitational attraction of the Earth? Explain.

b. Which can, if either, experiences the greater accelera-
tion due to gravity? Explain.

A boy sits at rest on the floor. What two vertical forces act
upon the boy? Do these two forces constitute an action/
reaction pair as defined by Newton’s third law of motion?
Explain.

The engine of a car is part of the car and cannot push
directly on the car in order to accelerate it. What external
force acting on the car is responsible for the acceleration
of the car on a level road surface? Explain.

It is difficult to stop a car on an icy road surface. Is it also
difficult to accelerate a car on this same icy road? Explain.

A ball hangs from a string attached to the ceiling, as shown

in the diagram.

a. What forces act on the ball? How many are there?

b. What is the net force acting on the ball? Explain.

¢. For each force identified in part (a), what is the reac-
tion force described by Newton’s third law of motion?

Q23 Diagram
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*Q24. When a magician performs the tablecloth trick, the objects

on the table do not move very far. Is there a horizontal
force acting on these objects while the tablecloth is being
pulled off the table? Why do the objects not move very
far? Explain.

Q30.

Two blocks with the same mass are connected by a string

and are pulled across a frictionless surface by a constant

force, F, exerted by a string (see diagram).

a. Will the two blocks move with constant velocity?
Explain.

b. Will the tension in the connecting string be greater

Q25. A sprinter accelerates at the beginning of a 100-meter race than. less th o the f F Explai
and then tries to maintain maximum speed throughout the an, 1ess than, or equat fo the force £ Explain.
rest of the race.

a. What external force is responsible for accelerating the
runner at the beginning of the race? Explain carefully ;>
how this force is produced.
b. Once the runner reaches her maximum velocity, is it
necessary to continue pushing against the track in order Q30 Diagram
to maintain that velocity? Explain.

Q26. A mule is attempting to move a cart loaded with rock. *Q31. Suppose that a sky diver wears a specially lubricated suit
since the cart pulls back on the mule with a force equal in that reduces air resistance to a small constant force that
size to the force that the mule exerts on the cart (according does T‘Ot increase as the div_er’s veloc_ity Increases. Wi” the
to Newton’s third law), is it possible for the mule to accel- sky diver ever reach a terminal velocity before opening her

, 5 -
erate the cart? Explain. parachute? Explain.

Q27. The upward normal force exerted by the floor on a chair is Qs2. .If you get into an e'eva“’F on the top floor of a large builgl-
equal in size but opposite in direction to the weight of the ;Eg and thlefelevator r?_eglns to accele:catet (;OWHWE;II‘d,”\]NI”
chair. Is this equality an illustration of Newton’s third law € normaf force pushing up on your 1eet be greater thar,
of motion? Explain equal to, or less than the force of gravity pulling down-

' ' ward on you? Explain.

Q28. A toy battery-powered tractor pushes a book across a . .
table.y Draw s)e/pgrate diagrams ofpthe book and the tractor Q33 If_ t_he elevator cable br_e aks and you find yourself in a con-
identifying all of the forces that act upon each object dition of apparent weightlessness as the elevator falls, is

. itati i ?
What is the reaction force described by Newton’s third law tEhe Igravnatlonal force acting upon you equal to zero?
of motion for each of the forces that you have drawn? xplain.

Q29. Two masses, m, and m,, connected by a string, are placed
upon a fixed frictionless pulley as shown in the diagram.

If m, is larger than m,, will the two masses accelerate?
Explain.
Z
[}
my
m
Q29 Diagram
exercises

E1. A single force of 40 N acts upon a 5-kg block. What is the E4. A 3.0-kg block being pulled across a table by a horizontal

magnitude of the acceleration of the block? force of 80 N also experiences a frictional force of 5 N.
- . 5
E2. A ball with a mass of 2.5 kg is observed to accelerate at a What is the acceleration of the block?
rate of 6.0 m/s2. What is the size of the net force acting on E5. A pulled tablecloth exerts a frictional force of 0.6 N on a
this ball? plate with a mass of 0.4 kg. What is the acceleration of the
?
E3. A net force of 20 N acting on a wooden block produces an plate?

acceleration of 4.0 m/s? for the block. What is the mass of
the block?
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E6. A 6-kg block being pushed across a table by a force P has E13. The author of this text has a weight of 600 N.

an acceleration of 3.0 m/s2. a. What is his mass in kilograms?

a. What is the net force acting upon the block? b. What is his weight in pounds? (1 Ib = 4.45 N)

b. Ifthe_m_agnltude of P s 20 N, what is the magnitude of E14. Who has the larger mass, a man weighing 145 Ib or one
the frictional force acting upon the block? weighing 735 N?

ET. T.WO f_o rees, one of 50 N and the other of 30_ N, actin Oppo- E15. Ata given instant in time, a 4-kg rock that has been dropped
site directions on a l_Jo_x as shown_m t_he dlagrarzn. What is from a high cliff experiences a force of air resistance of
the mass of the box if its acceleration is 4.0 m/s*? 15 N. What are the magnitude and direction of the accelera-

tion of the rock? (Do not forget the gravitational force!)
—»50 N E16. At a given instant in time, a 5-kg rock is observed to be
30N falling with an acceleration of 7.0 m/s?. What is the magni-
— . tude of the force of air resistance acting upon the rock at
E7 Diagram o
this instant?

E8. A 4-kg block is acted upon by three horizontal forces as E17. A 0.5-kg book rests on a table. A downward force of 6 N is
shown in the diagram. exerted on the top of the book by a hand pushing down on
a. What is the net horizontal force acting on the block? the book.

b. What is the horizontal acceleration of the block? a. What is the magnitude of the gravitational force acting
upon the book?
10N _5>N b. What is the magnitude of the upward (normal) force
- 25N . exerted by the table on the book? (Is the book acceler-
ated?)
E8 Diagram . o . .
E18. An upward force of 18 N is applied via a string to lift a ball

E9. A 4-kg sled sliding freely on an icy surface experiences a with a mass of 1.5 kg.

2-N frictional force exerted by the ice and an air-resistive a. What is the net force acting upon the ball?

force of 0.5 N. b. What is the acceleration of the ball?

a. What is the net force acting on the sled? E19. A 60-kg woman in an elevator is accelerating upward at a

b. What is the acceleration of the sled? rate of 1.2 m/sZ.
E10. What is the weight of a 40-kg mass? a. What is the net force acting upon the woman?

. . b. What is the gravitational force acting upon the woman?

E11. What is the mass of a 196-N weight? c. What is the normal force pushing upward on the
E12. Jennifer has a weight of 110 Ib. woman’s feet?

a. What is her weight in newtons? (1 Ib = 4.45 N)

b. What is her mass in kilograms?
synthesis problems
SP1. A constant horizontal force of 30 N is exerted by a string SP3. A dish with a mass 0.4 kg has a force of kinetic friction

attached to a 5-kg block being pulled across a tabletop. The of 0.15 N exerted on it by a moving tablecloth for a time

block also experiences a frictional force of 5 N due to con- of 0.2 s.

tact with the table. a. What is the acceleration of the dish?

a. What is the horizontal acceleration of the block? b. What velocity does it reach in this time, starting from

b. If the block starts from rest, what will its velocity be rest?

after 3 seconds? c. How far (in cm) does the dish move in this time?

c. How far will it travel in these 3 seconds? SP4. A 60-kg crate is lowered from a loading dock to the floor

SP2. A rope exerts a constant horizontal force of 250 N to pull using a rope passing over a fixed support. The rope exerts a

a 60-kg crate across the floor. The velocity of the crate

is observed to increase from 1 m/s to 3 m/s in a time of

2 seconds under the influence of this force and the fric-

tional force exerted by the floor on the crate.

a. What is the acceleration of the crate?

b. What is the net force acting upon the crate?

c. What is the magnitude of the frictional force acting on
the crate?

d. What force would have to be applied to the crate by the
rope in order for the crate to move with constant veloc-
ity? Explain.

constant upward force on the crate of 500 N.

a. Will the crate accelerate? Explain.

b. What are the magnitude and direction of the accelera-
tion of the crate?

c. How long will it take for the crate to reach the floor if
the height of the loading dock is 1.4 m above the floor?

d. How fast is the crate traveling when it hits the floor?
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SP5.

Two blocks tied together by a horizontal string are being

pulled across the table by a horizontal force of 30 N as

shown. The 2-kg block has a 6-N frictional force exerted

on it by the table, and the 4-kg block has an 8-N frictional

force acting on it.

a. What is the net force acting on the entire two-block
system?

b. What is the acceleration of this system?

c. What force is exerted on the 2-kg block by the connect-
ing string? (Consider only the forces acting on this block.
Its acceleration is the same as that of the entire system.)

d. Find the net force acting on the 4-kg block and calcu-
late its acceleration. How does this value compare to
that found in part b?

2 kg 4 kg

30N

e

6N

SP6.

home experiments and observations

N
8 SP5 Diagram

A 60-kg man is in an elevator that is accelerating down-

ward at the rate of 1.4 m/s2.

a. What is the true weight of the man in newtons?

b. What is the net force acting on the man required to pro-
duce the acceleration?

SP7.

c. What is the force exerted on the man’s feet by the floor
of the elevator?

d. What is the apparent weight of the man in newtons?
(This is the weight that would be read on the scale dial
if the man were standing on a bathroom scale in the
accelerating elevator.)

e. How would your answers to parts b through d change if
the elevator were accelerating upward with an accelera-
tion of 1.4 m/s??

A sky diver has a weight of 750 N. Suppose that the air-

resistive force acting on the diver increases in direct pro-

portion to his velocity such that for every 10 m/s that the

diver’s velocity increases, the force of air resistance

increases by 100 N.

a. What is the net force acting on the sky diver when his
velocity is 40 m/s?

b. What is the acceleration of the diver at this velocity?

What is the terminal velocity of the sky diver?

d. What would happen to the velocity of the sky diver if
for some reason (perhaps a brief down draft) his veloc-
ity exceeded the terminal velocity? Explain.

124

HE1.

HE2.

Collect a variety of small objects such as coins, pencils,
keys, and bottle caps. Ice cubes, if they are available, also
make excellent test objects. Try sliding these objects across

a smooth surface such as a tabletop or floor, being as con-

sistent as possible in the initial velocity that you give to

them.

a. Do the objects slide the same distance after they leave
your hand? What differences are apparent, and how are
they related to the nature of the surface and size of the
objects? Which objects come closest to demonstrating
Newton’s first law of motion?

b. What factors seem to be important in reducing the fric-
tional force between the objects and the surface upon
which they are sliding? If you see some general princi-
ple at work, test this idea by finding other objects that
would support your hypothesis.

Place a sheet of paper under a medium-sized book lying on

a smooth tabletop or desktop.

a. Try to accelerate the book smoothly by exerting a con-
stant pull on the sheet of paper. What happens if you try
to accelerate the book too rapidly? Can you pull the
paper cleanly from underneath the book without mov-
ing the book? Explain your observations in terms of
Newton’s laws of motion.

b. Repeat these observations with a few books in a stack.
How does increasing the mass of the books affect the
results?

c. Try other objects. Which objects move the least when
the paper is pulled rapidly?

HE3.

HE4.

Falling objects whose surface area is large relative to their
weight will reach terminal velocity more readily than a ball
or a rock. Test several objects, such as a balloon, small
pieces of paper, plant parts (leaves, flowers, or seeds), or
whatever you think might work. Do these objects reach a
terminal velocity? How far does each object fall before
reaching constant velocity? How does the rate of fall differ
for different objects when dropped at the same time?
Which of the objects tested produces the clearest demon-
stration of terminal velocity, showing first a brief accelera-
tion followed by a constant velocity?

Using elevators in your dormitory or other campus build-

ings, observe the effects of the elevator’s acceleration. Most

elevators accelerate briefly as they start and again as they
stop (deceleration). Express elevators in high-rise buildings
are best for observing the effects of acceleration.

a. If you have a bathroom scale, see how much your ap-
parent weight differs from your true weight when the
elevator is stopping or starting. Can you estimate the rate
of acceleration from this information? (See everyday
phenomenon box 4.2 and synthesis problem 6.)

b. Try holding your arm away from your body and main-
taining it in this position as the elevator accelerates. How
difficult is this to do for different conditions during the
motion of the elevator? Explain your observations.



Circular Motion, the
Planets, and Gravity

chapter overview

Using the example of a ball on a string, we first examine the
acceleration involved in changing the direction of the velocity in circular
motion (centripetal acceleration). Then we consider the forces involved
in producing a centripetal acceleration in different cases, including that
of a car rounding a curve. Kepler’s laws of planetary motion will then
be examined and Newton’s law of universal gravitation will be
introduced to explain the motion of the planets. We will also show how
this gravitational force relates to the weight of an object and the
gravitational acceleration near the Earth’s surface.

chapter outline

l Centripetal acceleration. How can we describe the acceleration
involved in changing the direction of an object’s velocity? How does
this acceleration depend on the object’s speed?

Z Centripetal forces. What types of forces are involved in producing
centripetal accelerations in different situations? What forces are
involved for a car rounding a curve?

3 Planetary motion. How do the planets move around the sun? How has
our understanding of planetary motion changed historically? What
are Kepler's laws of planetary motion?

4 Newton’s law of universal gravitation. What is the fundamental nature
of the gravitational force, according to Newton? How does this force
help to explain planetary motion?

5 The moon and other satellites. How does the moon orbit the Earth?
How do the orbits of artificial satellites differ from the moon and from
each other?
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"

The car failed to negotiate the curve.” How many
times have you seen a phrase like that in an accident
report in the newspapers? Either the road surface was
slippery or the driver was driving too fast for the sharp-
ness of the curve. In either case, poor judgment and
probably a poor sense of the physics of the situation
were at work (fig. 5.1).

When a car goes around a curve, the direction of its
velocity changes. A change in velocity means accelera-
tion, and by Newton’s second law, an acceleration re-
quires a force. The situation has much in common with
a ball being twirled in a circle at the end of a string and
other examples of circular motion.

What forces keep a car moving around a curve? How
does the force required depend on the speed of the car
and the sharpness of the curve? What other factors are
involved? Finally, what does the car rounding a curve
have in common with the ball on a string and the mo-
tions of the planets around the sun?

The motions of the planets around the sun and the
moon around the Earth played important roles in the de-
velopment of Newton’s theory of mechanics. Newton'’s
law of universal gravitation was a crucial part of that
theory. The gravitational force explains the behavior of
objects falling near the Earth’s surface, but it also explains

figure 5.1 The car failed to negotiate the curve. Newton’s
first law at work.

why the planets move in curved paths about the sun.
Circular motion is a very important special case of
motion in two dimensions, both in the history of physics
and in our everyday experience.

5.1 Centripetal Acceleration

Suppose that we attach a ball to a string and twirl the ball
in a horizontal circle (fig. 5.2). With a little practice it is
not hard to keep the ball moving with a constant speed, but
the direction of its velocity changes continually. A change
in velocity implies an acceleration, but what is the nature
of this acceleration?

The key to this situation involves taking a careful look
at what happens to the velocity vector as the ball moves in
a circle. How does this vector change as the path of the ball
changes direction?

Can we evaluate the size of this change and how it is
related to the speed of the ball or the radius of the curve?
To define the concept of centripetal acceleration, we need
to answer these questions.

What is a centripetal acceleration?

What do we have to do to get the ball on the string to
change its direction? If you try twirling a ball as pictured
in figure 5.2, you will feel a tension in the string. In other
words, you have to apply a force by pulling on the string to
cause the change in direction of the ball’s velocity.

What would happen if this force were not present?
According to Newton’s first law of motion, an object will
continue moving in a straight line with constant speed if
there is no net force acting on the object. If the string
breaks, or if we let go of the string, this is exactly what

figure 5.2 A ball being twirled in a horizontal circle. Is the
ball accelerated?

will happen. The ball will fly off in the direction that it
was traveling when the string broke (fig. 5.3). Without the
pull of the string, the ball will move in a straight line. It
will also fall, of course, as it is pulled down by the gravi-
tational force.

According to Newton’s second law of motion, if there is
a net force, there must be an acceleration (F.,, = ma). This
acceleration is associated with the change in the direction of
the velocity vector. In the case of the ball on the string, the
string pulls the ball toward the center of the circle causing
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figure 5.3 If the string breaks, the ball flies off in a straight-

line path in the direction it was traveling at the instant the string
broke.

the direction of the velocity vector to change continually.
The direction of the force, and of the acceleration that it
produces, is toward the center of the circle. We call this
acceleration the centripetal acceleration:

Centripetal acceleration is the rate of change in velocity of an
object that is associated with the change in direction of the
velocity. Centripetal acceleration is always perpendicular to
the velocity vector itself and toward the center of the curve.

To find the size of the centripetal acceleration, we need
to determine how fast the velocity is changing. You might
guess that this depends on how rapidly you are twirling
the ball, but it also depends on the radius of the curve—the
size of the circle.

How do we find the change in velocity Av?

Figure 5.4 shows the ball and string as seen from above.
The ball is moving in a horizontal circle. Velocity vectors
are drawn on the circle at two positions separated by a
short time interval. The velocity v, occurs a short time
after the velocity v;, as the ball moves counterclock-
wise around the circle. These two vectors are drawn with
the same length, indicating that the speed of the ball is
unchanged.

The change in velocity, Av, is the difference between
the initial velocity and the final velocity for a given time
interval. In other words, the change in velocity is a vector
that is added to the initial velocity to produce the final ve-
locity. Adding Av to v, produces v,. This vector addition
is shown in the vector triangle to the right of the circle in
figure 5.4. (See appendix C for a discussion of vector addi-
tion by graphical methods.)

Vo
AV

2] Vi

V2

figure 5.4 The velocity vectors for two positions of a ball
moving in a horizontal circle. The change in velocity, Av, adds to
v, to yield v,.

Note that the vector Av has a direction different from
either of the velocity vectors. If we choose a short enough
time interval between the two positions, the direction of the
change in velocity points toward the center of the circle,
the direction of the instantaneous acceleration of the ball.
(Acceleration always has the same direction as the change
in velocity.) The ball is being accelerated toward the center
of the circle, the direction of the tension in the string.

What is the size of the centripetal
acceleration?

But how large is this centripetal acceleration, and how does
it depend on the speed of the ball and the radius of the
curve? The triangle illustrating the vector addition in fig-
ure 5.4 can be used to explore these questions. There are
three effects to consider:

1. As the speed of the ball increases, the velocity vectors
become longer, which makes Av longer. The triangle
in figure 5.4 becomes larger.

2. The greater the speed of the ball, the more rapidly the
direction of the velocity vector changes, because the
ball reaches the second position in figure 5.4 more
quickly.

3. As the radius of the curve decreases, the rate of change
in velocity increases because the direction of the ball
changes more rapidly. A tight curve (small radius) pro-
duces a large change, but a gentle curve (large radius)
produces a small change.

The first two effects both indicate that the rate of change
in velocity will increase with an increase in the speed of
the ball. Combining these two effects suggests that the cen-
tripetal acceleration should be proportional to the square of
the speed. We need to multiply by the speed twice. The
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third effect suggests that the rate of change of velocity is
inversely proportional to the radius of the curve. The larger
the radius, the smaller the rate of change. Taken together,
these effects produce the expression
VZ

a. = T
for the size of the centripetal acceleration, a.. It is pro-
portional to the square of the speed and inversely propor-
tional to the radius, r, of the curve. The direction of the
centripetal-acceleration vector a, is always toward the cen-
ter of the curve, the direction of the change in velocity Av.

The ball moving in a circle is accelerated, even though
its speed remains constant. To change the direction of the
velocity vector is to change the velocity, and an acceler-
ation is involved. People often resist this idea: we use the
term acceleration in everyday language to describe in-
creases in speed without taking into account changes in
direction.

What force produces the centripetal
acceleration?

Since an object moving in a circle is accelerated, a force
must be acting to produce that acceleration, according to
Newton’s second law. For the ball on the string, the tension
in the string pulling on the ball provides the centripetal
acceleration. A closer look shows that this tension has both
horizontal and vertical components, since the string is not
completely within the horizontal plane. As shown in fig-
ure 5.5, the horizontal component of the tension pulls the
ball toward the center of the horizontal circle and produces
the centripetal acceleration.

The total tension in the string is determined by both
the horizontal and the vertical components of the tension.
The vertical component is equal to the weight of the ball,
since the net force in the vertical direction should be zero.
The ball stays in the horizontal plane of the circle and is not
accelerated in the vertical direction. In example box 5.1,

figure 5.5 The horizontal component of the tension is the
force that produces the centripetal acceleration. The vertical
component of the tension is equal to the weight of the ball.

example box 5.1

Sample Exercise: Circular Motion of a Ball
on a String

A ball has a mass of 50 g (0.050 kg) and is revolving at
the end of a string in a circle with a radius of 40 cm
(0.40 m). The ball moves with a speed of 2.5 m/s, or one
revolution per second. (see Fig. 5.5)
a. What is the centripetal acceleration?
b. What is the horizontal component of the tension
needed to produce this acceleration?

V2
a.v = 25m/s a0=7
r = 040m
a, = ? — (2.5m/s)?
(0.4 m)
= 15.6 m/s?
b. m = 0.05kg Fe = Tp = ma
Ty = 2 = (0.05 kg)(15.6 m/s?)
= 0.78N

The horizontal component of the tension must equal 0.78 N
in magnitude. The vertical component of the tension must
equal the weight of the ball (0.50N) as discussed in the
text.

the weight of the ball is approximately 0.50 N (W = mg),
so that becomes the value of the vertical component of the
tension.

The ball in example box 5.1 has a slow speed. Even at
this low speed, the horizontal component of the tension is
larger than the vertical component. As the ball twirls at a
faster rate, the centripetal acceleration increases even more
rapidly, since it is proportional to the square of the speed of
the ball. The horizontal component of the tension then
becomes much larger than the vertical component, which
remains equal to the weight of the ball (fig. 5.6). These
effects can be readily observed with your own ball and
string. Give it a try. You will feel the tension increase with
increasing speed.

Centripetal acceleration involves the rate of change in
the direction of the velocity vector. Its size is equal to the
square of the speed of the object divided by the radius of
the curve (a, = v2/r). Its direction is toward the center

of the curve. Just as with any acceleration, there must be
a force acting on the object to produce the centripetal
acceleration. For a ball on a string, that force is the hori-
zontal component of the tension in the string.
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Low speed String

High speed

String

figure 5.6 At higher speeds, the string comes closer to lying
in the horizontal plane because a large horizontal component of
the tension is needed to provide the required centripetal force.

5.2 Centripetal Forces

For a ball twirled at the end of a string, the string pulls
inward on the ball, providing the force that causes the cen-
tripetal acceleration. For a car rounding a curve, however,
there is no string attached. Different forces must be at work
to provide the centripetal acceleration. A person riding on a
Ferris wheel also experiences circular motion. What forces
produce centripetal acceleration in these situations?

The net force that produces a centripetal acceleration
is often referred to as the centripetal force. This term is
sometimes a source of confusion, because it implies that
a special force is somehow involved. In fact, centripetal
forces are any force, or combination of forces, that acts
on an object in certain situations to produce the centripetal
acceleration. Almost any force can play this role: pulls
from strings, pushes from contact with other objects, fric-
tion, gravity, and so on. We need to analyze each situa-
tion separately to identify the forces and determine their
effects.

What force helps a car negotiate
a flat curve?

What forces are involved in producing the centripetal ac-
celeration for a car rounding a curve? It depends on whether
or not the curve is banked. The easiest situation to analyze
is when a curve is not banked, so that we deal with a flat
road surface.

For a flat road surface, friction alone produces the nec-
essary centripetal acceleration. The tendency of the car to
move in a straight line causes the tires to pull against the
pavement as the car turns. By Newton’s third law, the pave-
ment then pulls in the opposite direction on the tires (fig. 5.7).
The frictional force acting on the tires points toward the
center of the curve. If this force were not present, the car
could not turn.

The size of a frictional force depends on whether or not
there is motion along the surfaces of contact producing the
friction. If there is no motion in the direction of the force,
we call it the static force of friction. If the object is slid-
ing, as it might on a wet or icy surface, the kinetic force of
friction is involved. Usually, the kinetic force of friction is
smaller than the maximum possible static force of friction,
so whether or not the car is skidding becomes an important
factor.

Unless the car has already begun to skid, the static force
of friction produces the centripetal acceleration for the car
rounding the curve. The part of the tire in contact with the
road is momentarily at rest on the road; it does not slide
along the road. If the tires do not move in the direction of
the frictional force, the static force is in effect.

How large is the required frictional force? It depends on
the speed of the car and the radius of the curve. From
Newton’s second law, we know that the magnitude of the
required force is F.,, = ma,, where the centripetal accelera-
tion a, is equal to v?/r. Putting these two ideas together, we
see that the frictional force f must be equal to mv3/r, since
it is the only force operating to produce the centripetal ac-
celeration. The speed of the car is a critical factor in deter-
mining how large a force is needed, which is why we often
slow down in approaching a curve.

& |

figure 5.7 The centripetal acceleration of a car rounding a
level curve is produced by frictional forces exerted on the tires by
the road surface.
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If the mass times the centripetal acceleration is greater
than the maximum possible frictional force, we are in trouble.
Because the square of the speed is involved in this re-
lationship, doubling the speed would require a frictional force
four times as large as that for the lower speed. Also, since we
cannot control the frictional force, a sharper curve with a
smaller radius r requires a lower speed. Both the speed and
the radius must be considered in making driving judgments.

What happens if the required centripetal force is larger
than the maximum possible frictional force? The frictional
force cannot produce the necessary centripetal accelera-
tion, and the car begins to skid. Once it is skidding, kinetic
friction comes into play rather than static friction. Since the
force of kinetic friction is generally smaller than that of
static friction, the frictional force decreases and the skid
gets worse. The car, like the ball on the broken string, fol-
lows its natural tendency to move in a straight line.

everyday phenomenon

Seat Belts, Air Bags, and Accident Dynamics

The Situation. In automobile accidents, serious or fatal
injuries are often the result of riders being thrown from the
vehicle. Since the 1960s, federal regulations have required
that cars be equipped with seat belts. More recently, front-
seat air bags have also been required in an effort to reduce
the carnage. Still, we often read of people being thrown from
their vehicle in accident reports.

How do air bags and seat belts help? If your car is
equipped with air bags, as most now are, is it still necessary
to wear your seat belt? In what situations are air bags most
effective and when are seat belts essential?

it WL

In a head-on collision, the air bag inflates rapidly to prevent the rider
from moving forward and colliding with the windshield or steering
column.

The maximum possible value of the frictional force is
dictated by the road and tire conditions. Any factor that
reduces the force of static friction will cause problems. Wet
or icy road surfaces are the usual culprits. In the case of
ice, the force of friction may diminish almost to zero, and
an extremely slow speed will be necessary to negotiate a
curve. There is nothing like driving on an icy road to give
you an appreciation of the value of friction. Newton’s first
law is illustrated vividly. (See also everyday phenomenon
box 5.1.)

What happens if the curve is banked?

If the road surface is properly banked, we are no longer to-
tally dependent on friction to produce the centripetal accel-
eration. For the banked curve, the normal force between the
car’s tires and the road surface can also be helpful (fig. 5.8).

The Analysis. Except in high-speed collisions where the
passenger compartment of the vehicle is crushed, most
injuries and fatalities are caused by motion of the rider
within, and outside of, the vehicle. The vehicle stops or
turns suddenly due to the collision and the rider continues
to move in a straight line, following Newton’s first law of
motion.

In a head-on collision, the car stops while the rider con-
tinues to move forward unless constrained. In the absence
of either seat belts or air bags, front-seat riders hit the wind-
shield or the steering column, resulting in serious head or
chest injuries. Seat belts can prevent this when used prop-
erly, but air bags are also designed to protect against these
injuries. As the rider begins to move forward relative to the
vehicle, the air bag inflates rapidly, providing a cushion
between the rider and other objects in the car. The rider
decelerates more gradually involving a smaller force and
less trauma. (This idea is best understood in terms of the
concept of impulse discussed in chapter 7.) Air bag usage
has resulted in a significant reduction in serious head and
chest injuries in head-on collisions with other vehicles or
with fixed objects.

Head-on collisions are not the most frequent type of
serious accident, however. Rollover accidents involving
single vehicles are common, and vehicles can also collide
in intersections, providing impacts to the side of the car.

In the latter case, the struck vehicle will often go into a
spin. In both of these cases, the vehicle undergoes rotational
motion while the rider moves forward in a straight line.

(continued)
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figure 5.8 The horizontal component of the normal force
N, exerted by the road on the car can help to produce the
centripetal acceleration when the curve is banked.

The normal force N is always perpendicular to the surfaces
involved, so it points in the direction shown in the diagram.
The total normal force acting on the car (indicated in the
diagram) is the sum of those for each of the four tires.

Since the car is not accelerated vertically, the net force
in the vertical direction must be zero. The vertical compo-
nent of the normal force N, must be equal in magnitude to
the weight of the car to yield a net vertical force of zero.
This fact determines how large the normal force will be.
Only the horizontal component of the normal force N,
is in the appropriate direction to produce the centripetal
acceleration.

The angle of the banking and the weight of the car deter-
mine the size of the normal force. They also determine the
size of its horizontal component. At the appropriate speed,
this horizontal component pushing on the tires of the car is
all that is needed to provide the centripetal acceleration.

These are the accidents in which the rider is likely to be
thrown from the vehicle.

Will air bags help in these situations? Air bags are most
effective in head-on collisions and do not provide much pro-
tection against sideways motion of the rider. (Some newer
vehicles do come equipped with air bags in the front-seat
doors, which can protect against sideways movement, but air
bags are not usually provided for the rear seats.) In a rollover
accident, the vehicle goes into a spin about an axis through
its long dimension. The doors will sometimes open or the
windows will shatter during the first roll, providing openings
for the rider to fly through as he or she continues to move
forward while the vehicle turns. In some cases, the rider is
thrown from the vehicle and the vehicle then rolls over the
victim.

Seat belts can make a big difference. Because the vehicle
is turning rapidly in a rollover accident, a centripetal force
acting on the rider is necessary to hold the rider against the
seat rather than moving forward in a straight line. In the
absence of such a force, the rider is thrown outward against
the sides of the vehicle. Attempts by riders to brace them-
selves are usually totally inadequate to provide the required
centripetal force. The seat belt and shoulder harness, on the
other hand, can provide the force necessary to hold the rider
in place.

Statistics on accident fatalities are compelling. In rollover
accidents, riders who are wearing their seat belts generally
survive, while those who are not using their belts and shoul-
der harnesses are frequently killed or seriously injured. Often
those killed are thrown from the vehicle, but even when they

As the vehicle rolls, a rear-seat passenger is thrown against the side
of the vehicle (viewed from the back). A properly adjusted seat belt
and shoulder harness can prevent this.

remain inside the vehicle, trauma from being thrown around
inside the vehicle can be fatal. Statistics indicate that a high
percentage of the deaths in rollover accidents involve riders
ejected from the vehicle.

Newton's first law of motion is vividly illustrated in auto-
mobile accidents. An object keeps moving in a straight line
with constant speed unless acted upon by an external force.
Air bags and seat belts can provide that force, but seat belts
provide better protection for all passengers in rollover
accidents.
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The higher the speed, the steeper the required banking angle
because a steeper angle produces a larger horizontal com-
ponent for the normal force. Fortunately, since both the
normal force and the required centripetal force are propor-
tional to the mass of the car, the same banking angle will
work for vehicles of different mass.

A banked curve is designed for a particular speed. Since
friction is also usually present, the curve can be negotiated
at a range of speeds above and below the intended speed.
Friction and the normal force combine to produce the re-
quired centripetal acceleration.

If the road is icy and there is no friction, the curve can
still be negotiated at the intended speed. Speeds higher than
that speed will cause the car to fly off the road, just as on
a flat road surface. Speeds too low, on the other hand, will
cause the car to slide down the icy banked incline toward
the center of the curve.

What forces are involved in riding
a Ferris wheel?

Riding a Ferris wheel is another example of circular mo-
tion that many of us have experienced. On a Ferris wheel,
the circular motion is vertical, unlike the horizontal circles
of our previous examples.

Figure 5.9 shows the forces exerted on the rider at the
bottom of the circle as the Ferris wheel turns. At this point
in the ride, the normal force acts upward and the weight
downward. Since the centripetal acceleration of the rider is
directed upward, toward the center of the circle, the net
force acting on the rider must also be upward. In other

figure 5.9 At the bottom of the cycle, the weight of the
rider and the normal force exerted by the seat combine to
produce the centripetal acceleration for a rider on a Ferris wheel.

words, the normal force of the seat pushing on the rider
must be larger than the weight of the rider.

By Newton’s second law, the net force must be equal to
the mass times the centripetal acceleration. In this case, the
centripetal force is the difference of two forces, the upward
normal force and the downward weight of the rider, so

Fow =N—W = ma.

net C

Since the normal force is larger than her weight, she feels
heavy in this position (N = W + ma,). The situation is
similar to that in an upward accelerating elevator (see
everyday phenomenon box 4.2).

As the rider moves up or down along the sides of the
circle, a horizontal component of the normal force is needed
to provide the centripetal acceleration. This horizontal com-
ponent may be provided by the frictional force exerted by
the seat on the rider, by the seat back pushing on the rider
on the left side of the cycle, or by a seat belt or hand
bar on the right side of the cycle. The latter case is more
exciting.

At the top of the cycle, the weight of the rider is the
only force (other than a possible seat-belt force) in the ap-
propriate direction to produce the centripetal acceleration.
Again, from Newton’s second law, the net force must
equal the mass of the rider times the centripetal acceler-
ation, which is now directed downward. This yields the
relationship

Fite = W — N = ma.

As the speed gets larger and the centripetal acceleration,
a, = V2, increases, the normal force must get smaller to
increase the total force. Usually, the top speed of the Ferris
wheel is adjusted so that the normal force is small when
the rider is at the top of the cycle. Since the force exerted
by the seat on the rider is small, the rider feels light, part
of the thrill of the ride.

If there is one nearby, take a break and go ride a Ferris
wheel. There is nothing like direct experience to bring
home the ideas we have just described. As you ride, try to
sense the direction and magnitude of the normal force. The
light feeling at the top and the sense of plunging outward
in the downward portion of the cycle are what the price of
the ride is all about.

A centripetal force is any force or combination of forces
that produces the centripetal acceleration for an object
moving around a curve. In the case of a car moving on a
flat road surface, the centripetal force is provided by fric-
tion. If the road surface is banked, the normal force of the
road pushing on the tires of the car also helps. In the case
of a Ferris wheel, the weight of the rider and the normal
force exerted by the seat on the rider combine to provide
the centripetal force. We use Newton's laws of motion to
identify the forces and analyze each situation.
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5.3 Planetary Motion

Have you ever watched Venus or Mars in the night sky and
wondered how and why their positions change from night to
night? From the standpoint of the history of science, the
motions of the planets are the most important examples of
centripetal acceleration. These objects are a part of our every-
day experience, yet many of us are surprisingly unaware of
how they move. How do the sun, the stars, and the planets
move? How can we make sense of the motions?

Early models of the heavens

Observing the heavens was probably a more popular pastime
when there were fewer roofs over our heads. If you have ever
spent a night in a sleeping bag under the stars, you probably
experienced a sense of wonder and amazement at all of those
bright objects out there. If you spent night after night observ-
ing the stars, you might notice, as the ancients did, that some
of the brightest objects move relative to the other stars.

These wanderers are the planets. The so-called fixed
stars always maintain the same relative position to one
another as they move across the sky (fig. 5.10). The Big
Dipper never seems to change its shape, but the planets
roam about with respect to the fixed stars in a regular but
curious fashion. Their motions excited the curiosity of
ancient observers of the heavens. They were carefully
tracked and often incorporated into religious and cultural
beliefs.

Suppose you were an early philosopher-scientist trying to
make sense of these motions. What kind of model might you
develop? Some features seem simple and regular. The sun, for
example, moves across the sky each day, from east to west, as
if it were at the end of an enormously long and invisible rope
tethered at the center of the Earth. The stars follow a similar
pattern. Their apparent motion as seen from Earth could be
explained by picturing them as lying on a giant sphere that
revolves around the Earth. This Earth-centered or geocentric
view of the universe seemed natural and reasonable.

The moon also moves across the sky in an apparently
circular orbit around the Earth. Unlike the stars, the moon
does not reappear in the same position each night. Instead,
it goes through a series of regular changes in position and
phase in a cycle of approximately 30 days. How many of
us can provide a clear explanation of the phases of the
moon? The motion of the moon will be considered more
fully in the final section of this chapter.

Early models of the motions of the heavenly bodies
developed by Greek philosophers involved a series of con-
centric spheres centered on the Earth. Plato and others of
his time viewed spheres and circles as ideal shapes that
would reflect the beauty of the heavens. The sun, the moon,
and the five planets known then each had its own sphere.
The fixed stars were on the outermost sphere. These
spheres were thought to revolve around the Earth in ways
that explained the positions of the heavenly bodies.

figure 5.10 A time-lapse photograph showing the apparent
motion of stars in the northern sky. Polaris (the “North star”) lies
near the center of the pattern and does not appear to move very
much. The entire pattern appears to rotate during the night about
a point near Polaris.

figure 5.11  An example of the retrograde motion of Mars
relative to the background of fixed stars. These changes take
place over a period of several months.

Unfortunately, the planets do not behave as though they
are on a continuously revolving sphere. The planets some-
times appear to move backward relative to their normal
direction of motion against the background of the fixed
stars. We call this retrograde motion. It takes a few months
for Mars to trace one of these retrograde patterns (fig. 5.11).

To explain the apparent retrograde motion of these plan-
ets, Ptolemy (Claudius Ptolemaeus), working in the second
century A.D., devised a more sophisticated model than the
one used by earlier Greek philosophers. Ptolemy’s model
used circular orbits rather than spheres but was still geo-
centric. He invented the idea of epicycles, circles that
rolled along the larger basic orbit of the planet around the
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figure 5.12  Ptolemy's epicycles were circles rolling along
the circular orbits of the planets. This model explained the
retrograde motion observed for the outer planets.

Earth (fig. 5.12). The epicycles accounted for the retro-
grade motion and could also be used to explain other irreg-
ularities in planetary orbits.

Ptolemy’s model accurately predicted where to find the
planets at any given time of any year. As more accurate ob-
servations became available, refinements were needed, how-
ever, to improve the predictions. In some cases, this meant
adding epicycles to epicycles, but the basic scheme of cir-
cles was retained. Ptolemy’s system became part of the
accepted knowledge during the Middle Ages and was incor-
porated, along with many of Aristotle’s works, into the
teachings of the Roman Catholic Church and the emerging
European universities.

How did the Copernican model differ
from Ptolemy’s conception?

Ptolemy’s model is not the one that you were introduced to
in elementary school. It has been superseded. During the
sixteenth century, a Polish astronomer, Nicolaus Coperni-
cus (1473-1543) put forth a sun-centered or heliocentric
view, later championed by Galileo. Copernicus was not the
first to suggest such a model, but earlier heliocentric versions
had not taken hold. Copernicus spent many years working
out the details of his model, but he did not publish it until
within a year of his death.

Galileo was an early advocate of the Copernican model
and promoted it more vigorously than Copernicus himself.
In 1610, hearing of the invention of the telescope, Galileo
built his own improved version and turned it to the heav-
ens. He discovered that the moon has mountains, that Jupi-
ter has moons, and that Venus goes through phases like our
moon. He showed that the phases of Venus could be
explained better by the Copernican model than by a geo-
centric model. Galileo became famous throughout Europe
for his discoveries and ended up in trouble with church
authorities, a problem not to be taken lightly in his day.
People had been burned at the stake for similar offenses.

Copernicus placed the sun at the center of the circular
orbits of the planets and demoted the Earth to the status of
just another planet. Also, the Copernican model requires that
the Earth rotate on an axis through its center—thus explain-
ing the daily motions of the sun and the other heavenly bod-
ies (including the fixed stars). This idea was revolutionary at
the time. Why are we not blown away by the enormous
winds that rotation might produce? Perhaps the air near the
Earth’s surface is dragged along with the Earth.

The advantage of the Copernican view is that it does
not require complicated epicycles to explain retrograde
motion, although epicycles were still used to make other
adjustments to planetary orbits. Retrograde motion comes
about because the Earth is orbiting the sun along with the
other planets. The position of Mars appears to change as
both Mars and Earth move in the same direction against the
background of the fixed stars (fig. 5.13). As the more rap-
idly moving Earth passes Mars, Mars slips behind and
briefly appears to move backward.

Accepting the Copernican model meant giving up the
Earth-centered view of the universe to endorse what
seemed to some to be an absurd proposition: that the Earth
rotates, with a frequency of one cycle per day. Since an
approximation of the radius of Earth was known (6400
km), rotation implied that we must be moving at roughly
1680 km/h (or just over 1000 MPH) if we are standing near
the equator on the Earth! We certainly do not feel that
motion.

Because Copernicus assumed the planets’ orbits to be
circular, the accuracy of his model for predicting was no
better than Ptolemy’s model. In fact, it required some ad-
justments (for which Copernicus used epicycles) just to
make it agree with already known astronomical data. Set-
tling the controversy generated by the competition between
the two models called for more accurate observations, a
project undertaken by a Danish astronomer, Tycho Brahe
(1546-1601).

Tycho was the last great naked-eye astronomer. He devel-
oped a large quadrant (fig. 5.14) that he used to make very
accurate sightings of the positions of the planets and stars. It
was capable of measuring these positions to an accuracy of ¥so
of a degree, considerably better than previously available
data. Tycho spent several years painstakingly collecting data
on the precise positions of the planets and other bodies—all
without the benefit of a telescope.
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figure 5.13 As the Earth passes the more slowly moving Mars, Mars appears to move backward as seen against the
background of the much more distant fixed stars. (Not drawn to scale.)

figure 5.14 Tycho Brahe's large quadrant
permitted accurate measurement of the positions
of the planets and other heavenly bodies.

Kepler's laws of planetary motion

Analyzing the data collected by Tycho fell to his assistant,
Johannes Kepler (1571-1630), after Tycho’s death. It was
an enormous task requiring the transformation of the data
to coordinates around the sun and then numerical trial and
error to find regular planetary orbits. It was already known
that these orbits were not perfect circles. Kepler was able
to show that the orbits of the planets around the sun were
ellipses, with the sun at one focus.

An ellipse can be drawn by attaching a string between
two fixed foci and then moving a pencil around the perimeter

axis

figure 5.15 An ellipse can be drawn by fixing a string at
two points (foci) and moving a pencil around the path permitted
by the string.

of the path allowed by the string (fig. 5.15). A circle is a spe-
cial case of an ellipse in which the two foci coincide. The
orbits of most of the planets are very close to being circles,
but Tycho’s data were so precise that they showed a differ-
ence between a perfect circle, on one hand, and an ellipse
with two closely spaced foci. Kepler’s first law of planetary
motion states that the orbits of the planets are ellipses.
Kepler’s other two laws of planetary motion came after
even more laborious numerical trial and error with Tycho’s
data. Kepler’s second law describes how the planets move
faster when they are nearer to the sun, so that an imaginary
line drawn from the sun to the planet moves through equal
areas in equal times regardless of where it is in its orbit
(fig. 5.16)*. The first two laws were published in 1609.
The third law (published in 1619) states a relationship
between the average radius of the orbit and the time taken

*The second law turns out to be a consequence of conservation of angu-
lar momentum, which is discussed in chapter 8.
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figure 5.16 Because planets move faster when nearer to
the sun, the radius line for each planet sweeps out equal areas
in equal times (Kepler's second law). In other words, the two
blue sections each cover the same span of time and have the
same area. (Not drawn to scale.)

for one complete cycle around the sun (the period of the
orbit). Kepler found his third law after trying many other pos-
sible relationships between the periods, T, and the average
radii of the planetary orbits, r. To a high degree of accuracy,
he found that the ratio of the square of the period to the
cube of the radius (T2/r%) was the same for all of the known
planets (See example box 5.2). The behavior of the planets
is surprisingly regular. Kepler published his findings in
papers that also contained elaborate speculations on numer-
ical mysticism and musical harmonies associated with the
planets. Some of these ideas must have seemed strange to
Galileo and others who admired Kepler’s work.

Kepler’s laws added to the accuracy with which we can
predict the positions of the planets as they appear to wander
among the fixed stars. Like the Copernican model, Kepler’s
model was heliocentric (sun-centered), so it supported
Galileo’s efforts to overthrow the geocentric (Earth-centered)
model of Ptolemy. More importantly, however, Kepler’s laws
described a new set of precisely stated relationships that
called for explanation. The stage was set for Isaac Newton to
incorporate these relationships into a grand theory that
explains both celestial mechanics (the motion of the heavenly

Kepler's Laws of Planetary Motion

1. The planets all move in elliptical orbits about the
sun, with the sun located at one focus of the ellipse.

2. An imaginary line drawn from the sun to any
planet moves through equal areas in equal inter-
vals of time.

3. If T is the amount of time taken for the planet to
complete one full orbit around the sun (period)
and if r is the average radius of the distance of the
orbit around the sun for each planet, then the ratio
of the square of the period to the cube of the radius
(T?/r3) is the same for all of the known planets.

example box 5.2

Sample Exercise: Using Kepler's Third Law

How long does it takes Mars to complete one orbit around
the sun? The distance of Mars from the sun is
approximately 1.5 astronomical units (AU). (An AU is the
average distance from the Earth to the sun; thus the
radius of the earth’s orbit, Reartn, is just 1 AU.)

Rearrs = 1AU = the distance from Earth to the sun
R = 1.5 AU = the distance from Mars to the sun
Teatn = 1 Earth year (yr)

Mars

Twars = 2 (in Earth years)

Kepler's third law for this case can be stated as:

3 3
R Mars R Earth

2 2 :
T Mars T Earth
Cross multiplying, we find RE, - Taars = Ritars” Tearth:

Therefore,

3 2
T2 = Rivars " TEarth
Mars —

R:IgEarth
Inserting the given values:
, (L.5AU)3. (1yr)?2
Mars — (1AU) 3 )
TZrs = 3.4yr? (notice that the AU units cancel)

Tuae = V3.4yr2 ~18 Earth years.

bodies) and the more mundane motion of everyday objects
near the Earth’s surface.

Many of the early models for describing the motion of the
planets were geocentric (Earth-centered). Ptolemy’s model
included epicycles to explain the apparent retrograde motion
of the planets. Copernicus introduced a heliocentric
(sun-centered) model, which explained retrograde motion
more simply. This model was championed by Galileo.
Galileo was one of the first scientists to use a telescope
systematically, and he made significant discoveries
supporting the heliocentric view. Kepler refined the
heliocentric model by showing that planetary orbits are
ellipses with some surprising regularities.

5.4 Newton’s Law of Universal
Gravitation

Planetary motion and centripetal acceleration lead us to the
next question. If the planets are moving in curved paths
around the sun, what force must be present to produce the
centripetal acceleration? You are probably aware that gravity
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is involved, but that involvement was not at all obvious when
Newton began his work. How did Newton put it all together?

What was Newton's breakthrough?

Newton realized that there is a similarity between the mo-
tion of a projectile launched near the Earth’s surface and the
orbit of the moon. To illustrate this point, Newton produced
a famous drawing similar to that shown in figure 5.17.

The idea is simple but earthshaking. Imagine, as Newton
did, a projectile being launched horizontally from an incred-
ibly high mountain. The larger the launch velocity, the far-
ther away from the base of the mountain the projectile will

figure 5.17 In a diagram similar to this, Newton imagined
a projectile fired from an incredibly high mountain. If fired with a
large enough horizontal velocity, the projectile falls toward the
Earth but never gets there.

land. At very large launch velocities, the curvature of the
Earth becomes a significant factor. In fact, if the launch
velocity is large enough, the projectile would never reach
the Earth’s surface. It keeps falling, but the curvature of the
Earth falls away, too. The projectile goes into a circular
orbit around the Earth.

Newton’s insight was that the moon, under the influ-
ence of gravity, is actually falling, just as a projectile does.
The moon, of course, is at a distance from the Earth much
greater than the height of any mountain. The same force that
accounts for the acceleration of objects near the Earth’s sur-
face, as described by Galileo, explains the orbit of the moon.

Newton'’s law of universal gravitation

From Galileo’s work, Newton knew that near the Earth’s
surface the gravitational force is proportional to the mass
of the object, F = mg. Mass, then, should be involved in
any more general expression for the gravitational force.

Does the gravitational force vary with distance, though,
and, if so, how? The idea that a force could influence two
masses separated by a large distance was hard to accept
in Newton’s day (and, in some ways, even now). If such
a force exists, we would expect that this force “acting at a
distance” would decrease in strength as the distance
increases. Using geometrical reasoning (fig. 5.18), other
scientists had speculated that the force might be inversely
proportional to the square of the distance r between the
masses, but they could not prove it.

At this point, Kepler’s laws of planetary motion and the
concept of centripetal acceleration came into play. Newton
was able to prove mathematically that Kepler’s first and third
laws of planetary motion could be derived from the assump-
tion that the gravitational force between the planets and the
sun falls off with the inverse square of the distance. The
proof involved setting the assumed 1/r? force equal to the
required centripetal force in Newton’s second law of motion.
All of Kepler’s laws are consistent with this assumption.
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figure 5.18 If lines are drawn radiating outward from a point mass, the areas intersected by these lines increase in proportion to r2.
Does this suggest that the force exerted by the mass on a second mass might become weaker in proportion to 1/r??
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figure 5.19 The gravitational force is attractive and acts
along the line joining the center of the two masses. It obeys
Newton’s third law of motion (F, = —F,).

The proof that Kepler’s laws could be explained by a
gravitational force proportional to the masses of two inter-
acting objects, and inversely proportional to the square of
the distance between the objects, led to Newton's law of
universal gravitation. This law and Newton’s three laws
of motion are the fundamental postulates of his theory of
mechanics. The law of gravitation can be stated as

The gravitational force between two objects is proportional to
the mass of each object and inversely proportional to the
square of the distance between the centers of the masses:
Gm;m,
=—

where G is a constant. The direction of the force is attractive
and lies along the line joining the centers of the two masses
(fig. 5.19).

For this statement to be completely valid, the masses in
question must be either point masses or perfect spheres.

In Newton’s law of gravitation, G is the universal grav-
itational constant. It has the same value for any two ob-
jects. Newton did not actually know the value of this con-
stant, because he did not know the masses of the Earth, the
sun, and the other planets. Its value was determined
more than a hundred years later in an experiment done
by Henry Cavendish (1731-1810) in England. Cavendish
measured the very weak gravitational force between two
massive lead balls for different distances of separation. In
metric units, the value of G is

G = 6.67 X 107 N-m%kg?.

The power-of-10 notation (see appendix B) is useful
here because G is a very small number. The power —11
means that the decimal point is located eleven places to the
left of where it is shown. If we did not use power-of-10
notation, the number would appear as

G = 0.000 000 000 066 7 N-m?/kg?.

Because of the small size of this constant, the gravitational
force between two ordinary-sized objects, such as people,
is extremely small and not usually noticeable. Cavendish’s
experiment required real ingenuity to measure such a weak
force.

figure 5.20 For the Earth and an object near the Earth’s
surface, the distance between the centers of the two objects is
equal to the radius of the Earth.

How is weight related to the law
of gravitation?

Suppose that one of the masses is a planet or other very
large object. The force of gravity then can be quite large
because one of the masses is very large. Consider the force
exerted on a person standing on the surface of the Earth. As
figure 5.20 illustrates, the distance between the centers of
the two objects, the person and the Earth, is essentially the
radius of the Earth, r..

From Newton’s law of gravitation, the force on the per-
son must be F = Gmm,/r.2, where m is the mass of the
person and m, is the mass of Earth. Since this gravi-
tational force is the weight of the person, we can also
express the force as F = W = mg. For these two expres-
sions for F to be the same, g, the gravitational acceleration,
must be related to the universal gravitational constant G by
g = Gm,/r2

The gravitational acceleration near the Earth’s surface g is
therefore not a universal constant. It will be different on dif-
ferent planets and even slightly different at different points
on the Earth because of variations in the radius of the Earth
and other factors. The constant G is a universal constant of
nature that can be used to find the gravitational acceleration
for any planet if we know the radius and mass of the planet.

If we know the gravitational acceleration near the
Earth’s surface, it is easier to use the expression F = mg
to compute a weight than to use the law of universal grav-
itation. This computation is done both ways in the sample
exercise in example box 5.3. Either way, we get the same
result. The weight of the 50-kg person is approximately
490 N. The mass of Earth, 5.98 X 10%* kg, is a very large
number that was first determined by Cavendish when he
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example box 5.3

Sample Exercise: Gravity, Your Weight, and the
Weight of the Earth

The mass of the Earth is 5.98 X 10%* kg, and its average
radius is 6370 km. Find the gravitational force (the weight)
of a 50-kg person standing on Earth’s surface

a. by using the gravitational acceleration.
b. by using Newton’s law of gravitation.
a. m = 50 kg F=W=mg
g = 9.8 m/s? = (50 kg)(9.8 m/s?)
F =2 = 490N
b. m, = 5.98 X 10% kg
r, = 6.37 X10°m
F =W = Gmm,/r2

(667 x 10~ Nm?/kg?)(50 kg)(5.98 X 10%kg)
(6.37 X 106 m)?

= 490 N

Most scientific calculators will handle the scientific
notation directly. The powers add for multiplication and
subtract in division.

measured the universal constant G. In a sense, Cavendish
weighed the Earth by making that measurement.

If we wanted to know the gravitational force exerted on
a 50-kg person in a space capsule several hundred kilome-
ters above the Earth, we would have to use the more gen-
eral expression in Newton’s law of gravitation. Likewise, if
we wanted to know the weight of this person when stand-
ing on the moon, we would need to use the mass and radius
of the moon in place of those of the Earth in our calcula-
tion. The weight of a 50-kg person on the moon is only
about ¥6 the value of 490 N that we computed for the same
person standing on Earth. The expression F = mg is valid
only near the surface of the Earth.

The weaker gravitational force and acceleration of the
moon are explained by the moon’s smaller mass. Since our
muscles are adapted to conditions on Earth, we would find
that our smaller weight on the moon makes some amazing
leaps and bounds possible. The smaller gravitational force
on objects near the moon’s surface also explains why the
moon has essentially no atmosphere. Gas molecules escape
the gravitational pull of the moon much more readily than
they can from the Earth.

Newton recognized that the moon is falling toward the
Earth much like projectiles moving near the Earth’s surface.
He proposed that the gravitational force that explains pro-
jectile motion is also involved in the motions of the plan-
ets around the sun and of the moon around the Earth.

Newton'’s law of universal gravitation states that the grav-
itational force between two masses is proportional to the
product of the masses and inversely proportional to the
square of the distance between them. Using this law and
his laws of motion, Newton was able to explain Kepler's
laws of planetary motion as well as the motion of ordi-
nary objects near the Earth’s surface.

5.5 The Moon and Other Satellites

The moon has fascinated people as long as humanity has
existed and wondered about nature. In the twentieth cen-
tury, we have actually visited the moon for the first time
and brought back samples from its surface. That visit has
not dulled the romance that the moon holds for us, but it
may have reduced its mystery.

How are the phases of the moon associated with changes
in its position? Are Kepler’s laws of planetary motion valid
for the moon? How are the orbits of other satellites of
Earth similar to the moon’s?

How do we explain the phases of the moon?

The moon was the only Earth satellite available to Newton
and his predecessors to study. The moon played a pivotal
role in Newton’s thinking and in the development of his law
of gravitation. Observations of the moon and its phases, how-
ever, go back much farther than Newton’s day. The moon
figures in many early religions and rituals. Its course must
have been carefully followed even in prehistoric times.

How do we explain the phases of the moon? Is the time
that the moon rises in the evening related to whether it will
be a full moon or not? Moonlight is reflected sunlight. So,
to understand the moon’s phases, we have to take into ac-
count the positions of the sun, the moon, and the observer
(fig. 5.21). When the moon is full, it is on the opposite side
of the Earth from the sun, and we see the side that is fully
illuminated by the sun. The full moon rises in the east
about the same time that the sun sets in the west. These
events are determined by the Earth’s rotation.

Because Earth and the moon are both small compared
to the distances between Earth, the moon, and the sun, they
do not usually get in the way of light coming from the sun.
When they do, however, there is an eclipse. During a lunar
eclipse, Earth casts a full or partial shadow on the moon.
From figure 5.21, we can see that a lunar eclipse can only
occur during a full moon. A solar eclipse happens when
the moon is in the right position to cast a shadow on the
Earth. During what phase of the moon will this occur?

At other times during the moon’s 27.3-day revolution
around the Earth, we do not see all of the illuminated side
of the moon; we see a crescent or a half-moon or some
shape in between (fig. 5.22). The new moon occurs when
the moon is on the same side of Earth as the sun and is
more or less invisible. When we are a few days on either
side of the new moon, we see the familiar crescent.
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figure 5.21 The phases of the moon depend on the positions
of the sun, the moon, and the Earth. (Not drawn to scale.)

When the moon is between full moon and new moon, it
can often be seen during daylight. In particular, when it is
near half-moon, it rises around noon and sets around mid-
night (or vice versa, depending on where it is in its cycle).
Under just the right conditions near sunset or sunrise, we
can sometimes see the dark portion of the crescent moon
illuminated by earthshine.

everyday phenomenon

Explaining the Tides

The Situation. Anyone who has lived near the ocean is famil-
iar with the regular variation of the tides. Roughly twice a day
the tides go in and go out again. The actual cycle of two high
tides and two low tides is closer to 25 hours. Sometimes
high tide is higher and low tide is lower than at other times—
these times correspond to the full moon or the new moon.
The times when high tides and low tides happen shift
from day to day because of their 25-hour cycle, but the pat-
tern repeats monthly. How do we explain this behavior?

figure 5.22  Photographs of different phases of the moon.
When during the day will each rise and set?

The next time you see the moon, think about where it is
in the sky, when it will rise and set, and how this is related to
its phase. Better yet, try explaining this to a friend. You too
can be the wizard who predicts the motions of the heavens.

Does the moon obey Kepler's laws?

The moon’s orbit around Earth is more complicated than
those of the planets because two bodies, Earth and the sun,
exert strong forces on the moon, rather than just one (fig.
5.23). Earth is much closer to the moon than the sun is, but
the sun has a much larger mass than Earth, so the sun’s
effect is still appreciable. First, let’s consider just the effects
of Earth on the moon’s motion.

The Analysis. The monthly cycle and the correlations of the
highest tides with the phase of the moon suggest a lunar
influence. Both the moon and the sun exert gravitational
forces on the Earth. The sun exerts the stronger force because
of its much larger mass, but the moon is much closer, and
variations in its distance from Earth may be significant. The
gravitational force depends on 1/r?, so its strength will vary
as the distance r varies, as indicated in the drawing on

page 95.

High tide

E E

Low tide

High tide and low tide produce different water levels at the dock.

(continued)
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The physics of the situation is the same as for the orbits
of the planets around the sun. The gravitational attraction
between the moon and Earth provides the centripetal
acceleration to keep the moon moving in its roughly circu-
lar orbit. By Newton’s law of gravitation, the gravitational
force acting on the moon is proportional to 1/r2, where r
is the distance between the center of the moon and the cen-
ter of Earth. The tides can be explained by this depen-
dence of the gravitational force on distance. (See everyday
phenomenon box 5.2.)

Like the planets, the moon’s orbit is an ellipse but with
the Earth at one focus of the ellipse rather than the sun. The
sun also exerts a force on the moon that distorts the ellipse,
causing the moon’s orbit around Earth to oscillate about a
true elliptical path as the moon and Earth orbit together
around the sun. Calculating these oscillations was a prob-
lem that kept mathematical physicists busy for many years.

Kepler’s first and second laws of planetary motion are
approximately true for the moon, provided that we substi-
tute the Earth for the sun in the statement of these laws.

Kepler’s third law shows some differences between the
moon and the planets. When Newton derived the expres-
sion for the ratio in Kepler’s third law, he arrived at the
expression

L.
r:  Gm,

where mg is the mass of the sun. For the moon, we would
replace the mass of the sun with the mass of Earth. We get
a different ratio for the moon’s orbit around Earth than for
the orbits of the planets around the sun.

Orbits of artificial satellites

Any satellite orbiting the Earth must have the same value
for the ratio T2/r2 as the moon. Kepler’s third law holds for
any satellite of Earth, then, as long as we keep in mind that
the ratio will not have the same value as it does for the
orbits of the planets. The value of this ratio for Earth satel-
lites is calculated either from the Earth’s mass or from the

rn

n

Because it depends on distance, the gravitational force per unit mass
exerted by the moon on different parts of the Earth (and water in the
oceans) gets weaker as we move from the side nearer the moon to
the far side. (Not drawn to scale; the bulges here are greatly
exaggerated.)

Since water is a fluid (except when frozen), the water that
makes up the oceans moves over the more rigid crust of
Earth. The primary force acting on the water is the gravita-
tional attraction of Earth that holds the water to the Earth’s
surface. The gravitational force exerted by the moon on the
water is also significant, however, and its strength per unit
mass is greatest on the side of Earth closest to the moon and
weakest on the opposite side of Earth because of the differ-
ence in distance.

This difference in strength of the moon’s pull produces a
bulge in the water surface on both sides of the Earth. The
bulge on the side nearest the moon results from the water
being pulled toward the moon by a stronger force per unit

mass than the force per unit mass exerted on the rest of the
Earth. This produces a high tide. The water will rise nearer
to the top of the dock.

On the opposite side of the Earth, it is the Earth that is
being pulled by the moon with a stronger force per unit mass
than the water. Since the Earth is pulled away (slightly) from
the water, this also produces a high tide. The forces exerted
by the moon are small compared to the force that the water
and the Earth exert on each other but are still large enough
to produce the tides.

When the sun and the moon both line up with the Earth
during the new moon or full moon, the sun also contributes
to this difference in forces and produces bulges on either
side of the Earth, adding to those produced by the moon.

The highest tides occur during a full moon or a new moon
because of this combination of the moon and sun.

Why is the cycle 25 hours rather than 24 hours? The high-
tide bulges occur on either side of Earth along the line joining
the moon and the Earth. The Earth rotates underneath these
bulges with a period of 24 hours, but in this time, the moon
also moves, since it orbits Earth with a period of 27.3 days. In
one day, therefore, the moon has moved through roughly /27
of its orbital cycle, causing the time when the moon again
lines up with a given point on Earth to be a little longer than
1 day. This additional time is approximately /27 of 24 hours,
or a little less than an hour.

This model was conceived by Newton and accounts neatly
for the major features of the tides. The variation of the gravi-
tational force with distance is the key to the explanation.
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figure 5.23 The moon is influenced by gravitational attraction to both the Earth and the sun. (Distances and sizes

not drawn to scale.)

values of the period and average distance of the moon’s
orbit.

Any artificial satellite of Earth must have the same value
for this ratio. If its distance from the center of the Earth r
is smaller than the moon’s distance, its orbital period T
must also be smaller to keep the ratio T2/r3 the same. Using
this ratio, we can calculate the appropriate distance from
Earth for any satellite if we know its orbital period. For
example, a satellite with a synchronous orbit has a period
of 24 hours, which keeps it above the same point on the
Earth as Earth rotates. From the third-law ratio, we find a
distance r of 42 000 km for such a satellite (measured from
the center of the Earth). Since Earth’s radius is 6370 km, this
is roughly seven times the radius of the Earth. Quite a ways
up, but not nearly as high as the moon.

Most artificial satellites are even closer to the Earth. The
original Russian satellite, Sputnik, for example, had a period
of about 90 minutes or 1.5 h. Using the third-law ratio, this
yields an average distance from the center of the Earth of
6640 km. Subtracting Earth’s radius, 6370 km, indicates
that this distance is only 270 km above the Earth’s surface.
The shorter the period, the closer the satellite is to the
Earth. The orbital period cannot be much shorter than
Sputnik’s before atmospheric drag becomes too large for
motion to be sustained. Obviously, the orbit cannot have a
radius smaller than Earth’s radius.

The orbits of different satellites are planned to meet dif-
ferent objectives. Some are close to circular, others much
more elongated ellipses (fig. 5.24). The plane of the orbit
can pass through the poles of the Earth (polar orbit) or take
any orientation between the poles and the equator. It all de-
pends on the mission of the satellite.

Artificial satellites have become a routine feature of
today’s world that did not exist before 1958 when Sputnik
was launched. Their uses are many, including communica-
tions, surveillance, weather observations, and various military
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figure 5.24 The orbits of different artificial satellites can
have different orientations and elliptical shapes.

applications. The basic physics of their behavior is accounted
for by Newton’s theory. If Newton could return, he might
be amazed at the developments, but for him, the analysis
would be routine.

The motion of the moon around Earth is governed

by the same principles as that of the planets around the
sun. The gravitational force provides the centripetal accel-
eration that keeps the moon in an approximately elliptical
orbit. The moon is illuminated primarily by the sun, and
the phases of the moon can be explained by the moon's
position with regard to the sun and Earth. The full moon
occurs when the sun and moon are on opposite sides of
the Earth. Other satellites of Earth are governed by these
principles, but Kepler's third-law ratio has a different value
for satellites of Earth (including the moon) than it does for
the planets. The moon is no longer alone; it has been
joined by many much smaller objects buzzing around the
Earth in lower orbits.
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summary

Objects moving in circular paths are accelerated because the
direction of the velocity vector continually changes. The forces
involved in producing this centripetal acceleration were examined
for the motion of a ball on a string, cars rounding curves, a rider
on a Ferris wheel, and finally the planets moving around the sun.
The force providing the centripetal acceleration for planetary
motion is described by Newton’s law of gravitation.

l Centripetal acceleration. Centripetal acceleration is
the acceleration involved in changing the direction of the velocity
vector. It is proportional to the square of the speed of the object
and inversely proportional to the radius of the curve.

Av

2 Centripetal forces. A centripetal force is any force or
combination of forces that acts on a body to produce the cen-
tripetal acceleration, including friction, normal forces, tension in
a string, or gravity. The net force is related to the centripetal ac-
celeration by Newton’s second law.

F.=ma,

3 Planetary motion. Kepler’s three laws of planetary
motion describe the orbits of the planets around the sun. The
orbits are ellipses that sweep out equal areas in equal times (the
first and second laws). The third law states a relationship between
the period of the orbit and the distance of the planet from the sun.

2
T— = constant
rs3

4 Newton’s law of universal gravitation. Newton’s
law of universal gravitation states that the gravitational force
between two masses is proportional to each of the masses and
inversely proportional to the square of the distance between the
masses. Using this law with his laws of motion, Newton could
derive Kepler’s laws of planetary motion.

my my
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5 The moon and other satellites. The moon’s orbit
around Earth can also be described by Kepler’s laws, provided we
substitute the mass of Earth for that of the sun in the expression
for the period. Artificial satellites have the same ratio T2/r2 as that
for the moon.
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questions

* = more open-ended questions, requiring lengthier responses, suitable
for group discussion

Q = sample responses are available in appendix D

Q = sample responses are available on the website

QL.

Q2.

Q3.

Q4.

*Q5.

Q6.

Q7.

Q8.

Qo.

Suppose that the speed of a ball moving in a horizontal cir-
cle is increasing at a steady rate. Is this increase in speed
produced by the centripetal acceleration? Explain.

A car travels around a curve with constant speed.

a. Does the velocity of the car change in this process?
Explain.

b. Is the car accelerated? Explain.

Two cars travel around the same curve, one at twice the
speed of the other. After traveling the same distance, which
car, if either, has experienced the larger change in velocity?
Explain.

A car travels the same distance at constant speed around
two curves, one with twice the radius of curvature of the
other. For which of these curves is the change in velocity of
the car greater? Explain.

The centripetal acceleration depends upon the square of the
speed rather than just being proportional to the speed. Why
does the speed enter twice? Explain.

A ball on the end of a string is whirled with constant speed
in a counterclockwise horizontal circle. At point A in the
circle, the string breaks. Which of the curves sketched
below most accurately represents the path that the ball
will take after the string breaks (as seen from above)?
Explain.

@@
‘\ @
©

Q6 Diagram

Before the string breaks in question 6, is there a net force
acting upon the ball? If so, what is its direction? Explain.

For a ball being twirled in a horizontal circle at the end of
a string, does the vertical component of the force exerted
by the string produce the centripetal acceleration of the
ball? Explain.

A car travels around a flat (nonbanked) curve with constant

speed.

a. Sketch a diagram showing all of the forces acting on
the car.

b. What is the direction of the net force acting on the car?
Explain.

Q10.

Q11.

*Q12.

Q13.

*Q14.

Q15.

*Q16.

Q17.

Q18.

Q19.

Q20.

Q2L
Q22.

Q23.

Is there a maximum speed at which the car in question 9
will be able to negotiate the curve? If so, what factors
determine this maximum speed? Explain.

If a curve is banked, is it possible for a car to negotiate
the curve even when the frictional force is zero due to
very slick ice? Explain.

If a ball is whirled in a vertical circle with constant speed,
at what point in the circle, if any, is the tension in the
string the greatest? Explain. (Hint: Compare this situation
to the Ferris wheel described in section 5.2.)

Sketch the forces acting upon a rider on a Ferris wheel
when the rider is at the top of the cycle, labeling each
force clearly. Which force is largest at this point, and
what is the direction of the net force? Explain.

In what way did the heliocentric view of the solar system
proposed by Copernicus provide a simpler explanation
of planetary motion than the geocentric view of Ptolemy?
Explain.

Did Ptolemy’s view of the solar system require motion of
the Earth, rotational or otherwise? Explain.

Heliocentric models of the solar system (Copernican or
Keplerian) require that the Earth rotate on its axis produc-
ing surface speeds of roughly 1000 MPH. If this is the
case, why do we not feel this tremendous speed? Explain.

How did Kepler’s view of the solar system differ from
that of Copernicus? Explain.

Consider the method of drawing an ellipse pictured in fig-
ure 5.15. How would we modify this process to make the
ellipse into a circle, which is a special case of an ellipse?
Explain.

Does a planet moving in an elliptical orbit about the sun
move fastest when it is farthest from the sun or when it is
nearest to the sun? Explain by referring to one of Kepler’s
laws.

Does the sun exert a larger force on the Earth than that
exerted on the sun by the Earth? Explain.

Is there a net force acting on the planet Earth? Explain.

Three equal masses are located as shown in the diagram.
What is the direction of the net force acting upon m,?
Explain.

my my mg

Q22 Diagram

Two masses are separated by a distance r. If this distance
is doubled, is the force of interaction between the two
masses doubled, halved, or changed by some other
amount? Explain.
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Q24. A painter depicts a portion of the night sky as shown in the

Q25.

Q26.

diagram below, showing the stars and a crescent moon. Is
this view possible? Explain.

Q24 Diagram

At what times during the day or night would you expect the
new moon to rise and set? Explain.

At what times of the day or night does the half-moon rise
or set? Explain.

exercises

Q27.
Q2s.

*Q29.

Q30.

Q31

Q32.

Q33.

Are we normally able to see the new moon? Explain.

During what phase of the moon can a solar eclipse occur?
Explain.

A synchronous satellite is one that does not move relative
to the surface of the Earth; it is always above the same
location. Why does such a satellite not just fall straight
down to the Earth? Explain.

Is Kepler’s third law valid for artificial satellites orbiting
about the Earth? Explain.

Since the Earth rotates on its axis once every 24 hours, why
don’t high tides occur exactly twice every 24 hours?
Explain.

Why is there a high tide rather than a low tide when the
moon is on the opposite side of the Earth from the ocean
and the gravitational pull of the moon on the water is the
weakest? Explain.

Would tides exist if the gravitational force did not depend
upon the distance between objects? Explain.

El.

E2.

E3.

E4.

ES.

E6.

E7.

E8.

A ball is traveling at a constant speed of 5 m/s in a circle
with a radius of 0.8 m. What is the centripetal acceleration
of the ball?

A car rounds a curve with a radius of 25 m at a speed of
20 m/s. What is the centripetal acceleration of the car?

A ball traveling in a circle with a constant speed of 3 m/s
has a centripetal acceleration of 9 m/s?. What is the radius
of the circle?

How much larger is the required centripetal acceleration
for a car rounding a curve at 60 MPH than for one round-
ing the same curve at 30 MPH?

A 0.25-kg ball moving in a circle at the end of a string has
a centripetal acceleration of 4 m/s?. What is the magnitude
of the centripetal force exerted by the string on the ball to
produce this acceleration?

A car with a mass of 1200 kg is moving around a curve

with a radius of 40 m at a constant speed of 20 m/s (about

45 MPH).

a. What is the centripetal acceleration of the car?

b. What is the magnitude of the force required to produce
this centripetal acceleration?

A car with a mass of 1000 kg travels around a banked

curve with a constant speed of 27 m/s (about 60 MPH). The

radius of curvature of the curve is 40 m.

a. What is the centripetal acceleration of the car?

b. What is the magnitude of the horizontal component of
the normal force that would be required to produce this
centripetal acceleration in the absence of any friction?

A Ferris wheel at a carnival has a radius of 12 m and turns

so that the speed of the riders is 8 m/s.

a. What is the magnitude of the centripetal acceleration of
the riders?

EQ.

E10.

E11.

E12.

E13.

E14.

E15.

E16.

b. What is the magnitude of the net force required to pro-
duce this centripetal acceleration for a rider with a mass
of 70 kg?

What is the ratio of the Earth’s orbital period about the sun
to the Earth’s period of rotation about its own axis?

Joe has a weight of 720 N (about 162 Ib) when he is stand-
ing on the surface of the Earth. What would his weight (the
gravitational force due to the Earth) be if he doubled his dis-
tance from the center of the Earth by flying in a spacecraft?

Two masses are attracted by a gravitational force of 0.36 N.
What will the force of attraction be if the distance between
the two masses is tripled?

Two 200-kg masses (440 Ib) are separated by a distance of
1 m. Using Newton’s law of gravitation, find the magni-
tude of the gravitational force exerted by one mass on the
other.

Two masses are attracted by a gravitational force of 0.14 N.
What will the force of attraction be if the distance between
these two masses is halved?

The acceleration of gravity at the surface of the moon is
approximately ¥s that at the surface of the Earth (9.8 m/s?).
What is the weight of an astronaut standing on the moon
whose weight on Earth is 180 Ib?

The acceleration of gravity on the surface of Jupiter is
26.7 m/s?. What is the weight on Jupiter of a woman whose
weight on Earth is 110 Ib?

The time separating high tides is 12 hours and 25 minutes.
If high tide occurs at 2:10 p.m. one afternoon:

a. At what time will high tide occur the next afternoon?
b. When would you expect low tides to occur the next day?
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synthesis problems

SP1. A 0.20-kg ball is twirled at the end of a string in a horizon-

SP2.

SP3.

tal circle with a radius of 0.60 m. The ball travels with a

constant speed of 4.0 m/s.

a. What is the centripetal acceleration of the ball?

b. What is the magnitude of the horizontal component of
the tension in the string required to produce this cen-
tripetal acceleration?

c. What is the magnitude of the vertical component of the
tension required to support the weight of the ball?

d. Draw to scale a vector diagram showing these two com-
ponents of the tension and estimate the magnitude of
the total tension from your diagram. (See appendix C.)

A Ferris wheel with a radius of 12 m makes one complete

rotation every 8 seconds.

a. Using the fact that the distance traveled by a rider in
one rotation is 27, the circumference of the wheel, find
the speed with which the riders are moving.

b. What is the magnitude of their centripetal acceleration?

c. For a rider with a mass of 40 kg, what is the magnitude
of the centripetal force required to keep that rider mov-
ing in a circle? Is the weight of the rider large enough to
provide this centripetal force at the top of the cycle?

d. What is the magnitude of the normal force exerted by
the seat on the rider at the top of the cycle?

e. What would happen if the Ferris wheel is going so fast
that the weight of the rider is not sufficient to provide
the centripetal force at the top of the cycle?

A car with a mass of 900 kg is traveling around a curve with
a radius of 60 m at a constant speed of 25 m/s (56 MPH).
The curve is banked at an angle of 15 degrees.

a. What is the magnitude of the centripetal acceleration of
the car?

b. What is the magnitude of the centripetal force required
to produce this acceleration?

c. What is the magnitude of the vertical component of the
normal force acting upon the car to counter the weight
of the car?

d. Draw a diagram of the car (as in fig. 5.8) on the banked
curve. Draw to scale the vertical component of the nor-
mal force. Using this diagram, find the magnitude of the
total normal force, which is perpendicular to the surface
of the road.

e. Using your diagram, estimate the magnitude of the hor-
izontal component of the normal force. Is this compo-
nent sufficient to provide the centripetal force?

SP4.

SP5.

SP6.

Assume that a passenger in a rollover accident must turn

through a radius of 3.0 m to remain in the seat of the vehi-

cle. Assume also that the vehicle makes a complete turn in

1 second.

a. Using the fact that the circumference of a circle is 2,
what is the speed of the passenger?

b. What is the centripetal acceleration? How does it com-
pare to the acceleration due to gravity?

c. If the passenger has a mass of 60 kg, what is the cen-
tripetal force required to produce this acceleration?
How does it compare to the passenger’s weight?

The sun’s mass is 1.99 X 10%° kg, the Earth’s mass is

5.98 X 10%* kg, and the moon’s mass is 7.36 X 10? kg.

The average distance between the moon and the Earth is

3.82 X 108 m, and the average distance between the Earth

and the sun is 1.50 X 10%* m.

a. Using Newton’s law of gravitation, find the average force
exerted on the Earth by the sun.

b. Find the average force exerted on the Earth by the moon.

c. What is the ratio of the force exerted on the Earth by the
sun to that exerted by the moon? Will the moon have
much of an impact on the Earth’s orbit about the sun?

d. Using the distance between the Earth and the sun as the
average distance between the moon and the sun, find
the average force exerted on the moon by the sun.
Will the sun have much impact on the orbit of the moon
about the Earth?

The period of the moon’s orbit about the Earth is 27.3 days,
but the average time between full moons is approximately
29.3 days. The difference is due to the motion of the Earth
about the sun.

a. Through what fraction of its total orbital period does the
Earth move in one period of the moon’s orbit?

b. Draw a sketch of the sun, the Earth, and the moon with
the moon in the full moon condition. Then, 27.3 days
later sketch the moon’s position again for the new posi-
tion of the Earth. If the moon is in the same position
relative to Earth as it was 27.3 days earlier, is this a full
moon?

¢. How much farther would the moon have to go to reach
the full moon condition? Show that this represents ap-
proximately an extra two days.



Home Experiments and Observations 101

home experiments and observations

HE1.

HE2.

Tape a string half a meter or so in length securely to a
small rubber ball. Practice whirling the ball in both hori-
zontal and vertical circles and make these observations:

a. For horizontal motion of the ball, how does the angle
that the string makes with the horizontal vary with the
speed of the ball?

b. If you let go of the string at a certain point in the circle,
what path does the ball follow after release?

c. Can you feel differences in tension in the string for dif-
ferent speeds of the ball? How does the tension vary
with speed?

d. For a vertical circle, how does the tension in the string
vary for different points in the circle? Is it greater at the
bottom than at the top when the ball moves with con-
stant speed?

Tie a small paper cup to a string, attaching it at two points
near the rim as shown in the diagram. Take a marble or
other small object and place it in the cup.

a. Whirl the cup in a horizontal circle. Does the marble
stay in the cup? (Be careful! A flying marble can be
dangerous.)

b. Whirl the cup in a vertical circle. Does the marble stay
in the cup? What keeps the marble in the cup at the top
of the circle?

c. Try slowing the cup down. Does the marble stay in
the cup?

d. If you are brave, try replacing the marble with water.
Under what conditions does the water stay in the cup?

HE2 Diagram

HES3.

HE4.

Observe the position and phase of the moon on several

days in succession and at regularly chosen times during

the day and evening. (It is probably best to choose a point
near the first quarter of the moon’s cycle when the moon is
visible in the afternoon and evening.)

a. Sketch the shape of the moon on each successive
day. Does this shape change for different times in the
same day?

b. Can you devise a method for accurately noting changes
in the position of the moon at a set time, say, 10 p.m.,
on successive days? A fixed sighting point, a meter
stick, and a protractor may be useful. Describe your
technique.

c. By how much does the position of the moon change
from one day to the next at your regular chosen time?

Consult your instructor or other sources to find out what
planets are observable in the evening during the current
month. Venus, Jupiter, or Mars are usually the best
candidates.

a. Locate the planet visually and observe it with binocu-
lars if possible. How does the planet differ in appear-
ance from that of nearby stars?

b. Sketch the position of the planet relative to nearby stars
for several nights. How does this position change?



unit one

Energy and
Oscillations

chapter overview

We usually approach energy by first considering how it is added to a
system. This involves the concept of work, which has a specialized
meaning in physics. If a force does work on a system, the energy of the
system increases. Work is a means of transferring energy.

We begin by defining work and showing how to find it in simple
cases. In different circumstances, work done on a system increases either
the kinetic energy or the potential energy of the system. Finally, we will
tie these ideas together by introducing the principle of conservation of
energy and applying it to practical situations, including oscillations.

chapter outline

l Simple machines, work, and power. What is a simple machine? How
does the idea of work help us to understand the operation of simple
machines? How do physicists define work, and how is work related to
power?

2 Kinetic energy. What is kinetic energy? When and how does work
change the kinetic energy of an object?

3 Potential energy. What is potential energy? When and how does
work change the potential energy of an object?

4 Conservation of energy. What is the total energy of a system, and
when is it conserved? How can we use these ideas to explain the
motion of a pendulum and other phenomena?

5 Springs and simple harmonic motion. How is the motion of a mass on
a spring like a pendulum? What is simple harmonic motion?
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Have you ever watched a ball on the end of a string
swing back and forth? A pendant on the end of a chain
(fig. 6.1), a swing in the park, and the pendulum on a
grandfather clock all display the same hypnotic motion.
Galileo (it is said) amused himself during boring sermons
in church by watching the chandeliers sway slowly back
and forth at the end of their chains.

What intrigued Galileo is the way a pendulum always
seems to return to the same position at the end of each
swing. It may fall a little short of the earlier position in
successive swings, but the motion goes on for a long
time before coming to a complete stop. On the other
hand, the velocity is continually changing, from zero at
the end points of the swing to a maximum at the low
point in the path. How can the pendulum go through
such changes in velocity and yet always return to its
starting point?

Evidently, something is being saved or conserved. The
quantity that remains constant (and is conserved) turns
out to be what we now call energy. Energy did not play
a role in Newton'’s theory of mechanics. It was not until
the nineteenth century that energy and energy transfor-
mations were elevated to the central position that they
now hold in our understanding of the physical world.

The motion of a pendulum and other types of oscilla-
tion can be understood using the principle of conser-
vation of mechanical energy. The potential energy that
the pendulum has at its end points is converted to kinetic
energy at the low point—and then back to potential
energy. What is energy, though, and how does it get

figure 6.1 A pendant swinging at the end of a chain.
Why does it return to approximately the same point after each
swing?

into the system in the first place? Why does energy now
play a central role in physics and all of science?

Energy is the basic currency of the physical world.
To spend energy wisely, we must understand it. That
understanding begins with the concept of work.

6.1 Simple Machines, Work, and Power

If you make a pendulum by fastening a ball to the end of a
string (fig. 6.2), what do you do to start it swinging? In
other words, how do you get energy into the system? Usu-
ally, you would start by pulling the ball away from the cen-
ter position directly below the point from which the string
is suspended. To do so, you must apply a force to the ball
with your hand and move the ball some distance.

To a physicist, applying a force to move an object some
distance involves doing work, even though the actual exer-
tion may be slight. Doing work on a system increases the
energy of the system, and this energy can then be used in
the motion of the pendulum. How do we define work,
though, and how can simple machines demonstrate the use-
fulness of the idea?

What are simple machines?

An early application of work was the analysis of the devices
such as levers, pulley systems, or inclined planes that we
call simple machines. A simple machine is any mechanical
device that multiplies the effect of an applied force. A lever
is one example of a simple machine. By applying a small

figure 6.2  The force applied does work to move the ball
from its original position directly below the point of suspension.

force at one end of a lever, a larger force can be exerted on
the rock at the opposite end (fig. 6.3).

What price do you pay for this multiplying effect of
the applied force? To move the rock a small distance, the
other end of the lever must move through a larger distance.
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figure 6.3 A lever is used to lift a rock. A small force F,
generates a larger force F, to lift the rock, but F, acts through a
larger distance d, than does F,.

Generally, with simple machines, we get by with a small
force if we are willing to apply that force over a large dis-
tance. The output force at the other end may be large, but it
acts only over a short distance.

The pulley system shown in figure 6.4 is another simple
machine that achieves a similar result. In this system, the
tension in the rope pulls up on either side of the pulley sup-
porting the weight. If the system is in equilibrium, the ten-
sion in the rope is only half the weight being lifted, since
there are, in effect, two ropes pulling up on the pulley. But
to lift the pulley and its load a certain height, the person
must move the rope twice the distance that the load moves.
(Both rope segments on either side of the pulley must
decrease in length by an amount equal to the increase in the
height of the load.)

The net result of using the pulley system illustrated in
figure 6.4 is that you can lift a weight a certain height by
applying a force equal to only half the weight being lifted.
However, we must pull the rope twice the distance the
weight is lifted. This way the product of the force and
the distance moved will be the same for the input force
applied by the person to the rope as for the output force
exerted on the load. The quantity force times distance is
thus conserved (if frictional losses are small). We call this
product work, and the result for an ideal simple machine is

work output = work input.

The ratio of the output force to the input force is called
the mechanical advantage of the simple machine. For our
pulley system, the mechanical advantage is 2. The output
force that lifts the load is twice the input force exerted by
the person pulling on the rope.

How is work defined?

Our discussion of simple machines shows that the quantity
force times distance has a special significance. Suppose

:

figure 6.4 A simple pulley system is used to lift a weight.
The tension in the rope pulls up on either side of the lower
pulley, so the tension is only half the size of the supported
weight.

that you apply a constant horizontal force to a heavy crate to
move it across a concrete floor, as illustrated in figure 6.5.
You would agree that you have done work to move the
crate and that the farther you move it, the more work you
will do.

The amount of work that you do also depends on how
hard you have to push to keep the crate moving. These are
the basic ideas that we use in defining work: work depends
both on the strength of the applied force and the distance
that the crate is moved. If the force and the distance moved
are in the same direction, then work is the applied force
multiplied by the distance that the crate moves under the
influence of this force, or

work = force X distance
W = Fd,

where W is the work and d is the distance moved. The units
of work will be units of force multiplied by units of dis-
tance, or newton-meters (N-m) in the metric system. We
call this unit a joule (J). The joule is the basic metric unit
of energy. (1J =1 N-m)

The first part of the sample exercise in example box 6.1
shows how we find the work done in a simple case. A hori-
zontal force of 50 N is used to pull a crate a distance of 4 m,
resulting in 200 J of work done on the crate by the applied
force. In doing this work, we transfer 200 J of energy to the
crate and its surroundings from the person applying the
force. The person loses energy; the crate and its surround-
ings gain energy.
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Initial
position

Final
position

figure 6.5 A crate is moved a distance d across a concrete floor under the influence of a constant horizontal force F.

example box 6.1

Sample Exercise: How Much Work?

A crate is pulled a distance of 4 m across the floor under
the influence of a 50-N force applied by a rope to the
crate. What is the work done on the crate by the 50-N
force if
a. the rope is horizontal, parallel to the floor?
b. the rope pulls at an angle to the floor, so that the
horizontal component of the 50-N force is 30 N

(fig. 6.6)?

a. F = 50N W = Fd
d=4m = (50 N)(4 m)
W =72 = 200J

b. F, = 30N W = Fd
d=4m = (30 N)(4 m)
W =72 = 120J

Does any force do work?

In our initial example, the force acting on the crate was in
the same direction as the motion produced. What about
other forces acting on the crate—do they do work? The
normal force of the floor pushes upward on the crate, for
example, but the normal force has no direct effect in pro-
ducing the motion because it is perpendicular to the direc-
tion of the motion. Forces perpendicular to the motion, such
as the normal force or the gravitational force acting on the
crate, do no work when the crate moves horizontally.

What if the force acting on an object is neither perpen-
dicular nor parallel to the direction of the object’s motion?
In this case, we do not use the total force in computing
work. Instead, we use only that portion or component of the
force in the direction of the motion. This idea is illustrated
in figure 6.6 and in the second part of example box 6.1.

In figure 6.6, the rope used to pull the crate is at an angle
to the floor, so that part of the applied force is directed

| d |

figure 6.6 A rope is used to pull a box across the floor.
Only the portion of the force that is parallel to the floor is used
in computing the work.

upward, rather than parallel to the floor. The box does not
move in the direction of the force. Picture the force as
having two components, one parallel to the floor and the
other perpendicular to the floor. Only the component of
the force in the direction of motion is used in computing
the work. The component perpendicular to the motion does
no work.

By taking direction into account, we can complete the
definition of work:

The work done by a given force is the product of the compo-
nent of the force along the line of motion of the object multi-
plied by the distance that the object moves under the influence
of the force.

How is power related to work?

When a car accelerates, energy is transferred from the fuel
in the engine to the motion of the car. Work is done to
move the car, but often we are more concerned with how
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fast this work is accomplished. The rate at which this work
can be done depends on the power of the engine. The
shorter the time, the greater the power. Power can be de-
fined as

Power is the rate of doing work; it is found by dividing the
amount of work done by the time required.
ork

Wi
power = ——
time

In the first part of the example in example box 6.1, we
computed a work value of 200 J for moving a crate 4 m
across the floor using a force of 50 N. If the crate is in mo-
tion for 10 seconds, the power is found by dividing 200 J
by 10 seconds, yielding a power of 20 J/s. A joule per sec-
ond (J/s) is called a watt (W), the metric unit of power. We
use watts commonly in discussing electric power, but watts
are also used more generally for any situation involving
the rate of transfer of energy.

Another unit of power still used to describe the power of
automobile engines is horsepower (hp). One horsepower is
equal to 746 watts or 0.746 kilowatt (kW). The day may
come when we routinely compare the power of different
engines in kilowatts rather than in horsepower, but we are
not there yet. The relationship of horsepower to the typical
horse is dubious, but comparing the iron horse to the flesh-
and-blood kind still has a certain appeal.

Work is the applied force times the distance moved, pro-
vided that the force acts along the line of motion of the
object. In simple machines, work output can be no greater
than work input, even though the output force is larger
than the input force. Power is the rate of doing work: the
faster the work is done, the greater the power. Doing work
on an object increases the energy of the object or system,
as in our initial example of pulling the pendulum bob
away from its equilibrium position.

6.2 Kinetic Energy

Suppose that the force applied to move a crate is the only
force acting on the crate in the direction of motion. What
happens to the crate then? According to Newton’s second
law, the crate will accelerate, and its velocity will increase.
Doing work on an object increases its energy. We call the
energy associated with the motion of the object kinetic
energy.

Since work involves the transfer of energy, the amount
of kinetic energy gained by the crate should be equal to the
amount of work done. How can we define kinetic energy

so that this is indeed the case? Work serves as the starting
point.

How do we define kinetic energy?

Imagine that you are pushing a crate across the floor
(fig. 6.5). If you place the crate on rollers with good bear-
ings, the frictional forces may be small enough to be
ignored. The force that you apply will then accelerate the
crate. If you knew the mass of the crate, you could find
its acceleration from Newton’s second law of motion.

As the crate gains speed, you will have to move faster to
keep applying a constant force. For equal time intervals,
the crate would move larger distances as its speed in-
creases, and you would find yourself doing work more rap-
idly. For constant acceleration, the distance traveled is
proportional to the square of the final speed. The work done
is therefore also proportional to the square of the speed.

Since the work done should equal the increase in kinetic
energy, the kinetic energy must increase with the square of
the speed. If the crate begins from rest, the exact relation-
ship is

work done = change in kinetic energy = % mv2,

We often use the abbreviation KE to represent kinetic
energy.

Kinetic energy is the energy of an object associated with its
motion and is equal to one-half the mass of the object times
the square of its speed.

KE = %mv2

Figure 6.7 illustrates the process. If the crate is initially
at rest, its kinetic energy is equal to zero. After being accel-
?rated over a distance d, it has a final kinetic energy of
5 mv2, which is equal to the work done on the crate. The
work done is actually equal to the change in kinetic energy.
If the crate was already moving when you began pushing,
its increase in kinetic energy would equal the work done.

In example box 6.2, we highlight these ideas by calcu-
lating the energy gained by the crate in two different ways.

KE=0
v=0

_ 1 2
KE = 5mv

| d |

figure 6.7 The work done on an object by the net force
acting on the object results in an increase in the object’s kinetic
energy.
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example box 6.2

Sample Exercise: Work and Kinetic Energy

Starting from rest on a frictionless floor, you move a
100-kg crate by applying a net force of 50 N for a time
of 4 s. This results in a final speed of 2 m/s after the crate
moves a distance of 4 m (see synthesis problem 2). Find
a. the work done on the crate.
b. the final kinetic energy of the crate.

a. F = 50N W = Fd
d=4m = (50 N)(4 m)
wW=2 = 200
b. m = 100 kg KE = ;mv2
v = 20mis — 1 (100 kg)(2 mis)?
KE = 2 -

= 200J

In the first method, we use the definition of work. In the
second, we use the definition of Kinetic energy. We find
that 200 J of work done on the crate results in an increase
in kinetic energy of 200 J. It is no accident that these val-
ues are equal. Our definition of kinetic energy guarantees
this to be true.

What is negative work?

If work done on an object increases its kinetic energy, can
work also decrease the energy of an object? Forces can
decelerate objects as well as accelerate them. Suppose, for
example, that we apply the brakes to a rapidly moving
car, and the car skids to a stop. Does the frictional force
exerted by the road surface on the tires of the car do work?

When the car skids to a stop, it loses kinetic energy.
A decrease in kinetic energy can be thought of as a nega-
tive change in kinetic energy. If the change in kinetic
energy is negative, the work done on the car should also be
negative.

Note that the frictional force exerted on the car acts
in the opposite direction to the motion of the car shown in
figure 6.8. When this is so, we say that the work done on
the car by the force is negative work, removing energy
from the system (the car) rather than increasing its energy.
For a frictional force of magnitude f, the work done is
W = —fd, if the car moves a distance d while decelerating.

Stopping distance for a moving car

The kinetic energy of the car is not proportional to the
speed but rather to the square of the speed. If we double
the speed, the kinetic energy quadruples. Four times as
much work must be done to reach the doubled speed as
was done to reach the original speed. Likewise, if we stop
the car, four times as much energy must be removed.

A practical application is the stopping distances of cars
traveling at different speeds. The amount of negative work
required to stop the car is equal to the kinetic energy of the
car before the brakes are applied. This amount of energy
must be removed from the system. Since kinetic energy is
proportional to the square of the speed, the work required
(and the stopping distance) increases rapidly with the speed
of the car. For example, the kinetic energy is four times as
large for a car traveling at 60 MPH as for one traveling at
30 MPH. Doubling the speed requires four times as much
negative work to remove the kinetic energy. The stopping
distance at 60 MPH will be four times that required at
30 MPH, since the work done is proportional to the dis-
tance (assuming the frictional force is constant).

In fact, the frictional force varies with the speed of the
car. If you look at the stopping distances in driver-training
manuals, you will see that they do indeed increase rapidly
with speed, although not exactly in proportion to the square
of the speed. The more Kkinetic energy present initially, the
more negative work is required to reduce this energy to
zero, and the greater the stopping distance.

Kinetic energy is the energy associated with an object’s
motion, and it is equal to one-half the mass of the object
times the square of its speed. The kinetic energy gained or
lost by an object is equal to the work done by the net
force accelerating or decelerating the object.
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figure 6.8 Frictional forces exerted on the car’s tires by the road surface do negative work in stopping the car,

resulting in a decrease in kinetic energy.
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6.3 Potential Energy

Suppose that we lift a crate to a higher position on a load-
ing dock, as in figure 6.9. Work is done in this process, but
no kinetic energy is gained if the crate ends up just sitting
on the dock. Has the energy of the crate increased? What
happens to the work done by the lifting force?

Drawing back a bowstring or compressing a spring are
similar. Work is done, but no kinetic energy is gained: in-
stead the potential energy of the system increases. How
does potential energy differ from kinetic energy?

Gravitational potential energy

To lift the crate in figure 6.9, we need to apply a force that
pulls or pushes upward on the crate. The applied force will
not be the only force acting on the crate. The gravitational
attraction of the Earth (the weight of the crate) pulls down
on the crate. If we lift the crate with a force exactly equal
to the force of gravity but opposite in direction, the net
force acting on the crate will be zero, and the crate will not
accelerate. We actually accelerate the crate a little bit at the
start of the motion and decelerate it at the end of the mo-
tion, moving it with constant velocity during most of the
motion.

The work done by the lifting force increases the gravi-
tational potential energy of the crate. The lifting force
and the gravitational force are equal in magnitude and op-
posite in direction, so the net force is zero and there is no
acceleration. The lifting force does work by moving the

h=2.0m

figure 6.9 A rope and pulley are used to lift a crate to a
higher position on the loading dock, resulting in an increase in
potential energy.

object against the gravitational pull. If we let go of the rope,
the crate will accelerate downward, gaining kinetic energy.

How much gravitational potential energy is gained? The
work done by the lifting force is equal to the size of the
force times the distance moved. The applied force is equal
to the weight of the crate mg. If the crate is moved a height
h, the work done is mg times h or mgh. The gravitational
potential energy is equal to the work done,

PE = mgh,

where we use the abbreviation PE to represent potential
energy.

The height h is the distance that the crate moves above
some reference level or position. In example box 6.3, we
have chosen the original position of the crate on the ground
to be our reference level. We usually choose the lowest point
in the probable motion of the object as the reference level
to avoid negative values of potential energy. The changes
in potential energy are what is important, however, so the
choice of reference level does not affect the physics of
the situation.

The essence of potential energy

The term potential energy implies storing energy to use
later on for other purposes. Certainly, this feature is pres-
ent in the situation just described. The crate could be left
indefinitely higher up on the loading dock. If we push it
off the dock, though, it would rapidly gain Kinetic energy
as it fell. The kinetic energy, in turn, could be used to com-
press objects lying underneath, drive pilings into the
ground, or for other useful mayhem (fig. 6.10). Kinetic en-
ergy also has this feature, however, so storing energy is not
what distinguishes potential energy.

Potential energy involves changing the position of the
object that is being acted on by a specific force. In the case
of gravitational potential energy, that force is the gravita-
tional attraction of the Earth. The farther we move the
object away from the Earth, the greater the gravitational
potential energy. Other kinds of potential energy involve
different forces.

example box 6.3

Sample Exercise: Potential Energy

A crate with a mass of 100 kg is lifted onto a loading
dock 2 m above ground level. How much potential energy
has been gained?
m = 100 kg
h=2m

PE = mgh

(100 kg)(9.8 m/s?)(2 m)
(980 N)(2 m)

1960 J
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figure 6.10 The potential energy of the raised crate can be
converted to kinetic energy and used for other purposes.

What is elastic potential energy?

What happens if we pull on a bowstring or stretch a spring?
In these examples, work is done by an applied force
against an opposing elastic force, a force that results from
stretching or compressing an object. Imagine a spring at-
tached to a post, as in figure 6.11, with a wooden block or
similar object attached to the other end of the spring. If we
pull the block from the original position where the spring
was unstretched, the system gains elastic potential energy.
If we let go, the block would fly back.

Since a force must be applied over some distance to
move the block, work is done in pulling against the force
exerted by the spring. Most springs exert a force propor-
tional to the distance the spring is stretched. The more the
spring is stretched, the greater the force. This can be stated
in an equation by defining the spring constant k that de-
scribes the stiffness of the spring. A stiff spring has a large
spring constant. The force exerted by the spring is given

figure 6.11 A wooden block is attached to a spring tied
to a fixed support at the opposite end. Stretching the spring
increases the elastic potential energy of the system.

by the spring constant multiplied by the distance stretched
or

F = —kx,

where X is the distance that the spring is stretched, measured
from its original unstretched position. This is often called
Hooke’s Law, named after Robert Hooke (1635-1703). The
minus sign indicates that the force exerted by the spring
pulls back on the object as the object moves away from its
equilibrium position. Thus, if the mass is moved to the
right, the spring pulls back to the left. If the spring is com-
pressed, it pushes back to the right.

How do we find the increase in potential energy of such
a system? As before, we need to find the work done by the
force involved in changing the position of the object. We
want the block to move without acceleration so the net force
acting on the block is zero. The applied force must be ad-
justed so that it is always equal in magnitude but opposite
in direction to the force exerted by the spring. This means
that the applied force must increase as the distance x in-
creases (fig. 6.12).

The increase in elastic potential energy is equal to the
work done by the average force needed to stretch the spring.
Figure 6.12 suggests that the average force is one-half the
magnitude of the final force kx. The work done is the aver-
age force % kx times the distance x, so

PE = ; ke

The potential energy of the stretched-spring system is one-
half the spring constant times the square of the distance
stretched. The same expression is valid when the spring is
compressed. The distance x is then the distance that the
spring is compressed from its original relaxed position.

kx

Force

Distance stretched

figure 6.12 The applied force used to stretch the spring
varies with the distance stretched, going from an initial value of
zero to a final value of kx. Work done is equal to the shaded area
under the Force versus Distance curve.
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The potential energy stored in the spring can be con-
verted to other forms and put to various uses. If we let go of
the block when the spring is either stretched or compressed,
the block will gain kinetic energy. Cocking a bow and
arrow, squeezing a rubber ball, or stretching a rubber band
are all familiar examples in which we generate elastic po-
tential energy similar to the spring.

What are conservative forces?

Potential energy can result from work done against a vari-
ety of different forces besides gravity and springs. Work
done against frictional forces, however, does not result in
an increase in the potential energy of the system. Instead,
heat is generated, which either transfers energy out of the
system or increases the internal energy of the system at
the atomic level. As discussed in chapter 11, this internal
energy cannot be completely recovered to do useful work.

Forces such as gravity or elastic forces that lead to po-
tential energy relationships are referred to as conservative
forces. When work is done against conservative forces, the
energy gained by the system is completely recoverable for
use in other forms.

Potential energy is an object’s energy by virtue of its posi-
tion along the line of action of some conservative force
(such as gravity or the spring force). Potential energy is
stored energy associated with the position of the object
rather than the object’s motion. We find the potential
energy by computing the work done to move the object
against the conservative force. The system is poised to
release that energy, converting it to kinetic energy or
work done on some other system.

6.4 Conservation of Energy

The concepts of work, kinetic energy, and potential energy
are now available to us. How can they help explain what is
happening in systems like a pendulum?

Conservation of energy is the key. The total energy, the
sum of the kinetic and potential energies, is a quantity that
remains constant (is conserved) in many situations. \We can
describe the motion of a pendulum by tracking the energy
transformations. What can this tell us about the system?

Energy changes in the swing
of a pendulum

Imagine a pendulum consisting of a ball initially hanging
motionless at the end of a string attached to a rigid sup-
port. You pull the ball to the side and release it to start it
swinging. What happens to the energy of the system?

In the first step, work is done on the ball by your hand.
The net effect of this work is to increase the potential

energy of the ball, since the height of the ball above the
ground increases as the ball is pulled to the side. The work
done transfers energy from the person doing the pulling to
the system consisting of the pendulum and the Earth. It be-
comes gravitational potential energy, PE = mgh, where h
is the height of the ball above its initial position (fig. 6.13).

When you release the ball, this potential energy begins
to change to kinetic energy as the ball begins its swing. At
the bottom of the swing (the initial position of the ball
when it was just hanging), the potential energy is zero, and
the Kinetic energy reaches its maximum value. The ball
does not stop at the low point; its motion continues to a
point opposite the release point. During this part of the
swing, the Kinetic energy decreases, and the potential en-
ergy increases until it reaches the point where the Kkinetic
energy is zero and the potential energy is equal to its initial
value before release. The ball then swings back, repeating
the transformation of potential energy to kinetic energy and
back to potential energy (fig. 6.13).

What does it mean to say that
energy is conserved?

As the pendulum swings, there is a continuing change of
potential energy to kinetic energy and back again. The
total mechanical energy of the system (the sum of the po-
tential and Kinetic energies) remains constant because
there is no work being done on the system to increase or
decrease its energy. The swing of the pendulum demon-
strates the principle of conservation of energy:

If there are no nonconservative forces doing work on a system,
the total mechanical energy of the system (the sum of its
kinetic energy and potential energy) remains constant.

E= KE:%mvz

figure 6.13 Potential energy is converted to kinetic energy
and then back to potential energy as the pendulum swings
back and forth.
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Work is pivotal. If no energy is added or removed by
forces doing work, the total energy should not change. In
symbols, this statement takes the form:

IfW = 0, E = PE + KE = constant,

where E is the symbol commonly used to represent the
total energy. A broader picture of the meaning of this very
important principle is provided in everyday phenomenon
box 6.1

We applied conservation of energy in describing the mo-
tion of the pendulum. Some points deserve close attention:
for example, why do we not consider the work done by
gravity on the pendulum? The answer is that the gravita-
tional force becomes part of the system by including the
gravitational potential energy of the ball in our description.
Gravity is a conservative force already accounted for by
potential energy.

What other forces act on the ball? The tension of the
string acts in a direction perpendicular to the motion of
the ball (fig. 6.14). This force does no work, because it has
no component in the direction of the motion. The only
other force that need concern us is air resistance. This force
does negative work on the ball, slowly decreasing the total
mechanical energy of the system. The total energy of the
system is not completely constant in this situation. It
would be constant only if air resistance were negligible.
The air-resistive effects are often small, however, and can
be ignored.

everyday phenomenon

Conservation of Energy

The Situation. Mark Shoemaker had just come out of a
physics lecture on the conservation of energy, and he was con-
fused. His instructor had noted that the principle of conserva-
tion of energy in its most general form implies that energy can
be neither created nor destroyed - it is always conserved.

On the other hand, Mark had been following news items
regarding the need to conserve energy. If energy is always
conserved, what is the problem that news commentators and
environmentalists are harping on? Don't they understand physics?

The Analysis. When people talk about conserving energy in
the context of everyday energy use, the term conservation of
energy has a different meaning than that involved in the
physics principle. Understanding these distinctions is critical to
understanding issues involving energy and the environment
that have been hot topics in recent years.

The principle of conservation of energy stated in this section
is limited to mechanical energy, the sum of the potential

figure 6.14 0f the three forces acting on the ball, only the
force of air resistance does work on the system to change its
total energy. The tension does no work, and the work done by
gravity is already included in the potential energy.

Why do we use the concept of energy?

What are the advantages of using the principle of conser-
vation of energy? Imagine trying to describe the motion
of the pendulum by direct application of Newton’s laws
of motion. You would have to deal with forces that vary

and kinetic energies of a mechanical system. In chapters 10
and 11, we will see that heat is also a form of energy and
must be included in a more general statement of the
conservation principle. Later, in chapter 20, we will find that
even mass must be considered a form of energy. In this most
general context, energy is always conserved.

However, not all forms of energy have equal value in our
daily lives. To take an example, oil is an important energy
resource. The energy stored in oil is a form of potential energy
involving the electric forces that bind atoms together in
molecules. When we use oil, we are converting this potential
energy to other forms of energy depending upon the application.

To release this potential energy, we usually burn the oil.
Burning generates heat, which is a form of energy. At high
temperatures, this heat can be very useful for running heat
engines of various kinds (discussed in chapter 11). The common
gasoline engine in our cars is a heat engine, as are the

(continued)
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diesel engines that power trucks and trains and the jet
turbines that power airplanes. These engines transform some
energy in the form of heat to kinetic energy for cars, trains,
boats, or airplanes.

But what happens, ultimately, to the kinetic energy
associated with the moving vehicles? Eventually, it is trans-
formed to lower-temperature heat due to frictional effects in
the engine and the tires and air resistance. The energy has not
disappeared—it warms up the surroundings. However, it is now
in a form that is much less useful than the original potential
energy stored in the fuel. Heat at temperatures near those of
the surroundings is sometimes called low-grade heat—its uses
are limited to heating our homes or similar applications.

So what are we conserving when we talk about energy
conservation in our daily lives? We are conserving high-value
forms of energy by using them more wisely and, as much as
possible, preventing them from being converted to less useful
forms of energy. We are also limiting the environmental
effects associated with burning oil and other fuels such as
natural gas or coal. From the standpoint of physics, though,
the energy itself is conserved in all situations.

If you have a choice of commuting to work or school by
walking, riding a bicycle, or driving a fuel-efficient car as
opposed to driving a large car or sports utility vehicle (SUV),
your choice should be clear. By walking or riding a bicycle, as
pictured in the photograph, you convert some energy
obtained from the food you eat to low-grade heat, but much
less high-value energy is converted than if you are driving an
SUV or car. And, of course, your impact on the environment is
much smaller when you are walking or riding a bicycle.

Later chapters in this book deal with many aspects of
energy use. The laws of thermodynamics, discussed in
chapters 10 and 11, are particularly important to
understanding energy issues. Solar energy, geothermal power,
and other methods of generating electricity are discussed in
chapter 11. Chapter 13 addresses household electrical energy
uses, chapter 14 deals with electrical power generation, and
chapter 19 discusses nuclear power.

The physics and economics of wise energy use are
critical issues. To be involved in these debates, you should
understand what energy conservation is all about. Energy can
be neither created nor destroyed, but the ways in which it is
transformed from one form to another are extremely
important to the use of energy resources and to the
environment.

Is energy conserved for all these commuters?

continually in direction and magnitude as the pendulum
moves. A full description using Newton’s laws is quite
complex.

Using energy considerations, however, we can make pre-
dictions about the behavior of a system much more easily than
by applying Newton’s laws. To the extent that we can ignore
frictional effects, for example, we can predict that the ball will
reach the same height at either end of its swing. The Kinetic
energy is zero at the end points of the swing where the ball
momentarily stops, and at these points, the total energy equals
potential energy. If no energy has been lost, the potential
energy has the same value that it had at the point of release,
which implies that the same height is reached (PE = mgh).

A demonstration sometimes performed in physics lec-
ture rooms illustrates this idea dramatically by using a
bowling ball as the pendulum bob. The bowling ball is sus-
pended from a support near the ceiling so that, when pulled
to one side, the ball is near the chin of the physics instruc-
tor. The instructor pulls the ball to this position, releases it
to allow it to swing across the room, and stands without
flinching as the ball returns and stops just a few inches
from his or her chin (fig. 6.15). Not flinching requires
some faith in the principle of conservation of energy! The
success of this demonstration depends on the ball not be
given any initial velocity when released—what happens if
it is pushed?
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figure 6.15 A bowling ball at the end of a cable
suspended from the ceiling is released and allowed to swing
across the room and back, stopping just in time.

We can also use the principle of conservation of energy
to predict what the speed will be at any point in the swing.
The speed is zero at the end points and has its maximum
value at the low point of the swing. If we place our refer-
ence level for measuring potential energy at this low point,
the potential energy will be zero there because the height
is zero. All of the initial potential energy has been con-
verted to kinetic energy. Knowing the kinetic energy at the
low point allows us to compute the speed, as shown in
example box 6.4.

We could find the speed at any other point in the swing
by setting the total energy at any point equal to the initial
energy. Different values of the height h above the low
point yield different values of the potential energy. The re-
maining energy must be Kinetic energy. The system has
only so much energy, either potential or kinetic energy or
some of both, but it cannot exceed the initial value.

How is energy analysis like accounting?

A sled on a hill and a roller coaster illustrate the principle
of conservation of energy. Conservation of energy can be
used to make predictions about the speed of the sled or
roller coaster that would be hard to make by direct appli-
cation of Newton’s laws. An energy accounting provides a
better overview. The pole-vaulting example in everyday
phenomenon box 6.2 can also be analyzed in this way.
Consider the sled on the hill pictured in figure 6.16. A
parent pulls the sled to the top of a hill, doing work on the
sled and rider that increases their potential energy. At
the top of the hill, the parent may do more work by giving

example box 6.4

Sample Exercise: The Swing of a Pendulum

A pendulum bob with a mass of 0.50 kg is released from a
position in which the bob is 12 cm above the low point in
its swing. What is the speed of the bob as it passes
through the low point in its swing?

m = 0.5 kg The initial energy is

h = 12 cm E = PE = mgh

v =7 = (0.5 kg)(9.8 m/s?)(0.12 m)
(at the low point) = 0588 J

At the low point, the potential energy is zero, so
E = KE = 0.588 ]
>mv? = 05881

Dividing both sides by 3m:

KE

(0.588 J)

3 (05kg)

= 2.35 m?/s?

W =

Taking the square root of both sides:

v = 1.53m/s

the sled a push, providing it with some initial Kinetic
energy. The total work done by the parent is the energy
input to the system and equals the sum of the potential and
Kinetic energies shown in table 6.1.

Where does this initial energy come from? It came from
the body of the parent doing the pulling and pushing. Mus-
cle groups were activated, releasing chemical potential en-
ergy stored in the body. That energy came from food,
which in turn involved solar energy stored by plants. A
parent who does not eat a good breakfast, or attempts too
many trips up the hill, may not have enough energy to get
to the top.

If the sled and rider slide down the hill with negligible
friction and air resistance, energy is conserved, and the
total energy at any point during the motion should equal
the initial energy. It is more realistic to assume that there is
some friction as the sled slides down the hill (fig. 6.17).
Although it is difficult to predict the amount of work done
against friction precisely, we can make an estimate if we
know the total distance traveled and make some assump-
tions about the size of the average frictional force. In
the energy accounting done in table 6.1, we assume that
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everyday phenomenon

Energy and the Pole Vault

The Situation. Ben Lopez goes out for track. He specializes
in the pole vault and helps out sometimes with the sprint
relays where his speed can be used to good advantage. His
coach, aware that Ben is also taking an introductory physics
course, suggests that Ben try to understand the physics of the
pole vault. What factors determine the height reached? How
can he optimize these factors?

The coach knows that energy considerations are important
in the pole vault. What type of energy transformations are
involved? Could understanding these effects help Ben's
performance?

A pole-vaulter on the way up. What energy transformations
are taking place?

The Analysis. It was not difficult for Ben to describe the
energy transformations that take place in the pole vault:

the vaulter begins by running down a path to the vaulting
standard and pit. During this phase, he is accelerating and
increasing his kinetic energy at the expense of chemical
energy stored in his muscles. When he reaches the standard,
he plants the end of the pole in a notch in the ground. At this
point, some of his kinetic energy is stored in the elastic
potential energy of the bent pole, which acts like a spring.
The rest is converted to gravitational potential energy as he
begins to rise over the standard.

Near the top of the vault, the elastic potential energy in
the bent pole converts to gravitational potential energy as the
pole straightens out. The vaulter does some additional work
with his arm and upper-body muscles to provide an extra
boost. At the very top of his flight, his kinetic energy should
be zero, with only a minimal horizontal velocity left to carry
him over the standard. Too large a kinetic energy at this

The flexibility of the pole and the point at which the vaulter grasps the
pole are important to the success of the vault.

point would indicate that he had not optimized his jump by
converting as much energy as possible into gravitational
potential energy.

What can Ben learn from his analysis? First, the impor-
tance of speed. The more kinetic energy he generates during
his approach, the more energy is available for conversion to
gravitational potential energy (mgh), which will largely deter-
mine the height of his vault. Successful pole-vaulters are
usually good sprinters.

The characteristics of the pole and Ben's grip on it are also
important factors. If the pole is too stiff, or if he has gripped
it too close to the bottom, he will experience a jarring impact
in which little useful potential energy is stored in the pole,
and some of his initial kinetic energy will be lost in the colli-
sion. If the pole is too limber, or if Ben's grip is too far from
the bottom, it will not spring back soon enough to provide
useful energy at the top of his vault.

Finally, upper-body strength is important in clearing the
standard. Good upper-body conditioning should improve Ben's
pole-vaulting. Timing and technique are also critical and can
be improved only through practice. As far as his coach is
concerned, that may be the most important message.
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E=PE+ KE

figure 6.16  Work done in pulling the sled up the hill produces an increase in potential energy of the sled and rider. This initial

energy is then converted to kinetic energy as they slide down the hill.

2000 J of work has been done against friction by the time
the sled reaches the bottom of the hill.

The work done against friction removes energy from the
system and shows up as an expenditure on the account sheet.
The energy balance at the bottom of the hill is 8200 J,
rather than 10 200 J. This will lead to a smaller, more real-
istic value for the speed of the sled and rider at the bottom
of the hill than if we ignored friction. Although precise
calculations are not always possible, energy accounting sets
limits on what is likely and helps us understand the behav-
ior of systems such as the sled on the hill.

Energy is the currency of the physical world; an under-
standing of energy accounting is relevant to both science
and economics. Doing work on a system puts energy in
the bank. Total energy is then conserved, provided that
only conservative forces are at work. Many aspects of the
motion of the system can be predicted from a careful
energy accounting.

figure 6.17 The work done by frictional forces is negative,
and it removes mechanical energy from the system.

Energy Balance Sheet for the Sled

A parent pulls a sled and rider with a combined weight of
50 kg to the top of a hill 20 m high and then gives the sled
a push, providing an initial velocity of 4 m/s. Frictional forces
acting on the sled do 2000 J of negative work as the sled
moves down the hill.

Energy input

Potential energy gained by work done in pulling
sled up the hill:

PE = mgh = (50 kg)(9.8 m/s?)(20 m) 9800 )
Kinetic energy gained by work done in pushing

the sled at the top:

KE = Imv2 = 1(50 kg)(4 m/s)? 400 J
Total initial energy: 10 200J
Energy expenditures
Work done against friction as the sled slides

down the hill:

W = —fd —2000)J
Energy balance: 8200

6.5 Springs and Simple
Harmonic Motion

If conservation of energy explains the motion of a pendu-
lum, what about other systems that oscillate? Many sys-
tems involve springs or elastic bands that move back and
forth, with potential energy being converted to Kinetic
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energy and then back to potential energy repeatedly. What
do such systems have in common? What makes them tick?

A mass on the end of a spring is one of the simplest
oscillating systems. This system, and the simple pendulum
described in section 6.4, are examples of simple harmonic
motion.

Oscillation of a mass attached to a spring

If we attach a block to the end of a spring, as in figure 6.18,
what happens when we pull it to one side of its equilibrium
position? The equilibrium position is where the spring is
neither stretched nor compressed. Doing work to pull the
mass against the opposing force of the spring increases
the potential energy of the spring-mass system. The poten-
tial energy in this case is elastic potential energy, %kxz,
rather than the gravitational potential energy associated
with the pendulum. Increasing the potential energy of the
mass on the spring is similar to cocking a bow and arrow
or slingshot.

Once the mass is released, potential energy is converted
to kinetic energy. Like the pendulum, the motion of the
mass carries it beyond the equilibrium position, and the
spring is compressed, gaining potential energy again. When
the kinetic energy is completely reconverted to potential
energy, the mass stops and reverses, and the whole process
repeats (fig. 6.18). The energy of the system changes con-
tinuously from potential energy to kinetic energy and back
again. If frictional effects can be ignored, the total energy
of the system remains constant while the mass oscillates
back and forth.

Using a video camera or other tracking techniques, it is
possible to measure and plot the position of a pendulum

Potential
energy

x=0
(Equilibrium point)

v
Kinetic
energy
0
Potential
energy
I
0

figure 6.18 Energy added by doing work to stretch the
spring is then transformed back and forth between the potential
energy of the spring and kinetic energy of the mass.

Position (x)
o

NVAY ™
VARV

Time (f)

figure 6.19 The horizontal position x of the mass on the
spring is plotted against time as the mass moves back and forth.
The resulting curve is a harmonic function.

bob or mass on a spring as it varies with time. If we plot
the position of the mass against time, the resulting curve
takes the form shown in figure 6.19. The mathematical
functions that describe such curves are called “harmonic”
functions, and the motion is called smple harmonic
motion,* a term probably borrowed from musical descrip-
tions of sounds produced by vibrating strings, reeds, and
air columns. (See chapter 15.)

The line at zero on the graph in figure 6.19 is the equi-
librium position for the mass on a spring. Points above this
line represent positions on one side of the equilibrium
point, and those below the line represent positions on the
other side. The motion starts at the point of release, where
the distance of the mass from equilibrium is a maximum.
As the mass moves toward the equilibrium position (x = 0
on the graph) it gains speed, indicated by the increasing
slope of the curve. (See section 2.4.) The object’s position
changes most rapidly when it is near the equilibrium point,
where the kinetic energy and speed are the greatest.

As the mass passes through the equilibrium position,
it starts to move away from equilibrium in the direction
opposite to its initial position. The force exerted by the
spring is now in the direction opposite to the velocity and
is decelerating the mass. When the mass reaches the point
farthest from its release point, the speed and kinetic energy
are again zero, and the potential energy has returned to its
maximum value. (See example box 6.5.) The slope of the
curve is zero at this point, indicating that the mass is
momentarily stopped (its velocity is zero). The mass con-
tinually gains or loses speed as it moves back and forth.

What are the period and the frequency?

If you look at the graph in figure 6.19, you will notice that
the curve repeats itself regularly. The period T is the re-
peat time, or the time taken for one complete cycle. It is

*1f you have studied trigonometry, you may know that the curve plotted in
figure 6.19 is a cosine function. Sines and cosines are collectively referred
to as harmonic functions.
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example box 6.5

Sample Exercise: Motion of a Mass on a Spring

A 500-g mass (0.50 kg) is undergoing simple harmonic
motion at the end of a spring with a spring constant of
800 N/m. The motion takes place on a frictionless horizontal
surface as pictured in figure 6.18. The speed of the mass is
12 m/s when it passes through the equilibrium point.
a. What is the kinetic energy at the equilibrium point?
b. How far does the mass travel from the equilibrium
point before it turns around?

a. m=050ky KE = ;my?
v=12m/s KE = ; (050 kg) (12 m/s)?
KE = ? KE = 36J
b. x =2 E = KE + PE = 36
(whenv = 0) byt KE = 0 at the turn-around
point

s0 PE = sk = 36

2(36 J)

2 =

X K

, 723

X = ——
800 N/m

2 = 009 m?

X = 030m = 30cm

usually measured in seconds. You can think of the period
as the time between adjacent peaks or valleys on the curve.
A slowly oscillating system has a long period, and a rap-
idly oscillating system has a short period.

Suppose that the period of oscillation for a certain
spring and mass is half a second. There are then two
oscillations each second, which is the frequency of oscil-
lation. The frequency f is the number of cycles per unit
time, and it is found by taking the reciprocal of the
period, f = 1/T. A rapidly oscillating system has a very
short period and thus a high frequency. The unit com-
monly used for frequency is the hertz, which is defined as
one cycle per second.

What determines the frequency of the spring-mass sys-
tem? Intuitively, we expect a loose spring to have a low fre-
quency of oscillation and a stiff spring to have a high fre-
quency. This is indeed the case. The mass attached to the
spring also has an effect. Larger masses offer greater re-
sistance to a change in motion, producing lower frequencies.

The period and frequency of oscillation of a pendulum
depend primarily on its length, measured from the pivot
point to the center of the bob. To measure the period, you
usually measure the time required for several complete

swings and then divide by the number of swings to get the
time for one swing.

Simple experiments with a ball on a string will give you an
idea of how the period and frequency change with length. Try
it and see if you can find a trend (see home experiment 1).
The motion is regular—you can keep time by the swing of a
pendulum or the motion of a mass on a spring.

Will any restoring force produce simple
harmonic motion?

When a mass attached to a spring is moved to either side
of equilibrium, the spring exerts a force that pulls or pushes
the mass back toward the center. We call such a force the
restoring force. In this case, it is the elastic force exerted
by the spring. In any oscillation, there must be some such
restoring force.

As discussed in section 6.3, the spring force is directly
proportional to the distance x of the mass from its equilib-
rium position (F = —kx). The spring constant k has units
of newtons per meter (N/m). Simple harmonic motion re-
sults whenever the restoring force has this simple depend-
ence on distance. If the force varies in a more complicated
way with distance, we may get an oscillation but not sim-
ple harmonic motion, and it will not produce a simple har-
monic curve (fig. 6.19).

It is generally easiest to set up a spring-mass system by
suspending the spring from a vertical support and hanging
a mass on the end of the spring, as in figure 6.20. This
arrangement avoids the frictional forces of the tabletop in a

figure 6.20 A mass hanging from a spring will oscillate up
and down with the same period as a horizontal mass-spring
system using the same spring and mass.
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horizontal arrangement. In the vertical setup, when the
mass is pulled down and released, the system oscillates up
and down rather than horizontally. Two forces then act on
the mass, the spring force pulling upward and the gravita-
tional force pulling downward.

Since the gravitational force in the vertical setup is con-
stant, it simply moves the equilibrium point lower. The
equilibrium point is where the net force is zero—the
downward pull of gravity is balanced by the upward pull of
the spring. The variations in the restoring force are still
provided by the spring. These variations are proportional
to the distance from equilibrium just as they are in the
horizontal case. This system also meets the condition for
simple harmonic motion. The potential energy involved,
however, is the sum of the gravitational and elastic poten-
tial energies.

Gravity is the restoring force for the simple pendulum.
When the pendulum bob is pulled to one side of its equi-
librium position, the gravitational force acting on the bob
pulls it back toward the center. The part of the gravitational
force in the direction of motion is proportional to the dis-
placement, if the displacement from equilibrium is not too

summary

large. Thus, for small amplitudes of swing, the simple pen-
dulum also displays simple harmonic motion. Amplitude is
the maximum distance from the equilibrium point.

Look around for systems that oscillate. There are many
examples, ranging from a springy piece of metal to a ball
rolling in a depression of some kind. What force pulls back
toward the equilibrium position in each case? Is the motion
likely to be simple harmonic motion, or a more compli-
cated oscillation? What kind of potential energy is in-
volved? The analysis of vibrations such as these forms an
important subfield of physics that plays a role in music,
communications, analysis of structures, and other areas.

Any oscillation involves a continuing interchange of
potential and kinetic energies. If there are no frictional
forces removing energy from the system, the oscillation
will go on indefinitely. A restoring force that increases in
direct proportion to the distance from the equilibrium
position results in simple harmonic motion, with simple
curves (harmonic functions) describing the position, veloc-
ity, and acceleration of the object over time.

The concept of work is central to this chapter. Energy is trans-
ferred into a system by doing work on the system, which can
result in an increase in either the kinetic energy or the potential
energy of the system. If no additional work is done on the system,
the total energy of the system remains constant. This principle of
conservation of energy allows us to explain many features of the
behavior of the system.

l Simple machines, work, and power. Work is de-
fined as force times the distance involved in moving an object.
Only the portion of the force in the direction of the motion is
used. In simple machines, work output cannot exceed work input.
Power is the rate of doing work.

F 0
I N | !
I
| |
| d |
W= Fd, P=VTV

2 Kinetic energy. The work done by the net force acting
on an object is used to accelerate the object, and the object gains
kinetic energy. Kinetic energy is equal to one-half the mass of the
object times the square of its speed. Negative work removes

kinetic energy.
: v

=12
KE—va

3 Potential energy. If work done on an object moves
the object against an opposing conservative force, the potential
energy of the object is increased. Two types of potential energy
were considered, gravitational potential energy and elastic poten-
tial energy.

J) —

<—X—>|

PE = mgh
(gravitational)

PE= %kx2
(elastic)

4 Conservation of energy. If no work is done on a sys-
tem, the total mechanical energy (kinetic plus potential) remains
constant. This principle of conservation of energy explains the be-
havior of many systems that involve exchanges of kinetic and po-
tential energy. The system can be analyzed by energy accounting.

E = KE + PE = constant
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Springs and simple harmonic motion.

The motions

of a simple pendulum and of a mass on a spring both illustrate the
principle of conservation of energy, but they involve different kinds
of potential energy. They are also examples of simple harmonic
motion, which results whenever the restoring force is proportional to
the distance of the object from its equilibrium position.
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QL.

Q2.

Q3.

Q4.

Q5.

Q6.

Equal forces are used to move blocks A and B across the
floor. Block A has twice the mass of block B, but block B
moves twice the distance moved by block A. Which block,
if either, has the greater amount of work done on it?
Explain.

A man pushes very hard for several seconds upon a heavy
rock, but the rock does not budge. Has the man done any
work on the rock? Explain.

A string is used to pull a wooden block across the floor

without accelerating the block. The string makes an angle

to the horizontal as shown in the diagram.

a. Does the force applied via the string do work on the
block? Explain.

b. Is the total force involved in doing work or just a por-
tion of the force? Explain.

Q3 Diagram

In the situation pictured in question 3, if there is a fric-
tional force opposing the motion of the block, does this
frictional force do work on the block? Explain.

In the situation pictured in question 3, does the normal
force of the floor pushing upward on the block do any
work? Explain.

A ball is being twirled in a circle at the end of a string.
The string provides the centripetal force needed to keep

*Q7.

Qs.

Qo.

*Q10.

Q1L1.

the ball moving in the circle at constant speed. Does the
force exerted by the string on the ball do work on the ball
in this situation? Explain.

A man walks across the room. What forces act on the man
during this process? Which, if any, of these forces do work
on the man? Explain.

A woman uses a pulley arrangement to lift a heavy crate.
She applies a force that is one-fourth the weight of the
crate, but moves the rope a distance four times the height
that the crate is lifted. Is the work done by the woman
greater than, equal to, or less than the work done by the
rope on the crate? Explain.

A lever is used to lift a rock as shown in the diagram.
Will the work done by the person on the lever be greater
than, equal to, or less than the work done by the lever on

the rock? Explain.
\ F

Q3 Diagram

A crate on rollers is pushed up an inclined plane into a
truck. The pushing force required is less than half the
force that would be needed to lift the crate straight up into
the truck. Does the inclined plane serve as a simple
machine in this situation? Explain.

A boy pushes his friend across a skating rink. Since the fric-
tional forces are very small, the force exerted by the boy on
his friend’s back is the only significant force acting on the
friend in the horizontal direction. Is the change in kinetic
energy of the friend greater than, equal to, or less than the
work done by the force exerted by the boy? Explain.
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Q12

Q13.

Q14.

Q15.

Q16.

Q17.

Q1s.

*Q19

Q20.

Q2L

Q22.

. A child pulls a block across the floor with force applied
by a horizontally held string. A smaller frictional force
also acts upon the block, yielding a net force on the block
that is smaller than the force applied by the string. Does
the work done by the force applied by the string equal the
change in Kkinetic energy in this situation? Explain.

If there is just one force acting on an object, does its
work necessarily result in an increase in kinetic energy?
Explain.

Two balls of the same mass are accelerated by different
net forces such that one ball gains a velocity twice that of
the other ball in the process. Is the work done by the net
force acting on the faster-moving ball twice that done on
the slower-moving ball? Explain.

A box is moved from the floor up to a tabletop but gains
no speed in the process. Is there work done on the box,
and if so, what has happened to the energy added to the
system?

When work is done to increase the potential energy of an
object without increasing its Kinetic energy, is the net
force acting on the object greater than zero? Explain.

Is it possible for a system to have energy if nothing is
moving in the system? Explain.

Suppose that work is done on a large crate to tilt the crate
so that it is balanced on one edge, as shown in the dia-
gram, rather than sitting squarely on the floor as it was at
first. Has the potential energy of the crate increased in
this process? Explain.

Q18 Diagram

. Which has the greater potential energy: a ball that is 10 feet

above the ground, or one with the same mass that is 20 feet
above the bottom of a nearby 50-foot-deep well? Explain.

When a bow and arrow are cocked, a force is applied to
the string in order to pull it back. Is the energy of the sys-
tem increased? Explain.

Suppose that the physics instructor pictured in figure 6.15
gives the bowling ball a push as she releases it. Will the
ball return to the same point or will her chin be in danger?
Explain.

A pendulum is pulled back from its equilibrium (center)
position and then released.

Q23.

Q24.

Q25.

Q26.

Q27.

*Q28.

Q29.

Q30.

*Q31.

Q32.

*Q33,

*Q34.

a. What form of energy is added to the system prior to its
release? Explain.

b. At what points in the motion of the pendulum after
release is its kinetic energy the greatest? Explain.

c. At what points is the potential energy the greatest?
Explain.

For the pendulum in question 22—when the pendulum
bob is halfway between the high point and the low point in
its swing—is the total energy Kinetic energy, potential
energy, on both? Explain.

Is the total mechanical energy conserved in the motion of
a pendulum? Will it keep swinging forever? Explain.

A sports car accelerates rapidly from a stop and “burns
rubber.”

a. What energy transformations occur in this situation?

b. Is energy conserved in this process? Explain.

A man commutes to work in a large sport utility vehicle
(SUV).

a. What energy transformations occur in this situation?

b. Is mechanical energy conserved in this situation? Explain.
c. Is energy of all forms conserved in this situation? Explain.

Suppose that we burn a barrel of oil just to warm our

hands on a cold day.

a. From the standpoint of physics, is energy conserved in
this process? Explain.

b. Why is this a bad idea from an economic or environ-
mental standpoint? Explain.

A bird grabs a clam, carries it in its beak to a consider-
able height, and then drops it on a rock below, breaking
the clam shell. Describe the energy conversions that take
place in this process.

A mass attached to a spring, which in turn is attached to

a wall, is free to move on a friction-free horizontal sur-

face. The mass is pulled back and then released.

a. What form of energy is added to the system prior to the
release of the mass? Explain.

b. At what points in the motion of the mass after its re-
lease is its potential energy the greatest? Explain.

c¢. At what points is the kinetic energy the greatest? Explain.

Suppose that the mass in question 26 is halfway between
one of the extreme points of its motion and the center point.
In this position, is the energy of the system kinetic energy,
potential energy, or a combination of these forms? Explain.

A spring gun is loaded with a rubber dart, the gun is
cocked, and then fired at a target on the ceiling. Describe
the energy transformations that take place in this process.

Suppose that a mass is hanging vertically at the end of a
spring. The mass is pulled downward and released to set
it into oscillation. Is the potential energy of the system in-
creased or decreased when the mass is lowered? Explain.

A sled is given a push at the top of a hill. Is it possible
for the sled to cross a hump in the hill that is higher than
its starting point under these circumstances? Explain.

Can work done by a frictional force ever increase the total
mechanical energy of a system? (Hint: Consider the accel-
eration of an automobile.) Explain.
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Q35. Suppose that a pulley system is used to lift a heavy crate,

but the pulleys have rusted and there are frictional forces
acting on the pulleys. Will the useful work output of this
system be greater than, equal to, or less than the work
input? Explain.

exercises

Q36. Is the elastic potential energy stored in the pole the only

type of potential energy involved in pole-vaulting? Explain.

Q37. If one pole-vaulter can run faster than another, will the

faster runner have an advantage in the pole vault? Explain.

El.

E2.

E3.

E4.

ES.

E6.

E7.

E8.

A horizontally directed force of 40 N is used to pull a box
a distance of 2.5 m across a tabletop. How much work is
done by the 40-N force?

A woman does 160 J of work to move a table 4 m across
the floor. What is the magnitude of the force that the
woman applied to the table if this force is applied in the
horizontal direction?

A force of 60 N used to push a chair across a room
does 300 J of work. How far does the chair move in this
process?

A rope applies a horizontal force of 180 N to pull a crate a
distance of 2 m across the floor. A frictional force of 60 N
opposes this motion.

a. What is the work done by the force applied by the rope?
b. What is the work done by the frictional force?

c. What is the total work done on the crate?

A force of 50 N is used to drag a crate 4 m across a floor.

The force is directed at an angle upward from the crate so

that the vertical component of the force is 30 N and the

horizontal component is 40 N as shown in the diagram.

a. What is the work done by the horizontal component of
the force?

b. What is the work done by the vertical component of the
force?

c. What is the total work done by the 50-N force?

T |

E5 Diagram

A net force of 60 N accelerates a 4-kg mass over a distance
of 10 m.

a. What is the work done by this net force?

b. What is the increase in kinetic energy of the mass?

A 0.4-kg ball has a velocity of 20 m/s.
a. What is the kinetic energy of the ball?
b. How much work would be required to stop the ball?

A box with a mass of 5.0 kg is lifted (without acceleration)
through a height of 2.0 m, in order to place it upon the
shelf of a closet.

a. What is the increase in potential energy of the box?

EQ.

E10.

E11.

El12.

E13.

E14.

E15.

E16.

b. How much work was required to lift the box to this
position?

A spring with a spring constant k of 40 N/m is stretched a
distance of 20 cm (0.20 m) from its original unstretched posi-
tion. What is the increase in potential energy of the spring?

To stretch a spring a distance of 0.20 m, 40 J of work is done.
a. What is the increase in potential energy of the spring?
b. What is the value of the spring constant k of the spring?

Which requires more work: lifting a 2-kg rock to a height
of 4 m without acceleration, or accelerating the same rock
horizontally from rest to a speed of 10 m/s?

At the low point in its swing, a pendulum bob with a mass

of 0.2 kg has a velocity of 4 m/s.

a. What is its Kinetic energy at the low point?

b. Ignoring air resistance, how high will the bob swing
above the low point before reversing direction?

A 0.20-kg mass attached to a spring is pulled back horizon-
tally across a table so that the potential energy of the sys-
tem is increased from zero to 120 J. Ignoring friction, what
is the kinetic energy of the system after the mass is
released and has moved to a point where the potential
energy has decreased to 80 J?

A sled and rider with a combined mass of 50 kg are at the

top of a hill a height of 15 m above the level ground below.

The sled is given a push providing an initial kinetic energy

at the top of the hill of 1600 J.

a. Choosing a reference level at the bottom of the hill,
what is the potential energy of the sled and rider at the
top of the hill?

b. After the push, what is the total mechanical energy of
the sled and rider at the top of the hill?

c. If friction can be ignored, what will be the kinetic
energy of the sled and rider at the bottom of the hill?

A roller-coaster car has a potential energy of 450 000 J and
a kinetic energy of 120 000 J at point A in its travel. At the
low point of the ride, the potential energy is zero, and
50 000 J of work have been done against friction since it
left point A. What is the kinetic energy of the roller coaster
at this low point?

A roller-coaster car with a mass of 1200 kg starts at rest

from a point 20 m above the ground. At point B, it is 12 m

above the ground.

a. What is the initial potential energy of the car?

b. What is the potential energy at point B?

c. If the initial kinetic energy was zero and the work done
against friction between the starting point and point B is
30 000 J, what is the Kkinetic energy of the car at point B?
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E17.

A 200-g mass lying on a frictionless table is attached to a

horizontal spring with a spring constant of 400 N/m. The

spring is stretched a distance of 40 cm (0.40 m).

a. What is the initial potential energy of the system?

b. What is the kinetic energy of the system when the mass
returns to the equilibrium position after being released?

synthesis problems

E18.

E19.

The time required for one complete cycle of a mass oscil-
lating at the end of a spring is 0.25 s. What is the frequency
of oscillation?

The frequency of oscillation of a pendulum is 8 cycles/s.
What is the period of oscillation?

SP1.

SP2.

SP3.

SP4.

Suppose that two horizontal forces are acting upon a

0.25-kg wooden block as it moves across a laboratory

table: a 5-N force pulling the block and a 2-N frictional
force opposing the motion. The block moves a distance of

1.5 m across the table.

a. What is the work done by the 5-N force?

b. What is the work done by the net force acting upon the
block?

¢. Which of these two values should you use to find the
increase in kinetic energy of the block? Explain.

d. What happens to the energy added to the system via the
work done by the 5-N force? Can it all be accounted
for? Explain.

e. If the block started from rest, what are its kinetic energy
and velocity at the end of the 1.5-m motion?

As described in example box 6.2, a 100-kg crate is acceler-

ated by a net force of 50 N applied for 4 s.

a. What is the acceleration of the crate from Newton’s sec-
ond law?

b. If it starts from rest, how far does it travel in the time of
4 s? (See section 2.5 in chapter 2.)

¢. How much work is done by the 50-N net force?

d. What is the velocity of the crate at the end of 4 s?

e. What is the kinetic energy of the crate at this time? How
does this value compare to the work computed in part c?

A slingshot consists of a rubber strap attached to a Y-shaped

frame, with a small pouch at the center of the strap to hold

a small rock or other projectile. The rubber strap behaves

much like a spring. Suppose that for a particular slingshot a

spring constant of 600 N/m is measured for the rubber

strap. The strap is pulled back approximately 40 cm (0.4 m)

prior to being released.

a. What is the potential energy of the system prior to
release?

b. What is the maximum possible kinetic energy that can
be gained by the rock after release?

c. If the rock has a mass of 50 g (0.05 kg), what is its
maximum possible velocity after release?

d. Will the rock actually reach these maximum values of
kinetic energy and velocity? Does the rubber strap gain
kinetic energy? Explain.

Suppose that a 200-g mass (0.20 kg) is oscillating at the
end of a spring upon a horizontal surface that is essentially
friction-free. The spring can be both stretched and compressed

SPS.

40 m

and has a spring constant of 240 N/m. It was originally

stretched a distance of 12 cm (0.12 m) from its equilibrium

(unstretched) position prior to release.

a. What is its initial potential energy?

b. What is the maximum velocity that the mass will reach
in its oscillation? Where in the motion is this maximum
reached?

c. Ignoring friction, what are the values of the potential
energy, Kinetic energy, and velocity of the mass when
the mass is 6 cm from the equilibrium position?

d. How does the value of velocity computed in part ¢ com-
pare to that computed in part b? (What is the ratio of the
values?)

A sled and rider with a total mass of 40 kg are perched at

the top of a hill as pictured in the diagram. The top of this

hill is 40 m above the low point in the path of the sled. A

second hump in the hill is 30 m above this low point. Sup-

pose that we also know that approximately 2000 J of work
is done against friction as the sled travels between these
two points.

a. Will the sled make it to the top of the second hump if
no Kinetic energy is given to the sled at the start of its
motion? Explain.

b. What is the maximum height that the second hump
could be in order for the sled to reach the top, assum-
ing that the same work against friction will be involved
and that no initial push is provided? Explain.

30m

SP5 Diagram
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SP6. Suppose you wish to compare the work done by pushing a

home experiments and observations

box on rollers up a ramp to the work done if you lift the

box straight up to the same final height.

a. What work is required to lift a 100N box (about 22 Ibs)
up to a table which is 1 m off the floor?

b. Let’s assume you also have a ramp available that makes
an angle of 30° with the horizontal, as shown in the fig-
ure to the right. The ramp is 2 m long. The weight of the
box (100 N) is due to the Earth pulling on the box. This
100 N is a force directed straight down. If you push it up
a ramp, you are doing work against only the component
of this weight along the ramp, which is 50 N, as shown
in the diagram. How much work does it require to push
the box up the ramp, assuming no friction?

¢. Which situation (pushing up the ramp or lifting straight
up) requires more work?

d. Which situation requires more force?

e. For which situation is the distance moved greater?

f. What is the change in the gravitational potential energy
of the box for each situation?

g. What advantage, if any, is there to using the ramp? Explain.

30°

100 N
SP6 Diagram

HE1.

HE2.

You can construct a simple pendulum easily by attaching a

ball to a string (with tape or a staple) and fixing the other

end of the string to a rigid support. (A pencil taped firmly
to the end of a desk or table will do nicely.)

a. The frequency of oscillation can be measured by timing
the swings. The usual method is to use a watch to mea-
sure the time required for ten or more complete swings.
The period T (the time required for one swing) is then
the total time divided by the number of swings counted
and the frequency f is just 1/T.

b. How does the frequency change if you vary the length
of your pendulum? (Try at least three different lengths.)

A ramp for a marble or small steel ball can be made by

bending a long strip of cardboard into a V-shaped groove.

Two such ramps can be placed end to end, as pictured in

the diagram, to produce a track in which the marble will

oscillate.

a. Can you measure a frequency of oscillation for this sys-
tem? Does this frequency depend upon how high up the
ramp the marble starts?

b. How high up the second ramp does the marble go? Is
more energy lost per cycle in this system than for a
pendulum?

HE2 Diagram

HE3. The height to which a ball bounces after being dropped

provides a measure of how much energy is lost in the col-

lision with the floor or other surface. A small portion of the

energy is lost to air resistance as the ball is moving, but
most is lost in the collision.

a. Trying a number of different balls that you may have
available, test the height of the bounce using the same
height of release for all of the balls tested. Which ball
loses the most energy and which the least?

b. Can you explain why many balls return to a higher
height than a marble will? What characteristics of the
balls tested give the best bounce?

c. For a ball that bounces several times, does the period
(time between bounces) change with each bounce? Does
the bouncing ball undergo simple harmonic motion?



unit one

Momentum and
Impulse

chapter overview

In this chapter, we explore momentum and impulse and examine the use
of these concepts in analyzing events such as a collision between a
fullback and defensive back. The principle of conservation of momentum
is introduced and its limits explained. A number of examples will shed
light on how these ideas are used, particularly conservation of
momentum. Momentum is central to all of these topics—it is a powerful
tool for understanding a lot of life’s sudden changes.

chapter outline

l Momentum and impulse. How can rapid changes in motion be
described using the ideas of momentum and impulse? How do these
ideas relate to Newton’s second law of motion?

2 Conservation of momentum. What is the principle of conservation of
momentum, and when is it valid? How does this principle follow from
Newton’s laws of motion?

3 Recoil. How can we explain the recoil of a rifle or shotgun using
momentum? How is this similar to what happens in firing a rocket?

4 Elastic and inelastic collisions. How can collisions be analyzed using
conservation of momentum? What is the difference between an elastic
and an inelastic collision?

5 Collisions at an angle. How can we extend momentum ideas to two
dimensions? How does the game of pool resemble automobile
collisions?

124
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The word momentum is overused by sports announc-
ers to mean changes in the flow of a game. The “old
mo” that announcers talk about bears only a metaphor-
ical relationship to the physical concept of momentum.
There are plenty of real examples of changes in mo-
mentum for us to consider in both the world of sports
and the world more generally.

Take the collision between a hard-charging fullback
and a defensive back on the football field (fig. 7.1). If
they meet head-on, the velocity of the fullback is sharply
reduced, although the two players might continue mov-
ing briefly in the original direction of the fullback’s
velocity. If the defensive back is moving before the colli-
sion, his velocity also changes abruptly. There must be
strong forces at work to produce these accelerations,
but these forces act for only an instant. How do we use
Newton’s laws to analyze this event?

Momentum, impulse, and conservation of momen-
tum figure in any discussion of collisions. The total mo-
mentum of the fullback and defensive back is involved
in predicting what will happen after the collision. How
is momentum defined, and what does conservation of
momentum have to do with Newton’s laws? How is
conservation of momentum useful in predicting what

figure 7.1 A collision between a running back and a
defensive back (in red, center of the photograph). How will the
two players move after the collision?

happens in collisions? These questions will be addressed
as we examine a variety of collisions and other high-
impact events.

7.1 Momentum and Impulse

Imagine a baseball heading toward the catcher’s mitt when
its flight is rudely interrupted by the impact of a bat. In a
very short time, the velocity of the ball changes direction
and is accelerated in the direction opposite its original
flight. Similar changes happen when a tennis racket hits a
ball or when a ball bounces off a wall or the floor. In many
everyday situations, a brief impact causes a rapid change in
an object’s velocity.

The forces responsible for such rapid changes in motion
can be large, but they act for very short times and are diffi-
cult to measure. Not only are they brief, but they may change
rapidly during the collision.

What happens when a ball bounces?

Consider the seemingly simple example of dropping a ten-
nis ball. The ball is initially accelerated downward by the
gravitational force. When it reaches the floor, its velocity
quickly changes in direction, and the ball heads back up to-
ward you (fig. 7.2). There must be a strong force exerted on
the ball by the floor during the short time that they are in
contact. This force provides the upward acceleration neces-
sary to change the direction of the ball’s velocity.

If we used a high-speed camera to catch the action during
the time the ball is in contact with the floor, we would see
that the ball’s shape is distorted (fig. 7.3). The ball behaves

figure 7.2 A tennis ball bouncing off the floor. There is a rapid
change in the direction of the velocity when the ball hits the floor.

like a spring, first compressing as it moves downward, then
expanding (springing back) as it begins to move upward. A
quick test (squeezing the ball with your hands) will per-
suade you that a strong force is required to distort the ball.

What we have, then, is a strong force acting for a very
brief time producing a rapid acceleration that quickly changes
the ball’s velocity from a downward direction to an upward
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figure 7.3 A high-speed photograph of a ball hitting the
floor. The ball is compressed like a spring.

one. The magnitude of the ball’s velocity decreases rapidly
to zero and then increases equally rapidly in the opposite
direction. This all happens in a time so short that we would
miss it if we blinked.

How can we analyze such rapid changes?

We have described the collision of the ball with the floor
using force and acceleration, and we could also use Newton’s
second law to predict how the velocity actually changes.
The problem with this approach is that the time of the
interaction is very short, and the force itself varies during
this short time, so it is hard to describe the collision accu-
rately. It is more productive to look at the total change in
motion in this brief interaction.

We introduced Newton’s second law in chapter 4 using
the expression F ., = ma. The acceleration a is the rate of
change in velocity, which can be expressed as the change in
velocity Av divided by the time interval At required to pro-
duce that change. The time interval is important: the shorter
the time for a given change in velocity, the larger the accel-
eration and the force needed to produce this change.

We can restate Newton’s second law as

Av
Fnet =m (At)l

expressing the acceleration in terms of the change in ve-
locity. Multiplying both sides of this equation by the time
interval At recasts the second law as

F..At = mAv.

net

While this is still Newton’s second law, rewriting it offers us
a different way of looking at events. This new view is more
convenient for describing the overall change in motion.

What are impulse and momentum?

Impulse shows up as the quantity on the left side of the
recast second law, F ,At. Impulse is the force acting on an
object multiplied by the time interval over which the force
acts. If the force varies during this time interval, and it often

does, we must use the average value of the force over this
time interval.

Impulse is the average force multiplied by its time interval of
action:

impulse = FAt.

Since force is a vector quantity, impulse is also a vector in
the direction of the average force.

How a force changes the motion of an object depends
on both the size of the force and how long the force acts.
The stronger the force, the larger the effect, and the longer
the force acts, the greater its effect. Multiplying the two
factors together to get the impulse shows the overall effect
of the force.

On the right side of our recast second law, mAv is the
mass of the object multiplied by the change in velocity
produced by the impulse. This product is the change in the
quantity of motion, to use Newton’s own term. We now call
this product the change in momentum of the object, where
momentum is defined as

Momentum is the product of the mass of an object and its
velocity, or

p =mv.

The symbol p is often used for momentum. If the mass
of the object is constant, the change in momentum is the
mass times the change in velocity or Ap = mAv.

Like velocity, momentum is a vector and has the same
direction as the velocity vector. Two different objects trav-
eling in the same direction can have different masses and
velocities but still have the same momentum. For exam-
ple, a 7-kg bowling ball moving with the relatively slow
speed of 2 m/s would have a momentum of 14 kg:m/s.
On the other hand, a tennis ball with a mass of just
0.07 kg, moving with the much larger velocity of 200 m/s,
has the same momentum as the bowling ball, 14 kg-m/s
(fig. 7.4).

Using these definitions of impulse and momentum, we
can state our recast form of Newton’s second law as

impulse = change in momentum

= Ap.

This statement of the second law is sometimes called the
impulse-momentum principle:

The impulse acting on an object produces a change in momen-
tum of the object that is equal in both magnitude and direc-
tion to the impulse.
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m=7Kkg

m=0.07 kg

p = 14 kgem/s

@ v =200 m/s
| -
p =14 kgem/s

figure 7.4 A bowling ball and a tennis ball with the same momentum. The tennis ball with its smaller mass must have a much

larger velocity.

This principle is not a new law but another way of express-
ing Newton’s second law of motion. It is particularly use-
ful for looking at collisions.

How do we apply the impulse-momentum
principle?

The impulse-momentum principle applies to almost any
collision. Whacking a golf ball with a golf club is a good
example (fig. 7.5). The impulse delivered by the golf club
produces a change in the golf ball’s momentum, also
described in example box 7.1. Note that the units of impulse
(force multiplied by time, or N-s) must equal those of
momentum (mass times velocity, or kg-m/s).

Does the momentum of the bouncing tennis ball we dis-
cussed earlier change when it hits the floor? Even if the
ball loses no energy in its collision with the floor and
bounces back with the same speed and kinetic energy it
had just before hitting the floor, the momentum changes
because its direction changes. The momentum decreases to

impulse

figure 7.5 An impulse is delivered to the golf ball by the
head of the club. If the initial momentum of the ball is zero, the
final momentum is equal to the impulse delivered.

example box 7.1

Sample Exercise: The Momentum and
Impulse of Golf

A golf club exerts an average force of 500 N on a 0.1-kg
golf ball, but the club is in contact with the ball for only a
hundredth of a second.

a. What is the magnitude of the impulse delivered by

the club?
b. What is the change in velocity of the golf ball?
a. F = 500 N impulse = FAt
At = 0.01s = (500 N)(0.01 s)
impulse = ? = 5N
b. m = 0.1 kg impulse = Ap = mAv
Av = ? Ay = impulse
m
_ 5Ns
0.1 kg
= 50 m/s

Since the golf ball started at rest, this change in velocity
equals the velocity of the ball as it leaves the face of the
club. The direction of this velocity is the same as the
impulse of the force exerted by the club.

zero as the ball comes to a momentary halt, and it changes
again as the ball gains momentum in the opposite direction
(fig. 7.6). The total change in momentum is larger than the
change that would happen if the tennis ball stopped and
did not bounce.

When the tennis ball bounces back with the same speed,
the total change in momentum is twice the value of the
momentum just before the ball hits the floor. Its final
momentum is mv, where the direction of v is upward, but
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Pf
Ap
Pi
Impulse
Before During After

figure 7.6  The impulse exerted by the floor on the tennis
ball produces a change in its momentum.

its initial momentum was —mv because the initial veloc-
ity was directed downward. We find the change in momen-
tum by subtracting the initial value from the final value:
mv — (—mv) = 2mv. The impulse required to produce this
change in momentum is twice as large as what is needed
simply to stop the ball.

There are many practical lessons involving impulse and
change in momentum. Why does it help to pull your hand
back as you catch a hard-thrown ball? When you pull your
hand back, you lengthen the time interval At. This reduces
the average force that your hand must exert on the ball, since
impulse is the product of the force and the time interval
(FAY). If the time interval is longer, the force can be smaller
yet still produce the same impulse and change in momen-
tum. It hurts less this way! A padded dashboard or an air bag
similarly lessens injury to passengers by increasing the time
interval required to bring them to a halt in a collision.
Another practical lesson involving impulse and change in
momentum is described in everyday phenomenon box 7.1.

Everything that we have done in this section is just an-
other way of working with Newton’s second law of motion.
In fact, by dividing both sides of the impulse-momentum
principle by the time interval At, Newton’s second law can
be expressed in the form that most nearly captures the
meaning of Newton’s original statement of the second law,
F... = Ap/At. In words, this form of the second law says that
the net force acting on an object is equal to the rate of
change in momentum of the object. This form covers a
wider range of situations than the more familiar F.,, = ma.

Momentum and impulse are most useful for evaluating
events such as collisions, where powerful forces act briefly
to produce striking changes in the motion of objects. The
impulse-momentum principle states that the change in
momentum is equal to the impulse. This is a different way
of stating Newton’s second law. The impulse, the product of
the average force and the time interval that it is applied,
allows us to predict the change in momentum of the
object. Large impulses yield large changes in momentum.

7
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figure 7.7  Two football players colliding. The impulses
acting on the two players are equal in magnitude but opposite
in direction.

7.2 Conservation of Momentum

How do impulse and momentum help to explain the colli-
sion between the defensive back and fullback mentioned in
the chapter introduction? The conditions described in sec-
tion 7.1 are certainly present. The defensive back exerts a
sizable but brief force on the fullback (fig. 7.7), and the
momentum of both players changes rapidly in the collision.

The principle of conservation of momentum provides
the key to understanding such a collision. This principle
arises when we apply Newton’s third law to impulse and
changes in momentum. Conservation of momentum allows
us to predict many features of collisions without requiring
detailed knowledge of the forces of impact.

Why and when is momentum conserved?

Let’s take a more detailed look at the head-on collision be-
tween the hard-charging fullback and the defensive back.
To simplify the situation, we assume that the two players
meet in midair and that after the collision they move to-
gether, with the fullback held in the tackle of the defensive
back (fig. 7.7). What happens when they collide?

During the collision, the defensive back exerts a strong
force on the fullback, and by Newton’s third law, the full-
back exerts a force equal in magnitude but opposite in di-
rection on the defensive back. Since the time interval of
action At is the same for both forces, the impulses FAt
must also be equal in magnitude but opposite in direction.
From the impulse-momentum principle (Newton’s second
law), changes in the momentum Ap for each player are
also equal in magnitude but opposite in direction.

If the two players experience equal but oppositely di-
rected momentum changes, the total change in momentum
of the two players together is zero. We look at the overall
system and define the total momentum of that system as
the sum of the momentum values of the two players. There
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everyday phenomenon

The Egg Toss

The Situation. Have you ever competed to see how far you
and a partner can successfully throw and catch a raw egg? The
most successful technique involves moving your hand back as
the egg lands in it. Why does this technique reduce the likeli-
hood of the egg breaking? What does this have to do with
momentum and impulse? How can your physics knowledge
reduce the chances of a raw egg bath? These same principles
apply when catching water balloons.

The Analysis. When you throw an egg or a balloon toward
your partner, you apply a force and give it momentum. When
your partner catches it and brings it to a stop, the object
experiences a change in momentum. That change in momen-
tum is equal to the impulse, as discussed on page 126. The
impulse is also equal to the product of the force of the hand
on the object multiplied by the time that force is applied.
Therefore, by the impulse-momentum principle, the change in
momentum is equal to the force of the hand on the egg mul-
tiplied by the time that force is applied: Ap = FAt.

Unlike a golf swing or a bat hitting a baseball, the idea
here is not to increase the change in momentum; the idea is
to minimize the force applied to the egg so that it won’t
break. It is the strength of the force that will break the egg.
The larger the force applied by your hand in catching the egg,
the more likely it is that you will be splattered.

Once the egg leaves the thrower's hand, it has a certain
momentum that stays the same as it travels from the
thrower to the catcher. We say this momentum is fixed. The
impulse required to reduce this momentum to zero is
therefore also fixed, it does not change. Since FAt is fixed, if
you wish to decrease the force applied to the egg, the time
interval At involved in the catch must be increased. We say
that force and time are inversely proportional to one another.
As one increases, the other decreases in proportion. F is
proportional to 1/At. (F is proportional to the inverse of At.)

The idea of inverse proportionality comes up frequently in
everyday life but is not always recognized or understood.

To take a simple example, let us say that you have $2.00 to
spend on candy. If you buy candy pieces that cost 10¢ each,
you will get 20 pieces of candy. If, instead, you buy candy
pieces that cost 25¢ each, you can only buy eight pieces of
candy. The more expensive the candy, the fewer pieces can be
purchased, a fact that most of us can easily recognize.

In this example, the amount of money you have to spend
is fixed, and it must equal the total cost of the candy, which
is the product of the price per piece times the number of
pieces. The number of pieces of candy you can buy and the
price of each piece of candy are therefore inversely propor-
tional to one another. As one increases, the other must
decrease in proportion.

As we have already indicated, inverse proportionality is
involved in catching the egg. The impulse is fixed, so force
and time are inversely proportional to one another. As you
increase one (say the time to stop it), the other (the force
applied) decreases. Your objective is then to make the time
involved in stopping the egg as large as possible.

How can this be done? You can increase the time
involved in the catch substantially by moving your hand back
as the egg reaches it. This should be done as smoothly as
possible so that the velocity (and momentum) of the egg
decreases to zero much more gradually than if your hand
were stationary. Using this technique, the average force
applied to the egg can be made much smaller than that
involved in a sudden stop. With luck, this force will be small
enough so the egg will not break!

This same principle has many applications. Air bags in cars
reduce the force applied to your head in a collision by
increasing the time it takes your head to come to a stop.
Gym floors have much more ‘give’ to them to reduce the
force on players’ knees when jumping and landing on the
floor. Dropping a wine glass on a carpeted floor will make a
mess by staining the carpet, but it is far less likely to break
the glass than if it is dropped onto a concrete floor. In all of
these examples, the force has decreased because the time it
takes to stop the object increases. You may not be able to
measure the decrease in time with a stopwatch because the
times involved are very short, but you can see the evidence of
the increased time in the result.

The next time you have a picnic, bring some raw eggs or
water balloons and apply the impulse-momentum principle
with your friends and family. With water balloons, good
technique will keep you dry, but sometimes it is more fun to
get wet.
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is no change in the momentum of this system because the
changes in the momentums of the parts cancel one another.
The total momentum of the system is conserved.

To reach this conclusion, we ignored external forces
(produced by other objects) acting on the two players and
assumed that the only significant forces were their own
forces of interaction. The forces that they exert on one an-
other are internal to the system consisting of both players.
The principle of conservation of momentum can therefore
be stated as

If the net external force acting on a system of objects is zero,
the total momentum of the system is conserved.

The forces of interaction between the objects in a sys-
tem are internal forces whose effects on the total momen-
tum cancel one another, because of Newton’s third law of
motion. Different portions of the system can exchange mo-
mentum without affecting the total momentum of the sys-
tem. If there is a net external force acting on the system
because of interaction with some object that is not part of
the system, the entire system will be accelerated—and the
momentum of the system will change.

Conservation of momentum and collisions

Using the principle of conservation of momentum, what
information can we obtain about the results of a collision
(like the one between two football players)? If we know
the masses of the players and their initial velocities, we
can find how fast and in what direction the players will
move after they collide. We do not need to know anything
at all about the details of the strong forces involved in the
collision itself.

The sample exercise in example box 7.2 treats a head-
on collision between a fullback and a defensive back using
realistic numerical values. The fullback has a mass of
100 kg (equivalent to a weight of about 220 Ib) and is mov-
ing straight downfield with a velocity of 5 m/s through the
hole created by his linemen. The somewhat smaller defen-
sive back charges up to meet him with a velocity in the
opposite direction of —4 m/s (fig. 7.8). The minus sign
indicates direction: we have chosen the fullback’s direction
of motion to be positive.

The total momentum of the system before the collision
in example box 7.2 is found by adding the initial momen-
tum of the fullback to the momentum of the defensive
back, taking into account the difference in sign. If we as-
sume that both players’ feet leave the ground just before
the collision (so that there are no frictional forces between
their feet and the ground), momentum should be conserved
in the collision. The total momentum of the two players
moving together after the collision has the same value as it
did immediately before the collision (fig. 7.9).

example box 7.2

Sample Exercise: A Head-on Collision

A 100-kg fullback moving straight downfield with a
velocity of 5 m/s collides head-on with a 75-kg defensive
back moving in the opposite direction with a velocity of
—4 m/s. The defensive back hangs on to the fullback, and
the two players move together after the collision.

a. What is the initial momentum of each player?

b. What is the total momentum of the system?

¢. What is the velocity of the two players immediately

after the collision?

a. fullback: p = mv
m = 100 kg = (100 kg)(5 m/s)
v = 5m/s = 500 kg-m/s
p=7?
defensive back: p = mv
m = 75 kg = (75 kg)(—4 m/s)
v = —4m/s = —300 kg:m/s

pfullback + pdefensive back
500 kg'm/s + (—300 kg:m/s)
200 kg-m/s

b. ptotal =7 ptotal =

c¢. v = ? (for both players after the collision)
m = 100 kg + 75 kg p = mv

175 kg , _ P

m

200 kg-m/s
175 kg

1.14 m/s

The positive value of the momentum after the collision
means that the two players are traveling in the direction of
the fullback’s initial motion. The fullback had a larger ini-
tial momentum than the defensive back, so his direction of
motion prevails when the two values are added. The defen-
sive back will be carried backward briefly before the two
players hit the turf.

Conservation of momentum results when the changes
in momentum of different parts of a system cancel each
other by Newton's third law. If there are no external
forces acting on the system, its total momentum is
conserved. The principle applies to all sorts of situations
involving collisions and explosions or other forms of
brief but forceful interaction between objects.
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-

P4 =500 kgem/s

After

figure 7.9 The two players after the collision, with velocity
and momentum vectors indicated.

7.3 Recoil

Why does a shotgun slam against your shoulder when fired,
sometimes with painful consequences? How can a rocket
accelerate in empty space when there is nothing there to
push against but itself? These are examples of the phe-
nomenon of recoil, a common part of everyday experience.
Conservation of momentum is the key to understanding
recoil.

What is recoil?

Imagine two ice skaters facing one another and pushing
against each other with their hands (fig. 7.10). The frictional
forces between their skates and the ice are presumably very
small, so we can neglect them. The upward normal force
and the downward force of gravity cancel one another, too,
since we know that there is no acceleration in the vertical
direction. The net external force acting on the system of the
two skaters is effectively zero, and conservation of momen-
tum should apply.

How do we apply conservation of momentum in this sit-
uation? Since neither skater is moving before the push-off,

figure 7.10 Two skaters of different masses prepare to
push off against one another. Which one will gain the larger
velocity?

the initial total momentum of the system is zero. If mo-
mentum is conserved, the total momentum of the system
after the push-off will also be zero. How can the total mo-
mentum be zero when at least one of the skaters is mov-
ing? Both skaters must move with momentum values equal
in magnitude but opposite in direction p, = —p,. The mo-
mentum of the second skater p, must be opposite that of
the first skater p;. When added together to find the total
momentum of the system, these individual values will can-
cel each other to produce a total momentum of zero.

After the push-off, the two skaters move in opposite
directions with momentum vectors equal in magnitude
(fig. 7.11), but their velocities are not of equal magnitude.
Since momentum is mass times velocity (p = mv), the
skater with the smaller mass must have the larger velocity
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Recoil

i i

figure 7.11 The two skaters after pushing off, with the
velocity and momentum vectors indicated.

to yield the same magnitude of momentum as the larger
skater. Suppose that the smaller skater’s mass is just half the
mass of the larger skater. The smaller skater’s velocity will
then be twice as large as the larger skater after pushing off.

The ice skaters illustrate the basics of recoil. A brief
force between two objects causes the objects to move in
opposite directions. The lighter object attains the larger
velocity to equalize the magnitudes of the momentums of
the two objects. The total momentum for the system after the
push-off equals zero, the value of the momentum of the sys-
tem before the push-off if the objects were initially at rest.
The total momentum of the system is conserved and does
not change.

Recoil of a shotgun

If you have ever fired a shotgun without holding it firmly
against your shoulder, you have probably had a painful ex-
perience of recoil. What happened? The explosion of the
powder in the shotgun causes the shot to move very rap-
idly in the direction of the gun’s aim. If the gun is free to
move, it will recoil in the opposite direction with a mo-
mentum equal in magnitude to the momentum of the shot
(fig. 7.12).

Even though the mass of the shot is considerably less
than the shotgun, the momentum of the shot is quite large
as a result of its large velocity. If the external forces acting
on the system can be ignored, the shotgun recoils with a
momentum equal in magnitude to the momentum of the
shot. The recoil velocity of the shotgun will be smaller than
the shot’s velocity because of the larger mass of the gun,
but it is still sizable. As the gun slams back against your
shoulder, you will know that it has recoiled.

How can you avoid a bruised shoulder? The trick is to
hold the gun firmly against your shoulder. (See example

figure 7.12  The shot and the shotgun have equal but
oppositely directed momentums after the gun is fired.

example box 7.3

Sample Question: Is Momentum Conserved
When Shooting a Shotgun?

Question: When a shotgun is held firmly against your
shoulder, is the momentum of the system conserved?

Answer: It depends on how you define the system.

If the system is defined as just the shotgun and the
pellets, there is then a strong external force exerted on
the system by the shoulder of the shooter. Since the
condition for conservation of momentum is that the net
external force acting on the system be zero, the momen-
tum of this system is not conserved.

If we included the shooter and the Earth in our system,
then momentum would be conserved because all of the
forces would be internal to this system. The change in the
momentum of the Earth would be imperceptible, however.

box 7.3.) Your own mass then becomes part of the system.
This increased mass will produce a smaller recoil velocity,
even if you happen to be standing on ice with no frictional
forces between your feet and the Earth. More important,
the shotgun will not move against your shoulder.

How does a rocket work?

The firing of a rocket is another example of recoil. The ex-
haust gases rushing out of the tail of the rocket have both
mass and velocity and, therefore, momentum. If we ignore
external forces, the momentum gained by the rocket in the
forward direction will equal in magnitude the momentum
of the exhaust gases in the opposite direction (fig. 7.13).
Momentum is conserved, just as in our other examples of
recoil. The rocket and the exhaust gases push against one
another, and Newton’s third law applies.

The difference between a rocket and our earlier exam-
ples of the skaters and the shotgun is that firing a rocket
is usually a continuous process. The rocket gains momen-
tum gradually rather than in a single short blast. The mass
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figure 7.13 If a short blast is fired, the rocket gains
momentum equal in magnitude but opposite in direction to the
momentum of the exhaust gases.

of the rocket also changes as fuel is consumed and gases
exhaust from the rocket engines. Computation of the final
velocity becomes more difficult than for the skaters. For a
brief blast of the rocket, though, the same analysis can be
used.

Recoil works in empty outer space: the two objects need
only push against each other, just as with the skaters and the
shotgun. Rocket engines can be used for space travel, un-
like the propeller engines or jet engines used on airplanes.
Airplane engines depend on the presence of the atmo-
sphere, both as a source of oxygen used in burning fuel
and as something to push against. An airplane propeller
pushes against the air, and the air, by Newton’s third law,
pushes against the propeller. This interaction accelerates
the airplane. A rocket, on the other hand, is self-contained.
It exerts a force on its own exhaust gases, and by the third
law, the exhaust gases exert a force on the rocket.

During recoil, objects push against one another, moving

in opposite directions. If external forces can be neglected,

momentum is conserved. The total momentum before and
after the interaction equals zero. After the interaction, the
two objects move away with equal but oppositely directed
momentum vectors that cancel one another. Recoil is one

of many kinds of brief interaction to which conservation of
momentum applies.

7.4 Elastic and Inelastic Collisions

As the example involving football players showed, colli-
sions are one of the most fruitful areas for applying con-
servation of momentum. Collisions involve large forces of
interaction acting for very brief times, and they produce
dramatic changes in the motion of the colliding objects.
Because the forces of interaction are so large, any external
forces acting on the system usually are unimportant by com-
parison: momentum is conserved.

Different kinds of collisions produce different results.
Sometimes the objects stick together and sometimes they
bounce apart. What distinguishes these different cases, and
what do the terms elastic, inelastic, and perfectly inelastic
mean when applied to collisions? Is energy conserved as
well as momentum? Railroad cars, bouncing balls, and bil-
liard balls help illustrate the differences.

What is a perfectly inelastic collision?

The easiest type of collision to analyze is one where two
objects collide head-on and stick together after the col-
lision, like the two football players discussed earlier.
Because they stuck together and moved as one object after
the collision, we had just one final velocity to contend
with.

A collision in which the objects stick together after col-
lision is called a perfectly inelastic collision. The objects
do not bounce at all. If we know the total momentum
of the system before the collision (and external forces are
ignored), we can readily compute the final momentum and
velocity of the now-joined objects.

Coupling railroad cars are another example of this type
of collision. Example box 7.4 uses conservation of momen-
tum to predict the final momentum and velocity of coupled
railroad cars from knowledge of the momentum of the sys-
tem before the collision. The process is much the same as
the one used to predict the final velocity of the football
players in section 7.2. In both cases, the separate objects
move as one following the collision.

In example box 7.4, the total mass of the coupled cars
after the collision is five times that of car 5, so the final ve-
locity of the coupled cars must be one-fifth that of car 5 to
conserve momentum. The momentum of the system imme-
diately after the collision is equal to that just before the
collision, but the velocities have changed. The “final” ve-
locity that we calculated is valid immediately after the col-
lision. As the cars continue to move following the collision,
frictional forces will gradually decelerate them until they
come to rest.

Is energy conserved in collisions?

Is the kinetic energy after the railroad cars collide equal
to the original kinetic energy of car 5 in the example in
example box 7.4? Using the relationship KE = %mv2 intro-
duced in chapter 6, we can compute the kinetic energy be-
fore and after the collision. The original kinetic energy of
car 5 is 2250 kJ. (A kilojoule, kJ, is a thousand joules.)
Immediately after the collision, the kinetic energy of the
five cars moving together is just 450 kJ. (You can check
these values.) A portion of the original kinetic energy is
lost in any perfectly inelastic collision.

If we put a large spring on the front of the moving rail-
road car and allowed it to bounce off the other four cars
rather than coupling, we will find that a greater portion of
the kinetic energy is retained in the collision. When the ob-
jects bounce, the collision is either elastic or only partially
inelastic rather than perfectly inelastic. The distinction is
based on energy. An elastic callision is one in which no
energy is lost. A partially inelastic collision is one in
which some energy is lost, but the objects do not stick to-
gether. The greatest portion of energy is lost in the per-
fectly inelastic collision, when the objects stick.
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example box 7.4

Sample Exercise: When Railroad Cars Couple

a. mg = 20000 Kg  Pipiiar = MsVs

Four railroad cars, all with the same mass of 20 000 kg, Vs = 15m/s = (20000 kg)(15 m/s)
sit on a track, as shown in the drawing. A fifth car of Pinitial = = 300 000 kg-m/s
identical mass approaches them with a velocity of 15 m/s (before the collision)
(to the right). This car collides and couples with the other
four cars. _ ~ Prina
a. What is the initial momentum of the system? b. Mgy = 100000 kg Vinar = Meoal
b. What is the velocity of the five coupled cars after Pfinal = Pinitial
the collision? ) 300 000 kg-m/s
Viinal = = 7100 000 kg
= 3m/s
(for the five cars after the collision)
car5

Pinitial

E

A railroad car approaches four others at rest on the track. What is the velocity of the cars after they couple?

In most collisions, some kinetic energy is lost because
the collisions are not perfectly elastic. Heat is generated,
the objects may be deformed, and sound waves are cre-
ated, all of which involve conversions of the kinetic energy
of the objects to other forms of energy. Even if the objects
bounce, we cannot assume that the collision is elastic.
More likely, the collision will be partially inelastic, imply-
ing that some of the initial kinetic energy has been lost.

A ball bouncing off a floor or wall with no decrease in
the magnitude of its velocity is an example of an elastic
collision. Since the magnitude of the velocity does not
change (only the direction changes), the kinetic energy
does not decrease. No energy has been lost. More likely, of
course, some energy will be lost in such a collision, and
the magnitude of the ball’s velocity after the collision will
be a little smaller than before.

The opposite extreme to an elastic collision of a ball
with the wall would be a perfectly inelastic collision in
which the ball sticks to the wall. In this case, the velocity
of the ball after the collision is zero. So is its kinetic en-
ergy. All of the kinetic energy is lost (fig. 7.14).

What happens when billiard balls bounce?

Very little energy is lost when billiard balls collide with
one another. (Time spent playing pool can be justified as a
form of experimental physics. Your intuition about elastic

Elastic

Perfectly

. . Vi = 0
inelastic C

figure 7.14  An elastic collision and a perfectly inelastic
collision of a ball with a wall. The ball sticks to the wall in the
perfectly inelastic collision.
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collisions can be improved in the process!) The collisions
are basically elastic. Both momentum and kinetic energy
are conserved in most collisions of billiard balls.

When colliding objects such as billiard balls bounce off
one another, we must deal with two final velocities rather
than one. We can readily compute the total momentum of
the system before and after the collision from our knowl-
edge of the initial momentum values of the objects. More
information is needed to determine the individual veloci-
ties of the objects after the collision, however, since one
value is not enough to determine two unknown velocities.
(This is why the case of the perfectly inelastic collision,
where objects stick together, is particularly easy to analyze.)
In an elastic collision, conservation of energy provides the
additional information.

For billiard balls, the simplest case is the white cue ball
colliding head-on with a second ball that is not moving be-
fore it is hit (the eleven ball in fig. 7.15). What happens? If
spin is a minor factor in the collision, the cue ball stops
dead on impact, and the eleven ball moves forward with a
velocity equal to that of the cue ball before the collision. If
the eleven ball acquires the same velocity that the cue ball
had before the collision, it also has the same momentum
mv as the initial momentum of the cue ball because both
balls have the same mass. Momentum is conserved.

Kinetic energy is also conserved. The cue ball had a
kinetic energy of %mv2 before the collision. After the col-
lision, the velocity and kinetic energy of the cue ball are
zero, but the eleven ball now has a kinetic energy of % mv2,
since its mass and speed are the same as the cue ball be-
fore the collision. Given the equal masses of the two balls,
the only way that both momentum and kinetic energy can
be conserved is for the cue ball to stop and the eleven ball
to move forward with the same momentum and kinetic en-
ergy that the cue ball had before the collision. This effect
is familiar to any pool player.

The same phenomenon is involved in the familiar
swinging-ball demonstration often seen as a decorative toy
on mantels or desktops (fig. 7.16). A row of steel balls hangs

P1

figure 7.15 A head-on collision between the white cue
ball and the eleven ball initially at rest. The cue ball stops, and
the eleven ball moves forward.

figure 7.16  The swinging-ball apparatus provides an
example of collisions that are approximately elastic.

by threads from a metal or wooden frame. If one ball is
pulled back and released, the collision with the other balls
results in a single ball from the other end of the chain fly-
ing off with the same velocity as the first ball just before the
collision. Both momentum and kinetic energy are conserved.

If two balls on one side are pulled back and released,
two balls fly off from the opposite side of the row of balls
after the collision. Again, both momentum and kinetic en-
ergy are conserved by this result. You can explore a variety
of other combinations. It can be entertaining as well as
addictive.

Collisions between hard spheres, such as billiard balls or
the steel balls in the swinging-ball apparatus, will generally
be more or less elastic. Most collisions involving everyday
objects, though, are inelastic to some degree. Some Kinetic
energy is lost. Momentum will be conserved, however, as
long as our concern is with the values of momentum and
velocity immediately before and after the collision.

Conservation of momentum is the primary tool used in
understanding collisions. External forces can be ignored
for the brief time of the collision, when the collision forces
are dominant, and the law of conservation of momentum
applies. Kinetic energy can also be conserved if the colli-
sion is elastic, as it is approximately for billiard balls or
other hard spheres. Most collisions involving familiar
objects are partially inelastic and involve some loss of
energy. The greatest proportion of energy is lost in per-
fectly inelastic collisions where objects stick together.

7.5 Collisions at an Angle

What happens when objects such as billiard balls or automo-
biles collide at an angle, rather than head-on? Some inter-
esting applications of conservation of momentum arise
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when motion is not confined to a straight line. It becomes
more apparent that momentum is a vector when objects are
free to move in two dimensions. Balls on a pool table, cars
colliding at an intersection, or football players tackling all
provide interesting examples.

An inelastic two-dimensional collision

Two football players, originally traveling at right angles to
one another, collide and stick together, as in figure 7.17.
What will be their direction of motion after the collision?
How do we apply conservation of momentum in this
two-dimensional case? In figure 7.17, we assume that the
two players have the same masses and initial speeds as in
our earlier example (section 7.2), but we no longer have
a head-on collision. The momentum of the defensive back
is now directed across the field as the fullback heads
downfield.

Because momentum is a vector, we need to add the in-
dividual momentum vectors of the fullback and the defen-
sive back to get the total momentum of the system before
the collision. This can be done most readily by using a
vector diagram with the vectors drawn to scale. The vec-
tors can then be added graphically as we have done
before. As shown in figure 7.18, the total momentum of
the system before the collision is the hypotenuse of the
right triangle formed by adding the other two momentum
vectors.

If momentum is conserved in the collision, the total mo-
mentum of the two players after the collision will equal the
total momentum before the collision. Since the two players
move together after the collision, they will travel in the

p, =500 kgem/s

figure 7.17  The fullback and the defensive back
approaching each other at a right angle.

-
‘ P, = 300 kgem/s

w® p, = 300 kgem/s
31°

-
p1 =500 kgem/s

figure 7.18  The total momentum of the two football
players prior to the collision is the vector sum of their individual
momentums.

direction of the total momentum vector shown in figure 7.18.
(See appendix C for a review of vector addition.) The direc-
tion of motion of both players changes as a result of the
collision. The larger momentum of the fullback before the
collision dictates that the final direction of motion is more
downfield than across the field, but it is some of both. This
result makes intuitive sense if you imagine yourself as one
of the players.

The final direction of motion of the two football players
after the collision depends on their momentum values be-
fore the collision. If the defensive back were bigger or
moving faster than we assumed initially, he would have a
larger momentum, and his tackle would cause a more im-
pressive change in the direction of the fullback’s motion.
On the other hand, if the defensive back is small and mov-
ing slowly, his effect on the fullback’s direction will be
small. Adjusting the length of the momentum arrow p,, the
momentum of the defensive back in figure 7.18, will illus-
trate these changes.

Everyday phenomenon box 7.2 describes a similar situ-
ation. Two cars approaching an intersection at right angles
to one another collide and stick together. Working back-
ward from information about the final direction of travel,
the investigator can draw conclusions about the initial ve-
locities of the two cars. Conservation of momentum is ex-
tremely important in accident analysis.

What happens in elastic two-dimensional
collisions?

When billiard balls collide, they do not stick together after the
collision: when objects bounce, we have to contend with
two final velocities with different directions. Although many
real collisions are like this, analysis is more complicated
for them than for the perfectly inelastic examples we have
discussed. More information is needed to predict the final
velocities. If we know that the collision is elastic, however,
conservation of kinetic energy can provide that additional
information.

Experimental physics on the pool table comes through
again with an interesting example (and one of practical value
to any pool player). Suppose that the cue ball strikes the
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everyday phenomenon

An Automobile Collision

The Situation. Officer Jones is investigating an automobile
collision at the intersection of Main Street and 19th Avenue.
Driver A was traveling east on 19th Avenue when she was
struck from the side by driver B who was traveling north on
Main Street. The two cars stuck together after the collision
and ended up against the lamppost on the northeast corner
of the intersection.

Both drivers claim they started up just as the light in their
direction changed to green and then collided with the other
driver, who was running a red light and speeding. There are
no other witnesses. Which driver is telling the truth?

Main St.

19th Ave.

-

VB

The collision at Main Street and 19th Avenue.

The Analysis. Officer Jones, having taken a physics course
during college and being trained in the art of accident investi-
gation, makes these observations:

1. The point of impact is well marked by the shards of glass
from the headlights of B's car and other debris. Officer
Jones indicates this point on the diagram in her accident
report form.

2. The direction the two cars are traveling after the impact is
also obvious. (She indicated this by a line drawn from the
point of impact to the cars’ final resting spot.)

3. Both cars have about the same mass (both are compacts
of roughly the same vintage and size).

4. Conservation of momentum should determine the direc-
tion of the momentum vector after the collision.

After sketching the diagram and noting the direction of
the final momentum vector, Officer Jones concludes that B is
lying. Why? The final momentum vector must be equal to the
sum of the initial momentum vectors of the two cars before
the collision. Since the cars were traveling at right angles to
one another, the two initial momentum vectors form the sides
of a right triangle whose hypotenuse is the total momentum of
the system. The diagram clearly shows that the momentum
of B's car must have been considerably larger than the
momentum of A's car.

Main St.

Pole
19th Ave. O/

Pa

Ps| /pr

1.

Officer Jones's accident report contains a vector diagram derived
from conservation of momentum.

Since both drivers claimed to have just started from a
complete stop after the traffic signal changed, the driver with
the larger velocity before the collision is not telling it like
it was. Driver B is the one who had the larger velocity, and
so was presumably speeding through the red light. Driver B
is thus cited by Officer Jones.
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stationary eleven ball at an angle (off-center), as in figure
7.19. What happens to the two balls after the collision?
The combined effects of conservation of momentum and
conservation of kinetic energy lead to a unique result well-
known to serious pool players.

The initial momentum of the system is simply that of
the cue ball, the only one moving. Its direction is indicated
by the arrow labeled p;in figure 7.19 and in the drawings
in figure 7.20. The force of interaction (and the impulse)
between the two balls is along a line joining the centers of
the balls at the point of impact. The eleven ball moves off
along this line because the force of contact pushes it in that
direction.

The total momentum of the system after the collision
must still be in the direction of the initial momentum be-
cause momentum is conserved in the collision. Conserva-
tion of momentum also restricts the possible momentum
and direction of the cue ball’s motion after the collision
(fig. 7.20). The momentum vectors of the two balls after
the collision are added here to give the total momentum of
the system, p,, Which must be equal in both magnitude
and direction to the initial momentum of the system.

Since the collision is elastic, the initial kinetic energy of
the cue ball, 3 mv?, must also equal the sum of the kinetic
energies of the two balls after the collision. Since the masses
of the two balls are equal, conservation of Kinetic energy
in the collision requires that*

V2= (V)2 (vp)?

where v is the speed of the cue ball before the collision,
and v, and v, are the speeds of the two balls afterward. The
velocity vectors form a triangle like the one formed by
the momentum vectors in figure 7.20. If the sum of the
squares of the two sides equals the square of the third side
of the triangle, this triangle must be a right triangle accord-
ing to the Pythagorean theorem from plane geometry. If
the velocity vectors form a right triangle, so do the momen-
tum vectors, which have the same directions as the corre-
sponding velocity vectors.

Conservation of momentum requires that the momen-
tum vectors add to form a triangle, but conservation of ki-
netic energy dictates that it be a right triangle. The cue ball
will move off at a right angle (90°) to the direction of mo-
tion of the eleven ball after the collision. In playing pool,
this is an important piece of intelligence if you are plan-
ning your next shot. Conservation of momentum and con-
servation of kinetic energy determine the shot.

If you have a pool table handy, test these conclusions
using a variety of impact angles. (Marbles or steel balls are

*Conservation of kinetic energy requires that %va = %m(vl)2 +
% m(v,)?, but the mass and the factor of % can be divided out of the
equation.

figure 7.19  The cue ball is aimed at a point off-center on
the second ball to produce an angular collision.

P; % = P1
() \
P2

Before During After

Ly

Vector addition

figure 7.20 The momentum vectors of the two balls after
the collision add to give the total (initial) momentum of the
system. The paths of the two balls are approximately at right
angles after the collision.

a suitable substitute.) You may not get perfect 90° angles
after the collision: the collision is not perfectly elastic, and
spin can sometimes be a factor. The angle between the two
final velocities, though, will usually be within a few de-
grees of a right angle. Seeing is believing—give it a try.
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Conservation of momentum requires that the direction of
the momentum vector be conserved as well as its size.
When collisions occur at an angle, this requirement re-
stricts the directions and velocities of the resulting mo-
tions. If the collision is elastic, as with billiard balls, conser-
vation of energy adds another restriction. If you can

summary

imagine the direction and magnitude of the original mo-
mentum vector, you will have some sense of the outcome.
These conservation laws are powerful predictors of what
happens when people, billiard balls, cars, and even sub-
atomic particles or stars collide.

In this chapter, we recast Newton’s second law in terms of im-
pulse and momentum to describe interactions between objects,
such as collisions, that involve strong interaction forces acting
over brief time intervals. The principle of conservation of mo-
mentum, which follows from Newton’s second and third laws,
plays a central role.

l Momentum and impulse. Newton’s second law can
be recast in terms of momentum and impulse, yielding the state-
ment that the net impulse acting on an object equals the change in
momentum of the object. Impulse is defined as the average force
acting on an object multiplied by the time interval during which
the force acts. Momentum is defined as the mass of an object
times its velocity.

Impulse [ j Ap

FretAt=Ap, p=mv

2 Conservation of momentum. Newton’s second and
third laws combine to yield the principle of conservation of mo-
mentum: if the net external force acting on a system is zero, the
total momentum of the system is a constant.

Before After

oO—

o— O

If Fexternal = 0

P;otal = CONstant

3 Recoil. If an explosion or push occurs between two ob-
jects initially at rest, conservation of momentum dictates that the
total momentum after the event must still be zero if there is no net
external force. The final momentum vectors of the two objects are
equal in size but opposite in direction.

P1

4 Elastic and inelastic collisions. A perfectly inelas-
tic collision is one in which the objects stick together after the
collision. If external forces can be ignored, the total momentum is
conserved. An elastic collision is one in which the total kinetic
energy is also conserved.

-

Vi

Q{\C

Perfectly
inelastic

Elastic

5 Collisions at an angle. Conservation of momentum
is not restricted to one-dimensional motion. When objects collide
at an angle, the total momentum of the system before and after
the collision is found by adding the momentum vectors of the in-
dividual objects.

Before
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key terms

Impulse, 126
Momentum, 126
Impulse-momentum principle, 126

Recoil, 132

study hint

Conservation of momentum, 128

Except for the examples involving impulse, most of the sit-
uations described in this chapter highlight the principle of
conservation of momentum. The basic ideas used in apply-

Elastic collision, 133
Partially inelastic collision, 133

Perfectly inelastic collision, 133

3. Equality of momentum before and after the event can
be used to obtain other information about the motion
of the objects.

1.

ing conservation of momentum are:

External forces are assumed to be much smaller than
the very strong forces of interaction in a collision or
other brief event. If external forces acting on the sys-
tem can be ignored, momentum is conserved.

The total momentum of the system before the collision
or other brief interaction p; ., is equal to the momen-
tum after the event py;,,. Momentum is conserved and
does not change.

questions

For review, look back at how these three points are used
in each of the examples in this chapter. The total momen-
tum of the system before and after the event is always
found by adding the momentum values of the individual
objects as vectors. You should be able to describe the mag-
nitude and direction of this total momentum for each of
the examples.

* = more open-ended questions, requiring lengthier responses, suitable
for group discussion

Q = sample responses are available in appendix D

Q = sample responses are available on the website

QL.

Q2.

Q3.

Q4.

Q5.

Q6.

Q7.

Qs.

Does the length of time that a force acts on an object have
any effect on the strength of the impulse produced? Explain.

Two forces produce equal impulses, but the second force
acts for a time twice that of the first force. Which force, if
either, is larger? Explain.

Is it possible for a baseball to have as large a momentum
as a much more massive bowling ball? Explain.

Are impulse and force the same thing? Explain.
Are impulse and momentum the same thing? Explain.

If a ball bounces off a wall so that its velocity coming back

has the same magnitude that it had prior to bouncing:

a. Is there a change in the momentum of the ball? Explain.

b. Is there an impulse acting on the ball during its colli-
sion with the wall? Explain.

Is there an advantage to following through when hitting a
baseball with a bat, thereby maintaining a longer contact
between the bat and the ball? Explain.

What is the advantage of a padded dashboard compared to
a rigid dashboard in reducing injuries during collisions?
Explain using momentum and impulse ideas.

Qo.

*Q10.

Q11.

Q12

Q13.

Q14.

Q15.

Q16.

What is the advantage of an air bag in reducing injuries
during collisions? Explain using impulse and momentum
ideas.

If an air bag inflates too rapidly and firmly during a colli-
sion, it can sometimes do more harm than good in low-
velocity collisions. Explain using impulse and momentum
ideas.

If you catch a baseball or softball with your bare hand,
will the force exerted on your hand by the ball be reduced
if you pull your arm back during the catch? Explain.

A truck and a bicycle are moving side by side with the
same velocity. Which, if either, will require the larger im-
pulse to bring it to a halt? Explain.

Is the principle of conservation of momentum always valid,
or are there special conditions necessary for it to be valid?
Explain.

A ball is accelerated down a fixed inclined plane under
the influence of the force of gravity. Is the momentum
of the ball conserved in this process? Explain.

Two objects collide under conditions where momentum is
conserved. Is the momentum of each object conserved in
the collision? Explain.

Which of Newton’s laws of motion are involved in justify-
ing the principle of conservation of momentum? Explain.
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*Q17.

Q18.

Q19.

Q20.

*Q21.

Q22.

Q23.

Q24.

*Q25.

A compact car and a large truck have a head-on collision.
During the collision, which vehicle, if either, experiences:
a. the greater force of impact? Explain.

b. the greater impulse? Explain.

c. the greater change in momentum? Explain.

d. the greater acceleration? Explain.

A fullback collides midair and head-on with a lighter de-
fensive back. If the two players move together following
the collision, is it possible that the fullback will be car-
ried backward? Explain.

Two ice skaters, initially at rest, push off one another.
What is the total momentum of the system after they
push off? Explain.

Two shotguns are identical in every respect (including the
size of shell fired) except that one has twice the mass of
the other. Which gun will tend to recoil with greater ve-
locity when fired? Explain.

When a cannon rigidly mounted on a large boat is fired,
is momentum conserved? Explain, being careful to clearly
define the system being considered.

Is it possible for a rocket to function in empty space (in a
vacuum) where there is nothing to push against except it-
self? Explain.

Suppose that you are standing on a surface that is so slick
that you can get no traction at all in order to begin mov-
ing across this surface. Fortunately, you are carrying a bag
of oranges. Explain how you can get yourself moving.

Suppose an astronaut in outer space suddenly discovers
that the tether connecting her to the space shuttle is cut
and she is slowly drifting away from the shuttle. Assum-
ing that she is wearing a tool belt holding several wrenches,
how can she move herself back toward the shuttle? Explain.

Suppose that on a perfectly still day, a sailboat enthusiast

decides to bring along a powerful battery-operated fan in

order to provide an air current for his sail, as shown in

the diagram.

a. What are the directions of the change in momentum
of the air at the fan and at the sail?

b. What are the directions of the forces acting on the fan
and on the sail due to these changes in momentum?

¢. Would the sailor in this picture be better off with the
sail furled (down) or unfurled (up)? Explain.

-~
V!

S~~~

Q25 Diagram

Q26.

Q27.

Q2s.

Q29.

Q30.

*Q31.

Q32.

Q33.

Q34.

A skateboarder jumps on a moving skateboard from the
side. Does the skateboard slow down or speed up in this
process? Eaplain, using conservation of momentum.

A railroad car collides and couples with a second railroad
car that is standing still. If external forces acting on the
system are ignored, is the velocity of the system after
the collision equal to, greater than, or less than that of the
first car before the collision? Explain.

Is the collision in question 24 elastic, partially inelastic,
or perfectly inelastic? Explain.

If momentum is conserved in a collision, does this indi-
cate conclusively that the collision is elastic? Explain.

A ball bounces off a wall with a velocity whose magni-
tude is less than it was before hitting the wall. Is the col-
lision elastic? Explain.

A ball bounces off a wall that is rigidly attached to the

Earth.

a. Is the momentum of the ball conserved in this pro-
cess? Explain.

b. Is the momentum of the entire system conserved?
Explain, being careful to clarify how you are defining
the system.

A cue ball strikes an eight ball of equal mass, initially at
rest. The cue ball stops and the eight ball moves forward
with a velocity equal to the initial velocity of the cue ball.
Is the collision elastic? Explain.

Two lumps of clay traveling through the air in opposite
directions collide and stick together. Their momentum
vectors prior to the collision are shown in the diagram.
Sketch the momentum vector of the combined lump of
clay after the collision, making the length and direction
appropriate to the situation. Explain your result.

apl 4&@

Q33 Diagram

Two lumps of clay, of equal mass, are traveling through
the air at right angles to each other with velocities of
equal magnitude. They collide and stick together. Is it
possible that their velocity vector after the collision is in
the direction shown in the diagram? Explain.

Before

R

v, After

Q34 Diagram
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Q35. Two cars of equal mass collide at right angles to one

another in an intersection. Their direction of motion after
the collision is as shown in the diagram. Which car had the
greater velocity before the collision? Explain.

L
miE

Q35 Diagram

Q36.

A car and a small truck traveling at right angles to one
another with the same speed collide and stick together. The
truck’s mass is roughly twice the car’s mass. Sketch the di-
rection of their momentum vector immediately after the
collision. Explain your result.

A cue ball strikes a glancing blow against a second bil-
liard ball initially at rest. Sketch the situation indicating
the magnitudes and directions of the momentum vectors
of each ball before and after the collision.

exercises
E1l. An average force of 300 N acts for a time interval of 0.04 s E10. A fullback with a mass of 100 kg and a velocity of 3.5 m/s
on a golf ball. due west collides head-on with a defensive back with a
a. What is the magnitude of the impulse acting on the golf mass of 80 kg and a velocity of 6 m/s due east.
ball? a. What is the initial momentum of each player?
b. What is the change in the golf ball’s momentum? b. What is the total momentum of the system before the
. . . collision?
E2. Wh h f a 1200-k | h . .
spe:é ':'f t; r:}nggt:An;:)oa 00-kg car traveling with a c. If they stick together and external forces can be ignored,
’ what direction will they be traveling immediately after
E3. A bowling ball has a mass of 6 kg and a speed of 1.5 m/s. they collide?
A baseball has a mass of 0.12 kg and a speed of 40 m/s. . . .
. E11. An ice skater with a mass of 80 kg pushes off against a
2
Which ball has the larger momentum’ second skater with a mass of 32 kg. Both skaters are ini-
E4. A force of 45 N acts on a ball for 0.2 s. If the ball is ini- tially at rest.
tially at rest: a. What is the total momentum of the system after they
a. What is the impulse on the ball? push off?
b. What is the final momentum of the ball? b. If the larger skater moves off with a speed of 3 m/s,
E5. A 0.12-kg ball traveling with a speed of 40 m/s is brought what is the corresponding speed of the smaller skater?
to rest in a catcher’s mitt. What is the size of the impulse E12. A rifle with a mass of 1.2 kg fires a bullet with a mass of
exerted by the mitt on the ball? 6.0 g (0.006 kg). The bullet moves with a muzzle velocity
E6. A ball experiences a change in momentum of 24 kg-m/s. of 600 m/s after the rifle is fired. .
a. What is the impulse acting on the ball? a. What is the momentum of the bullet after the rifle is
b. If the time of interaction is 0.15 s, what is the magni- fired? _ _ )
tude of the average force acting on the ball? b. If external forces acting on the rifle can be ignored,
what is the recoil velocity of the rifle?
E7. A 60-kg front-seat passenger in a car moving initially with . . . .
a speed of 18 m/s (40 MPH) is brought to rest by an air E13. A rocket ship at rest in space gives a short blast of its en-
bag in a time of 0.4 s gine, firing 50 kg of exhaust gas out the back end with an
a. What is the impulse acting on the passenger? average velocity of 400 _m/s. What is the change in mo-
b. What is the average force acting on the passenger in mentum of the rocket during this blast?
this process? E14. A railroad car with a mass of 12 000 kg collides and cou-
E8. A ball traveling with an initial momentum of 2.5 kg-m/s ples with a second car of mass 18 000 kg that is initially at
bounces off a wall and comes back in the opposite direc- rest. Th_e _flrst car is moving with a speed of 12 m/s prior to
tion with a momentum of —2.5 kg-m/s. the CO”'S'_On' o .
a. What is the change in momentum of the ball? a. What is the initial momentum of the first car?
b. What impulse would be required to produce this change? b. If external forces can be ignored, what is the final ve-
locity of the two railroad cars after they couple?
E9. A ball traveling with an initial momentum of 4.0 kg-m/s . .
E15. For the railroad cars in example box 7.4:

bounces off a wall and comes back in the opposite direc-
tion with a momentum of —3.5 kg-m/s.

a. What is the change in momentum of the ball?

b. What impulse is required to produce this change?

a. What is the kinetic energy of car 5 before the collision?

b. What is the kinetic energy of all five cars just after the
collision?

c. Is energy conserved in this collision?
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E16. A 4000-kg truck traveling with a velocity of 10 m/s due

north collides head-on with a 1200-kg car traveling with a

velocity of 20 m/s due south. The two vehicles stick to-

gether after the collision.

a. What is the momentum of each vehicle prior to the
collision?

b. What are the size and direction of the total momentum
of the two vehicles after they collide?

E17. For the two vehicles in exercise 16:

a. Sketch to scale the momentum vectors of the two vehi-
cles prior to the collision.
b. Add the two vectors on your sketch graphically.

synthesis problems

E18. A truck with a mass of 4000 kg traveling with a speed

of 10 m/s collides at right angles with a car with a mass of

1500 kg traveling with a speed of 20 m/s.

a. Sketch to proper scale and direction the momentum
vectors of each vehicle prior to the collision.

b. Using the graphical method of vector addition, add the
momentum vectors to get the total momentum of the sys-
tem prior to the collision.

SP1.

SP2.

SP3.

A fast ball thrown with a velocity of 40 m/s (approximately

90 MPH) is struck by a baseball bat, and a line drive

comes back toward the pitcher with a velocity of 60 m/s.

The ball is in contact with the bat for a time of just 0.04 s.

The baseball has a mass of 120 g (0.120 kg).

a. What is the change in momentum of the baseball during
this process?

b. Is the change in momentum greater than the final mo-
mentum? Explain.

c. What is the magnitude of the impulse required to pro-
duce this change in momentum?

d. What is the magnitude of the average force that acts on
the baseball to produce this impulse?

A bullet is fired into a block of wood sitting on a block of

ice. The bullet has an initial velocity of 500 m/s and a mass

of 0.005 kg. The wooden block has a mass of 1.2 kg and is

initially at rest. The bullet remains embedded in the block

of wood afterward.

a. Assuming that momentum is conserved, find the veloc-
ity of the block of wood and bullet after the collision.

b. What is the magnitude of the impulse that acts on the
block of wood in this process?

c. Does the change in momentum of the bullet equal that
of the block of wood? Explain.

Consider two cases in which the same ball is thrown against

a wall with the same initial velocity. In case A, the ball sticks

to the wall and does not bounce. In case B, the ball bounces

back with the same speed that it came in with.

a. In which of these two cases is the change in momentum
the largest?

b. Assuming that the time during which the momentum
change takes place is approximately the same for these
two cases, in which case is the larger average force
involved?

c. Is momentum conserved in this collision? Explain.

SP4.

SP5.

A car traveling at a speed of 18 m/s (approximately 40 MPH)

crashes into a solid concrete wall. The driver has a mass of

90 kg.

a. What is the change in momentum of the driver as he
comes to a stop?

b. What impulse is required in order to produce this change
in momentum?

¢. How does the application and magnitude of this force
differ in two cases: the first, in which the driver is wear-
ing a seat belt, and the second, in which he is not wearing
a seat belt and is stopped instead by contact with the
windshield and steering column? Will the time of action
of the stopping force change? Explain.

A 1500-kg car traveling due north with a speed of 25 m/s

collides head-on with a 4500-kg truck traveling due south

with a speed of 15 m/s. The two vehicles stick together after

the collision.

a. What is the total momentum of the system prior to the
collision?

b. What is the velocity of the two vehicles just after the
collision?

c. What is the total kinetic energy of the system before the
collision?

d. What is the total kinetic energy just after the collision?

e. Is the collision elastic? Explain.
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home experiments and observations

HE1.

HE2.

HE3.

Take two marbles or steel balls of the same size and prac-

tice shooting one into the other. Make these observations:

a. If you produce a head-on collision with the second
marble initially at rest, does the first marble come to a
complete stop after the collision?

b. If the collision with a second marble occurs at an angle,
is the angle between the paths of the two marbles after
the collision a right angle (90°)?

c. If marbles of different sizes and masses are used, how
do the results of parts a and b differ from those ob-
tained with marbles of the same mass?

If you have access to a pool table, try parts a and b of
the observations in home experiment 1 on the pool table.
What effect does putting spin on the first ball have on the
collisions?

If you have both a basketball and a tennis ball, try drop-

ping the two of them onto a floor with a hard surface, first

individually and then with the tennis ball placed on top of

the basketball before the two are dropped together.

a. Compare the height of the bounce of each ball in these
different cases. The case where the two are dropped to-
gether may surprise you.

b. Can you devise an explanation for these results using
impulse and Newton’s third law? (Consider the force
between the basketball and the floor as well as that be-
tween the tennis ball and the basketball for the case
where they are dropped together.)

HE4. Place a cardboard box on a smooth tile or wood floor.

Practice rolling a basketball or soccer ball at different
speeds and allowing the ball to collide with the box. Ob-
serve the motion of both the box and the ball just after the
collision.

a. How do the results of the collision vary for different
speeds of the ball (slow, medium, fast)?

b. If we increase the weight of the box by placing books
inside, how do the results of the collision change for
the cases in part a?

c. Can you explain your results using conservation of
momentum?



Rotational Motion
of Solid Objects

chapter overview

Starting with a merry-go-round—and making use of the analogy

law. Torque, rotational inertia, and angular momentum will be

chapter, you should be able to predict what will happen in many

chapter outline

What are rotational velocity and acceleration, and how are they
related to similar concepts used to describe linear motion?

in causing an object to rotate?

3 Rotational inertia and Newton’s second law. How can Newton’s

How do we describe rotational inertia, an object’s resistance to
changes in rotational motion?

their rotational velocities?

rotational velocity and angular momentum as vectors?

145

between linear and rotational motion—we first consider what concepts
are needed to describe rotational motion. We then turn to the causes of
rotational motion, which involve a modified form of Newton’s second

introduced as we proceed. Our goal is to develop a clear picture of both
the description and causes of rotational motion. After studying this

common examples of spinning or rotating objects, such as ice skaters and
divers. The world of sports is rich in examples of rotational motion.

l What is rotational motion? How can we describe rotational motion?

2 Torque and balance. What determines whether a simple object such
as a balance beam will rotate? What is torque, and how is it involved

second law be adapted to explain the motion of rotating objects?

4 Conservation of angular momentum. What is angular momentum,
and when is it conserved? How do spinning skaters or divers change

5 Riding a bicycle and other amazing feats. Why does a bicycle remain
upright when it is moving but not when it is stationary? Can we treat

unit one
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In the park next door to the author’s house, there is a
child-propelled merry-go-round (fig. 8.1). It consists of
a circular steel platform mounted on an excellent bear-
ing so that it rotates without much frictional resist-
ance. Once set in rotation, it will continue to rotate.
Even a child can start it moving and then jump on (and
sometimes fall off). Along with the swings, the slide,
and the little animals mounted on heavy-duty springs,
the merry-go-round is a popular center of activity in
the park.

The motion of this merry-go-round bears both similar-
ities and differences to motions we have already consid-
ered. A child sitting on the merry-go-round experiences
circular motion, so some of the ideas discussed in chapter 5
will come into play. What about the merry-go-round itself,
though? It certainly moves, but it goes nowhere. How do
we describe its motion?

Rotational motion of solid objects such as the merry-
go-round is common: the rotating Earth, a spinning
skater, a top, and a turning wheel all exhibit this type of
motion. For Newton’s theory of motion to be broadly
useful, it should explain what is happening in rotational
motion as well as in linear motion (where an object
moves from one point to another in a straight line).
What causes rotational motion? Can Newton’s second
law be used to explain such motion?

figure 8.1 The merry-go-round in the park is an example of
rotational motion. How do we describe and explain this motion?

We will find that there is a useful analogy between
the linear motion of objects and rotational motion. The
questions just posed can be answered best by making
full use of this analogy. Taking advantage of the similar-
ities between rotational motion and linear motion saves
space in our mental computers, thus making the learn-
ing process more efficient.

8.1 What Is Rotational Motion?

A child begins to rotate the merry-go-round described in
the introduction. She does so by holding on to one of the
bars on the edge of the merry-go-round (fig. 8.1) as she
stands beside it. She begins to push the merry-go-round,
accelerating as she goes, until eventually she is running,
and the merry-go-round is rotating quite rapidly.

How do we describe the rotational motion of the merry-
go-round or that of a spinning ice skater? What quantities
would we use to describe how fast they are rotating or how
far they have rotated?

Rotational displacement and
rotational velocity

How would you measure how fast the merry-go-round is
rotating? If you stood to one side and watched the child
pass your position, you could count the number of revolu-
tions that the child makes in a given time, measured with
your watch. Dividing the number of revolutions by the time
in minutes yields the average rotational speed in revolu-
tions per minute (rpm), a commonly used unit for describ-
ing the rate of rotation of motors, Ferris wheels, and other
rotating objects.

If you say that the merry-go-round rotates at a rate of
15 rpm, you have described how fast an object is turning.
The rate is analogous to speed or velocity, quantities used

to describe how fast an object is moving in the case of lin-
ear motion. We usually use the term rotational velocity to
describe this rate of rotation. Revolutions per minute is just
one of several units used to measure this quantity.

In measuring the rotational velocity of the merry-go-
round, we describe how far it rotates in revolutions or com-
plete cycles. Suppose that an object rotates less than one
complete revolution. We could then use a fraction of a rev-
olution to describe how far it has turned, but we might also
use an angle measured in degrees. Since there are 360° in
one complete revolution or circle, revolutions can be con-
verted to degrees by multiplying by 360°/rev.

The quantity measuring how far an object has turned or
rotated is an angle, often called the rotational displace-
ment. It can be measured in revolutions, degrees, or a sim-
ple but less familiar unit used in mathematics and physics
called the radian.* The three units commonly used to de-
scribe rotational displacement are summarized in figure 8.2.

*The radian is defined by dividing the arc length through which the point
travels by the radius of the circle on which it is moving. Thus, in figure
8.2, if the point on the merry-go-round moves along the arc length a dis-
tance s, the number of radians involved is s/r where r is the radius. Since
we are dividing one distance by another, the radian itself has no dimen-
sions. Also, since the arc length s is proportional to the radius r, it does not
matter how large a radius we choose. The ratio of s to r will be the
same for a given angle. By definition of the radian, 1 revolution (rev) =
360° = 21 radians, and 1 radian (rad) = 57.3°.
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1 revolution
=360°
= 2n radians

1 radian
=57.3°

figure 8.2 Revolutions, degrees, or radians are different
units for describing the rotational displacement of the merry-
go-round.

Rotational displacement is analogous to the distance trav-
eled by an object in linear motion. If we include the direc-
tion of travel, this distance is sometimes called the linear
displacement.

The symbols used to describe rotational quantities mainly
come from the Greek alphabet. Greek letters are used to
avoid confusion with other quantities represented by letters
of our ordinary Roman alphabet. The Greek letter theta (6)
is commonly used to represent angles (rotational displace-
ments), and the Greek letter omega (w) is used to represent
rotational velocities.

The quantities that we have just introduced for describ-
ing the motion of an object such as the merry-go-round can
be summarized as

Rotational displacement 6 is an angle showing how far an
object has rotated.

and

Rotational velocity o is the rate of change of rotational dis-
placement. It is found by dividing the rotational displacement
by the time taken for this displacement to happen

In describing rotational velocity, we usually use either
revolutions or radians as the measure of rotational displace-
ment. Degrees are less commonly used.

What is rotational acceleration?

In our original description of the child pushing the merry-
go-round, the rate of rotation increased as she ran along-
side. This involves a change in the rotational velocity, which
suggests the concept of rotational acceleration. The Greek
letter alpha («) is the symbol used for rotational accelera-
tion. It is the first letter in the Greek alphabet and corre-
sponds to the letter a used to represent linear acceleration.

Rotational acceleration can be defined similarly to lin-
ear acceleration (see chapter 2):

Rotational acceleration is the rate of change in rotational
velocity. It is found by dividing the change in rotational veloc-
ity by the time required for this change to occur,

10
=

o =

The units of rotational acceleration are rev/s? or rad/s?.

These definitions for both rotational velocity and rota-
tional acceleration actually yield the average values of
these quantities. To get instantaneous values, the time in-
terval t must be made very small, as in the linear-motion
definitions of instantaneous velocity and instantaneous ac-
celeration (see sections 2.2 and 2.3). This then yields the
rate of change of either displacement or velocity at a given
instant in time.

You will remember these definitions of rotational dis-
placement, velocity, and acceleration better if you keep in
mind the complete analogy that exists between linear and
rotational motion. This analogy is summarized in figure
8.3. In one dimension, distance d represents the change
in position or linear displacement, which corresponds to
rotational displacement 6. Average velocity and accelera-
tion for linear motion are defined as before, with the corre-
sponding definitions of rotational velocity and acceleration
shown on the right side of the diagram in figure 8.3.

Constant rotational acceleration

In chapter 2, we introduced equations for the special case
of constant linear acceleration because of its many impor-
tant applications. By comparing linear and rotational quan-
tities, we can write similar equations for constant rotational
acceleration by substituting the rotational quantities for the
corresponding linear quantities in the equations developed
for linear motion. Table 8.1 shows the results beside cor-
responding equations for linear motion. Example box 8.1
is an application of the equations for constant rotational
acceleration.

The merry-go-round in example box 8.1 starts from rest
and rotates through nine complete revolutions in 1 minute,
a good effort by the person pushing. It is unlikely that this
rate of acceleration could be sustained much longer than
1 minute. The rotational velocity reached in this time is a



148 Chapter 8 Rotational Motion of Solid Objects

Linear motion

Displacement = d

Velocity = % =

v
Acceleration = At—V —a

Rotational motion

Displacement = ¢

Velocity = 0= [0)

t
Acceleration = At—“)

= o

figure 8.3 There is a close resemblance between quantities used to describe linear
motion and those used to describe rotational motion.

little less than a third of a revolution per second, a fast rota-
tional velocity for such a merry-go-round.

How are linear and rotational
velocity related?

How fast is the rider going when the merry-go-round in
example box 8.1 is rotating with a velocity of 0.30 rev/s?
The answer to this question depends on where the rider is
sitting. He or she will move faster when seated near the
edge of the merry-go-round than near the center. The ques-
tion involves a relationship between the linear speed of the
rider and the rotational velocity of the merry-go-round.

Figure 8.4 shows two circles on the merry-go-round with
different radii representing different positions of riders. The
rider seated at the greater distance from the center travels a
larger distance in 1 revolution than the rider near the center
because the circumference of his circle is greater. The out-
side rider is therefore moving with a greater linear speed
than the rider near the center.

Constant Acceleration Equations for Linear

and Rotational Motion
Linear motion Rotational motion

VvV =V, + at o = 0y + at

d:vot+%at2 0:w0t+%0¢t2

The farther the rider is from the center, the farther he
travels in 1 revolution, and the faster he is moving. The cir-
cumference of the circle on which the rider is traveling
increases in proportion to the radius of the circle r, the
distance of the rider from the center. If we express the
rotational velocity in radians per second (rad/s), the rela-
tionship for the linear speed of the rider takes the form

V = low.

example box 8.1

Sample Exercise: Rotating a Merry-Go-Round

Suppose that a merry-go-round is accelerated at a
constant rate of 0.005 rev/s?, starting from rest.
a. What is its rotational velocity at the end of 1 min?
b. How many revolutions does the merry-go-round
make in this time?

a. a = 0.005rev/s> o= o, + at
o, = 0 = 0 + (0.005 rev/s?)(60 s)
t=260s = 0.30rev/s
b. 0 =2 Since wy is equal to zero,

0 = ;at?

= %(0.005 rev/s?)(60 s)?

= 9rev
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figure 8.4 The rider near the edge travels a greater
distance in 1 revolution than one near the center.

The linear speed v of a rider seated a distance r from the
center of a merry-go-round is equal to r times the rotational
velocity w of the merry-go-round. (For this simple relation-
ship to be valid, however, the rotational velocity must be
expressed in radians per second rather than revolutions or
degrees per second.)

The rate at which the merry-go-round or other object
turns will affect how fast a point on the rotating object will
move—in other words, its linear speed. Linear speed will
depend on the distance from the axis of rotation. A child
out at the edge of the merry-go-round will get a bigger thrill
from the ride than one more timidly parked near the middle.

Rotational displacement, rotational velocity, and rotational
acceleration are the quantities that we need to fully describe
the motion of a rotating object. They describe how far the
object has rotated (rotational displacement), how fast it

is rotating (rotational velocity), and the rate at which the
rotation may be changing (rotational acceleration). These
definitions are analogous to similar quantities used to
describe linear motion. They tell us how the object is
rotating, but not why. Causes of rotation are considered
next.

8.2 Torque and Balance

What causes the merry-go-round to rotate in the first place?
To get it started, a child has to push it, which involves
applying a force. The direction and point of application of
force are important to the success of the effort. If the child

pushes straight in toward the center, nothing happens. How
do we apply a force to produce the best effect?

Unbalanced torques cause objects to rotate. What are
torques, though, and how are they related to forces? A look
at a simple scale or balance can help us get at the idea.

When is a balance balanced?

Consider a balance made of a thin but rigid beam supported
by a fulcrum or pivot point, as in figure 8.5. If the beam
is balanced before we place weights on it, and if we put
equal weights at equal distances from the fulcrum, we
expect that the beam will still be balanced. By balanced,
we mean that it will not tend to rotate about the fulcrum.

Suppose that we wish to balance unequal weights on the
beam. To balance a weight twice as large as a smaller
weight, would we place the two weights at equal distances
from the fulcrum? Intuition suggests that the smaller weight
needs to be placed farther from the fulcrum than the larger
weight for the system to be balanced, but it may not tell
you how much farther (fig. 8.6). Trial and error with a sim-
ple balance will show that the smaller weight must be
placed twice as far from the fulcrum as the larger (twice as
large) weight.

Try it yourself using a ruler for the beam and a pencil
for the fulcrum. Coins can be used as the weights. Experi-
ments will show that both the weight and the distance from
the fulcrum are important. The farther a weight sits from the
fulcrum, the more effective it will be in balancing larger
weights on the other side of the fulcrum. Weight times dis-
tance from the fulcrum determines the effect. If this product
is the same for weights placed on either side of the ful-
crum, the balance will not rotate.

figure 8.5 A simple balance with equal weights placed at
equal distances from the fulcrum.

figure 8.6 A simple balance with unequal weights placed
at different distances from the fulcrum. What determines whether
the system will be balanced?
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What is a torque?

This product of the force and the distance from the
fulcrum—uwhich describes the tendency of a weight to pro-
duce a rotation, is called the torque. More generally:

The torque, 7, about a given axis or fulcrum is equal to the
product of the applied force and the lever arm, [;

T = Fl

The lever arm is the perpendicular distance from the axis of
rotation to the line of action of the applied force.

The symbol 7 is the Greek letter tau and is commonly used
for torque.

The length | is the distance from the fulcrum to the
point of application of the force and must be measured in
a direction perpendicular to the line of action of the force.
This distance is called the lever arm or moment arm of
the force in question. The strength of the torque depends
directly on both the size of the force and the length of its
lever arm. If the torques produced by weights on either
side of the fulcrum of our balance are equal in magnitude,
the scale is balanced. It will not rotate.

Most of us have tried to turn a nut with a wrench at
some time. We exert the force at the end of the wrench, in
a direction perpendicular to the handle (fig. 8.7). The han-
dle is the lever, and its length determines the lever arm. A
longer handle is more effective than a shorter one because
the resulting torque is greater.

As the term suggests, lever arm comes from our use of
levers to move objects. Moving a large rock with a crowbar,

figure 8.7 A wrench with a long handle is more effective
than one with a short handle because of the longer lever arm for
the longer wrench.

for example, involves leverage. The applied force is most
effective if it is applied at the end of the bar and perpendi-
cular to the bar. The lever arm | is then just the distance
from the fulcrum to the end of the bar. If the force is
applied in some other direction, as in figure 8.8, the lever
arm is shorter than it would be if the force is applied per-
pendicular to the bar. The lever arm is found by drawing the
perpendicular line from the fulcrum to the line of action of
the force, as indicated in figure 8.8.

How do torques add?

The direction of rotation associated with a torque is also
important. Some torques tend to produce clockwise rota-
tions and others counterclockwise rotations about a particu-
lar axis. For example, the torque due to the heavier weight
on the right side of the fulcrum in figure 8.6 will produce a
clockwise rotation about the fulcrum if it acts by itself. This
is opposed by the equal-magnitude torque of the weight on
the left side of the fulcrum, which would produce a coun-
terclockwise rotation. The two torques cancel one another
when the system is balanced.

Since torques can have opposing effects, we assign oppo-
site signs to torques that produce rotations in opposite direc-
tions. If, for example, we chose to call torques that produce
a counterclockwise rotation positive, torques producing
clockwise rotations would be negative. (This is the conven-
tional choice—it is unimportant which direction is chosen
as positive as long as you are consistent in a given situa-
tion.) Identifying the sign of the torque indicates whether it
will add or subtract from other torques.

In the case of the simple balance, the net torque will be
zero when the beam is balanced, because the two torques
are equal but have opposite signs. The condition for balance
or equilibrium is that the net torque acting on the system be
zero. Either no torques act or the sum of the positive

figure 8.8 When the applied force is not perpendicular to
the crowbar, the lever arm is found by drawing a perpendicular
line from the fulcrum to the line of action of the force.
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torques equals the sum of the negative torques, canceling
one another by adding up to zero.

In example box 8.2, we find the distance that a 3-N
weight must be placed from a fulcrum to balance a 5-N
weight producing a net torque of zero. (Since W = mg, a
5-N weight has a mass of approximately 0.5 kg or 500 g.)
The units of torque are those of force times distance, newton-
meters (N-m) in the metric system.*

What is the center of gravity of an object?

Often, the weight of an object is itself an important factor
in whether the object will rotate. How far, for example,
could the child in figure 8.9 walk out on the plank without

example box 8.2

Sample Exercise: Balancing a System

Suppose we have a 3-N weight that we want to balance
against a 5-N weight on a beam, which is balanced when
no masses are in place. The 5-N weight is placed 20 cm to
the right of the fulcrum.
a. What is the torque produced by the 5-N weight?
b. How far would we have to place the 3-N weight
from the fulcrum to balance the system?

Where should the 3-N weight be placed on the beam to balance
the system?

a. F =5N T = —Fl
| =20cm = 02m = —(5N)(0.2 m)
T =7 = —1Nm

The minus sign indicates that this torque would produce a
clockwise rotation.

b. F = 3N 7 = FI
T
I =2 I ==
F

_ +1Nm

3N

0.33m (33 cm)

*Although the product of a Newton-meter (N-m) equals a Joule (J) when we
are using it as an energy unit, when a N-m is used as a torque unit we state
it as N-m, not Joules.

Center
of gravity
of the plank

figure 8.9 How far can the child walk without tipping the
plank? The entire weight of the plank can be treated as though it
is located at the center of gravity.

the plank tipping? The weight of the plank is important in
this case, and the concept of center of gravity is useful.

The center of gravity is the point about which the
weight of the object itself exerts no net torque. If we sus-
pend the object from its center of gravity, there would be
no net torque at the suspension or support point. The object
would be balanced. We can locate the center of gravity of a
rodlike object by finding the point where it balances on
your finger or other suitable fulcrum. For a more complex
two-dimensional (planar) object, you can locate the center
of gravity by suspending the object from two different
points, drawing a line straight down from the point of sus-
pension in each case, and locating the point of intersection
of the two lines, as figure 8.10 illustrates.

In the case of the plank (fig. 8.9), the center of gravity is
at the geometric center of the plank, provided that the
plank is uniform in density and cut. The pivot point will be
the edge of the supporting platform, the point to consider
when computing torques. The plank will not tip as long as
the counterclockwise torque produced by the weight of the
plank about the pivot point is larger than the clockwise
torque produced by the weight of the child. The weight of
the plank is treated as though it is concentrated at the cen-
ter of gravity of the plank.

The plank will verge on tipping when the torque of the
child about the edge equals the torque of the plank in mag-
nitude. This determines how far the child can walk on the
plank before it tips. As long as the torque of the plank
about the edge of the platform is larger than the torque of
the child, the child is safe. The platform keeps the plank
from rotating counterclockwise.

The location of the center of gravity is important in any
effort at balancing. If the center of gravity lies below the
pivot point, as in the balancing toy in figure 8.11, the toy
will automatically regain its balance when disturbed. The
center of gravity returns to the position directly below the
pivot point, where the weight of the toy produces no torque.
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figure 8.10 Locating the center of gravity of a planar
object. The center of gravity does not necessarily lie within the
object.

/
Center of /
gravity

w

figure 8.11 The clown automatically returns to an upright
position because the center of gravity is below the pivot point.

In this position, the lever arm for the weight of the clown
and bar is zero.

Similarly, the location of your center of gravity is im-
portant in performing various maneuvers, athletic or other-
wise. Try, for example, touching your toes with your back
and heels against a wall. Why is this apparently simple trick
impossible for most people to do? Where is your center of
gravity relative to the pivot point determined by your feet?
Center of gravity and torque are at work here.

Torques determine whether or not something will rotate.
A torque is found by multiplying a force by its lever

arm (the perpendicular distance from the axis of rotation
to the line of action of the force). If the torque tending to
produce a clockwise rotation equals the torque tending
to produce a counterclockwise rotation, there is no rota-
tion. If one of these torques is larger than the other,

the torque will be unbalanced and the system will

rotate.

8.3 Rotational Inertia and Newton’s
Second Law

When a child runs beside a merry-go-round, starting it to
rotate, the force exerted by the child produces a torque
about the axle. From our discussion in section 8.2, we
know that the net torque acting on an object determines
whether or not it will begin to rotate. Can we predict the
rate of rotation by knowing the torque?

In linear motion, net force and mass determine the accel-
eration of an object, according to Newton’s second law of
motion. How do we adapt Newton’s second law to cases
of rotational motion? In this case, torque determines the
rotational acceleration. A new quantity, the rotational iner-
tia, takes the place of mass.

What is rotational inertia?

Let’s return to the merry-go-round. The propulsion system
(one energetic child or tired parent) applies a force at the
edge of the merry-go-round. The torque about the axle is
found by multiplying this force by the lever arm, in this
case the radius of the merry-go-round (fig 8.12). If the fric-
tional torque at the axle is small enough to be ignored, the
torque produced by the child is the only one acting on the
system. This torque produces the rotational acceleration of
the merry-go-round.

How would we find this rotational acceleration? To find
the linear acceleration produced by a force acting on an
object, we use Newton’s second law, F.;, = ma. By anal-
ogy, we can develop a similar expression for rotational
motion, where the torque 7 replaces the force and the rota-
tional acceleration o« replaces the linear acceleration. But
what quantity should we use in place of the mass of the
merry-go-round?

In linear motion, mass represents the inertia or resis-
tance to a change in motion. For rotational motion, a new
concept is needed, rotational inertia, also referred to as
the moment of inertia. The rotational inertia is the resis-
tance of an object to change in its rotational motion. Rota-
tional inertia is related to the mass of the object but also
depends on how that mass is distributed about the axis of
rotation.
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Top view

T=FlI

figure 8.12  The child exerts a force at the rim of the
merry-go-round that produces a torque about the axle.

To get a feeling for a concept, physicists often use the
trick of considering the simplest possible situation. For ro-
tational motion, the simplest case is a single concentrated
mass at the end of a very light rod, as in figure 8.13. If a
force is applied to this mass in a direction perpendicular to
the rod, the rod and mass will begin to rotate about the
fixed axis at the other end of the rod.

For the rod and mass to undergo a rotational accelera-
tion, the mass itself must have a linear acceleration. Like
riders on a merry-go-round, however, the farther the mass
is from the axis, the faster it moves for a given rotational
velocity (v = rw). To produce the same rotational acceler-
ation, a mass at the end of the rod must receive a larger
linear acceleration than one nearer the axis. It is harder to
get the system rotating when the mass is at the end of the
rod than when it is nearer to the axis.

Applying Newton’s second law to this situation, we find
that the resistance to a change in rotational motion depends
on the square of the distance of this mass from the axis of
rotation. Since the resistance to change also depends on
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figure 8.13 A single concentrated mass at the end of a
very light rod is set into rotation by the applied force F. Use
Newton’s second law to find the acceleration.

the size of the mass, the rotational inertia of a concentrated
mass is

rotational inertia = mass X square of distance

from axis
| = mr?,
where | is the symbol commonly used for rotational inertia,
and r is the distance of the mass m from the axis of
rotation. The total rotational inertia of an object like the
merry-go-round can be found by adding the contributions

of different parts of the object lying at different distances
from the axis.

Newton’s second law modified
for rotational motion

By analogy to Newton’s second law, F =
state the second law for rotational motion as

ma, we can

The net torque acting on an object about a given axis is equal
to the rotational inertia of the object about that axis times the
rotational acceleration of the object, or

T = la.

net

To put it differently, the rotational acceleration produced
is equal to the torque divided by the rotational inertia,
a = 7./l. The larger the torque, the larger the rotational
acceleration, but the larger the rotational inertia, the smaller
the rotational acceleration. Rotational inertia dictates how

hard it is to change the rotational velocity of the object.
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To get a feel for these ideas, consider a simple object
such as a twirler’s baton. A baton consists of two masses at
the end of a rod (fig. 8.14). If the rod itself is light, most
of the baton’s rotational inertia comes from the masses at
either end. If you hold the baton at the center, a torque can
be applied with your hand, producing a rotational accelera-
tion and starting the baton to rotate.

Suppose that we could move these masses along the rod.
If we moved the masses toward the center of the rod so that
the distance from the center is half the original distance,
what happens to the rotational inertia? The rotational inertia
decreases to one-fourth of its initial value, ignoring the con-
tribution of the rod. Rotational inertia depends on the square
of the distance of the mass from the axis. Doubling the dis-
tance quadruples the rotational inertia. Halving the distance
divides the rotational inertia by four.

The baton will be four times as hard to get to rotate when
the masses are at the ends as when they are halfway from
the ends. In other words, the torque needed to produce a
rotational acceleration will be four times as large when
the masses are at the ends as when they are at the interme-
diate positions. If you had a rod with adjustable masses, you
could feel the difference in the amount of torque needed to
start it rotating. Try a pencil with lumps of clay for the
masses as a substitute.

Finding the rotational inertia
of the merry-go-round

Finding the rotational inertia of an object like a merry-go-
round is more difficult than just multiplying the mass by
the square of the radius. Not all of the mass of the merry-
go-round is at the outer edge—some of it is closer to the

figure 8.14 The rotational inertia of a baton is determined
largely by the masses at either end.

axis and will make a smaller contribution to the rotational
inertia. Imagine breaking the merry-go-round down into
several pieces, finding the rotational inertia of each piece,
and adding the rotational inertias for each piece together to
get the total.

Results of this process for a few simple shapes are shown
in figure 8.15. The equations illustrate the ideas we have
discussed. For example, a solid disk has a smaller rotational
inertia than a ring of the same mass and radius, because
the mass of the disk is, on average, closer to the axis. The
location of the axis is also important. A rod has a larger ro-
tational inertia about an axis through one end than about an
axis through the middle. When the axis of rotation is at the
end of the rod, there is more mass at greater distances from
the axis.

Depending on how it is constructed, the merry-go-round
might be like a solid disk. A child sitting on the merry-
go-round will also affect the rotational inertia. If several
children all sit near the edge of the merry-go-round, their
rotational inertia makes it more difficult to get the merry-
go-round moving. If the children cluster near the center,
they provide less additional rotational inertia. If you are
feeling tired, have the children sit near the middle. You will
save some effort.

Rod with axis Rod with axis
through end through center
I I
. -
I 1=1m2 7= Lml
| 3 | 12
( ) ( : )
I [ I I I I
I I
I I
I I
(@) (b)
Uniform disk Ring Uniform solid
or cylinder sphere
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I I I
| ) CP
I
I I
I I
' D
! I
I I
| 1 |
(©) (d) (e)

figure 8.15 Expressions for the rotational inertia of several
objects, each with a uniform distribution of mass over its volume.
The letter m is used to represent the total mass of the object.
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example box 8.3

Sample Exercise: Turning a Merry-Go-Round
and a Rider

A simple merry-go-round has a rotational inertia of
800 kg-m? and a radius of 2 m. A child with a mass of
40 kg sits near the edge of the merry-go-round.

a. What is the total rotational inertia of the merry-
go-round and the child about the axis of the merry-
go-round?

b. What torque is required to give the merry-go-round
a rotational acceleration of 0.05 rad/s??

a. Imerry—go-round = 800 kg'mz Ichild = mr?
Mg = 40 kg = (40 kg)(2 m)?
r=2m = 160 kg-m?

The total rotational inertia is

I = Imerry-go—round + Ichild
= 800 kg'm? + 160 kg:m?

total

= 960 kg-m?
b. « = 0.05radls? 7 = la
Toet = ? = (960 kg:m?)(0.05 rad/s?)
= 48 N-m

Example box 8.3 attaches some numbers to these quan-
tities. A child sitting on a merry-go-round is being acceler-
ated by a push at a rate of 0.05 rad/s2.* A torque of 48 N-m
is needed to produce this rotational acceleration. A force of
24 N applied at the edge would have a lever arm of 2 m
and produce the necessary torque of 48 N-m, a reasonable
force for a child to generate if the child is not too small.

Rotational inertia is the resistance to change in rotational
motion. It depends on both the mass of the object and the
distribution of that mass about the axis of rotation. The
rotational form of Newton's second law, 7, = I, shows
the quantitative relationship between torque, rotational
inertia, and rotational acceleration. Torque takes the place
of force, rotational inertia replaces mass, and rotational
acceleration replaces linear acceleration.

*To use Newton’s second law for rotational motion, the rotational acceler-
ation must be stated in radians per second squared. If the rotational
acceleration is provided in rev/s? or some other angular unit, we convert it
to rad/s? before proceeding.

8.4 Conservation of Angular
Momentum

Have you ever watched an ice skater go into a spin? She
starts the spin with her arms and one leg extended, then
brings them in toward her body. As she brings her arms in,
the rate of the spin increases; as she extends her arms
again, her rotational velocity decreases (fig. 8.16).

The concept of angular or rotational momentum is use-
ful in situations like this. The principle of conservation of
angular momentum explains a variety of phenomena like
the ice skater, including tumbling divers or gymnasts as
well as the motion of planets around the sun. How can we
use the analogy between linear and rotational motion to
understand these ideas?

What is angular momentum?

If you were asked to invent the idea of angular (rotational)
momentum, how might you go about it? Linear momentum
is the mass (the inertia) times the linear velocity of an
object (p = mv). An increase in either the mass or the ve-
locity increases the momentum. Since it is a measure both
of how much is moving and how fast it is moving, Newton
called momentum the quantity of motion.

What is momentum’s rotational equivalent? In compar-
ing rotational and linear motion, rotational inertia plays the
role of mass and rotational velocity replaces linear velocity.
By analogy, we can define angular momentum as

Angular momentum is the product of the rotational inertia and
the rotational velocity, or

L = lo,

where L is the symbol used for angular momentum.
The term angular momentum is more common than rota-
tional momentum, but either can be used.

figure 8.16 The rotational velocity of the skater increases
as she pulls her arms and leg in toward her body.
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Like linear momentum, angular momentum is the prod-
uct of two quantities, an inertia and a velocity. A bowling
ball spinning slowly might have the same angular momen-
tum as a baseball spinning much more rapidly, because of
the larger rotational inertia | of the bowling ball. With its
enormous rotational inertia, the Earth has a huge angular
momentum associated with its daily turn about its axis,
even though the rotational velocity is small.

When is angular momentum conserved?

We have used the analogy between linear and rotational
motion to introduce angular momentum. Can we also use it
to state the principle of conservation of angular momentum?
In chapter 7, we found that linear momentum is conserved
when there is no net external force acting on a system.
When would angular momentum be conserved?

Since torque takes the role of force for rotational mo-
tion, we can state the principle of conservation of angular
momentum as

If the net torque acting on a system is zero, the total angular
momentum of the system is conserved.

Torque replaces force, and angular momentum replaces
ordinary or linear momentum. Table 8.2 lists some impor-
tant parallels between linear and rotational motion.

Changes in the ice skater's rate of spin

Conservation of angular momentum is the key to under-
standing what happens when the spinning ice skater
increases her rotational velocity by pulling in her arms.
The external torque acting on the skater about her axis of
rotation is very small, so the condition for conservation of
angular momentum exists. Why does her rotational veloc-
ity increase?

Corresponding Concepts of Linear
and Rotational Motion

Linear Rotational

Concept motion motion
Inertia m |
Newton’s F.e = Ma Tt = lot

second law
Momentum p = mv L =lo
Conservation IfFe = 0, Ifrq =0,

of momentum p = constant L = constant

Kinetic energy KE = imv? KE = lo?

When the skater’s arms and one leg are extended, they
contribute a relatively large portion to her total rotational
inertia—their average distance from her axis of rotation is
much larger than for other portions of her body. Rotational
inertia depends on the square of the distance of various
portions of her mass from the axis (I = mr?). The effect of
this distance is substantial, even though her arms and one
leg are only a small part of the total mass of the skater.
When the skater pulls her arms and leg in toward her body,
their contribution to her rotational inertia decreases, and
therefore, her total rotational inertia decreases.

Conservation of angular momentum requires that her
angular momentum remain constant. Since angular mo-
mentum is the product of the rotational inertia and rota-
tional velocity, L = lw, if | decreases, w must increase for
angular momentum to stay constant. She can slow her rate
of spin by extending her arms and one leg again, which she
does at the end of the spin. This increases her rotational
inertia and decreases her rotational velocity: angular
momentum is conserved. These ideas are illustrated in
example box 8.4.

This phenomenon can be explored using a rotating plat-
form or stool with good bearings to keep the frictional
torques small (fig. 8.17). In these demonstrations, we often
have the students hold masses in their hands, which increase
the changes in rotational inertia that happen as the arms are
drawn in toward the body. A striking increase in rotational
velocity can be achieved!

example box 8.4

Sample Exercise: Some Physics of Figure Skating

An ice skater has a rotational inertia of 1.2 kg-m? when
her arms are extended and a rotational inertia of 0.5 kg-m?
when her arms are pulled in close to her body. If she goes
into a spin with her arms extended and has an initial
rotational velocity of 1 rev/s, what is her rotational
velocity when she pulls her arms in close to her body?

I, = 1.2 kg:m? Since angular momentum
I, = 0.5kg:m? is conserved:

w; = 1rev/s Linat = Linitial
w, = ? Lw, = lo;

Dividing both sides by I,,
w, = (I/1)w,
(1.2 kg:m?/0.5 kg:m?)(1 rev/s)
= (2.4)(1 revls)
24 rev/s
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figure 8.17 A student holding masses in each hand
while sitting on a rotating stool can achieve a large increase
in rotational velocity by bringing his arms in toward his body.

A similar effect is at work when a diver pulls into a tuck
position to produce a spin. In this case, the diver starts with
her body extended and a slow rate of rotation about an axis
through her body’s center of gravity (fig. 8.18). As she
goes into a tuck, the rotational inertia about this axis is re-
duced, and rotational velocity increases. As her dive nears
completion, she comes out of the tuck, increasing the rota-
tional inertia and decreasing the rotational velocity. (The
torque about the center of gravity due to the gravitational
force acting on the diver is zero.)

There are many examples of varying the rotational ve-
locity by changing the rotational inertia. It is much easier to
produce a change in the rotational inertia of a body than
to change the mass of the body. We simply change the dis-
tance of various portions of the mass from the axis of rota-
tion. Conservation of angular momentum provides a quick
explanation for these phenomena.

Kepler's second law

Conservation of angular momentum also plays a role in
the orbit of a planet about the sun, and in fact, it can be
used to explain Kepler’s second law of planetary motion
(see section 5.3). Kepler’s second law says that the radius
line from the sun to the planet sweeps out equal areas in
equal times. The planet moves faster in its elliptical orbit

)

figure 8.18 The diver increases her rotational velocity by
pulling into a tuck position, thus reducing her rotational inertia
about her center of gravity.

when it is nearer to the sun than when it is farther from
the sun.

The gravitational force acting on the planet produces no
torque about the sun, because its line of action passes
directly through the sun (fig. 8.19). The lever arm for this
force is zero, and the resulting torque must also be zero.
Angular momentum, therefore, is conserved.

When the planet moves nearer to the sun, its rotational
inertia | about the sun decreases. To conserve angular mo-
mentum, the rotational velocity of the planet about the sun
(and thus its linear velocity*) must increase to keep the
product L = lw constant. This requirement results in equal
areas being swept out by the radius line in equal times. The

*For a compact mass rotating about some axis, the definition of angular
momentum reduces to L = mvr, where mv is the linear momentum and r
is the perpendicular distance from the axis of rotation to the line along
which the object is moving at that instant. If r decreases, v must increase
to conserve angular momentum.
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everyday phenomenon

Achieving the State of Yo

The Situation. A physics professor noticed that one of his
students often carried a yo-yo to class and was proficient at
putting the yo-yo through its paces. The professor challenged
the student to explain the behavior of the yo-yo using the
principles of torque and angular momentum.

In particular, the professor asked the student to explain
why the yo-yo sometimes comes back but sometimes can
be made to “sleep,” or continue to rotate, at the end of the
string. What are the differences in these two situations?

A yo-yo will come back to your hand, or with sufficient skill, you can
make it “sleep” at the end of its string.

The Analysis. The student carefully examined the yo-yo’s
construction and how the string is attached. He noticed that
the string is not tied tightly to the axle of the yo-yo, but ends
in a loose loop around the axle instead. When the yo-yo is

at the end of its string, the string can slip on the axle. When
wound around the axle, on the other hand, the string is less
likely to slip.

Usually, the yo-yo is started with the string wound around
the axle and looped around the middle finger. When the yo-yo
is released from the hand, the string unwinds, and the yo-yo
gains rotational velocity and angular momentum. The student
reasoned that a torque must be at work, and he drew a force
diagram for the yo-yo that looked like the one shown here.
Two forces act on the yo-yo, its weight acting downward and
the tension in the string acting upward.

Since the yo-yo is accelerated downward, the weight
must be greater than the tension to produce a downward net
force. The weight does not produce a torque about the center
of gravity of the yo-yo, though, because its line of action
passes through the center of gravity, and the lever arm is
zero. The tension acts along a line that is off-center and pro-
duces a torque that will cause a counterclockwise rotation
about the center of gravity, as in the drawing.

The torque due to the tension in the string produces a
rotational acceleration, and the yo-yo gains rotational velocity

w Y

A cut-away diagram showing the forces acting on the yo-yo when
it is falling. Its weight and the tension in the string are the only
significant forces.

and angular momentum as it falls. The yo-yo has a sizable
angular momentum when it reaches the bottom of the string,
and in the absence of external torques to change this angular
momentum, it will be conserved. This is what happens when
the yo-yo “sleeps” at the bottom of the string: the only
torque acting is the frictional torque of the string slipping

on the axle, and this will be small if the axle is smooth.

What happens, however, when the yo-yo returns to the
student’s hand? The yo-yo artist (yo-yoist?) jerks lightly on
the string at the instant that the yo-yo reaches the bottom
of the string. This jerk provides a brief impulse and upward
acceleration of the yo-yo. Since it is already spinning, the
yo-yo continues spinning in the same direction and the string
rewinds itself around the axle of the yo-yo. The line of action
of the tension in the string is now on the opposite side of the
axle, though, and its torque causes the rotational velocity and
angular momentum to decrease. The rotation should stop
when the yo-yo slips back into the student’s hand.

When the yo-yo is rising, the net force acting on the
yo-yo is still downward, and the linear velocity of the yo-yo
decreases along with its rotational velocity. The only time that
a net force acts upward is when the upward impulse is deliv-
ered by jerking on the string. The situation is similar to a ball
bouncing on the floor—the net force is downward except
during the very brief time of contact with the floor. Our ability
to affect the nature and timing of the impulse through the
string causes the yo-yo either to sleep or return. This is what
the “art of yo" is all about.
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L =mvr

figure 8.19 The gravitational force acting on the planet
produces no torque about an axis through the sun because the
lever arm is zero for this force.

velocity of the planet must be larger when the radius gets
smaller to keep the area being swept out the same.

You can observe a related effect in a simple experiment
with a ball on a string. If you let the string wrap around your
finger as it rotates, which produces a smaller radius of rota-
tion, the ball will increase its rotational velocity about your
finger. The rotational velocity o increases as the rotational
inertia | decreases because of the decreased radius. Angular
momentum is conserved. Try it!

Everyday phenomenon box 8.1 provides an example in
which angular momentum is conserved at some points in the
motion of a yo-yo. At other points the angular momentum
changes under the influence of torques.

By analogy to linear momentum, angular momentum is
the product of the rotational inertia and the rotational
velocity. Angular momentum is conserved when the net
external torque acting on a system is zero. Decreases in
rotational inertia lead to increases in rotational velocity, as
demonstrated by the spinning ice skater. A spinning diver,
a ball rotating at the end of a string, and a planet orbiting
the sun are other examples of this effect.

8.5 Riding a Bicycle and Other
Amazing Feats

Have you ever wondered why a bicycle remains upright
when it is moving but promptly falls over when not mov-
ing? Angular momentum is involved, but some additional
wrinkles are needed in the explanation. The direction of
angular momentum is an important consideration. How

@ o

figure 8.20 The direction of the rotational-velocity vector
for the counterclockwise rotation is defined to be upward along
the axis of rotation, as indicated by the thumb on the right hand
with the fingers curled in the direction of rotation.

can angular momentum have direction, and how is this
direction involved in explaining the behavior of a bicycle, a
spinning top, or other phenomena?

Is angular momentum a vector?

Linear momentum is a vector, and the direction of the
momentum p is the same as for the velocity v of the object.
Since angular momentum is associated with a rotational
velocity, the question comes down to whether rotational
velocities have direction. How would we define the direc-
tion of a rotational velocity?

If a merry-go-round (or just a disk) is rotating in a coun-
terclockwise direction, as in figure 8.20, how might we indi-
cate that direction with an arrow? The term counterclockwise
indicates the direction of rotation as seen from a certain per-
spective, but it does not define a unique direction. To com-
plete our description, we would also have to specify the axis
of rotation and our perspective or viewpoint. An object seen
rotating counterclockwise when viewed from above is seen
rotating clockwise when viewed from below. We could draw
an axis of rotation and a curved arrow around it, as we often
do, but it would be more desirable to specify direction with a
simple straight arrow.

The usual solution to this problem is to define the direc-
tion of the rotational-velocity vector as being along the axis
of rotation and in the upward direction for the coun-
terclockwise rotation in figure 8.20. A rule for whether the
vector should point up or down along the axis can be
defined with the help of your right hand. If you hold your
right hand with the fingers curling around the axis of rota-
tion in the direction of the rotation, your thumb points in
the direction of the rotational-velocity vector. If the merry-
go-round were rotating clockwise (instead of counterclock-
wise), your thumb would point down, the direction of the
rotational-velocity vector.
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figure 8.21 The angular-momentum vector for each wheel
is horizontal when the bicycle is upright.

The direction of the angular-momentum vector is the
same as the rotational velocity, since L = lw. Conservation
of angular momentum requires that the direction of the
angular-momentum vector remain constant, as well as its
magnitude.

Angular momentum and bicycles

Most of us have had some experience with riding a bicycle.
The wheels of a bicycle acquire angular momentum when
the bicycle is moving. Torque is applied to the rear wheel
by the pedals and chain to produce a rotational accelera-
tion. If the bicycle is moving in a straight line, the direction
of the angular-momentum vector is the same for both
wheels and is horizontal (fig. 8.21).

To tip the bike over, the direction of the angular-
momentum vector must change, and that requires a torque.
This torque would normally come from the gravitational
force acting on the rider and the bicycle through their cen-
ter of gravity. When the bicycle is exactly upright, this
force acts straight downward and passes through the axis
of rotation for the falling bike. This axis of rotation is the
line along which the tires contact the road. The torque
about this axis will be zero, because the line of action of
the force passes through the axis of rotation and the lever

axis of rotation of
the wheel

axis of rotation of
the tilt

figure 8.22 The change in angular momentum (AL)
associated with a leftward tilt points straight back, parallel to
the line of contact of the tires with the road. This change
causes the angular momentum vector (and the wheel) to turn
to the left.

arm is zero. The direction and magnitude of the original
angular momentum are conserved.

If the bike is not perfectly upright, a gravitational torque
acts about the line of contact of the tires with the road.
As the bike begins to fall, it acquires a rotational velocity
and angular momentum about this axis. By our “right-hand
rule,” the direction of that angular-momentum vector is
along the axis and points forward or backward depending
on the direction of tilt. If the bike tilts to the left as seen
from behind, the change in angular momentum associated
with this torque points straight back, as in figure 8.22.

If the bike is standing still, that is all there is to it—the
gravitational torque causes the bike to fall. When the bike
is moving, however, the change in angular momentum AL
produced by the gravitational torque adds to the angular
momentum already present (L,) from the rotating tires. As
shown in figure 8.22, this causes a change in the direction
of the total angular-momentum vector (L,). This change in
direction can be accommodated simply by turning the wheel

study hint

Visualizing these angular momentum vectors and their
changes can be an abstract and difficult task. The effect
will seem much more real if you can directly experience it.
If a bicycle wheel mounted on a hand-held axle (such as
that pictured in figure 8.23) is available, try the tilt effect
yourself. Grasp the wheel with both hands by the handles
on each side and have someone give it a good spin with
the wheel in a vertical plane. Then try tilting the wheel
downward to the left to simulate a fall. The wheel will
seem to have a mind of its own and will turn to the left
as suggested by figure 8.22.
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of the bicycle rather than letting the bike fall. We compensate
for the effects of the gravitational torque by turning
the bicycle towards the direction of the impending fall.
The larger the initial angular momentum, the smaller the
turn required. The angular momentum of the wheels is a
major factor in stabilizing the bicycle.

This result may be surprising—yet all of us who have rid-
den bicycles take advantage of it routinely. When the bike is
moving slowly, sharp turns of the wheel can keep it from
falling while you shift your weight. Smaller adjustments suf-
fice when the bike is moving more rapidly. By leaning into a
curve, you use the gravitational torque to change the direc-
tion of angular momentum, helping to round the curve. Like-
wise, if you roll a coin along a tabletop, you will see it curve
as it begins to fall. The path curves in the direction that the
coin is tilting.

You can also observe this effect of torque in changing
the direction of an angular-momentum vector by holding a
bicycle upright on its rear wheel and having a friend spin
the front wheel. It is harder to change the direction of this
wheel when it is spinning rapidly than when it is spinning
slowly or not at all. You will also get the feeling that the
wheel has a mind of its own. As you try to tilt the wheel, it
will tend to turn in a direction perpendicular to the tilt.

A bicycle tire mounted on a hand-held axle is even more
effective for sensing the effects of torques applied to the
axle. This is a common demonstration apparatus, but usu-
ally the tire is filled with steel cable rather than air. The
steel cable gives the wheel a larger rotational inertia and a
larger angular momentum for a given rate of spin. If you
hold the axle on either side while the wheel is spinning in a
vertical plane and then try to tip the wheel, you get a sense
of what happens when you are riding a bicycle. It also
demonstrates how hard it is to change the direction of the
angular momentum of a rapidly spinning wheel. Everyday
phenomenon box 8.2 discusses how torques are involved in
the gear system of a bicycle.

Rotating stools and tops

The hand-held bicycle wheel is good for other demonstra-
tions that highlight angular momentum as a vector. If a stu-
dent holds the wheel with its axle in the vertical direction
while sitting on a rotating stool, conservation of angular
momentum produces striking results. It is best to start the
wheel spinning while holding the stool so that the stool does
not rotate initially. We then have the student turn the wheel
over, as in figure 8.23, reversing the direction of the angular-
momentum vector of the wheel.

Can you imagine what happens then? To conserve an-
gular momentum, the original direction of the angular-
momentum vector must be maintained. The only way this
can happen is for the stool with the student volunteer to
begin to rotate in the same direction that the wheel was

figure 8.23 A student holds a spinning bicycle wheel while
sitting on a stool that is free to rotate. What happens if the
wheel is turned upside down?

rotating initially. The sum of the angular-momentum vector
of the wheel and the vector of the student and stool add to
yield the original angular mom