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CHAPTER I

Ilarmonlc Oscl[stors

,1.I. Introduction

In every day life we come across numerous ttiings that move. These motions
are'of two typgs;.vra (il the motiori in which tbe body moves about a mean
positioii i.e. afixedpoint and (ii) the motion in which,the body moves fiom one
place to the other with respect of time. The first type of motion of a body about

a mean position is called oscillatory motion. A moving train, flying aeroplaire,
moving ball gtc., correspond to the second type of motion. Examples of
oscillatory motion are : an oscillating pendulum, vibrations of a strerchcd string
movcment of wat3r in a cup, vibralion of electrons, movement of light in a laser

bearn etc.
Sometimes both the types of motion are exhibited in the same phenomenon

depending on our point of view. The sea waves appear to move towards the
bcach but the whter moves up and down about the rnean position. When a

stretched.rope is displaced, the displacement pulse travels from one endlo the
other but lhe material of 

'the 
r6po Vibrates about the mEan position without

rravelling for.ward.

1.2. Simple Harmonic Motlon
kt P bG a particle moving cin the circum-

ference of a circle of radius a with a uniform
vetocity u (Fig.l. I ). Lrt ol be the uniform an-
gular velocity of the particle (a=ato). The
circle along which P moves is called the circle
of refercnce. As the particle P moves round '
the circle continuously with uniform velocity,
lhe foot of the perpendicular M, vibrates along
lhediameter l'l'. If the motion of Pis uniform,
then the motion of M is periodic i.e., it takes
the sarne time to vibrate once between ihe

Y

{v, m
o

\. /

x

Flg. l.l.
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points I/ and f. At any instant the distant of lU from the centrc O of the circle
is called the dbpleccmcnt If the particle moved from X to P in time ,, tlrcn
ZPOX= ZMPO=O=rrrf.

Fmm the LMPo,
. oM.slng=sln(rl[=lr_

or OVsy=a sincrr

OIU is called tlre displrcornent of the vibrating panicle. Thc.displacement
of a vibrating particle a any instant can be defided as its distencc frrom the
meai position of reit. Tlre maximum displacemenl of a vibrating particle is
cdled its cmplibde.

DisPlacernenl = Y = a sin Or I
The rate of change of displacement is callcd thc vclocity of the vibrating

particle.

Oscillatory behaviour. At the exreme pgrsitions, when y is maximum,

dy/dt is zero. The acceleration dyd? is maxiinum and directed towatds the

mcan position. Ttris return force induces a ncgative velocity. When the dis-
placement y is zero, the velocity dy/dt is maximum and is -ve. When the

displacement is negative maximum, the velocity dy/dt is zero and the accelera-

tion is maximum in the positive direction. This rcturn force again induces a
telocity in the positive direction which becomes positive maximumivtrcn the

displacement is zero. The particle overshoots the mean position due to is
velircity. Thc process repeats itself periodically."Thus the sistem oscillates. In
this process, displacernent y, velocity d{di' and acceleration fftd? con-
tinuously change with respect to time.

Thus, the velocity of the vibrating particle is maximum (in the direction OI
,6r OY"1 at the mean position of rest and zero at thc maximum positions of
vibration. The acceleration of the vibrating particlc h zero & the mean position
of lest and maxirnuin at the,maximum positions of vibratiqal..Therccleration
is always directed towards-the mean position of rest ariil'is dir€ctly proportional

to the displacement of the vibrating particle. This typc'of motion where the

acceleration is directedtowards a fired.point (tie me&r posirion of pst) and is
proportional to the displaccment of the vibrating partich is called simple
harmonic motion.

Further,
8vAcceleration =7i = - of I

=-:i x displacement

r Acceleration
Numencally

Displacement

- , Acc"te.atronor $) =z tt n = 1\/ Dirpl""".ent

2n ,rffir-
7 =1V Dirph."rr"t

, I DisolacementT =2*trt ni"rcr"u*
. = 2x,,{K

Thus, in g&reral, the time period of a parlicte vibrating simpte harmonically
is glven by f = 2t rIK where K is the displacement per unit acceleration.

If thc particte P revottcs rolnd the circle, n times per secoid, then the
anguhr vclocity ro is given by

^ Ztt',(rt=.lftn=T

,HAR}IONTC oSCII.I-{TORS

. . .(r)

,dv
Velocity = ; -- + a Gtcos ro, ...(2)

Thc rarc of drange.of vehcity of a vibraing phiticle is callsd ia acoderation.

=-o*.asinorl=-ofy . . .(3)

-a (aY\-atlat 
)Bv ,.=T = -agl- $n 0Y

Fositiofl of
Angle the vibrating
o r particle

.M

Displacement Velocity

,,=asinor dy
' A =a(t)soE (0'

Ar'ccleration

dtv
d?

-aor2sin olt
a
Y

o
Y

o

1l-2
fr,

3tc
2

Ztt

7*ro

+a

7*w

-a
Tiro

+a 0)

7*ro

-a(,)
7*ro

+ ao)

Zso

-oa2

7*ro.

+"ri
Tnro

The changes in the displacement, velocity and acceleration of a vibrating
particle in one coinplete vibration are given in the table,



iriilion .*"ru-rrons

,{*"r-r^Equdion ofsaM
V hr r prrich vibrating simpb harnronically, thc gcrrrat

drylrcanclrti.s,
y=asinftE+o) ...(l)

lhrc y is. displrcenrent and a is tlrc amplitude and c is epoch of the

vlbrln3partich

,,y=asinhnt-asin2t *I
On the othcr hand, if ttr rimc is iounted l(?ig. I .2(r)l from rhe insranr p is

at S ( ZSOX,: g) tlrcn.rhcdiqphcemenr

.y=asin(q+cr)
. (x.t \

=astnl. r ."J

Fi3. 1.2"

If the time is counted fronl, rhe insrani P is ar ,f [Fig. I .2 0i)], rhcn

' != asin(cor:c)
. (*et \=asin|., _"j

Phssc of the vibrating partlcle. (0 Tlrc phasc of a vib,raring parricle is
defined as the ratio of the displacemcnt of ihe vibrating article at any instant to
the amptitude of the virbrating particle (yh) or (ii) i't is also definod as rlre
fractio.n of the time intorvat that has,lapsod since the particte crossed the mtan
position ofrest in the positive dircctign-or (iu) it is also equal ro rhe angle swepr
b1 thc radius. vector since the virbrating particre rast crossqd its mean position
of rest e.9., in the above.eguations oy, (ril+ a) ar (u - a) qA called plraee
angles. Ttre initial phase angle when , = o, is callcd the epoch. Thus c is iallcd
the epoch in the above exprcssions.

)

( "r

It n=v

WAVE' AITID (}ICIII/ITIONII
') |

whcre I is thi time pcriod

Dillcrcntieting cquation(l) wilh rcspoet to lime "'

*'=o'*(or+')
llrrrc dylil rqe*;ots the velocity of thp vibraring particlc.

Diffcrcntiating eguation 121 vitlr rcspcct o time

ff=' ",*sin 
(orr+ c)

'&v"
"' ,'|--to.Y :

12u
or 9*+tt'y=o '

df

Gqudior or

...(2)

. . .(3)

(r,)(0

llcrc f /d? rcqrrewlrs ttr rebr*ios of tlr parrhla Equarion (3)
trgilrcnts rhe diffcrential oquation of simph h;nnonic moiqr.

It rtso shows thuin my phcnonrnon whge m cquatinn similar lo cqu&
tion (3) is obtained, the body exeauEs simph harmonic motion. Thc gcneral
rolution of equation (3) is . y = a sin (o r + a) .

Also rhc rimc period of a vibrating particte can bc calculatcd fr,om

oqrnrion (3).

Numcricdly ul=

fffiffi;-(D= 1\I Di.pG;r,,r.,rt

7=F=2na@-' ot -'- Y Accclcration

14. ' Grrphlcal Reprccenta$on oiSHM
:

Lct P bc a particlc moving on thc cjrcumfercme of a circle of radius a. The
foot of rhb pcrpcndicular vibratcIon the diameter YY,

_l

I y/d?
).



The displacement graph is a sine curve iepresented"by ABCDE (Fig. 1.3).

The motion of the particle M is simple harmonic.
The velocity of a particle moving with simple harmonic motion is

dy
a =-? =+ a(i cos (o,

dt

The vetocity+ime graph is shown in Figr 1.4. It is a cosine curve.

Time t4,

Ft& 1.4. VehcitY -Tlme Cuirvc. .
The acceleration of a particle moving with simple harmonic motion is

4! =-rro2sincr td(,
graph is shown in Hg. 1.5. It is a negative sine curve.

HARMONICOSCIII-ATORS 7

1.5. Averrge Kinetig Encrgr of e Vibratlng Particle

The displacement of a vibrating particle is given by

)=asin(trx+a)
dv

o=i=aclcos(Gr+a)'

If m ip the mass of rhe vibratingparti"!, ry kidetic energy at any instant

= | n ti = I n. a2 olcm2 1to i+ c1 .

The average kinetic energy of the particle in one complete vibration

= * I* mi a2cos2 (or r + c) dr

=i ' *oo 
foz*"'(or+cr)dr

=# Ii ,, * cos 2 (orr+ a)l dt

=#lf,at+f
f "o, 

z (trr+ a) dt= o

Ave.rage K.E.=#'r+o

y=asin tot=asin2lrI

WAVES ANDOSCILLATIONS

cos Z trrr+ al a]

l'
u
o
a

_mal af _rnaz (4fi2 n2)

4

=t* mr| nx

where rz is the mass of.the vibrating particle, a is tlie amplitude of vibration and
n is the frequency of vibration. Also, thc average kinetic energy of a vibrating
particle is directly proportional to the squarr,,of tlre amd'tude,

,6. Total Energr of a Vibrathrg Porticle

)=asin(tot+c)

sin (ol r + a) =Ya

-,,J

Hg. f3. Oisptdccmmtfime Currc.

Timr i
nS. fS; Ac(dcntloo-DmeCurvc.

cbs (crx+ a) =
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Vchcity
*uW

u=a 0rcr(llso), = +. .a

= ro rJ(a'! - l)
.'. Thc kineiic cnergy of tlrc pryrich at the instant the displacement is -r',

=+ild

In the second case

: a2= ro rlr2- yi

Here tn=l?cm/s,,;r=5cm' i

n=affis ...(z')
Dividing (2) by (l ) and squaring

' lu a2-25
E=7 - t14

a.= l! cm

Tl* amptitude is 13 criu

Substituting the value of a = l3 cm in equation ( l)

5 = o1fit;:-14r
crr= I radian/s

The frcquenc y r, =- fi= fi n""a

t
Timc period T= i= 2 r scconds.

/^
Etample fl./. Show that fora panicle executing simplc harnnnic nlrrtion,

its vetrr:i$ at aYly instant is'*=,{q
The displacement.

)'= c sin ol
Thc vclrrity al any inslant is,

dt' ii =a G'coso"

Frorncquation(l!
I

sin (o, = -a
c.s (o, = tFrit';

rihlrronrcorcL!.^lons

In the first case,

Hcre ur = 5 Cny's. yr = 12 cm.

5=6y{Ifr- i;i

=la .d (az_f)

Potcntial energy of thc vibrating particlc is

ovcrcoming the forcc through adistance y.

= - o)2-l'

=-t'r.U

the amofunt of work done in

...(t)

. . . (t)

...Q\

Acccleration

Force

( Tlre -tc sign shows tltlr t' direction of the acteleiation and forcc are

opposite to the direction of mo(ion of the virkating parricle-)

p.e. =[. . or2.y. d-r

'r! t
= mor2 .', =;nruz yz .

Total cncrgy of rhc particlc at thc instant the displaccrnent is.v

= K.E + P.E.

= ir,* t*-r':) + | ,r,to!-r2

=ril,].d
=lll.(2*nf,a2

= 2#ror el n'.

As thc arrcragc kinetic cncrgy of ttt vitnaing lmrticle = r' odrf .thc atcr4ge

grcndal crnrgy =ta} nnli. Thc nal crrlgy at lny insant is a constant'

Errmglc t.l. Fdra ptrticte fihrating simple hunuonically, the dispkrce-

nwut is l2 cm at the instanl the rrkx'itt rs 5 crn/s and the displat'etleitt i.t 5 cnt

ut thc ins1-tt thc wkx.it1, is 12 cm/s. Catcilate (i) <unplitude. (ii) fit:l(lttt''
,nrt iiiit riuc pe riul ' I 

.

'Thc vckrity of a Jxrriclc crr:eutinf SHM. ./r' r=--'' i'- 
'ji 

= (oYrr--r-

)



cos(or=\f,T,
.ni:\ $

ff=o,{T,
dv* =0)dt

Exemple 13.' For a particle vibraing simple lumunically thc displace'

ment is Eim at rhe instant tln vclocity is 6 crnlsand the displacement is 6 crn-

at the instan the vel(rjityrs Ecm/s. Calculate (i) amptitude, (ii)frcqqency ard
(iii) time peiod.

The velocity of a particle executing SHM,
dy ^f-,=fr= r1{r'-.y'

HAntt ONrcOCCII:I-AIORS

Frequency n= *, =* **
I

Time period T = ;=2lr scconds'

Example 1.{. The motion of a particle in simple lumwic motion is

. given by i = asin rot tf it has a speed u v,hen the displacement is xt atd speed

lt when'the displacement is xz, show that the amplilude otthe motion is

li x?- i x?11
a=l'gl t?-r2 J

(Utkal,1989)

In the first case,

Url = (O

wAvEs ANDOSCLT-A?ftI{S

.. . (l)

...(2)

dxru=-dr'= ?

Squaring and dividing- il? a2 -,?
-=-*- o2-rl

x=asin(D,

uz a2- u2 xl= az o2- o2 4
a|ft)L u2l =o'r?- r24

Here

and

. . .(i)

...(ii)

. . .(l)

.,.(2)

Here or = 6 cm/s, y1= 8 cm
i-

6=o{a2-64

In the second case, i-
rz=ro1a2-yi

Here uz=8cm/s )z=6cm

,=r\F
Dividing (2) by (l) and squaring

& a2-x
G=Tac

a = l0 cli.
The amplitude of vibration = l0 cm

Substituiing thc value of

. . . (iii)

bxamplc l'.5. Show that for a panicle executiitg SHM, tlu instantaneous

velocity 
'tl."{T- 

y'ond ini,stantaneous acceleratibnis - of y'

Fora particle executing SHM,

Y=asih(cot+a)
The inshntaneous velocitY,

dy' o=Tr=+4 (ocost9t1a)

From equation (l)

sin (<o t+a)=L

I

"=W'

a = l0cm in cquation (11

6=6./!ffi1
o= I radian/s

"2-4

o-*ff=,{}4
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. cos (orr+c1=rffilgryn sy

o= a(D

7r=11t{$z
The inslantaneous accelenrtion,

#=*= a<o2 sin (0,,+a)

=-ro2fa sin (<u+a)l

=-o)2r . . .(1)
by theA lrunicle perloma simple lwrunnic motion givan

j=20 sm [otr+c]
If the time period b -lO scconds and the particla has a displaccmcnt of l0

cm at t = 0, find (i) epoch : (ii) the phase angle at t = 5 seconas aza gii) the
pluse diference betu een tv'o positiotts of the particle l 5 wonds apan.

Hdre | =N sin (ror + cr)

I=30s
Ztt 2tt ,r -.or=-i=fr=fr rarlianJs

t=0, y= l0cm

lo=20 .," f *ro*o)t
sin c=(}5
.f,

srn. C: =;. radlan

l=5s'
=(tx+c)

=[*".;)

=!2

UAf,MONrcOSCILI.AIOBS

' (iii) At

Thc Phasc angle

AI

The Phase angle

,\
\

(i) ArnPlitude

(ii)

FreqrrcncY

(ili) BPoch

(ivl When

dL aisptacement equatiofl is

' Y=asin(oi''{'a)
ComParing cqua$ons (l) and (2)

norion giwn bY dtc

...(2)

Exrmplc 1.6.
iquation

The phase differcncc Oz - e' = ? - ft= 
r' rudbns'

,Examplc 1.7. A prticte ercculrr sinde larmotic

eqntion /2fr,t r\,
!=t2rinIro +lJ

Calculate(i)anwtitudc'(iiltrequc.ncy'(iii)epoch'(iv)dispwewnto'
,=t#;' i;ft i;;;;;'ii'inai"it aicc'terationa' t = t s'

,Here y=tz',"[*.i) "'(r)
I
I

t,

(i) Ar

a = 12 units

2*
'= J6-

n=*=I=0.1 h.nl, '

fra=i
t= l'25 s

y=t2,,"[+#.i)
Y=.12 siail2

Y=12 rilr

(r

or

(ii) Ar

Tte phasc angle

r-4

r-{
a'

or
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or

or

tion.

t5l4

(v) At t=2.5s

VelocitY = * = ^cos 
(or + a)

!!: ,r* 
ff; *, Ii#, 

z s +f,]dt-'
dy
fr=- 5'552units

The -ve sign shows that the velociry is directed iowards fte mean posi-

2ror= l0

. ,=fl n"n,

n = l'6 hertz.

/ii) Time Perid'
r=l =U.nl0
T= 0'63 s

(iii) Maximum disPlacement,tion.

(vi) At a=l0m

? = or.o, (or + a)
dt(iv) VelocitY,

Therefore, maximum v0locitY

But

and.

(v) Acceleration'

Maximum accelerationwhere y is nteasured in metres, , in seconds and the phase angle in radians.

(i) thefrequency,

(ii) the time period, ri

(iii the nutximunr displacemenl,

!iul themarimumvelociry,

{t,) th? nnximum acceleration, and
(r,i) displacement, velociD' and acceleration at time, l;-0.and't= I second.

Here )=tosin[,0,-tl .'..(l)
\ ")

Thc displacement eeuatio;I, 
,in (o,, + .,) . . .(2)

(i) From (l) and (2)
to= l0

But (D=Zfrn

,=5s ,..

8v
Acceleration =7 =- aof sin (to I + a), 

#=-t2. Iifr I,,,(;f;,,.i)
=-0.48,r ri" (,r+i )
= 3'35 units.

A simple larmonii motion is reptresented by the equarion
/ lt\y=ros,rI tot_; 

I

dt
fr=o'
,a=l0m
or= l0

9!=rcx lo=Ifl)m/s
dt
t2 --

' ! =-aco2sin(col+a)dl -\'

*, 
=_nr]dF --"*

*= - lo x (10)2 = - 1,0fl) m/s'
dt'

- r,e sign shows that the acceleratitln is directed towards the mean posi-

(r,i) From equation ( I )
t ,=0

r,= ro ,," 
[_ t )' r'=-'5 m

*=n'"o'(d+a)

'(al At
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(ii) In one minule, 0ree cycles are compleled.

Therefore, work done in one minute

=3x0.5r joules

= l'5 n joules.

Example l,ll. Show that the mean kine.ric and potential mergies of
non-dissipative simple harntonic vibrating systems are equal.

For free vibration in the absence of damping, the displacemcnt at any
instant is given by , 1 '

Y =a sin @t

d:-

dt =a(r) cosG),

Kinetic energy

. .. (t)

k=mG,

tk(,)-=-
nl

Here t is the force per unit displacement

Potential energy =* * r''

I ko2'tin2 at ...(2)
Total kinetic energy for one complete cycle

Exampte l.ll Write down the equation lor a wave travelling along the
negative Z direction and having an omplinde O0l m,frequency 5S0Hz and
speed jjO mls. How v,ould thc equation change if a wave with thc same
Nraneters v'as travelling along the positive zdirection. Justify youranswer.

IIASI

Here 1,=a sin { pt-zi 
.-A

The wave is travelling in the positive zdirection

HARMONICOSCILI-ATORS

Here

2t

K.E.

+^ftI
f,m @2 or2 cos2 co r)

f t 12 cos2 orr

a=0.01 m
v=55OHz
o=33Om/s

,_er_330^-; - 550

l.=0-6m

).=oor ''" (#)tro,-.,|
Thc wave is travelling along + 3 dircction
For wave travelling along - e directim

r=o.or .', 
[#) [ror+rl

For, = Q.fronr equation (i)

,(0

J = -o'01 srn (#).

. .(ii)

. ..(n'r)

= [ * kazcosz at dt

= Jr*az r
Total polential energy for one complete cycle

:t
= l- I kazsinz at drJo 2r--.----

The wave is iravelling in + e direction
Similarly for r={, frorn equation (ii)

i .1.= + o.or ,,, 
[#). 

. . . (iv)

The wave is travetling along - z dircction.

1.8. Qssillations with One Degree of Frredom
A pendulum of a ckrck, a loadcd spring and LC circuit have qrc degrec of

fieedom. In tlre case of simple pendulum, rhe swing dcpnds ryofi fte ingular
diryraccnrcnt mqde hy thc string wirh rhc vcrtical direction. In rhe dse of a loaded
spring, thcdispLilerncntof lhc mass, and inrhc casc otLC circuit thechargeon rhe
c'rrdcnscr plarc describcs the nmurc of rhc oscillarions (Fig. t.6). Tlrese dcillaions
!'rlie place about the mcan Jnsition. All thcsc svstems hale one degree of freedorn.

. . .(3)

ka2T

Hence thc mecn p()tenlial and kinetic cnergies are equal

.{4)
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,.. (5)

...(6)

luhgn the tu+p instaos are supgrimposed on each other, the resulrant dis-
placerneill is y, Here if supernosition is true it is to be proved rhat )' = ).t. + )'2 .

.'. Thg oquation for resultant displacement,

#=# (Yr+Yi

Adding equations (5) and (6)

d'f, *n I .

d? 
* # =- r' ( v, +12) +A( v', + vtrl

+8tri +r.l )+ C(.rl+.rd1+...'

The equations (7) and (t) are identical, only if

#=-ro2y; +A tt*B,yf +c{+ ...

# =- d yt+ A ytr+ B yl+ c )'r+ . . .

$c'*o=+t.#
- ir' ( y, +ya) = - crf .-r'r'- co2 -rz

e t.r'? +r) = A ( -r'r +):)2

I 1.r"1 +.rl) = { (,r'1 +.r.u)3

Ctrf +r,i)=C(-yr +lz){

Equations (9) ed ( lO ) are tnp. But cquations ( I I ), ( l2) and ( I 3) arc true
only, if

A=0.* ._ B=O, C=O

When A. 8. C etc..are zero, tho.equations becomc linear..Hcnce supcrposi-
tioo principb b tnre only in thi cosc of homogereous lincar equations. Also the
sum of any two solutions is also a solution of thc homogencous linear cquation.

' All harmonic oscillatots givcn iri cquations (9) and ( I O) oirl superpcxition

frnnciple.

HARMONICOSCTIJ.^TORS

1.10. ShnPle Pcndulurt

A simple penduturn consiSts of a light string supporting a small sphere and

fixed firmty at its uppcr end. An ideal simple

pendulum should consisl of a heavy particle

suspended by means of a weightless, inex-

tenisble, flexible string from a rigid support.

lrt a pendulum be displaced from its
mean positioin O and allowed to oscillate

(Fig: 1.7). Suplnse at any instant of time r, it is
at i. The force acting upon thc bob vertically

downward = Mg. Resolve Mg into two rcctan-

gular components.

. (l) Forcealong thesuing=Mgoos0
(2t Force perpendicular to the string

=M8sin0
Let the tension in the srring be L The

conryonent Mg.cos 0 balances the tension 7
Mgcos0=I

'lhus the only force acting on the osciltat-

hg particle is - Mg sin 0.

(- ve sign shows that the acceleration is directed lowards the mean posi-

tion) 
r

According'to Taylor's series of expan5ion

sino=r-e,.$n 
.

For small angular displacenrents 0, sin 0 = 0

Tangential force : F=-Ngl
' Ttp linear displacemenl Y = l0

&".*e
-*=l--d( df

,,r""=Mt#

From Newton's second law

,2rl,
M{?__Mso .

df

4:*4 s=o .. ir)
dft

I
il
J
si
,;
{
1i,l
rl
H

I

$
'!1,

i'

25

coso

..(8)

. . .(e)

...(10)

... tl tl

...(t2)

:. . (13)

Flg. 1.7.

Acceleration
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I

^EYi

_ tBob of hry dzc. In rhe case of a simpte pndurum, if rhe size of rhe bob
is largc, a corecrion has to be apptied. ln rhis case

t=2r\l t+(if)lr

WAVES ANDOSCILIITT'NS

This equarion is similar to thc cquation of simplc hmmoig moiqr
ly
7 + ol2Y=g

From (t)and (2)

(oF =

ol=

Timeperiod 2a
l=4

o,

T=2n ':', (3)

I

Here I + 
[# )*-scnrs 

rhe equlvahnr hngrh of a simpte pendutum.

l.ll. Compound Pcndulum

point of sr;spension.In Fig. l.t, G is the centre

...(2)

a

HAIi,IONIC OICIIJ"ATORS

gravr'11 of thc pendulum.

\,
Hcre trTiD

27

11

ii

t

lf,

[- ve sign shows rtirat thc forcc is directod toryrds the rrcan poeitionl. .

For rmalt angulr displacements, sin O= 0

The morpnt of inerria of thc pendulrrn abort an axis passing rhmugh s and

perpendicular to its plarrc = tl P + Mlz-' 'Here 
K is rhc rad-ius 6f gyradon aDaI t An arb passing thrangh rte centre ot

M(P+h#+jugl0=o

. -A 
gomRound penduJum is a rigid mass capabre of oscirtating abour a

horizonral axis passing rhrough any poirrt of rhe mass. This point is-called the

a2e-( ts '1o=n' d?*151 1"=u--- \ ,/

This equation is similar to rhe equation of simple harmonic inotiolt

*!'r

i+trfy=0 '.,(2)

Here y refers to the angular displacenreni 0.

Comparing(t)and(2)

.r'=f J'..l'* -[ K7+tz )
Here to is the angular frlu"n"Y '

Zrc.', Timeperiod T=.i

... 0)

. . .(3)

of gravity of rtrc body and J'is rhe poinr of
suspension. At any insunt of dme, when the
mass has ben dicplaced, the force acting vcrri-
cally do*nwrds = Mg. At rhis positioq rhe
line SC malcs an angh 0 with rhe vcrtbaland
thc restoring moment of this force about the
point S = Ng I sin 0. This is rheonly moment
which produces angutar accelgration in r}e
pcdulum.

Lct th rmmcor of insria of drc pardfrrn
fun m aiis passing thorrgh Safid p.tpgrOc*r
lo iB hngth br r. If rlE arguhr rekruin * rtris

T=2n

T =2tc t*n+t
I

inerartff,rrren
ft>m.

is called tlrc equivqlent tength of $c simple peldulum'
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11,

is negligibly small.

Frorir equation (8)

-A(h-lz)+ 
B(h+lz\

ai-4,

8=

S'f
s =iTVz

7;;6
it=t2=t h+12=7

8=nr

WAVES AND OSCILLATIONS

. .. (8)

e+ P=?t

, A-g=A.

o=ry
aa' ,i.-r^

and ,=t
Substituting these values in equation (7)

4rt 4*4 t-4
; c =T\r*ln+ rgr-t)

. 
IIARMONIC OSCILLATORS

t1' '' &=+L

Here L is the distance between the two knife edges. Equarion (9) is similar
to the equalion of a simple pendulum. .'
' 

[Note. When the posirions of Kr. Kz Mt, Mz and M3 are linally adusted,
,, lhen ihe time periods about each knife edge must be equal. The positions of Mr,
: Mz and Mr must be'the same while determining the time period abolt,erch

knife edge.f

1.16. Simple Harmonic Oscilhtions of a Mass between
TwoSplings

,, Consider two springs.9i and Se each having a length I in the free position.

,, Mass M is placed midway between the two springs on a frictionless surface
1 tfig. I .12 (i)t. One end of the qpring Sr is attached ro a rigid walt at A and the

othcr end is attached to the mass M.'similarly one end of the spring 52 is
attached to a rigid wall at B and the other end is connccted to the mass M.Here
AC = BC = L. [Fig.l.l2 (ii)|. At C the mass is equally pulled by both the

springs and it is the bquilibrium positibn.

p--x (21-x l{ 'i

37

. . .(e)

;{,

{i:.
,,t I

rrf
a"i.
I.

}L

$
1,.
t4
\t,

f,

ri

a,

.As the values of It, lz, rl and ,2are known by experiment' the value of g can

U" O"r.;in"O, prouiAJ the posilion of the centre of gravity i'S accurately

known.-- - 
However, as it is difficqlt to locate the position of the centre of gravity in a

Kater'Spendulum,thetimeperiodstland12areadjustedtobeverynearlyequal
so that in equation (8) 

?r.- c
T_E

812

Taking

s

r&,:

['ig. t.12.

tiiil
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whcn the mass M is displaced from irs equilibrium position and left, it
exccutes simple harmonic oscillations. kt, at any instant, D be the displaced
position of thc mass 1!y'.

Herc AD=x, and BD=(ZL-.r)

1,r

I xenMoxlcosclLr roRs

Thus, the mass M.executes

Deriod is given bY equation (5)'

iAoA ca, be catculated'

simote' harmonic oscillations and

t<nowirig the vatues of M and K,
the time
the time

- -Lct 
the rension pcrunit tlisplacement in the spring be K. The displacement

of the spring of 51 i5 (,r- ; ,; and it exers a force = f '[3 - /l in the direction DA.
The displacemenr of the spring sz is ( 2L-x-I) and it exerts a force
= K [2L - x -/ I in the direction D8.

= K I2L - x - I I - KIx- / I in the dircction DB

Mass between Two Sprilg - Ihamversc Oscillations

-.{

e]

,fh*!.tr1r1

Consider two springs each having a length ao in ttre free (relaxed) position.

Mass M is placed midway betwoen thc two,springs on a $cti91te*l surfacc

l6ig. l,tf ta)1. The length of each spnng in the horizontal position is a. It is

assumed that ao is exlremely small as compared o a
The mass M is displaced along the I-axis throrgh a displacement y. It is

assumed that there is no displrcement of ,the mass atolg {- or Z -axis'

In the equilibrium position, the tensionin cachspring is giyen by
.To=K(a-ao) ...(i)

In the displaced positio& erch spring has a lengrh L and cnsion in crh
spring is given by t T=KlL-ql ...(it)

This tension acts along the axis of the spring.

The component along thc Y-aris contributes ths return folpe and the

transverse oscillations are set up in the system :

The return folce for each spring is Isin 0 .
|il ;;i-I#""ri"g o; tr-t"t-t d* to borh ihc springs alorig -vc 1a1is is

given bf 
F=-2rsin o

s - 2K lx - L] in the direcridn DB
According to Newton's second taw of motion

; ,,=*#=-2KIx-Ll
'; ' ' 8* ''2K.'. '.., T=_ii ["r-Lf

or #.ffe-D=,
Taking the displacemenr from rhe mean position

f _L=yi,l,._.t"

Differentiating rwice, 
d2.x n:,
77=6

Substituting these values in quation (2)
dzv 2Kjf +vt=o .. ,(3)

This equation is similar to the equatiori of sintpte harmoni. morioo 
'

d2v- !^ +o)r y=O
dt ...(4t

Fromequations(3)and(4) ' 1

...(2t

rb. r.r3(D)

a
2K

Tim-e period .(s)

ik l
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. . . (iii)

. . :(iv)

. . .(v)

l'

...1ri)
l

. . . (rii)

. . . (r'iii)

FARMONrcOSCILIATORS

Atso frorn cquation (i)

v- To. K=m
I

90 is ncgligiblY sgrall
ili.A

. x=b.a

Substituting this value of ffin equation (vii)

,=l#lu
.t

"=*l#)'
I I uali

_ Timeperid T=; ='" lUr)

F=-2KlL-r[i)

r=-i*r[, r[tJ]

Mw).zx,f,-[.?I=,.t
','=ff)[, 

[r)]
Equation (iv) doei not rcpresent exact SHM.

slinky Approximation. A slinkf is q.helical spring whose relaxed lengrh
is extremely small as comparedithe gtrcbhed tength. In srinky approxinration
the quanrity 

:

el is neclisible smalt'

From cquation (iv)

ncgtccting 
E) "" ",

, "laJ+2K'r=o

#-{#)'=o:;
.t

f z'x11,D=l7l
L...J

I

t lzxli
| --l2xlM ). , ,|,

- rinrcpvirxt,Ti = *l'#l'

.r.=Asin (or+g;

It may be noted that equation (it) ha1 P.fstriction on the ampliude A'

Even lbr targe amplituJ" ,n"t" will be'perfect linearity of the return force' This

[orat e*d;nty for slinky approximatio--- 
tt?rr"quency is tt 

" 
,"# ror mrh longirudinat and transvers& osqillations.

.Example.l:,lSslroryilatforamasscamectedbetweentwoideuicalsprings'
. @loAg

(itrans 
[, -*liL a)

:l
fr
{
#tI

t
lr.

For longitudinal oscillations 
I

I zxlz
ortons= 

L " J

For transverse osciltations

...(i)

...(,,)

..."(;io
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1.18. Simpte Harmonic Oscl[ations of a Iaaded Sprtng
consider a lnrins $ whose upper end is fixed to a rigid support and rhe rower
end is atrached ro a mass { (Fis. r .ll). In rhe equiriu.ru, posirion, rr," ,,*, i,at A. when rhe mass is dispraced downwards *d rcrr,'ii or"-ii'iui"l srpt"harmonically in the vertical direction.

suppose at any instanl the mass is ar g. The dishnce A, = ). IJt the tehsionper unit displacemenr of the spring bc K.
Force exerted by rhe spring=try
According to N.*ion', second law

Force= M + =-/bdt'
[- ve sign shows that the force is direcred up

#.[#),=o 'n 
' {')

- This eguation is similar to ge eguation of simpte
harmonic motion,' ,ri

'Exampte 1.19. A spring is hun! veniqally and lodedwith a nuss o! 100
grams any' allowed to'oscillate. Calculate (i) 1he ting period and (i,i)i the

frequency of oscillatiott, When the spihg is'lahded with I00 grams r? extends
bylAcm. rfi 1 I'

HARMoNrcoscrilrons

substiruri,,,r" *,;"_I::ff on (3),

Ymg

. ne 
':

It is to be noted that I is constant fr a given spnng.

(ii) Frequency

43

.. . (4)

M= l00grams

nr * 200 grams

'x= l0'cm

8 = 980 cm/.s2. )

r=2ts^[T '

r=24ffi
r=#=o'ugs

I I,"' .T 0.449.i
n =2.22 hcrtal

:

Example l.Nt.Thc scale of a spring balance readingfron 0.- I0kgis
-t0

O 25 m. A body suspended from thc balance oscillates with afreqwn y oI' i
'l'

hertz. Calculate the mass otthe body atuchedto tlw spring.

(r)

*y
E +af Y =i1

Comparing (l) and (2)

,IK
a_=il

. . .(2)ri
T.I

Fl3.1.14.

s

O)=

Timeperiod Ztt
(l,

Here m= l0kg
x-O:25m " .

, ,M=?
s= 9'8 nr/s2

Eh"n,

^l t
'=;=m'
r=2n:.tgtm8

T=2n . .. (3)

Knowing the values pf M,andf, the varue oi rcan be carcutared.
Detcrmlnation of K.To'detenlur' the iarue of tension per unit disprace- ,

Sent of thgspring, a sma[ mass m is airached ro the free end 
"rin" 

rpri"i. fi,"
increase in length of rhe spring is noted. I*t it be x.

rhen, *=(T)
i

&

K
M
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I.lt. Simple Harmonic Osci[ations ota laaded Spr{ng
consider alqtng s whose upper end is fixcd ro a rigid support and the rowerend is artacM ro a mass { (Fis. r.ra). In rhe equiribium iJ.i,rri, ,r," i"ss isat A. When rhe mass is dispraced downwardi and [fr,'i;;;-ii'ia; ,irpr"harmonically in lhe verticat direction.

suppose at any instant the mass is at D. The distance /g = y. I*t rhe tensionper unit displacemenl of the spring be K.
Force exerred by rhe spring=&
According to Newton,s.rcori lrr"

Forc,e=M * =-x,
dtz

{- ve sign shows that the force is directed up-
wardsl

" # +Ky=s

#.(#1,=,
- This equation is similar to 3he equation of simple
harmonic motion,' 'rl

, lut*ltutln3 ihc value of (in equation (3),

T=Zn\[b
YmB
'i

It lr to bc notcd rhat 4 is constant for a given spnng.
ll

;ions 43

. .. (4)

,t

d l,lg. A spring is hung verricalty and toded with a nuss o! I N
dfiowed to'oscillate. Catculau (i) thc time pcriod and (ii) theI dllgwed to'oscillate. Calculau (i) .thc time pcriod and (ii)i the

of oscillatiott.,,Ylen thc sprihg b loailed with 2l)0 grams it extends

M= l(X)grams

nl * 200 grams

'r= l0'cm

8 = 98ocr4/s2.

r'=2n\[av m8
(r)

rt
r.l

Flg.1.14.

gy
i+cfv=[

Comparing (l) and (2)

,Kto-=fr

...(l)

. . .(2)

. ., (3)

T=2n

(ll) Frequency

T=#=o4tss
I l."' ,T 0.449

"i
n=2.22hera."..

Errmple l.2O.The scale of a spring balance readinglrom 0.- I0kgis

025 m. A body suspendedfrom rhe bilance oscillattes wirh afre4nno ,f +
lrttfi. Catculate the mass of the body auoii"a , the sprtng.

Ol=

Time period

T=2br,rtfl

2tt
c,

Hcrt m= l0kg i .

.r-O25 m

M=?

8 = 9'8 m/s2

n=fgh"no " '
fr

T--
'=;=16s
T=2tt\[Etmg

Knowing the values pf M,and K, the value otf T canbe catcutated.
Detormlnotion of'I( Tg'derermirc the iarue orr"nrion p.r rJii oirpt"".- ,

ment of thgspring, a sma[ mass nt is airached ro rh" f.e";; [iir,r.rpiri. tL"
inc.rease ii length of rhe spring is noted.I-et it bex. 'i'rh"n, r=(ry)

t{&i-

K
-M



#=-ft).#J.,.w),,

(klf\and 
@)=n
t2 --

;F--Pxt+Qxz
t*=_ p xz* exrdr

In a normal mode of angular frequency to and phase $
rr=Acos(rol+9;
x2=f qOs (ort0)

Differentiating twice,

*rrr' 
=- ^' 

,,df
and +=-r,, xz

dr
Substituting the values in equations (vri) and (vidr) we get,

'r = 
(-L -\x2 l.'- "rJand -d ry=- P xza Qxr

*=(t-, )
F4uating right hand sides of equation (.u) and (r)

f__g_l /p-r,f)
l.r_ofJ=[. o J

,r-!n1'l*;or
<o2 =pte
c)= lptel'h

The angular frequencies of the two'modes are

wevrsaxbmcrLLA'TroNs90

Taking

ff.#)=,
CHAPTER 2

Lissajous' Flgrrres

. . . (viii) 2.1, Lissajors' Figures

;",;ilcreisinnuencd:i*:11T::.tl?:"t::,i'ifi:[ffi::::T::""*:
xlllXffi?;"ffi ;;!i;li;;:*':1.'"9:i.*:Pil:f#:?ffi :::li:S:lH';::ffi il;:;ffi s':;::T:I:r-'l',i:',T:i:f.HfrThese curves are calri'u Lr"oJvuJ "c,-'--' 

rlittrde.of the two constituent
,fr" [t"" p""od' phase-difference and thi-Tf^*,-t.o 

rhe rerio of the time*i,HlIltr;3::ru#il;;,',i:"*i:::'*::l:ii*;:;n;,:ffvibrations' LrssaJous'l:ffi ;;;ff; tn"i*qu"n"iei of two tuning forks'
periods of two vibration

2.2. Composition of Two Simple Harmonic Motions in a Stralght

Line .

Analyticalmethod.Irtthetwosimpleharmonicvibrationsberepiesented
by the equations

yt = at sin (cot + ar)

... (tr) and y2= azsin (col + oz)

. . .(l)
' .. .(2)

S,1"," r, and yz'",h"'j' ;;;;;;: : f f*:,0:: t:"f:iT"'*:i#i;
)fffr :1il:'#ffi ,iffi :;fi .;;;;,Tih:t':,it.T;'#trJ*-':
ffil":3il,T"TtEiir""#;:::,*i:"5"::*::tr'H:ffi L:11
ili:"i ffi'AX"# ;':'#il:' d"- ;J;" i i Lpr..'*"nt y o r the particre i s

givenbY 
y =!r*!/2' 

= ar sin 1<rx + cr) + a2 sin ltrx + cz)

+ a2 (sin (o' cos o? + cos cot sin u2)

y = (at cos or + a2 cos crz) sin tot
' \ ' 

* (ar ,in o, i" sin az) cos 0)' ' ' ' (3)

Since the amplitudes o' md o' *i'lti'" lTgl"t r'1 and cI'2 are constant' the

coeflicients of sin cor 
"'d 

#;; 
"qu"tlon 

(I) can be substitutcd by A cos Q

andA sin Q
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For small displaccment

. einc, =a, =f,
sin c.2=g.2=12

,2

cos (cr - cr) = I (Rr smdl valuc of ce _ cr)But \=l2al and ar =W=t7.
Subetitnting rlrccc valuos in oquarions (i) ard (ii)and simplifying

(#)=-ff1"+f to-xr) ...(iii)
\,

(#):-tr)"-H (iv,

Adding (rri) ardfi{ and rrrangiag w,e ger

,(ff)=_,(f),,_[A
t

**"****, [*J=-F) " 
- *(#)

[a--F) -w)

*W)=-,n t 
" 
* -,,(ffJcos (cz-cr) . .. (ii)

- ...(v)

. . .(vr)

Diffcrcntiating twiac'-' 'e!r-oz,

t
**=_do
T- v"

Subetituring tlrcsc valucc inoquations (v) and (O

-dn=-F)'' lido

t? 'r)" 
=|'ro

'ad;=w7
ad -uf *=-'[,])r*&"

ft-rl
*\-)

Ecrihriqg right hsnd ddca of TIiY(vO 
d (vd")

L-o;td -t'ffi)- dI
tt )

r ,r-r[i-r]
o='FI.'-F)*

It ir aqub&atic oqu{im. It lohdotrtr

e-rft)* (€ti

,rff)=-nrrr tu et + m2 ssin (cz - cr)

...(vii)

.,(Ytii)

xtc corryling tctu,cco !@ tm pcodut,ms ir.cvi&nt and char. Then$q of onc pcoeilrrnr.fhc. drc qrodon.f d. ;;;p",tiui3o* 
"typo of coupling ir known es Ins{rt i-dh&

T& anguh frequcncy o .il etqro jin 6. rro.rrd.roO.,
rr clr or(c+0)
.ql=42cos((r+0)

.,.(b)
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. . .(x)

. . .(xi).

. . . (xii)

. . . (xiii)

ginuoxtcosclLlAToRsf, 95

7. Give the theory of a compound pendulum and derive an expression for

its time Period.

t. Show that in the casc of a compound pendulum, the points of suspen-

sion and oscitlation are interchangeable'

9. Give the theory of Kater's reversibte pendulum'

10. Discuss the case of simple harmonic oscitlations of a mass held

between two linear sPrings'

t f. Show that rhe time period of osciltation of a loaded spring is

-n-^IEt=Zn\_.

Discuss the LC circuit and catculate the expression for lhe frequency of

oscillations'

,."u* with eiamples freeoscillations of a system with two degrees of

freedom.

Angular frequencies

0)

(,0

Frequencics

(')

(,0

="-*[i)
- -,.- l

,=frr-r[f)'

u,=*=*[,r-r(f)'

'z=ff=**1"-t(t)]'

,,=[tr-r[,tl*

*=[,r-,,(i)]i 12.

13.

Etluations (,r) and (xfr represent 0re angular.frequencies of the two nonnal rnodes
and equatiors (ni) and (.un) repnesent the freqrrcnciesof the two normal modes-

EXERCISES

I. Explain simple harmonic motion and discuss its characteristics.

L Show that for p body vibrating simple harmonically the time period is

t--2n'

Calculate the average kinetic 
"n"rgy 

and rhe total energy of a body
erecuting si.mple harmonic motion.

Give examptes of the systems that oscillate with qne degree of freedom.
Explain the term damped oscillations.

Show that the superposition principle is valid only in the'case of
homogeneous, linear vibrations.

6. Obtain the expression for thb time period of a simple pendulum. AIso
dcrive the expression for the time.period for a bob of large size.

14. Discuss the two normal modes of oscillations of coupled LC circuits'

,r. ,o* will you determine the value of acceleration due to gravity using

a comPound Pendulum'

16. Derive an expression for the time period of a compound pendulum 4nd--' 
;tr* that there are four.collinear points on a compound pendulum

"i"r, 
which the perid oi oscillation is rhe same. Give Bessel's com-

put+ time of Kater's PendulPm'

f 7. A particle vibrates simple harmonically with an amplitude of 
'13. 

cm'

The time period of "r"iii"i", 
is 2r seconds. calculate the velocity of

itre vibrating particie at lhe instant the disptacement is 5 cm' Also

I n*.(r) 12 cm'ls ; tiO f, nertzl
L

18. A simple periodic wave dislurbance with an amilitude- of 8 units'

.travels a line of partiti"t in the positive x direction' At a given instant'

the disptacemrn, of-"]i*i.le 16. cm from the origin is 6 units, and that

of a oarticle zs "* 
i.lm the origin is 4'units' both particles being in

il,it"ais;r"""t*n,. what is thi wavelength of the disl:rbaYr-- 
[Ans' 29ocm'l

19. At time I = 0, a train of waves has the form

,=-:r"r[,o.o) r

Thevelocityofthewaveis30cm/s'F'indtheequationgivingthe
waveform at a time 

'=2 
s'

Ejven bY

a

3:

4.
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IO4 WAVESANDOSCILLATIONS

lrt n simple harrnonic vibrations of the same amplitude a and epoch angles
0,2a,4o. ...2(n- l) cr influence a vibrating particle (Fig. 2,3). If rhe iis-
placements of the vibrating partifle are considered along the y-axis, the in-
dividual displacements are given by

)l=asin(c,Y-0)
.)z=4sin(<rY-24)

Lrt A be the ampliiude of rhe resul-
tant. Vibration and Q the epoch angle.
Then

/=A.sin(ov-0)
The projections of the individual

vectors OP, PQ, QR etc. on the y-axis
are given by

0, a sin 2u, a sin4cr e tc.

Similarly the projections on the X-

nc eouations (3) and (a) and adding

1z 1sin2 Q + cos2 0) = A2

-d si\2 na
sin2 o

a sin noA=----:-
sln o

equation (1) bY (3)

A sin Q j tari6 = 
q sin flo'sin (n - l)tr'

a cos 0 
- torr Y - sin o. o sin ntt' cos (n - l)a

= tan (n - l)a

6 reDresents the epoctr angle forithe resultant vibration' 1 i:-tl'"

lf .i[rpf" t"*r"ic JiurationJinfiuencing a particte and a is half the

FICURES
r05

.(s)

.. . (6)

If OI represents the resultant vector, thcn A sin Q will give rhe prc{ection
along the Y-axis and A cos g gives the projcction along. the X-axis.

A sin Q =0+a sin 2c+asin4cr+...... +a sin 2(n - l) cr

=a [sin 2a+sin'4c+.. ..:. rsin 2(n - l)o] .. .(l)
Similarly,

. A cos0=a+acos2ct+acos4q,+.. ....+ acos 2(a - l) d
a [ +cos 2cr+cos 4a+......+cos2(n - l)c] ...(Z)

Multiplying equation (2) by 2 sin cr

2{cos$sin c=2a sinc Il +cos 2cr+cos 4s.+. .. ...
+ cos 2(n - l)ol

= a i2 sin c+ 2 cos 2a. sin o+ 2 cos 4asin d

= a 12 sin I ;;:;; Al':,1'J,' 
r) a - sin (2n - 3)atl

= a12 . sin zc . cos (n -l) al
2d cm $ sin c = 2a sin ncr.. cos (z - l)a

in the epoch angle between s0ccessive vibrations'

Composition oiTwo Simple H"ti9ry: Jibrations
of EqualTime Periods Acting at Right Angles

.r=asin(rot+a)

From equation (2), 
'in 

til = i

cos 0.1, =

From equation ( l), { = lsin o, cos rr + cos rol sin ol
At

OP
'FIg.23.

X axis are given by

a,a cos 2cr, a cos 4c, ctc.

.(3)

_ asinnc.cos(n_ l)oAcosQ=ffi ...6)
Muttiplying equation (l) by 2 sin c: and procecding in a similar way, it can

be shown that

a iin S = 
s {nJgj rin (n--!)g

sln o

Substituting the values of sin tot and cos cot in equation (3)

:=Vcos.,+r,[S'"""]

I-|cosa=
AD

I
!

I
I

. . .(4)

sin c
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Squaring

5.#cos2 cr, - 1 ",," = 
[, 

- #).,", "
or 

*.#[sin2cr+cos2 "l-*cosd=.sin2cI

t.y'2a, I '
b.'F-=?cosc= sin2o ...(4)

. This represents the general equation of an bllipsc. Thus, due ro the super
imposition of two sirnple harmonic vibratipns, the displacement of the particle
will be along a curve (Fig. 2.4) given by equadon (4).

(.P {-T n=f n(= lriEOp.Z
The resultanr vibration or *re plr?ilil'*tlr depend upon rhe value of o.

Figure 2.4 represents the resu.hant vibration for values ofc changing from 0 to
2 ts.

Spccid cascs

If cr=0 ot 2tt'; cosc= l; rsinct=0

i . yz 2.r,j*F-i=o
or x-{=o

ab
,'=*,

This reprcsents the equation of rhe sraight line. SD (Fig.
particle vibrates simple harmonically along the line.DB.

(ii) If o=x, r H:=ii

(I)

'iLISSAJOUS'FTGURES

(iv)

and

then

or

*.#.ff=o
(:.;)='

,=-*t'

r07

...(6) 
m

This represenu the cquation of
the straight line AC (Fig. 2'5).

(,r, if o=t o, +
sin c.= I .; cos (I=.0

i f Fta2.5.
. :;.1, -=t .B'F

This represents the equalir*r of the ellipse EHGF (Fig.2.5) with a and D as

r(= Tf

the semi-major and semi-minor axes.

, rfcr=lo,
a=bi

*.*=''*+f=az

(v) if

This represents the equation of a circle of
radius a (Fig. 2.{).

a=f o, f,theresultant

3r
2"

i\
D

I
I
I

c0

ru.a6.vibration is an oblique ellipse r(LilIV as

shown in Fig. 2.7(i).

AEBAE

J

t\
I

lo
!o

oT----
I
I
t.
,,t

(i i)

2.5) i.e., the

ng.L7.
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On the ortrcr hand if a=+ o. f, ,f,"

obliQue ellipse KLMN as shown in Fig. 2.7
repeated after every time period.

WAVES AND OSCILLATIONS

resultant vibration is again an

(ii). The cycle of changes is

FIGTJRES

2.5. Compmition of Two SHMS at Rlght Angles of Equal Periods

Graphical method. (l) [rt a particle be influenced sim[ltaneousty by two
simple harmonic vibrations at right angles to each,other, The two vibrations are
represented by the equationro 

,in *;=;;il;
Here the phase difference between the two vibrations is zero, time periods are
equal and the amplitudes are unequal.

Draw two circles of reference with centres Cl and Cz and radii a and b
respectively. Divide each circle into eight equal parts, markcd O, 1,2, . . . 7, 8.

The angular frequency in each case is to.'If the particle O is subjected to the
simple harmonic motion along the X-axis'only, thb particlb will vibrate along
XX'. Similarly, if the particle O is subjected to the simple harmonic motion
along the Y-axis onl!, the particle will iibrate along YY'(Fig. 2.8).

y2

this yay the positions of,the resultant displacement of t!rc gartic!*itl$t
r J78 seconds, O after ??2 seconds, A aftor 5Il0 saondsrQ after.3Tl4

, e 
"ftet 

77i se'conds arid again at O aftet ? seconds' In this way the

i vibration is along pOQ. T\e amplitu& of the resulant vibration is

(OP)2*(OX)z+(OY)2
(o42=d+f
, OP=\tTbT

angular frequency and time period remain the same as for the lwo con-

t vibrations.
I-ei a particte be influenced simultaneously by two.simple har.mg1ic

ions at right ingles to *.t ott., . Thelwo "iUt"tiont 
dre reirreserited by

equations

r=asin(olt+ct)
Y=Dsinort

the phase difference a=fi/'z and the time periods are equal' The

itudes are a and b.

[ii"* ,*, circles of reference with centres Cr and Cz and radii a ar,6 b

n"i,ir"ty. Divide each circle into eight equal parts, marked'0, 1,2' ' ' '7 '8'

tlete

o

P

*\
30,,
--v,

,!n
'x

i:--ffii/_ I

rili
llal

,taF:l/l'r I
I rl

a

,
I,.
I

tlx
yt

q{ t. l
r l,v

0rE

I6

i rB 2.t

When the particle O is subjected to the two simple harmonic motions
simultaneously ; ttro rcsultant vibration of O will be alons :be straight line PQ.
At zero, zero position, the particle is at.the mean position O. After 78 seconds,
conesponding to l, I position in each circle, the particle will be at B. After Tl4
seconds, correspondin gto2,2positions in each circle, the particle will be at P.

angular frequency in each case is o. tf Itrc particlc o is subjecled to the

Lirrn1oni" motion along the X-axis only, the particlo will vibrate along

Similarly if the particte O is rubjected to the simple harmonic Tofgn
; the I'-axis only, the particle will vibrate along YY'- Here, the initial

r/t& 2.9"
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pcition for vibration along .lX'is at the extreme position at t = 0. Tlie points
on the circle of rcfercnce anr marked showing that tlrcre is a phase difference ol'
xtZbrfwern thc two vibrations (Fig. 2.9).

lVhcn the particle O is subjected to the two SHMs simulraneously, rhe
resultant vibration of O will be along an ollipse having a and b as semi-rirajor
and semi-minor axes. The resultant position after T/8 seconds corresponding ro
l, I position in each circle of reference will be the point B. SimilarlyC, O, E, f
etc. will bc $o rpsultant positions gfter successive time intervals of Tl8
seconds. The motion of thc particle O will be along rhe ellipse ABCDEFGHA.
The angular frequency and time perid remain the same as for the two con-
stinrent vibrations.

Here at any instant

*v2
7*F=',

If a and D are egual, then the resultant motion is given by the equation

i+f-a2
which represents a circle with centre O and radius a.

[Notc. If a particle is mciving along a circular path of radius c with angular
frequency or, lt can bc considered to be undef thl influence of two rectangular
SHMs having equatr amplitude of value a and angulzu frequency ot, and a phase
differencc of n l2.l

2.6. Compcition of Ttvo Simple Harmonic Motions at Right
Angles to each'other and havilg Time Periods in the
Rstio I :2

[,et two siinple harmonic motions be given by rhe eguations

xtasin(2crlr+a) ...(t)
and )=Dsin<u ...(2)

Here a is the amplitude for the motion along the X-axis and b is the
amplitude for the motion along the lz- axis. The phase difference tretwecn the
two vibrations is c-

From equation (2)

v
;=srnoy

cos or=./i:Gp.,y-

coscr=ff

WAVES ANDOSCILLATTONS

. . .(3)

.. . (4)

.FIGURES

Fmm equation (l)

ilt

I 
= sin (20), + a)

a

= sin,2 oY cos o + cos 20, sin cl

= 2 sin ovcos 0v cos ai (l - 2 sin2 trx) sin a
,'substituting the values of sin or and cos ol,,

x -".1ab

Equation(5)representsthegeneralequationofacurvehavinglwoloops.
Ir"irttunrrotion of the particte for different values of cr is given in

[;- [' 
-#),,""] =! "o"" {ry

f-,,""1.# 
-#.#

ft 
-,,, "J.#l*+ 

r sin a - r] :o

E
n=T

Fig.2.l0

f -,'" "i. # (sin2 cr+.o*'ol - $ (sin2 cr + cds2 a)

.,.(5)

*4.rsina=ob" 'a

'Isinc=0
a

K
n={r.Tr

^=?

,B
{=Tt
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Fig. 2. 10 For a phase difference of 0, n and 2 r, the resultant motion gives rhc
figure of eight.

(r)Whenc=0, n,2fietc.
sinc=0

From equation (5)

This equation represenls the figurc of eight and has two loops.

(ii) When

sincr=+ I

From equation (5)

oi

*.#[#-,)=.

TIo=1

ft.,1 
.#ff.;-,)=o

(; 'l .#$-').#=o

(:-').$=o

T= [:-')
,'='tE ,)

t2
. yr=_i_G_"1

This represcnts the equation of a parabola, with vertex at (a, 0).

TiUSSAJOUS'nGURES ,

2,7. Compgsition rif Two SHMs at Right Angles
with Time Periods in the Ratio I :2

GraphicdMethod

Lrt a particle be influenced simuttaneously by two simple harmonic ribra-
tions at right angles to each other. The two vibrations are represented by the

il3

'ltrqre fre phase difference betweeR the lwo vibrations is zero, ar,nplitudes are

unequat and the time perio'ds are in the ratio of I : 2.

Dra* ttuo circles of refetence with centres Ct and Cz and radii.a and b

respcctively. Divide the circle with centre Cr into 4 equal parts and the circle

with centre Cz into 8 equal paIts. The angular frequencies.are 2cO and O. If
rIrc parricle 0 is subjec.ted to the SIIM along the X-axis only, the particle will

oguations

x=asin2<rY
y=Dsin trY

vibratc along rx ' (Fig' 2' I I ).
Y

c
? ,\I

:__-_._,c
F------k

'.*"
9.:ry

F

I

/t'l
2r6

6,
Y

lr5 I
Cl

/
q40

Flg.2.l1.

Similarly, if the particle O is subjected to the SHM along the f-axis only,

the partiile will vibrate alongyy'.

When the particle O is subjected to the two"SHMs simultaneously, the

'resuttant vibration of O will be atong a curve ABCDAEFGA which represents

the figure of eight. At zero-zero position the partlcle is at the mean position A.

After equal inrervals of time the positions Ii, C, O etc. aie obtained in the same

order from the two circles of reference (Fig. 2'l l)' The angular frequency of
the resultant vibration is to.

x 3r7



Piee, Forced eBd
Resonant Vlbratlons

g.t ftcG Vlbrtdom
n4in the bob of a siqrple pendulum (in vacuum) is displaced from its mean

positioo rindtteft, it ciccutes simfte harmonic motion'. Tlie time period of
osqi[dion dcecnds onty on.the length bf the pcndulum and the acceleration

&tc to g.avity.at fhe place. The pendulum will coritinue to oscitlate with the

sanc dgcpCfiod and amplitude for any length of time. In such cases therc is no

ims of enprgy by friction or otlrcrwise. In all similar cases, the vibrations yill
be undamp{ fr,cc vibraticins. The amplilude of swing remains constant.

.t'_,
32. Undrmped Yibrations

Fo,r a simpte harmonicatly vibrating pasticle, the kinetic energy for displace-

mentr, iir'frvcn by
,'' :. ,;'',-,2

At the same inshnt" the potential energy of the particl e is I Kf where K is

rhe restoring force per unit displacement..

Thc total encrgy at any instant,: =i^lf\"+*
For an undampcd harmqnic oscillator, this total energy remains constant.

.'. t =*r\\.*Kl=constant

Differentialing gguation (t) with tcspcct to time,

t1*Kv=om' 
di 

T:' -v

#.(#),=o
Equation (3) is similar to the equation

\ *,,] v=s
4,

Here *'=ff'l. \)
The solution for equatioit (4) is

-/=csin(ror-ir). r _ '1

r=o,inl{#,-"1
The fniquency of oscillatioli is

n=*=*rF
Thus, in the case of undamped free vibrations' ihe differential equation is

4.(r) r=o ... (s)
dP l* l"

This is only an ideal case. Int thJfirst chapter, for the motion of a pendulum,

spring, LC circuit erc., it has been assumcd that the vibrations are free '

undamped.

!3. Damped Vibrations

LCR circuii) is proportional to the vetocity of the pqr.ticle at that instant. [rt

ff *rn"dr.ssipative force due to friction etc qi

This term is to be introduced in equation (2).

:'
FORCED AND RESONAM VIBRATIONS l2l

. . .(2)

. . .(3)

. . .(4)

CHAPTER 3

t

I In actual oractice, when the pendulum vibrates in air medium, thcl€ are
*ti.,ioirt 

forcps and consequently energy is dissipated in each Vibration. The

anirolitude of swing decreases continuously with time and finally thi oscilla-

ffi; ;t;. affi vibrations are called-free dsmPcd vibrationi' fr: {*
;p&;;;/;;; as heat iither within rho-svstem itseif or'in the

trunounaing 
-*"aiu*.ft 

" 
dissipative fgrce due to friction erc- (resistance in

, f}*+f.ore, the differential equation in the case of Free-daryrd vibratirins is,

^tj* rr*rrf-=o . .'. (6)

. . .(l)
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FORCED AND RESOXANT VIBRATIONS

'r #.ff)*.[#),='
This equation is similar to a general differential equation,

The solution of this equation is '

, y = ae-bt sin (rot - a)

The generai solution ofequation (7) is also given by

WAVES ANDOSCILLATIONS

. . .(8)

...(e)

Here

,3.4. Dqpped SIry-I io sn Electrical Ctrcuit

In thc case of an elecrical ciicuit, the force equation is reptaced by the

voltage equation. The circuit consists a condenser C inductance z and rcs\s-

tancg R (Fig. 3.1).

. When thecond6nser Cis charged
by pressing the morse key, it gets

dischargpd ttnurgh an inducun,cp L
and resistapcc f, when the tey is
rcleascd (Frg. 3.1).

.Suppose, durirlg dischargc,,at
any tnetant, the charge on lhc con,
denscr = Q, cttrrtnt flowing = f and

y = A. e? b +'{iq6 t + n oF o -..[7 -S t

b=! nd P=L''Zm m

a="[P -f;
^lx tor= y;- 4^,

n=*-*^tTF

Adding (3) and (4)'

Subtraciing (4) from (3)'

' ...(z)

. . .(3)

.,. (4).

.. .(s)

...(6)In this.casc, f+!i-u.ff=a

n (2)' 'l
Differentiatingequaion 

(2)' 
,---- -* eA+r[Fn) t

dQ 
= A (4 *,1P -F7 e'' d' ' 

3-' t'u-{uaaF) '+B(4=ff:P) e(-'-'-

t=0, ff=o
-b-'["ff-P1=oA(-b+'^frt -F1+n(

-b (A + 4 +"{FIF (A -.r1 = o '

-bQo+'{F:F O-B)=o
bQoo_s=ffi
( b-)2A=eo[.m,1 .

o=q\1#)

zn=oof #)
u=ff[,-#)

BuL ,=#*u#=#

Flg.3.l: .
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In this'case, thc discharge is oscillatory as represenred by the curve c (Fig.

3,2). lhis ,itischage is of simple harmonic type and the naturar frgquency of the

,lWhen R=O,f=h+E ...(t0;

Rcsults. (t) wtren tr "t,the discharge is non-oscillarory and dead beat.

(2) When P =t,rhe discharge is 'aperiodh' and crirically damped.

*'.t, the di.scharge is oscillatory "ir,* irarural frequency(3) When

of the circuir.

-l
J-hfi

.., l
J-27t

Exemplc 3.1. A condenser of cqacity t uF,
and a resbtancc of 800 ohms are joined in se:ries.

HereZ=l jrF=t0-6F, R=E00 ohms, L=0.?henry.
Pz = 1800)2 = 6400(X) =6.4 x ld
4!=4xo:2=8xrd
c 10"

As r?2 .=$ ,thecircuit is oscillatory.'

_- Exrmpfc 32 ln an oscillatory circuir, L=0-2 henry, f,= 0.0012 1tF.
wlw is the maximum value of resistancefor the circuir io it\*scillaiory?

Here, L4.ztrenry, C=0.0Ot2pF= 12x l(FtoF

p
4L2

I R2'

LC_ 48.

WAVES ANDOSCI-LATIONS

...(8)

an inductance of0.2 henry
Is the circuit oscillatory?

. . . (t)

AND RESONANT VIBRATIONS

fi= affi =2's82x loa ohms'

, the circuit is oscillatorY

127

Amaxirnumresistanceorn=.3:11-J^9.1.:1T.:1-1,T":,fflf:"1,i:,ffi "|A maxirnum resrstanceor ra 

Jfi"tyjrJt it'i al"hutg' to be oscillatory R
that the discharge rema 

-a
U" t"r. ttt"n Z'gAZ x ld ohnts'

ofa condenser through the
lfxampte 3,3. Find whether the disclwrge

i - 

, =i,t vF, L= 10 millihenrY' R = 200 ohms '

4LR.=v

^4LR'aV

If the circuit is oscillatory' calculate itslreeynlt't"';;" 
7=o , x to{ F, L= lo x lo{ H' R=2oo ohms

''"-'- 'n'=izool'=4moo=4xld 
-'

4L -4x 
l0x l0- 3 

=4x 105
T- o'l x lo4

As
:

,-lJ-2nffi ,l
Ztt

' ' JiD'"

3.5. Forced Vibrations

Thetime penod of a body :1":olin9.'t'lple 
ilirmonic motion depends on

the dimensions of the O*'"i'tO its elastic ptoptni"'' The vibrations of such a

body die out with time ilrl tJ#;"il i1"'"t'*v If some external periodic

rorceisconstantrv"po?tE:H*;"#;--i'..*:*n:mfiffi ;1?'::;
.ffi i?;'""":l'Jiil']-f#iht.X"ffi'ild;;'r,t*bodyareca,edforced
.vibrafions.

'I.nitially, the amplitude of the swing increases' then decreases'with time'

becomes minimum;H;;;];;i;i rt'i:;iiibe repeated ir the externar

[l-Ji"r"^,..':::di:if*lltri,"*'};,il:ffi ;'l'i:li"T$i,Hilil
finallY be forced to vr

The frcquenc, "r,n" 
I"rJiriui"ii." r, oiroi"niiro* the nitural frequencv of

vibrarion of tn" UoOi.'"ri;"';"*O,Uude of ,..t.-'iot 
"O 

vibration of the body

, depends on the differt]n.:[r;:#ffi"*r"i-r."qr""cv 
alrd rhe frequencvof

4L
c



*Ti:ffi,frT:#e 
amprirude wilt be large if difrerence iri frequencies is

For fiorced vibrations, equadon (61art. 3.3 is rnodified in rhe form,
dzy

m'--'--ff+ ry.+u # =F"irpt

WAVESANDOSCILLATIONS

.. .(l)

. ..(3)

..(4t

. (s)

dt

)=a.sin (pt-a)
dy

From equation (g)

cosC=g-
lAz + 82

Dividing equarion (6) by.cos o

-mp2a+ Ka+paptand._ F _n' cosc
aKK-mp2)+ ttptanrrl=*

T:::: 
.: angular frequency of rhe eppried periodic force.rhe particutar sorution 

lf 
eouation ( r, ;;;;;; ffi vibrations is

Substituting these values in equation (l)
- mp2 asin (pr - a) + Kasin (pl - d) + Wpcos ( pr _ o) = Fsin pr- mp2 a [sin pr cos 

" - ::yr;;, "1. rfrir; ),cos cr _ cospr sin oJ+ tt ap [cos_p, cos c + sin pr si, a] _ f sin p, = O-* 
"l 

.

i= op cos (pr_ a)

d2v

i=-op'sin(pr- a)=-p2y

- mp2a cos o + ffa cos a + Wsin c _ F= 0.When cospt= l; sinpl = 0, -
:. + mpz acosc - Ka sin o+ pqp cos 0 =oDividing eguation (7) by cos 

" "rO 
,ilii-rrir*

lancr= w -aK-nPz- B

,ina=ffi'

(6)

. . .(7)

:''(8)
:

.'.-(9)

...(10)

But(K-mp2)=8, and W=A

Substituting the values of tan c and Los c
l- _ A21 flF;ar

olB+'b )=---T-

5 
"n.rr, 

,;n(Ll, ,.,r..x= rzr\./
Find the velocity of the osciltating point at

FORCED AND RESONANT V IBRATIONS

Here,

F

Substituting the values of A and I
d= (l l)

)=asin (Pt-s,)
F

sin (pt - a) ...(12)y=

"Applying the boundary condition-s, airother solution is obtained *8." | = 9:
loo"rfonas to frBe vibrations. In the case of free vibratiohs the solution is

y = a e'h sin (crr - o) . . .(13)

The geniral.solution witl include both the particular solutions for free.and

vibrations.

"' Y=de4' sin(<ot- ")* ffi 
sin (Pt-c) "' (14)

Herc b=!'''tl

Examp.te 3.4. The equation for' displacement ol a on a damped

.

is given by

point

I
l

il
l

t 
.=!O 

and't, where T is the time period of the osciliator.

x= 5 e4,2s,rt, 
[rn),

( tAs, 1987)

. . .(i)

...(,,
This equation is similar to the equation

x=a{u siacjat

Comparing (i)art.d(ii)
.fi

,D=i,

2n 2nTimeferiod T=;=ffi=4t
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. (iii)

FOTCED AND RESONAI{T VIBRATIONS

P=

t3l.
t30

Differentiating equation (i) with respect to time l,

velocitY, *='r-0'251" 
ozst tt" 

fr)' er, the amplitude will be infinite if p is also zero. The oscillations will
maximum amplitude and this starc of'vibration of a syslem is callcd

(i) When

= - 0'974 m/s.

-ve sign shows that velocity is in opposite dircction.

or

lt means that, wtlcn lhc forced frequcncy is equal Eo the natural
'of 

vibration of thc body, resonance takes placc. If ftiction is prescnl

amplitude at nesonanse

=L=+ILP lt'lK/n

ce =i..{framplinde at resonan(

In thc crsc of sound, rhe surdy of sharpncss of rasonanoc is of grcat

portance. Slrarpness of rcsonance refcrs to the fall in amplitrdo with changc

ii"q**y on each si&of thc maximum amplinrde.

Thc particular solution fordisplaccmcnt in thc casc of forcod vibrations is'

The vclociry 14y/dtl ie maximum whcn coo (N -o/ is meximum ia thc

pqfant at which the particlc crosses t$e mcrn position.

FY=Wffi6rsin(Pr-c)
i' Diffcrentiating cquation (t) with rcspoct to timc

dy Fpr' i=fficoe(Pr=c)

(*)*

*.*=H-pT+<x-tnila
fircmcan squrc of dbdriving6rce pcrunit masr

[o*P]
-|. z)-e

m 2nr

.(?),*".'*'1;)o
...(l)

...Q)

... (4)

'3.6. Resonance and Sharpness of Resonance

In the case of forced vibrations, the general solution frir the displacement at

any instant is given bY

t- = a e-ht.sin (<or - a) + sin(pt-a)

under the action of the driving force is maximuin when the denominator is

minirnurfi. It is possible it X - inpz ='O or K = mp2

Fp
=: . ..(3)

Kinaic cnergy of thc vibrating porticle at thc itrstmt of crooing thc mcan

ririon is riwr bv

I
...(,
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'",
Dividing equation (4)by 

2 mwe Eet kinetic energy per,unitforce whibh is

called the response [. . . !.

. r= i^ff'pww
^2pzR=-pT +tx-*Ff

.. .(6)

The natural frequbngy of the system in the absence of damping is

When

the natural frequency coincides with the forced frequency, and the value of R
will be,maximum. Fromequation (6) .

. .. (7)

TREE FORCED AND RESONANT VIBRATIONS

P
(+,

rig.3.t.
(ir) When the frictional forces are absent, i.e.,y = 0, f is infinite and the

rapidly. Thus, the results obtained with a sonomiter are accurate.
I "sr l

3.7. Phase of Resonance

Considering the phasc lead of the forced vibrations with rctbrcnce re the
driving force, in equation (8) of Art. 3.5,

'sharpness of resonance is maximum.

. (rrr) The sharpness of resonaJiC,g decreases with increase in the value of p.
' (ir) The sharpness of resonarrce dies rapidly even for a very small change

in the value bt p/afrom I, in the caso whgre p is minimum.

In thg case of the resonance tube, the damping force is largd and the'graph
;'i will be similar to the curve A in Fig. f;f. fn" ."ionrn"" p"oirt. over a wide
' range and it is difficult lo exactly locate the position of maximum sharpness of

resonance. Hence the results obtained with the regonance tube apparatus are not' very accurate. . . '' -

ln the case of the sonometer wire, the damping foi&rs ar" small.and the
graph witl.be similar to curve C in.Fig. 3.3. In this case the sharpness of
resonance is maximunt"'ln a very narrow region. Even a slight variation in
length or tension reduces the sharpngss considerably. The vibiations die out

r33

.F,Til

The response

R =-----t--_--=

R=#=#=ff\
m2,

8"i

<te-

'lanct=' W'
K*mp'

#.ff-o'

Therefore, the term (x - o')irequation (6) represents the exrent to which the

[')
natural frequency of the system deviates from the forced frequency.

K1
-=D'm

It means that the response R is inversely proportional to the'frictional lbrce.

In the adsencgof friction, the response is maximum-'

The term E - *\^equation (6), refers to,mistuning. The lmger is

[rn')
its

value, the greater is the system away from resonance.

The graph between p/<o along the X-axis and the response R along the

I/-axis is shown in Fig. 3.3. :

(i) When p/ol is equal to I the nesponse is maximum. For curve A, p is large

and for curve C, p is less. The response decreases for values ofplto greater than

l, or less than l.
,.i,1::1,
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17. Diicuss rhc phcnomenon of sharpnass of resonance and show how it
dcpcnds on thc damping factr. (Kanpur,1975)

1& What ac ftEo, damp€d irnd forced vibrations? Give the theory of
forced vibrations and discuss the condition of rcsonance.

' IDelhi(Sub.),19761

19. What are ttampcd vibrations? Obrai! an expression for the displace-

mcnt in thc cab of a dampcd mcillatory mbtion. Discuss the effect of
durping on tb nstural frequerry. IDelhi (Sub;) Supp., 19761

?I). Wht is a fqcd vibration? Discuss mathematically, thc vibration of a

aystem cf,ccuting damped simple harmonic motion when subjected to

ancxtcnralperiodic force. what issharpness of.r€sona{rc$e 
ki, tg76)

21. Dcfine quality factor and bandwidth of the sharpness of nesonance.

Obtain quality factor for a driven harmonr" tt"rrr^Y;i;ff;fr3r*,

21 Explain, in brief, (0 free oscillations, (i0 forced oscillation and (rir)

phcnomenaof resonance. @laSaEpur,l,990)
a. Wnat Oo you understand by dam@ vibrations? Obtain an expression

for displacement as a function of time for a damped oscillator. What is

the'efrect of damping on the natural frequency of the oscilla,g-t? 
- -(Dcthi,l99I)

24. Discuss the phonomenon of sharpness of rcsonance and shol how it
deperrds on the dunping factor? (Dchi, 1992)

25" (a) Derive 0rc differential equation of dam@ oscillatory motion
' and give iti ggneral sotutioq.

(D) \f,hat type of motion do you get when the damping is small?
' (Dcthi,'1991)

CHAPTER 4

Wave Motlon

4.1, V[ave.Motion
Wave motion is a form of disturbance which urvels through thc nodium duc to
the repeated periodic motion of the partiglesof the mcdium about thcirmcan
positions, the disturbance being handed over from onc particlc to thc ncxu
When a stone is drop@ into a pond containing w8Er, wavcs arc png&ood at
the point where the stone strikes the watcr in thc pond. Thc wavcs Eavel
outward, the particles of water vibrate only up and down abof thcir mcan
positions. Water particles do not travel along with fu wavo. Similarly ufron a
tuning fork is s€t into vibratibn, it prqduccs wavcs in air. Thc wavc trrvels tom
one particle to the next but the partieles of aii vibrefc abql thcir mcan
positions.

It is essenfial'to understand the concept'of wavc rlbtion in tho snrdy of
various branches in Physic3. \Yavc motion, in gcncral, rcfccs o tbc ransfcr of
energy from one point to another point of the modium. Traosfcrcocc of vaious
fgrrnJ of energy iike sound, heat, tight, X-oyq trays, radio-wavcc-ctc. hI6
place in the form of wave motion. For thc transfcrcocc of'e'nergy ttru4[ r
medium, the medium must possess ttre propcrtics of clasticity, in tia od
ne gli giblc frictiorul re s istance.

4.2. Whst kopagatcs ln Wave M&n?
Bcfore sMying the ctraractcristics-of tb difrcrent fprms of wavo modoo,

it is essential !o clirarly understan&wftat is prupagaed il a wan nntbr'l Tb
answer to this question is that tlrc physical coodition due to e disurbstrcc
generated at some point in thc medium is propagatcd to ofter poinu in 6o
medium. In all the wayes, the panicles of thc redirmr vibratc aboil thcir mn
positions. Hence, in'the casc of wave motion, it is not matlcr th* is ptopogrtcd
but it is only sute of motion oJ tlre mattcr that is p,opagaod. It is a fum of
dynaotic cotrdition that is propagatcd frrom onc point to thc othcr point in thc
medium.

I
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According to the laws of Physics, any dynamic condition
momentum and. energy. To conclude, it may be said that in
nomentum atd energy are transferred or propagated. It is

propagation of matter as a whole.
t

43. Characteristics of Wave Motion

l. Wave motion is a disturbance produced in the medium by the repeated

periodic motion of the particles of the medium.

2. Only the wave travets forward whereas the particles of the medium

vibrate about their mean positiorts,

3. There is a regular phase change between the various particles of the

medium. The particle ahead starts vibrating a little later than a particle just
preceding it.

4. The velocity of the wave is different from the velocity with which.the
particles of the medium are vibrating about their mean posilions. The wave

travels *ith a uniform velocity whereas the velocity of the particles is different
at different positions. It is maximum at the mean position and zero at the

extreme position of the particles.

(fTransverseand_(,,I*IdIg9i14-',
@aves and'light waves are transverse

;.::1.,*,erse wa'e M"tt ^\/ 

' 
'

In this tipe of wave. motion. $" p"nt.t"t 
"f 

tl" *"0
angles to the direction of propagatibfi'6-flle wgtgr, : -

To understand the propagltion of transverse wavcs in a mediunt consider

nine particles of the medium anii the circle of reference (F,g. a.l). The particles

are vibrating about their mearl positions up and down and the wave is travelling
from left to right. The disturhance takes 7lE seconds to travel from one particle to
the next.

(l ) At r = 0, all the particles are at their mean position.

(2) After ?711 seconds, particle I trhvels a certain rJistance upward and the

disturbance reaches particle 2.

(3) After 2?8 seconds, particle I has reached its extreme position and the

disturbance has reached particle 3.

(4) After 3IE seconds, particle l has completed 3/8 of its vibration and the

disturbance has reached particle 4. The positions ofpartictes 2 and 3 are also
show4 in Fig.4.1.

(5) In this way after 772 seconds, particle I has come back to its mean
position and the particles 2, 3 and 4 are at the positions shown in the diagram.

l,f t
WAVEMOTION

is related to
wave motion

not a case of

The disturbance has reached particle 5' '

In ttris way the pr$ess iontinues and the positions of the particles after

5T/8, 6T/8,7T/8 andT wonds are shown in the diagram'

aI 8e
0

T il8

2Tr 8

3T.r 8 -
LTI

5T'8

6Tr8

7T t8

8T'

Fig.4,r.

Afrer r seponds, the partictes t; s dno 9 are at iheir mean positions. Ttre

wave has reached oarticte 9. Panicles I and 9 are in the same phase' Ttp wave

;;;;;;il-, aii*." ueiween particles t and 9 in rhe tirne in which the

padcle I has completed one vibration' 1 :

Tfre top point on the waw at the maximum distance fromthe mean position

ir .uir.i-I[;;;;iil thc point ai the rinaximum distance below the mean

position is calied trough. Thus. in a transverse wave, crcsts *j 
-qoogt'" 

q"
atternately forme.d., Ttre contour of the displaced partieles of.the medium

6;;;# tte ,ari. [n the caserof transverse (or tongitudinal) progrusive

waves, this contour coitinuously changes position iil space and the wave s€elhs

to advance in the direction of pmpagation'

/
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{s. r.oryitudhql wrvr *oo*1-
!n this tyrye of wavc motiol, particles of the mcdium vibrate 

"Iog1!eorrEcuon or propagauo4=or ute wave.

@csofthc medium and tlr circleof reference (Fig.4.2).

?rt
tlt
?lt
.Tt a

Str a

CT'

?T 
'.

CT'

The wave travels frrom left,ro ffiAa * particlcs vibrate about their
mean positions. After 778 soconds, thd particte I goes to the right and com-
pletcs l/8 of its. vibration. The disturbErce rpaches the particle 2. After Tl4
scconds the prticlc I hae rtached its extrorne right position lrid completes l/4
of its vibration and the $article 2 cornpletcs UB b,f its vibration. The disrurbance
r€ebas ttA particle 3, The proctss continues.

Aftcr one complete dmc period, the positions of th various particles is as
shown in thc diagram; Thc wave has fcached particle 9. tlere I and 9 are again
in thc samc phasc. Hcrc particles l, 5 and 9 are at thcir mean positions. The
putictes I and 3 ac closc o thc partich 2. This is thc position of condensarion.
Similarly particlcs 9 and 8 are closc to thc particle 7. This is also the posirion of
coodcnsation ccorpession. On theothcrhan4 prticles 4 and 6 are far away
from tbe particle 5. This is the position of rsefaction. Hence in a tongitudinal
wrvc motion, condensatiggapd rarefactions are altcrnately formed.

49D"tufr"ry*/
/Wrvdcqrt" It is the distanci travelled by rhe ruve in the time in which

thc particlc of thc mediurr compbtcs one vibration. tt is also defined as the
dislaDec bctwcCn two nearGst particles. in thc same phase

WAVEMOTIOI{

The distance AA (Fig. 4.3) is equal to the w.avelpngth L
o

rE 
'3'-:.fra1"*.It is the numberof vibrations madc by aparticleinonc scond.

*i;W^It is thc maximum disptrcenrcnt of ttre paticlc ftour its mcan

position of rest. In the diagram CD is the amplitude.
' 
_r.rtnc pcAA" It is thc timc talcen by a particlc to gompletc onc vibration.

Suppose frequcrc/ = lr
iili" t"ku, to complete a vibrations =.l sccond.

Time taken to complete I vibration:* *otU. * 
,

From the definition of time period, time takin to coinpletc onc vibration is

the time period (f )

T=!- or nT=l' '

,l
Frcquency x Timo pcriod = I

t43

vibration It is thc to and fro _ryrotion 
of a particlo ft,o} ory exbeme

positidn to the other and back again. !t is also eqt4 !o the motion of a particle
'fronr 

the mean position to one Gxtremc position,.thcn to the ottrcr extreme

position and frnally back to dre mean position.

,/-Pfu; It is dcfined'bs the ratio of the displacement of ttre'VibratingtBrrti"l" 
at any instant to ttn arrpliUde of ttrc vibrating perticlc or it ir defined

as thc fractionof the time inten al thdhas olapscd sirrcc tfrc particlc ctosled the

mean position of rpst in rhe positive dircction or it is aho cqual O thc angle swept

by thcradius vuta sinoe the viboting perticle last c Gsd its mpan pooitiott of
rcsL

_/--=--
arlr,GlaaonLtwecn Frequerlcy and uraveten'lth

V€loci\qf of the ryave is the distance travelled by the wave in one second.

vcrocity=ffi
Wavelengfh (I) is the distance travclled by the wave in one tine period (r).

" verocity=m =+ 
_
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But, frequency x time Period = I; nxT=l

n'

t.- u=nlu Z-./
/ Example '4.1. I! rhe lrequercy of a nning fork is 4A0 and the velociry oI
sound in air is 32A rrrltrosts, fiil how tar souad tavels, while the fo* com'
pletes 30 tibrutions. :

Here; n,q400; v=n2}metreslsecond,)u"=? 1' ":t '

u=n\t

^=*=#= 
o'8 metre

.'. Distdnce travelled by the wavehhen thqfork completes

T=L
n

'I7r
o=7=1

I vibration

= 0'8 metre

Distance travelled.by the wave uhe.n 31rc fork completes 30 vibrations

= 0'8 x 30 = 24 metres.;f
./ 4,5. Properties of Longltudinal Progressive \Yaves

I. The particles:bf rte, mCdium vibrate simple harmonicall! along the

direction of propagation of the wave-

. 2. AII the particles have rhe sarne amptitude, frequency and time pe5i<ld.

3. There is a gradual phase difference between the succelsive particles;

4. All rhe particles vibrating in phay will be at a distance equal to nL. Here
'n =1,2,3 etc. It means the minimum distance between two particleS vibfating

in phase is equal to the wavelength.

5. The velocity blthe particle i$ maximum at their nTean position and it is

zero al their extreme Positions.

6. When the pa:rticle flloves in lhe same directioJr as $e propagation.of the

wave, it is in a region of compression.

?. when the'particle moves in a direction opposite to the direction of
propagation of the wave, it is itr a region of rarefaction i,

8. When the particle is at the mean position, it is a region.of maximum

compression or rarefaction.
i. Wt"n the particle is at the exlrerhe position, the medium around the

particles has its nonnal density, with cOmpression on one side and rarefaction

on the other.

WAVEMOTION

Fig"l'4'
i(b) Ripple Tank

The formation of 'transrsrse waves on the surface of water cah.be
demonstrated in the laboratory with the help of rippte tank apparatus.

The ripple tank apparatus consists:of a shatlow rectangularrdish with a glass
bottom. The edges of the dish are sloping outwards so ,rs to avoid interference

t45

'' 10. Pue.to the repeated periodic motion of the particles, comprcssions and

rarefaqiions are produced continuously. These campressions and rarefactions
travel forward atong the wave and transfer en€rgy in the direaion of propaga-

tion of the wave.

4.9. Demonstration of Ttanwerse Waves

(a) r#ave.{pParatus i
The formatioil of transverse waves can be demonstrated in tfre laboratory

with the help of the wave motion apparatus. Ttre apparatus consists of a vertical
rectalgglar frame fixed on a horizontal base (Ftg. a. ).'The' axle'passes
escentrically through a number of circular discs with grooved edge-s. The
circular discs are equidistant. Vertical rods carrying spherical batls at their
upperends rest on the circumference of theii, espective discs. When the axle is
rotated, the rods are disptaced vertically through different distances.'It is
adjusted that there is a gradual phase difference between the successive rods.
Each ball will cxecute simple harmonic motion and will complete one vibration
in oni rotation of the discs. When the'axle is continuousty rqated with a
uniform speed, the balls show a wave patlern and the tran$verse r,tiave appears

to progress in the forward direction with the formation ol allernate crests and

troughs. It is observed that the balls mor'c in the vertical direction and the wave

advances in the horizontal diiection. Therefore, lransverse waves are produced.

ir
il
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.between the direct and the reflected waves. An electrically maintained tuning

i"* t 
""f 

ii a fine sqyle fixed to one of is Prongs is. adjulSd *. q"t the tin 9f
ii" rryf 

".iritaips 
ip i"rcr ft" fipld of view is illuminated from below Yiq t t

tretp oi a strong source of light S and a condensing lens syStem C (FiS. a.r.
The tuning fork is set into vibration. The style oscillates vertically up and

down and transverse waves arc produccd on ttle surface of,water. These waves

;;i;"; at the tip of the stvle ina ruuq radilflv gutyardst.lhe iT19" "t*
*"i*-."rf"." is oUtaineOon the screen by reflection from the mirror M'The

wave pattern is obscrvcd on the screen'

If a stroboscope is used so that oe !i{r is illuminatcd inrcrmitantty with

tt c J." fl"qo"ncy 
"r 

ttrat of the tuning fork, a stationary paftern is obtained'on

the screen.

' Usini the ripple tank app4ratus, ihterference phenomenon can be

a"rontiitt"O n*ing two 'styiel to the same prcrg of the tuning fork'

---_+--J

I
,

I

Ix,
i lli rror
I

I
I

'Flg'{S'

In this case, amplirudc and fiequency of vibrations produced by the two styles

*iff L ,fr" tu,,e. fhu intttf"ttn"" pattern can be observed on the screen'

Ifinsteadofastyle,athinedgcdbladcisused,planeprogressivetransverse
waves are produced on the surface of waler'

WAVEMOTION
r I 'i 'r \

.4.10. Demonslration of Longitudinal Waves

,,r ,.The fonrtation of longitud.inalwar&s can bodemonstrated wi6 thg help of
a spring. One end of the spring is fixed to a handle H and the other end is freep

A small push is given to the handle. The.first three turns arc comprcssed, the

rest of the spring is in the relaxed position (Fig. a.6). When the handle is

brought back to its original position, thecOmpression travels forward and there

is rarefaction between the handle and the'compression. If the handle is kept

lixed at thc initial position it is seen that with time, the compression and

rarefaction travel forward as shown in Fig.4.6. This demonstrates the fOrma-

tion of longitudinal waves in which any particle on the spring vibrates simple

harmonicalty atong the Cirection of propagation of the wave'

If thc handle is vibrating continuously, continuous comprcssions and

rarefactions are produced altcrnately all along the spring.

t =0

l: t: t

t:2

tr3

t=4

.l
t=5

i fl&4j6.

{.11. Equation of a Simple Harmonic Vfave' 
Consiaer a particle O in a medium. Let the displacement at any instant of

ilme be given by
y=asinor ...(l)

'Consider anothcr particle d at a distanco:r fronr thq particlc O to its right.
Hc.re it is assumed that the wave is travelling with a'velocity o ftom lcft to right
(g- from particle 0 towards A. The displacement at A is given by
1r: v=csin(or-o) ..,(2)

11
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the path differerrcc'is r.' ' iil

vrAvEsANDOSCrriiioNS

..-(3)

...(4)

...(l)

:..(2)

...(3)

...(4)

where c: is tlrc phase aifLiarice uetwcen the particbs d arid a. For a phase

di&rtnce of 2ti the pathdifference is*,. $qppose for a phce differerrce of o,

'd 2l
-=--,XL

'2tu', g=__

2tt 21wAlso ,=;=T
$ubstituting the values of a and <o in cquation (2),

. (zm 2nr'l
t,=aStnl:---T- I. lL AI\)

.2r
)=astnT \u-x)

Equation (3) represents the equation for a simple harmonic wave.

Similarly for a partiCle at'a distance x.in the negative dinection (r'.?. to the

leftof O), the equation for displacement is,
.i2tt

}. q'a stn;- (tr+,r,

4.12. Differential Equation qf Wave Motion

The general equatiqin of lpirrple hamronid wave is,
-l '2n).=aslnf (ut-x) 

:

Differentiating oquation (l) wirh respect to time'

dY 2rau 2n ,--
- = 1- COST lUl-x)' dt iI -f- I '--

Differendatiirg equatioh 12) with respect to time,

&Y a#at] . 2n,-.-
fr=-T sin f (at-x)

To find the valueof.compr"rrjon, Oiff.rentiate equation (l) with r€sp€ct tor
I

*=-T "o'f @t-r)

To find the.rate of clnoge of comprcssion with respect to distance' dif-
&rentiate oquation (4) with reopect,tga' 

#'=-#,in f @t-x) ...(s)

trv^vEMTloN

From equations (2) and (4) 
h:=-o a.dl dx

From equations (3) and (5)

#=i#,

149

.. . (6)

...(l)

. 

,..(2)

. . .(3)

. .. (4)

Equarion (7) rep'resents the differenlial equation of wave motion'

The general differential equation of wavemotion can bc written as

#=*# ..'(8)

Here K=8
' or o='{F

. thus, knowing the value o{ f, $re value of the wave velocity can be

calculated.

4.13. Particlglelocity and Warrc Velocity

The equation for a'simple harmonic wave is giwn by

y=:o sin ff or'rl
Hete a is the velocity of tlre waVe and y is the displacement of the particle'

The vtilocity of the particle, U = dy/dt:
.1. Diff"r"r,tiating equation (l) with respet't to timc t,

u=*=ry"orf @t-x)

; The maximum value of the particle velocity is ;

2ttatt
vmrl _ 

I

.'. [Maximum Particle Velocityl =ff NV^'"Velocity]

To lind the particle acceleralion, differentiate equation (2) with respect lo tirne

t=#i=-o*n sinf tur-')

t=-#["'"Tt,'-dJ

,=-l#),
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Obtain an expression for the velocity of sound in a gas discussing in
detail Newton's formula and Laplace's correction. What is the effect
of temperature variation on the velocity of sound in a gas.

(Delhi,1976)
Obtain an expression for the velccity of sound in air. How does the
velocity depend on humidity, temperature and pressurc? What are rhe
other factors which influence the velocity of sound?

lDelhi (Suppt.),19761
At what,temperature is the velocity of sound in nitrogen gas is equal
to its velocity in oxygen at 20oC. The atomic weights of oxj,gen and
nitrogen are in the ratio 16:14.

[Hint. 7nz pr =Tr Pzl

(Delhi I97t)
lAns.l6.7'J

Derive an expression fQr the excess pressure at a point in compression
waves in a fluid and hence obtain the velocity of propagation of
waves. (Blagalpur, 1990)
Find an expression for.the veltxity of longitudinal waveJ rhrough a
homogeneous, elastic medium. (Guahati, 1992)

CHAPTER 6

stqtt o"to JIE:;ll** ren c e

6.I. Stationary Waves

WIren two simple harmonic
waves of the sanre
amplitude, frq4uency and
time period travel in op-
posite dircctions in a
straight line, the resultant
wave oblained is called a
statioirary or a standing
wave. The formation of sta-
tionary waves ii due to the
superposition of the two
waves on the particles of
the medigm.

Br

Rc3ultonl
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Flg.6.t.

The formation of stationary
waves can . be ,represented
graphically as follows :

Consider two wave trains A
and I of the same amplitude,
fre4uency and wavelength
travelling in opposite directions.
At ur instant of time t = 0, the
waves aro as shown in Fig. 6.1.
lhq' . resqltant displacement
crrve is a suaight line. AII the
particles of the nredium are at
their mean positions.

FcSullonl

Ftg.6.2.
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. At time t = T/4, the wave A will advance tkough a distance V4 owards

righl, and thc wave 8 will advance through a distance V4 towards left- The

resultant disptacement patterlt is shown in Fig' 6'2'

The Particles t, 3. 5, ald 7
'€ .- are at their extnemc Poaltions

. L .nap*i.t".2,aai6areatA t 7 theiimeanPositions.

At time t=T4'tltr. vrvc"'{
will advance through a dis.
tance l/2 towards right and thc
wave I will advarrce through a

distance M towanls left (with
refercnce to zero time).

The rcsultant disPlacement
pattern is shown in Fig. 6.3.

Rcrultont
t.-r3.567

Flg'6J'

All the particles of the

medium arc at their nrcan

positicns.

At time t = 3T/4, the

wave A will advancc

through a distance '3 V4
towards right and the wave

B will advance through'a
distance 3 V4 towards leli
(with referenie to zero

time).

The resultant disPlace-

ment paltern is shown in
Fig.6.4.:

Resulton

Flg 6.{.

The particles l, 3, 5 and

7 are atiheir extreme positions and 2, 4. 6 are at their mean positions.

At time , = I, the rvave A will advance through a distance l, toward-s right

and the wavc B wilt advance through a distancp l, towards left-(with reference

to z.ero timc). The rcsultant displaccment pattern is shown in Fig' 6'5'

All thc particlcs are at their mcan positions'

Fmm rhe patternsrliscussed above it is clear that the PaJticles of the rrpdium

..,ot * Z, +, i etc. atways remain at their mean positions' The particles.such as I'
'1 

S, Z d.". conrinue to ,ib*t" simple harmonically about their mcan positions with

;ili;ih" amplitude of each wave. trt appears as though the wave-pattern is

ifuri.,nory in spa.e. The resuttant clisptaccmgnt patterns at intervals of time.
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o,I,l,{, r.

Rcaultont
r--

Fig.6.3.

are shown in Fig. 6.6.

. -tf
L

t :0r,1f ,r I
r-?

4

Fig.6.6.

The positions of ihe particl es 2, 4,6 etc. which always remain at their mean
arc called nodes. Node is a position of zero displacement and maxi-

strain.

The posirions of the panicles I , 3, 5, 7 etc. which vibrate simple harmonical-
".ryith maximum amplitude (twice the amplitude of cach wave) are called

At thc antinodes, the $trsin iii minimum. Ttre diCtance bctwecn any
consecutivd nodes or antinodes is equal tolrfl, Between a node and an

ilre arnplitude graduetly foicrcascs from zero to maximum.

Properties of Statlonary longitudfnal Waves

ufhe stationary waves are fornied due to the superposition of two iimple
ic longitudinal progressive waves of the sarne amplitude and periodic-

and travelling in opposite directioqs. The important prcperties of these

(l) In these waves, nodes and antinodes arc formed alternately. Nodes are
l.9ositicns whpre the particles are dt their mean positions haviQSmatdmum

Antinodes are the positions where the particlep vibrate with maximuln
tude having minimum strain.

"L3






