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CHAPTER 1

Harmonic Oscillators

1.1. Introduction

In évery day life we come across numerous things that move. These motions
are of two types; viz. (i) the motion in which the body moves about a mean
position i.e. a fixed point and (ii) the motion in which the body moves from one

+ place to the other with respect of time. The first type of motion of 2 body about

a mean position is called oscillatory motion. A moving train, flying aeroplane,
moving ball ¢tc., correspond to the second type of motion. Examples of
oscillatory motion are : an oscillating pendulum, vibrations of a stretched string
movement of water in a cup, vibration of electrons, movement of hghl in alaser
beam etc.

Sometimes both the types of motion are exhibited in the same phenomenon
depending on our pomt of view. The sea waves appear to. move towards the
beach but the water moves up and down about the mean position. When a
stretched rope is displaced, the displacement pulse travels from one endlo the
other but the material of the r6pe vibrates about the méan posmon wnhoul
travelling forward. v

1.2. Simple Harmonic Motion

Let P be a particle moving on the circum-
ference of a circle of radius a with a uniform
velocity v (Fig.1.1). Let @ be the uniform an-
gular velocity of the particle (v=aw).  The
circle along which P moves is called the circle X
of reference. As the particle P moves round - -
the circle continuously with uniform velocity, -
the foot of the perpendicular M, vibrates along -
the diameter YY" If the motion of P is uniform,
then the motion of M is periodic i.e., it takes: -
the same time to vibrate once bétween ‘the
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points Y and Y. Atany insiant the distant of M from the centre O of the circle
is called the displacement If the particle moved from X to P in time ¢, then
ZPOX= LMPO=0=ux.

From the A MPO,
sin O =sin Wt = o

or - OM =y =a sin ot

- OM is called the displacement-of the vibrating particle. 'l'he displacement

of a vibrating particle at any instant can be. defined as its distance from the
_mean position of rest. The maximum dlsplacement of a v:bratmg particle is
. called its amplitude.

The rate of change of dlsplacement is called the velouty of the vibrating
particle.

Velocuy-jv-—+amcosmt : ...(2)
The rate of change of velocity of a vibrating particle is called its acceleration.
KA - Acceleration = Rate of change of velocnty
_d(d
dt | dt
v ) 2 .
=—= = —a* sin ¢
“ar T S
=-wl asinwi=-?y . (®
Position of ‘ An.cclerauon
Angle the vibrating Displacement Velocity & y
ot particle y=asinwt dy ( — =
M . 2 =0 cos ot d’ .
* ‘ —aw’sin @t
o o . © Zero ) +aw Zero
.’25 R ¢ +a Zero : -aw®
n o Zero a0 . Zeo
%’E Y' -a . Zero ‘ +aw?
2 0

Zero . +aw . Zero

The changes in the dlsplaccment, veloc:ty and acceleration of a v1bratmg_’ ’

particle in onc complete vibration are given in the table.

Displacement =y =asinw¢? S (_l),‘
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Oscillatory behaviour. At the extreme ppsitions, when y is maximum,
dy/dt is zero. The acceleration d®/df? is maximum and directed towards the
mean position. This return force induces a negative velocity. When the dis-
placement y is zero, the velocity dy/dt is maximum and is —ve. When the
dxsplacement is neganve maximum, the velocity dy/dt is zero and the accelera-

. tion is maximum in the positive direction. This return force agam induces a

Velocity in the positive direction which becomes positive ‘maximum when the
displacement is zero. The particle overshoots the mean position due to its

. velocity. The process repeats itself penodlcally ‘Thus the system oscillates. In

this process, displacement y, velocity dy/dt and acceleration d%y/ds* con-
tinuously change with respect to time.

- Thus, the velocity of the vibrating parthle is maximum (m the duecuon oy
or OY’) at the mean position of rést and zero at the maximum: positions of
vibration. The acceleration of the vibrating particle is zero 4t the mean position
of rest and maximum at. thc, maximum positions of vibration. The acceleration
is always directed towards ‘the mean position of rest anid is directly proportional
to the displacement of the vibrating particle.’ “This tm of motion where the
acceleration is directed towards a fixed point (the medn posmon of rest) and is.
proportional to the displacément of thc vibrating particle is called snmple

- harmonic motion.
Further,
. 2y

Acceleration _____wz

cceleration i y
=—w?x displacement

Numericall _ Acceletation

umencaly " Displacement

| ©=2%n= , Acceleration
or 2 ~ N\ Displacement
xn , Acceleration
or .« T = N Displacement .
_ o , Displacemeni o
o o T - 2n Acceleration
i : =2n ‘[_

Thus, in general the time period of a particle vibrating simple harmomcally
is given by T'== 2 VK where K is the displacement per unitacceleration.
If the particle P revolves round the c1rcle, n times per second, then the
angular Velocny wis given by -
ann=2E
w=2rn="g

Waves - 2
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T

PN

(  n=g where T is the time period )

‘or E - y=asin2xm= asm21t-§;

:On the o(her hand if the time is counted [(Fig. 1.2 [0)] from lhe mstam P is -
ats ( £SOX= n) then the displacement
y==asin(tw+a)

=q sin (-?Tt—' + a)x

0 ' D)
f&ll

If the time is counted from the mstant Pis at s [an 1.2 (i)}, then
y=asin(wtr= a)

=asin(—m-—a\* S )
) . T } T

Phase of the vibrating particle. (i) The phase of a vibrating particle is
defined as the ratio of the displacement of the vibrating article at any instant to
the amplitude of the virbrating particle (y/a) or (ii) it is also defined as the
. fraction of the time interval that has lapsed since the particle crossed the mean
position of rest in the | posmve direction or (4ii) it is also equal to the angle swept
by the radms vector since the virbrating particle last crossed its mean position
of rest e.g., in the above squations ¥, (@f+ @) or (W¥ ~ a) are called phase

“angles. The initial phase angle when £ =0, is called the epoch Thus o is called
the epoch in the above expressions.

R TR T L ‘ !
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Differential Equation of SBM

For a particle vibrating simple harmonically, tbc gencral equauon o1

dllpllcemenns. ‘
y=asin(wt+a) . ' (D)

Here y is_displacement and a is |he amphludc and a is epoch of the

vibrating particle.
Differentiating equauon (l) with mpect totime -

i

ot
Here dy/dt represents the velocity of the vibrating particle.
Differentiating equaupn (2) with respect to time
}?!'"=-—am’sin (@1+a)

But o ' asin(mt+a)=y
. N dz
L) Py
de

Y 4
o aF
Here & y/df’ represents the acceleration of the particle. Equation 3

represents the differential equation of simple harmonic motion.
It also shows that {n any phenomenon where an equation similar to equa-
tion (3) is obtained, the body executes slmple halmomc motion. The general

soluuon of equation (3) is
y=asin(@t+ a)

Also the time period of a vxbratmg particle can be calculated from

equation (3).
- ~ ‘1/:!’ /d?
Numerically W= —-’;—ﬁ
T aen /_;Ac_:-ge_r_a_ug_n_ :
or ‘ - N Displacement

o paZE w/_Dizv_k:_ce___“”
. or : T—-“w-ZR Accel

14. " Graphical Representaﬁon of SHM

LetPbea pamcle moving on the circumference of acircle of radius a. The
foot of the pelpendlcular vibrates on the diameter YY'

!

=awcos(t+a) : ... Q)

+(02y 0o - (3)
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. . . ]
y=asin®t=asin 21t—1-,

" The displacement graph is a sine curve represented by ABCDE (Fig. 1.3).

Fig. 1.3. Displicement Time Curve.

The motion of the particle M is simple harmonic.
The velocity of a particle moving with simple harmonic motion is

dy +awcos®?
v=—=+a O
dr

The velocit)".;timc graph is shéwn inFig: 14. Itisa cosine curve. -

+awr

——

=]

Velocity

-aw
Fig. 14. Velocaty —Time Cufrve.
"The acceleratxon ofa pamcle movmg with simple harmomc motion is

d’y

——=-—am smo)t

dé

The accelemhon—mne graph |s shown in Fig 15.Itisa negatwe sine curve.

+aw? ]
)
8 :
[ ) ‘
&1 .0 Hii T 3r T
g % 2 45
: N - . :
~aw] h H .
: Timet
oot

Fig.1.5; Acceleration — Time Curve.
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1.5. Average Kinetic Enérgy of a Vibrating Particle

The displacemem'df a vibrating particle is given by
y=asin (% + )
| v=%u=vam'cos(mt+a). |
If m is the mass of the vibrating particle, the kinetic energy at any instant

-—mvz—-m azu)zcos (wi+a).
The average kinetic energy of the particle in one complete vibration

"‘—,‘J ma* @? cos (o)H-a)dt

iy

I [1+ cosZ(a)t+ o)} at

[I: dt+!o cos 2(ox+a) dt}
T . ' '
But '[o cos 2 (wt+a)dt=0

ma® o
AT
ma’ @* _ ma?(4n’ n?)
4 4 -

=n ma2n2

where m is the mass of the vibrating pamcle, aisthe amplitude of vnbratlon and
n is the frequency of vibration. Also, the average kinetic energy of a vnbratmg
pamcle is dlrectly proportional to the squarc of the amphtude

R

47'

Average KE. = ‘T+0

1 ¢6 Total Energy of a Vibrating Parhcle

y= asm(mt+a)

-sin (mt+a)=z

cos((nt+a) ‘Jl—r—- —‘J




o : WAVES AND OSCILLATIONS -
_Na-y
= | |
. ) e —7.
: aw Na® -
Velocity v=amcoson=———-a—y

-(o\l(az-yz)

. The kinetic energy of the pamclc at the mslanl the d:splacemenl isy,

) | ‘._)-;—mv2 - R

gm. o (@ -
Polt,nual energy of lhc vibrating paruclc is the amoint of work done i m

overcoming the force lhrough adistance y.
Acceleration =-w’y

Force - =—rw .
( The —ve sign shows tha: . direction of the actcleration and force are
~ opposite to the dlrccuon of motion of the vnrbraung particle.)

PE '-'rm wly. d\

m(o2 yi.

N o

.2
2 )
=Mo" =
meT

‘Total encrgy of the pamclc at the instant the dnsplaccmcnl isv
=K.E+PE.

== m(:)2 (a -yz) + % mey’ _vz ,

=§...mz.az

1m@x n)a?
=2'matn’

As the average kmelic cnergy of the vibrating particle = n® ma’n’, the average
potential energy = =n? ma’n’, The total cnergy at any instant is a constant.

- Example 1.1.  For a particle vibrating simple harmonic allv, the displace-
ment is 12 cm at the instant the velocity is 5 cm/s and the displacement is 5 cm

at the instant the velocity is 12 cm/\ Calc ulale (i) amplitude, (n ) fu’qucm v

and (iii) time period.
“The ulouly of a p.uuck cxcculmg. g SHM.,

z.vs - (o\‘u -\

<t

HARMONIC OSCILLATORS " 9

In the first case,

-_-(om’ - =

Here v1=Scm/s, y; =12 cm.
C s=oVa-l44 R ()
-In the second case o '

- wm=weVa-y}
Here vz=12cm/s, y2=5cm’ R
12=0Va-25 R @

Dividing (2) by (I) ar;d Squaring‘

144 _ a’-25
25 a?-14
a=13cm

Thc amphtudc is 13 cm.
Subsmulmg the valueof a= 13 cmin equauon (I)

5= (»\/(13)2 144

or =] radian/s

' ‘ ‘o 1
The frequency n = TR hertz

Time period T‘-l"21t seconds .

Example \Qﬁhaw that Jor a particle executing simple harmomc mofion,
its velocity at auy instant is

. %;- = Va?- y?
The dssplacemcnl _ " ‘
y=asin e A oL V...(‘l) '
Thc velocity at any instant is,
dy ‘
ar =qWwcosw!? T : ...(2)
from cquation (1) ‘

»

sinW/s="=-
sinwr="~

cos 7= VI- sin’or
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v , 2
cosWit= Y
1‘- "'2 :
a
ninl
5
ﬂ:am -
dr T

dy 22
or, y —w‘\’a y2

Example 1.3. For a particle ‘vibfating simple harmonically the displace-
ment is 8 cm at the instant the velocity is 6 co/s and the displacement is 6 cm
at the instant the velocity is 8 cm/s. Calculate (i) amplitude, (ii) frequency and
(iii) time period. ‘

The velocity of a particle éxecuting SHM,
dy
v=-‘1—t=m » Aaz-'yz
1In the first case,
n=w\la’-y! |

Here v1=6cm/s, y;= 8cm

.6:&\/8—64 [ET R )

In the second case,
n=wya-)}

Here _vz=,8cm/sy2=6crh o ) ...(2)

s=w\/a2—36

Dividing (2) by (1) and squaring
64 _a’-36
36 a*-64
- a=10cm.
The amplitude of vibration = 10 cm
) Substituting the value of
' a=10cm in equation (1)

6=0 J100—64

® = 1 radian/s

HARMONIC OSCILLATORS . . ' . 1

Frequency n=

Time period 7= -’l; =27 seconds.

; Example 1.4. The motion of a particle in simple harmonic motion is
- given by x = a sin o. If it has a speed u when the displacement is x) and speed
v when the displacement is x5, show that the amplitude of the motion is

1
_[vlez— u2x22]2
= 2

—-u
(Utkal, 1989)
~* Here ' x=a sin @?

u=—-=@\|a=x; ' ' ..l (i)

- and- v= o= a-x; , (i)

Squaring and dividing -
uwt_at-xf

'vv2 a?-x?

.-
uzaz— u2 x% = vzaz—rvzxf

alr u?] =vix} - ulx

-

Example l'..5. Show that for a particle executing SHM, the fnstantaneous

velocity is ® a®- y?and instantaneous acceleration is - o’y.

)
2_.2.272 : . .
a=[32—x—"—"——{2] (i)

For a particle executing SHM,
" y=asin(@i+q) N . )

The instantaneous velocity,
: dy : ‘
v=%=+awlcos((nt+a) - RN )}

From equation (1)

sin (Wr+0o =%v




WAVES AND OSCILLATIONS

veoVal-y? e

The instantaneous acceleration,
— == g’ sm !+ O
Z ( )

==’ [a sin (wr+a)]

=-o'y @

‘ Example L 6. A particle performs .umple harmonic motion g:ven by the
- equation

y =20 sin (wr+ a]

If the time period is 30 seconds and the particle has a displacement of 10
cm at t=0, find (i) epoch ; (ii) the phase angle at t = 5 seconds and (iii) the
phase difference between two positions of the particle 15 seconds apart.

Hére | y=20 sin-((w{a)\
T=30s
2 _2r _m™ .
=T 3%°" T radians/s
(i) At t=0, y=10cm
) s
10=20 sin lsxoﬂx)i‘
or . © sin k=05
or sin a=% radian
i) At r=5s,

Thephascangle ~  =(0¢+0)

’ ' 13
HARMONIC OSCILL&TORS
(i) At t=0.
The phase angle =%
' At - 1=15 |
The phase angle 2= (t+a)
‘ K L3
I ‘('3 15+6 ]
. | S v.
| =g

It K_ .
The phase difference 82 - Gx =6 6" ® radians.

. Example 1.7. A pamcle executes slmple harmoruc motion given by the
equfltiora : . g___ . N
y=12sin TR

Calculate (i) ampluude (ii) frequency. (iii) epoch, (iv) displacemem_ a!’ .
t=1-25s, (v) velocity att = 2 5s and (vi) acceleration at l = 5 S.

LI (D)
' Hcre -—|2sm ( 10 4) \v ' .‘
The displacement equation is : » ®
/ y=asin (@¢+)

Comparing equations gl) and (2)
(i) Amplitude a= 12 units |

:  2m
(i) S 2=
" ) m——L— . | | ) v 3
Frequency n=§-;—‘o—01 herlz ‘ | .
. ‘ . . E_y
(ii) Epoch  @=%
(iv) When - t=125s
. ((2mx125 %
y=12 sin (——-——-——-—-m +2 ]
y=12 sinn/2
o o y=12 uaits
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(v) At t=25s

Velocity = %y_ = qw cos (Ot + a)

dy 2n
7—12x-ﬁ S[ X25+— ]

dy .
N ke 5.552 units.

The —ve sign shows that the velocity is directed towards the mean posi-
tion. o

(vi) At t=5s
o dy
Acceleration = Iz— =- a(a)2 sin{(wzr+ao) .

2 .
r dy 2 PLANR.
77-—12x( 1_0 )sm(mx5+ )

=—048 x?sin| ® +§- )

= 3-35 units. , ,
Example 1.8. A simple harmonic motion is represented by the equation

y_=10sin'(10t——1;-)

where y is measured in metres, t in seconds and the phase angle in radians.

Calculate :

(i} . thefrequency,

(ii) the time period, ,

(iii the maximum displacement, -

(iv) the maximum velocity, o

(v) thé maximum acceleration, and

(vi) displacement, velocity and a_cceleralibn'at time, t=0 and't=] second.
Here . ' y=]05in(101———165) N e (D)
The dlsplacemenl equation is ,

s—asm(wt+a) ...(2)
(i) From (1)and (2) '
=10

But w=27nn

HARMONIC OSCILLATORS 15
27n=10
10
or : -on=o hertz
n =16 hertz.
(ii) Time period, '
' _1_2n
: \ T=2="10
or : ' T=063s
(iii) Maximum displacement,
a=10m
(iv) Velocity, =aw cos (Wt + ) -

Therefore. maximum velocity

dy
o =aw
But .a=10m
and 0= 10
Y ox10= 100 m/s
. )' 2 .
(v). Acceleration, —=-a sin(0f+ a)
, . dg o
Maximum acceleration
: 2 .
‘—i—l = — aw’
dt
ar —d———-— Ox(lO) ——1000m/s
: ‘ 1

— ve sign shows that the acceleration is directed cowar@s the mean posi-
tion.
(vi) From equation (1)
@y At 1=0
| _\'=105in(—%) '
y=-5m

d_): = qu cos (& + o)
dt ‘
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(i7) In one minute, three cycles are completed.
Therefore, work done in one minute
' =3x 057 joules
_ =1-§x joules.

Example 1.11. Show that the mean kinetic and potential energies of
non-dissipative simple harmonic vibrating systems are equal.

For free vibration in the absence of damping, the displacement at any
" instant is given by * ‘ : o

y=asinwt
d_\‘ (O] wi
——=q® cos
dt

. : av ¥
- Kineticenergy = -2'— m (7)1 J

KE.=1m@ o cos’ @)

2
or - KE=tkacostor ‘ | )
Here k=maw? - |
or w=%
m

Here k is the force faer unit displacement
. Potential energy =% k y*
PE. = —zl-'karsin2(nt - (2
Total kinetic energy for one complete cycle

T
' =I %kazcos2 Wt dr
. 0 -

l uz . ‘ '
4kaT , ...(3)

Total potential energy for one complete cycle
T .
= j 1 rasin? w1 dr
0 2
=1 ka®T NG

Hence the mean potential and kinetic energies are equal.

HARMONIC OSCILLATORS _ . 21

Example 1.12. Write down the equation ford wave travelling along the
negative Z direction and having an amplitude 0-01 m, frequency 550 Hz and
speed 330 m/s. How would the equation change if a wave with the same

* parameters was travelling along the positive Z direction. Justify your answer.

[IAS]
Here y=a sin % -2 , -
The wave is travelling in the posi‘tiié”z-dif%cﬁoﬂ
Here a=001m
"v=550Hz
v=330m/s
-v_33
T v 550
A=06m ‘
y=001 sin (O% ){330 -z} ._; o)
The wave is travelling along + z direction
For wave travelling along — z direction
y=001 sin (3—’;) [330r+27) ... (ii)
“Fort= 0,- from equation (i) . '
. 2n R
y=-001 sin [(}6 )z | ... (i)
The wave is iravelling in + z direction
Similasly for =0, from equation (ii)
oo (2; ' : .
y=+0-01 sin [0'6]2 o N (1%)]

. . L . ga .
The wave is travelling along — z direction.

1.8. Qscillatiohs with One Degree of Freedom

A pendulum of a clock, a loaded spring and LC circuit have onc degree of
freedom. In the case of simple: pendulum, the swing depends upon the angular
dispaccment made by the string with the vertical direction. In the case of a loaded
spring, the displacement of the mass, and in the case of LC circuit the charge on the
coadenser plate describes the-nature of the oscillations (Fig. 1.6). These ocillations
toxe place about the mean position. All these systems have one degree of freedom.
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dz)'t :
hali4 W : ‘
e my.+Ayf+By{+Cyff... S (5
dzyz ‘ . :
vy yz+A>2+By +C>2 ... (6)

When the two instants are supenmposed on each other, the rcsuham dlS-
placemefh is y. Here if superposition is true it is to-be proved that y=yity2.

Thc equation for resultant displacement,
&Ly o
F ) (yi+y2)
== @ (yi+yD)+A(y1+32)" + B(y1 + )}
, +Cy+y) ... (D
ddlng equations (5) and (6)

- dy d’yz
dlz dt2 =- o’ ()l+‘2)+A()|+)2)

) +B(_v,,+_v-2 )+C(y,+y4)+... ) (8
- The equa(ibns (7) and (8) are idcntical,on]y if | |

7 (\|+\z) —-——)5— dd":? / R (*))

-wv(}|+)2)—-—wz.)'|—052“,\'2‘ ‘ | '...(10)

AT+ =A (3 +)2)? CLan

B(yi+y)=B(n+»)* ...(12)

Cii+d)=C(n+n) o f..(13)

| Bq;xatmns (9) and €10 ) are u'uc But equauons (1, (12) and (13) are true
only, i :

'Ao.a./so C=0

- When A, B, € ctc. are zero, the- cquauons become linear..Hence superposi-
lm‘prmctple is true 9nly in the case of homogencous lincar equations. Also the
sum of any two solutions is also a solution of the homogencous lincar equation.

© Al hannqmc oscﬂlators given in cquauom (9) and ( IO) obey superposmon
principle.

HARMONIC OSCILLATORS

1.10. Simple Pendulum
A simple pendulum consists of a light string supporting a small sphere and -

25

fixed firmly at its upper end. An ideal simple
pendulum should consist of a heavy particle

A B suspended by means of a weightless, inex-
7 tenisble, flexible string from a rigid support.
: Let a pendulum be displaced from its
' ' mean positioin O and allowed to oscillate
‘ 0 (Fig. 1.7). Suppose at any instant of time ¢, it is
! \ at A. The force acting upon the bob vertically
' downward = Mg. Resolve Mg into two rectan-
! gular components. '
: (1) Force along the string = Mg cos e
' (2) Force perpendicular to the string
A ' ' =Mgsin®.
0 A - Let the tension in the s!rmg be T. The
‘ M ‘ component Mg.cos 0 balances the tension T
g co;e Mgcos®=T
Mg Thus the only force acting on the oscnllat-
ing particle is — Mg sin 6. »
Fig.1.7. . . F=-M_g sin©
(— ve sign shows that the acceleration is directed towards the mean posi-
" tion) '
According to Taylor’s series of expansion
. sin0=9—gs+%;.......
For small angular dlsplacemenls 0, sin6=0
Tangential forcé : --Mge '
- The linear dlsplacement y=10
4 & Ly d2 0
Acceleration -
dr’
Force = MI
dtz
From Newton s second Iaw
d2
Ml—5;=-Mg0
a T e
8 84 S
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This equation is similar to the eqhalion of simple harmoni¢c motion

&£y oo ;
d,2+‘°y =0 - .. Q)
From (1) and (2)
. o
o=
=+/8
*=Vi
Ti il " 28
ime period 1'_;)..

B L
T2 , e ®

{Bob of large size. In the case of a simple. pendulum, if the size of the bob
is large, a correcuon has to be appl:ed In this case

1+(IN
’ -8

2

'Herelf[—’——

y Jreprgscms the equ}valent length of a simple pcridulum.

'L.11. Compound Pendulum

A compound pendulum is a ngld mass capable of oscnllanng ‘about a
horizontal axis passmg through any point of the mass. This point is called the
point of suspension. In Fig. 1.8, G is the centre :
of gravity of the body and S’is the point of

" suspension. ‘At any instant of time, when the
mass has been displaced, the force acting verti- .
cally downwards = Mg. At this position, the
line SG makes an angle 0 with the verticaland
the restoring moment of this force about the
point S = Mg I sin 0. This is the only moment
which produces angular accel¢rauon in the
pendulum.

Let the moment of inestia of the pendulum
abananampmsmgﬂmgh&‘mdperpendkﬂar .
toits length be /. If the angular acceleration at this

: “'M L %’ “wn

-‘ -

kel L 3L 2 T
)
‘

/

Fig. 1.8,

. 27
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— =M, IsmO
s 8

f-ve sxgn shows that the force is dn-ected toward.. lhe mean posmon]
| l 40 =+ Mg 16=0

_ de
. - For small angular displacements, sin 6=0
' | )
5 : 155 +Mgl0= o
o ar 8

L. The moment of inertia of the pendulum about an axis passing through S and

o

4 - perpendicular to its plane = M K* + M.

Here K is the radius of gyrauon about an axis passing through the centre of
gravity of the pendulum. ‘

M(K2+12)-d—2;+Mgle=0

48 'g 8=0 L)
at o .

This equalion is similar to the equauon of simple harmonic motion

+oty=0 . )
dﬂ . o

Here y refers to the angular displacement 6.
Comparing (1) and (2)
. - lg ).
s ( K+ P )
Here @ is the angular frequency

s T.__2£
o ’l‘lmc penqd =

Tetna | KR - ..0)
a g , |
or T=2n4 | (KM+1
' g

Here (xz/; s is called the equivalent length of the simple pendulum.
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A(h -h)+ B(Il +5)

. (12__12)
e
; hm+m h(A-B)
B- 1)
A+B=tf
A-B=1
A+
A= 2
. v 2-g
and B= '2 2

Substituting these values in equation (7)

w_ AR A-d
i 2(1,+12) 2(h - b) | »
8’ o )

o 871+ 8 . -1
' ‘ h +lz h- 12 )

As the values of 1, I, n and 12 are known by experiment, the value of g can
be determined, provided the position of the centre of gravity is ‘accurately

“known.
However, as it is difficult to locate the position of the centre of gravity in a

Kater's pendulum, the time periods t; and r,are ad)usted tobe very nearl y equal ‘

so that in equation (8)

-2
h-h
is negligibly small.
. From equation (8)
‘ . L 81
S
) h+bhk
- Taking h=rn=t l|'+lz=L
S~ 8L
T

P
coh

i

o
¢

t g
&
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sb : o 4mL Lo
&=-—‘7— : : ...(9

Here L is the dlstance between the two knife edges. Equanon (9) is similar

to the equation of a simple pendulum. .

[Note. When the positions of K, K2, M/ M2 and M; are finally. adjusted

o then the time penods about each knife edge must be equal. The positions of M), '
- M> and M; must be the same whlle detenmnmg the time period about.cach

ot

. “”‘:ét :

s

il

. knife edge 1

1.16. Snmple Harmomc Osclllatlons of a Mass between
Two Springs ‘.

Consider two springs S; and Sz each having a length 1 in the free position.
Mass M is placed midway between the two springs on a frictionless surface

“[Fig. 1.12 (i)}. One end of the spring S} is attached to a rigid wall at A and the
‘" other end is attached to the mass M. Similarly one end of the spring Sz is
4 attached to a rigid wall at B and the other end is connccted to the mass M. Here

: AC = BC = L. [Fig.1.12 (ii)]. At C the mass is equally puiled by both the
4 springs and it is the equilibrium position.
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When the mass M is displaced from its ethbﬁum position and left, it

exccutes simple harmonic oscillations. Let at any instant, D be the displaced
position of the mass M.

Here AD=x, and BD=(2L-x)

Let the tension pcrumt dlsplacemem in the eprmg be K. The dxsplacement
of the spring of Sy is (x— /) and it exerts a force = K [x~ [] in the direction DA,

The displacement of thé spring S, is (2L -x-1) and it exerts a force
= K'[2L # x —l ] in the direction DB.

The resultant force on'the mass M
=K[2L-x-1 ] Klx—-1] inthe dlrecuon DB

==2K[x~L}in the direction DB
According to New(on s second law of motion

B
T

Fe M‘{?=-—2K[x L] BN
. Cdx oK '
at - m
R dx 2K P R
dr ’ p +M(x-—L) =0 , i ... (2)
Taking the displacement from the mean posmon
x-L= =y

Differentiating twice,

d*x dz)

dE _ df
Subsmuung lhcse values in equation (2)

£y 2K , ‘

A e
Thls equauon is similar to the equauon of snmple hannomc motion

&y .

i w?y=0 SR '

—atoly= RO

From equations (3) and (4)

nn_epen 2K ) . (5).

s Thus, the mass M executes sxmple hannomc oscnllatnons and the time
4 period is given by equallon (5) Knowmg the values of M and K, the time
& period can be calculated -

l 1. Mass between Two Spnngs Transverse Oscillations

Y

Fig.1.13 (@

Fig. 1.13 ()

Consider two springs each havmg a length ap in the free (relaxed) posmon
. Mass M is placed midway ‘between the two _springs on a frictionless surface
" [(Fig. 1.13 (a)). The length of each spring in the horizontal posmon isa. Itis
assumed that ap is extremely small as comparedtoa.

The mass M is displaced along the Y-axis through a dlsplacement y. Itis
assumed that there is no displacement of the mass along X- or Z -axis.
In the cquilibrium position, the tension in each spring is given by .

ey e T R e

v v . To=K(a-ao) ... (i)
, ~ In the displaced position, each spnng has a length L and tension in each
! ' spring is given by :

T=K|[L-a,] ‘ ... (i)

. This tension acts along the axis of the spring.
The component along the Y-axis contributes the return fome and the
transverse oscillations are set up in the system :
The return force for each spring is Tsin0.
The net force actmg on the mass due to both the springs along —ve y-axis is
givenby - ,,
F=-2Tsin®

-, o L A o _
}' HARMONIC OSCILLATORS , ‘ : »
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Here .. . P 4
| vsme 7

F=-—2K[L—ao](%)

F= ZKy[l—[T]]. oL ()

R G . ‘--?(_j"

Equation (w) does not represent exact SHM.

Slinky Approximation. A shnky is'a helical spring whose rclaxcd length

is extremely small as compare
. quanmy ! ‘ p;‘ d the stréwhed length, In shnky approximation

ao - . - [
(Z] is negligible small.
From cquation (iv) '

ncglecting (%) we get

. : Sk
Time pcnod =1_ b2 3 ‘__.]3 :
: = :

The solulion, of cquation (vi) is
y=Asin (ar+¢) - . “ o (iv)

WAVES AND OSCILLATIONS
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T

% is negligibly sgnall

Also from equatmn (1)

Subsmutmg this value of K in equation (vu)

o " It may be noted that equatnon (ix) has no restriction on the amplwude A.
‘. Even for large amplitude there will be perfect lmeanty of the return force This

holds good only for stinky approximation. .
The frequency is the same for both longitudinal and transverse osglllauons

Wiong 1
W trans Y |
ap2
For lengitudina‘l oscillatidns

\
2
®long =[1M’£] N0

" For transverse oscillations

*

Ohong _ __1 . i)

@ trans 1
(-2

, 27T, o _ ‘ »
m—[Ma] S ..,(x)_
_1[2n) - .
_v——z-i[Ma] . ’...(xt)
o 1 _ Ma D
Txmcpcnod T-v =2n [27‘0] ! » .. (xid)

% Example. 1.18 Show that fora mass cannected between two identical springs, .

. 1 ) :
3 '1.._(2“’12)],]2 | PN ()}
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L18. Simple Harmonic Oscillations of a Loaded Spring

Consider a spring S whose upper end is fixed to a rigid support and the lower
end is attached to a mass M (Fig.1.14). In the equilibrium position, the mass is
at A. When the mass is displaced downwards and left, it oscillates simple
harmonically in the vertical direction. D .
Suppose at any instant the mass is at B. The distance AB=y. Let the tension
per unit displacement of the spring be X. ' i
Force exerted by the spring=Ky
According to Newton’s second law

d’y '
F =M —= ==
orce =M — -Ky

[~ ve sign shows that the force is directed up- LA
wards] i e

M‘%Z’Ty +Ky=0 ‘ i ,
. + :

| %+[§Jy=o TR

This eqﬁation is similar to the equation of simple o
harmonic motion, ' c !
. dP |

Comparing (1) and (2) S

+aty=0 L@

o2 K
(l)-M‘

8 Lo e=\y

Fig. 1.14.

Time period

07 T=2n VM ..:?(3)

~ Knowing the values of M and K, the value of T can be calculated.
Determination of K. To determine the value of tension per unit displace-
ment of the spring, a small mass m is attached to the free end of the, spring. The

increase in length of the spring is noted. Let it be x. _
"l'hen, , K= _r_n_g
L ‘ x

s or - T=

' HARMONIC OSCILEATORS 4 | | s

Substituting the value of Kin equation (3), .
| T=21t.‘\/xM—x | L@
- ¥Ying ‘

Itis to be noted that n_;g_ is constant for a given spring.

“Example 1.19. A spring is hung vertically and loaded with a mass of 100

grams and allowed fo oscillate. Calculate (x) the time period and (ii) the
frequency of oscillation., When the spring is loaded with 200 grams it extends

.' by 10 cm. .
' Here . M =100 grams
' m = 200 grams
x=10cm

g =980 cm/s?.

. . Mx - ‘i“
0) ,, T=21t‘\v,;n‘§‘ :
<[ 100x10
T=2%\300x 930
. 5 e
11 B »
(ii) Frequency  .n = T'.-'O-449 - .
 n=222hertz- |
Example 1.20. The scale of a spring balance reading from 0— 10 kg 1;0
025 m. A body suspended from the btxlam;e oscillates with a frequency of o

hertz. Calculate the mass of the bodyvattaclk;ed to the spring.
Here "m=10kg . . . .
X=0j25 m‘ &
M=?
g=98 m/s?

10
R .

I e

T=2n

SES
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L18. Simple Harmonic Oscillations of a Loaded Spring
Consider a spring S whose upper end is fixed to a rigid support and the lower
end is attached to a mass M (Fig.1.14). In the equilibrium position, the mass is
at A. When the mass is displaced downwards and left, it oscillates simple
harmonically in the vertical direction. ; .
Suppose at any instant the mass is at B, The distance AB=y. Let the tension
per unit displacement of the spring be X. ‘ '
Force exerted by the spring=Ky
According to Newton’s second law

dty '
Force=M ==~ =_
orce T - Ky

[ ve sign shows that the force is directed up-
wards] ’

M%E!-+Ky=0

dy (K- R
—+| = ly=0 - (1
This equation is similar to the equation of simple

harmonic motion,’

&y

== =o R 4
a2 7YY @)
Comparing (1) and (2)
. ) ‘Z_E ‘
. m—M .
' K
8 0=y
Fig. 1.14. ,
Time period T=E‘
L W
R oo JK »
or T=2m/,; )

Knowing the values of M and K, the value of T can be calculated. ~
~ Determination of K. To determine the value of tension per unit displace-
ment of the spring, a small mass m is attached to the free end of the. spring. The
increase in length of the spring is noted. Let it be x. :
“Then, K= ( £

X

WAVES AND OSCILLATIONS
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. Bubstituting the value of Kin equation (3), -

T=254 [yg | o N
iR 5 ) "v mg - M, ‘

1t is to be noted that n_;g is constant for a given spring.
A .

1.49. A spring is hung vertically and loaded with a mass of 100

10cm.

?,‘ Here . M =100 grams
B : . . m=200 grams
: ‘ ' ‘x=10cm

- g=980cm/ss®

()] _v T§2n mg

. 11 4 .
(i) Frequency .n=-w=0-rg S

Example 1.20. The scale of a .'sp"ring‘ balance reading from 0— 10 kgis

‘ ' Ly 10
025 m. A body suspended from the balance oscillates wx_th a frequency of -

heortz. Calculate the mass of the. body_attacﬁed to the spring.
Here “m=10 kg . PR
’ x=025m ..
M=?
2=98 m/s?

n =-—ghenz

L
10

:IF‘:‘”‘

or T=

T=2n

i[5

TP TR S alculate (i) the time period and (ii) the
and allowed to oscillate. Calculate (i) the time p d (1) the.
85 of oscillation, When the spring is loaded with 200 grams it extends



| 'x__[(8 B Y
—==-lS i .
Taking . | de [(1) mtz]ﬁ"'(maﬂ)n e (VD)

anq | , (%):Q \-

X1 ‘
'ztz"—'=—,Px|+QXz N 1))
d* x; ‘ v
—F = PrtQx : .. (i)

In a normal mode of angular fr'equency o and phase ¢

.. xp=Acos(t+9)
x2=B cos (& + ¢)

Differentiating twice,
_d t2 ==W"x
and . ff_x}_ =-@?
a7

Substituting the values in equatiohs (vii) and (viii) we get

2
-’ n=-Px+Qx

a_(_ Q@ ) . , ’

‘xz P_’wlz o ... (ix)
and —m2x2=—-Px2+Qxl : ’ i_l

n_(P-o?)

Equating right hand sides of équation (xi) and (x)

(2 \_ (P-&

P-o?j"| Q.
0 =(P- )

(P—(Dz)=ti
w’=PtQ

_ w=[P£ Q)%
The angular frequencies of the two'modes are

WAVES AND OSCILLATIONS

: _ by the equations

CHAPTER 2

Lissajous’ Figures

i 2.1. Lissajous’ Figures
i“ When a particle is influenced simultaneously by two simple harmonic motions
" atright angles 10 each other, the resultant motion of the particle traces a curve.

These curves are called Lissajous’ figures. The shape of the curve depends on

¥ the time period, phase difference and the amplitude of the two constituent

[

| vibrations. Lissajous’ figures are helpful in determining the ratio of the time

periods of two vibrations and to compare the frequencies of two tuning forks.

2.2. Composition of Two Simple Harmonic Motions ina Straight
~ Line ‘
Analytical method. Let the two simple harmonic vibrations be represented

y1=ai sin (07 + 01) . ¢}
and y2 = ay sin (¢ + 0) ' N 7))
‘where yi and y2 are the displacements of a particle due to the two vibrations,
a1 and a2 are the amplitudes of the two vibrations and o and otz are the epoch
angles. Here, the two vibrations are assumed to be of the same frequency and

given by ‘
y=yn+y o
= ay sin (0t + 01) + @2 sin (ot + o2)
= a (sin o) cos Oy + COs O sin 04) ‘
+ ay (sin G¥ cos 0 + COS f sin 02)
y = (a1 cos.0q +az2€08 o) sin f '
" 4 (ay sin oy + a2 sin 02) COS O .03
Since the amplitudes ai and a2 and the angles ~ and 0z aré constant, the
coefficients of sin wr and cos o in equation (3) can be substituted by A cos ¢
and A sin¢ ‘

hence o is the same for both. The resultant displacement y of the particle is
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it d2 . ' i iati wi 3
.ml(—;‘?Ja—mlgsinmi-ngsin (o2 -ay) .o (i) G - Differentiating twiee
nii o ' 3 ' dn__ 2.
H) “m £x)_ _ - (dx ., - '
2| [T~ M8 sin o~ my —= 2 cos(az'—_a.) ... (i) - 7--&)’.:1
1”3 For small displacement - ' "~: Subshtuhngthesevalues in equations (v) and (vi)
| ‘ s’"“"’“"if . - o . _@2,:,_-_-[ )x;+-m’n
“"‘ . = _fz- ‘_ ) "1 . ° .
in(z~a)=op-oy=22_5 # ‘ . '
s::‘(“’ “") ‘:’ “*zn e n__ o (Vi)
cos (o2~ o (For small value of : A X2 ' :
‘ But = h=h=l alnd im-m:‘:m ‘fﬁﬂeo b a’); ' = 2[%"'“’2] .
S"bsuwﬂnsumvummequauons (i) and (ii) and simplifying | .
- =17 xl+“(xz-~x)' g and — 0 == v ‘ : .
e e B I
‘ “Ies.eequationsarenot symmetric - o “,? qungngmhandsldes ofequationi (vu')and(\'lil') : . '
Adding (iii) and (iv)andaﬂ'angingweget ' _ } g 2 ,
dle AN daxz : o _:.__
@ T . "
ATV 4 2(%"“')' |
SRUE RN *
, : : N 2l a2 SR (7 c g
From equation (iv) B ‘ B o : W“z(“"‘“‘z)’ :
& x g (&£ o 4 ‘ 'b.
@G - § (i)
'l'hecouplmgbetweenﬂmetwol ul o o o s
motion of mm@lmmmmmm'mm&hﬁ:: : ¥ - ( ]muz()’ i)
WOfeonphnglsknownasherthlmplhg, B . '
Takeangnlatfrequencym ahd phase ¢ in the norhal mode, § ' Ituuquadrmeequauon-mwm“ .
- m=Arcos(ar+¢) . | | . .w’-z(,)*(ﬁ’i

x2 = Az cos (0 + ¢)




94

WAVES AND OSCILLATIONS

=(2iﬁ)(§]

ol
m=[(2¢\f2—)(if—)J2

rAngnlar frequencies
. : 1 ,'
-— g 2 o
O] | N mn—[(2+\f2_)(7)]2 : e (x)
. ' | l | ’ ) . )
G | | m:[(z—\/’z')(ﬂ]z i),
’ lfre(‘;uenc‘i‘es
- ]
(0] 1 2
0] Mmoo [(p«!ﬁ')[ﬂ]z . (xii)
. 1 [ 3 g
(i) v2=oi=on [(2— V2) (%)J 2 ... (xiii)

Equatidns (x) and (x7) represent the angular ﬁ'equehc' ‘
v ( anc n ¢ . ncies of the two noral modes
and equations (i) and (xiii) represent the frequencies of the two normal modes.

1
2.

EXERCISES '

Explain simple harmonic motion and discuss its characteristics.

Sho ma . 3 3 . . ) -' .
give: b t for a body vibrating s;mple ha»xmomcally the time period is

"« = 2w ’dlsplacen?ent :
: acceleration

.- Calculate the average kinetic energy and the total eneréy of a body

executing simple harmonic motion.

Give examples of the systems that oscillate with one degree of freedom.

Explain the term damped oscillations.

Show that the .superposition principle is valid only in the “case o
homogeneous, linear vibrations. ‘ :

.. Obtain d\e‘expi‘ession for the time period of a simple pendulum. Also

derive the expression for the time perjod for a bob of large size.

5

3
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5
.

e
e

e

7.

9,

10.

11.

12

13.

14,

15.

16.

17.

Give the theory of a compound pendulum and derive an expression for
its time period. -

Show that in the casc of a compound pendulum, the points of suspen- ‘
sion and oscillation are interchangeable. ' R
Give the theory of Kater’s reversible pendulum.

Discuss the case of simple harmonic oscillations of a mass held
between two linear springs. - ' ‘ i

Show that the time period of oscillation of a loaded spring is.

‘t=2n'\/y—x.
mg

Discuss the LC circuit and calculate the expression for the frequency of
oscillations. L : '
Discuss with ei‘amples free oscillations of a system with two degrees of
freedom. ‘ ‘ B .

Discuss the two normal modes of oscillations of coupled LC circuits.
How will you determine the value of acceleration due to gravity using
‘a compound pendulum. '

Derive an expression for the time period of a compound pendulum and (

show that there are four, collinear points on a compound pendulum

about which the period of oscillation is the same. Give Bessel’s com-

 puted time of Kater’s pendulum. :
A particle vibrates simple harmonically with an amplitude of 13 cm.
The time period of oscillation is 21 seconds. Calculate the velocity of
the vibrating particle at the instant the displacement is 5 cm. Also

calculate the frequency of oscillation.

: [Ans. ) 12em/s ; (i) 5‘; hextz]

- 18. A simple periodic wave dis;_urbaﬁcewith an amplitude of 8 units,

travels a line of particles in the positive x direction. At a given instant,

the displacement of aparticle 10 cm from the origin is 6 units, and that

of a particle 25 cm from the origin is 4-units, both particles being in
‘ positive displacement. What is the wavelength of the disturbance.
' = (Ans. 290 cm.]

- 19. At time ¢ =0, a train of waves has the form

yv=. 4 ?in 21:(—1%‘6)

»

The velocity of the wave is 30 cm/s. Find the equation giving the
‘waveform at a time t=2s. .

e e » N
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Letn slmple harmonic vnbrauons of the same amplitude g and epoch angles
0, 20,4 ... 2(n—-1)a influence a vibrating particle (Fig. 2.3). If the dis-
placements of the vibrating partide are consndered along the y-axis, Lhe in-
dividual displacements are glven by

Y

yy=asin (wr-0)

T ! Yyy=asin (¢ - 20)

_ Let A be the amplitude of the rcsul—
a , ’ tant. Vibration and ¢ the epoch angle.
, ) Then
y=Asin (o -¢). :
The projections of the individual

a . vectors OP, PQ, OR etc. on the y-axis

R ~are given by '
Q e T : 0, a sin 2a,.a sin 4o ete.

' , Similarly the projections on the X-
0 =2 X  axis are given by
‘Fig.23. - " . a,acos2a, acosdaelc.

If OT represents the resultant vector, then A sin ¢ will give the projecuon
. along the Y-axis and A cos ¢ gives the pro;ccuon along the X-axis.

Asm(b O+asin2a+asindo+..... «tasin2n-1a
o -a[sm2a+sm4a+....'..+sm2(n—l)a] (D
Similarly, | o
. Acosd=a+acos20+acosdo+...... +acos2n—-1)o
all+cos2a+cosdo+...... + cos 2(n - Hu) ... (2)

Multxplymg equation (2) by 2 sin o

2Acos ¢sina=2asina [l +cos2a+cosd4a+.......
+ cos 2(n ~ Da]
: -a[2sma+20032a sin o+ 2 cos 4ot sin o

; +o... +2cos 2(n—-1) a sin o]
=a[2sina+ (sm. 30— sin o) + (sin S0t - sin o)
+..:.. .+ {sin(@n= 1) o —sin (2n — 3)a } ]

—a{25ina+29m(2n—l)a]
=a[2.sinna. cos (n-1) o
2A cos ¢ sin o = 2a sin na, . cos(n— 1o ,
~ Acosq,_‘asmna cos(n— o . 3)
sinot s

Multiplying equation (1) by 2 sm o and procecdmg in a similar way, it can
be shown that ,

asin na. sin (n— Do ' R
e | , L)

Asin =

OUS’ FIGURES 105
9 uaring equanons (3) and (4) and adding
A2 (sin? ¢ + cos® ¢) =A? )
o S s n0 (n=1) o+ cos? (n—l)a]
: : sin” o
2 ; :
-4 2 s,"; L | . (5)
sin® o
3 ~ ; L asinno o )
P sino .
D ividing equation (4) by (3)
ot Asmg . asin no . sin (n = 1)o. sin &
| Acosd V¢—sma a'sin na. . cos (n — 1)
L —tan(n—l)a | |

ere ¢ repreSents the cpoch angle for;.thc resultant vibration, n is the
mber of simple harmonic vibrations influencing a particle and o s half lhe
‘ crease in the epoch angle between sticcessive vnbratxons

4 Composition of Two Simple Harmonic Vlbratlons

of Equal Time Periods Actmg at Right‘Angles

¥ et o  x=asin (0L 00) o , (I)
' d . y =bsinwt (@
' present the displacements of a particle along the X and Y-axes due to the
‘ﬂuence of two simple harmonic vibrations acting simultaneously on a par-
cle in perpendicular directions. Here, the two vibrations are of the same time
Beriod but are of different amplitudes and different phase angles.

b

: N y
b From equauon (2), sin @t =7
. 2
From equation (l) = = [sin @ cos & + cos of sin o] )]
a

" Substituting the values of sin ot and cos wt in equauon 3)

" , . y )’2

b . Z=|= 1—— .sind

7 2 [bcos(1+ ’,2 ]

i ' ) )
x Y Y o
;_Zcosa:: . I—bz sin
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o ,
. ‘ a
_2+y_2 cosza—z—xycosa I—X; sin? a - Y, '
at b ab b x. Y
PRy
2 .
or 525 L (sin o+ cos? o) - 29 cos ot =sin’ a \
a’ . b? ab o y=- b x.
BEAY o ita L - | 7
az 7 ab cos o0 = sin“ & ... (4) This rep.msen.ts, the equ.au;nsof
This represents the general equation of an ellipse. ‘Thus, due to the super the straight line AC (Fig. 2.5).
imposition of two simple harmonic vibrations, the displacement of the particle (,,,') if o= z or 31. ’
will be along a curve (an 24) glven by equation ). 2 2
sin® o=1; cosx=0

] : l’ig.l..'b..‘
y 5—22—+f-—1
& v

it : . ‘ o -_% . o= T “_” | o
| L‘ Z Q - - ' B This represems the equauén of the elhpse EHGF (Fig. 2. 5) wnth aand b as
g 4 4 ,

the semi-major and semi-miner axes.

““:} Str Jn 770 . ; ' fa=% or 3% e - "-':18/
0 "‘T »“:T ¢(=T T o{=2T | (iv) T | (1— 2 2 : . :

| \ v ‘ - g ) . . o b’
Ny - : .

l ‘\ L - k- A AN A N : . ,then —2_+——i=1 ) H - - --.-—--- F

. Fig. 24, or 24 y2 = ; {]
The resultant vibration of the particle will depend upon the value of o This represents the equation of a circle of ! :
'Figure 2.4 represents the resultant vibration for values of a changmg from O to radius a (Fig. 2.6). : , '
2m. : " L o ke .
| Special cases ) if a#% or 7—l;t-,theresuham o G ¢
7 ) " Hfa=0or2r; cosa=1; sino=0 . vibfationis an oblique ellipse KLMN as l"i;-2-6-
| | X W2 » 2y -0 shown in Fig. 2.7(i). : :
i it 2 b2 ab ; . Y
i:‘; x Yy :
1! [ a 50
Il b
or . .o y a x.
‘ ‘1] Thxs regrmnts the equation of the straight line BD (Fig. 2.5) ie., the
| ‘ ‘i: particle vibrates simple harmonically along the line DB.
1l @) Ifo=x;sina=0;
‘ : ' cosa=-1
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On the othér hand if a=}4lt_- or —5‘—:5. the resultant vibration is again an

~ oblique ellipse KLMN as shown in Fig. 2.7 (ii). The cycle of changes is
- repeated after every time period. . , '

2.5, Composition of Two SHMs at Right Angles of Equal Periods

Graphical method. (1) Let a particle be influenced simultaneously by two
simple harmonic vibrations at right angles to each.other. The two vibrations are
_represented by the equations ‘ :

» x=asin ¥
x=bsinw¢ ‘

Here the phase difference between the two vibrations is zero, time periods are
equal and the amplitudes are unequal. . o o

Draw two circles of reference with centres C; and C; and radii a and b
respectively. Divide each circle into eight equal parts, marked 0, 1,2, ... 7,8.
The angular frequency in each case is . If the particle O is subjected to the

simple harmonic motion along the X-axis only, thé particle will vibrate along

XX'. Similarly, if the particle O is subjected to the simple harmonic motion
along the Y-axis only, the particle will vibrate along YY * (Fig. 2.8).

K Fig.28.

When the particle O is subjected to the two simple harmonic motions
simultaneously ; the resultant vibration of O will be aJony he straight line PQ.
At zero, zero position, the particle is at the mean position O. After 7/8 seconds,
corresponding to 1, 1 position in each circle, the particle will be at B. After 7/4
seconds, corresponding to 2, 2 positions in each circle, the particle will be at P.

.
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b

kafter 37/8 seconds, O after T/2 seconds, A after 57/8 seconds, Q .aftelf 31/4
konds, A after 7T/8 seconds and again at O after T seconds. In thfs way th'e
’ ltant vibration is along POQ. The amplitude of the resultant vibration is

€

b Here . (OP)*=(0X)* +(OY)?

o (OPY =d*+ b? -

| . OI-",=‘Ja§-4-bi : L o

b angular frequency and time period remain the same as for the two con-
Btuent vibrations. R
I (2) Let a particle be influenced simultaneously by two simple ha{mon;c
Bbrations at right angles to each other . The {wo vibrations are represented by
' s equations , .
4 x =a sin (o + &)

nd y=bsinot
upposc the phase difference o=7/2 and the time. periods are ch‘ual. The
mplitudes are a and b.

Draw two circles of reference with centres Cr and C2 aqd radii a and b
fpspectively. Divide each circle into eight equal parts, m_arked 0,1,2,...7,8.

X

e 2. X

L (RN ., ceaw = wne

R TR R

.“'.
-

I
7
A}

»,
N,
-

®
3

X &

\~\
9
4

4

N\

v : Fig. 29. ' L
fhe angular frequency in each case is . If the particle O is subjected to the
tﬂple harmonic motion along the X-axis only, the particle will vibrate along

‘ ong the Y-axis only, the particle will vibrate along YY’. Here, the initial

i

k In this way the positions of the resultant displacement of the particle will be, -

2 ?, Similarly if the particle O is subjectéd to the simple harmonic motion -

]
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position for vibration along XX * js at the extreme position at ¢ = 0. The points
on the circle of reference are marked showing that there is a phase dxffercnce of
/2 between the two vibrations (Fig. 2.9). ‘

When the particle O is subjected to the two SHMs simultaneously, the
resultant vibration of O will be along an ellipse having a and b as semi-major
and semi-minor axes. The resultant position after T/8 seconds corresponding to
1, 1 position in each circle of reference will be the point B. Similarly C, D, E, F
etc. will be the resultant positions after successive time intervals of 7/8
seconds. The motion of the particle O will be along the ellipse ABCDEFGHA.
The angular frequency and time period remain the same as for the two con-

stituent vibrations.
~ Here at any instant
ﬁ+%—1
Ifa and b are equél, then the resultanf.motion is given by the equation
’ 2+ y =a? '

wluch represents a circle with centre O and radius a.- ‘ :

[Note. If a particle is moving along a circular path of radius a with angular
frequency @, it can be considered to be under the influence of two rectangular
SHMs having equal amplitude of valuc a and angular frequency , and a phase
difference of 1 /2.]

2, 6 Compositlon of Two Simple Harmonic Mouons at nght
Angles to each other and havlng Time Penods in the

Ratio1:2
Let two snmple harmonic motions be given by the equations
: x=asin Qot+a) ' ...
and . - y=bsinu (@

‘Here a is the amplitude for the motion along the X-axis and b is the
amplitude for the motion a]ong the Y- axis. The phase difference betwecn the
two vibrations is «.

From equation (2)

Y _ .
| p = Sin ot
and o cos'uiéVl — sin® ¢ ' . (3)

or © cos= l,—p, : : ...(4)

f From equation (1)

Squaring both sides

(5ol
— —Sin
a b?

X

Q

2
X .
——smna
a

' 2
‘ (ﬁ—sin(x) +
a
¥ Yy
[‘—x——sina) +—T -5+
\a b

I

= sin (20¢ + O)
=sin 2 Wf cOs O + Cos 2(f sin O
) . . .
=2 sin @f cos o cos oL+ (1 — 2 sin? o) sina
[’ Substituting the values of sin ot and cos o,

' a2y
X _5. 2. X + 1—2!— sin ot
a—2 b \/1 % cos O [ ¥l

4 V%

X . S
—)—sin2a+2 = —sino |~ sin0
la b

4
—);* Gsin’a + cos® o) - —1%2- (sin_2 a+cds? o)

2

+5§;§ﬁna=o
4 2 2
4 4 i):'—-isin(x:o
N
2[\2 '
4y Y v isina-1}= =0 B &)
*plrTa ‘

:" Equation (5) represents the general equation of a curve having lwo loops

resultant motion of the particle for different values of o is given- in

=17

L
=
=TI

Fig. 2.10
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Fig. 2.10 For a phase difference of 0, and 2 =, lhe resultant motion gives the
figure of eight.

Specialcases_
() Whena=0,n, 2netc.
sinae=0

From chation )

£ 57 )
<+ |-5-1]=
Attt

This equation represents the figure of éighl and has two loops.

(ii) When oz=~’2E
| sina=+1
From equation (5)
/
. 2 2.2
x By x_ )L
1J+ L2 [b2+a-l)-0
2 2 4 -
) x 4y~ (x 4y
0 -— —= = - ez
T . 1)+b2(a ])+b 0
. — ., . .
) x 2y2'1
O - — —— | =
T | _(a ,1]+ sz O‘
o fx 2
or =—-li+—= =
@ b
. I 2y% x
or —1—72' =—-[;—-])
b2 (x
2oL
o bz-,.
.y?:——;(x, a) .

This represents the equation of a parabola, with vertex at (a,0).

i+ LISSAJOUS’ FIGURES o, 3

'2.7. Composition of Two SHMs at Right Ahgleé

with Time Periods in the Ratio 1 : 2

[ Graphical Method

Let a particle be influenced simultaneously by two simple harmonic vibra-

5 fions at right angles to cach olher The two vibrations are represented by the
equanons

x= asin2u)t
y="bsin ot

} 'Here the phase difference between the two vxbrauons is zero, amplitudes are
| unequal and the time periods are in the ratio of 1

Draw two circles of reference with centres C; and C> and radii a and b

f respectively. Divide the circle with centre C) into 4 equal parts and the circle
b with centre C2into 8 equal parts. The angular frequencies are 20 and . If
b the particle O is subjected to the SHM along the X-axis only, the particle will
b vibratc along xx * (Fig. 2.11). '

. C
W
[]

t
[ R T

3,7 —q 145 X
xv’ \C‘//'

0,4.8

Fig. 2.11.
Slmllarly, if the particle O is subjected to the SHM along the Y-axxs only,

' the particle will vibrate along yy".

When the particle O is subjected to thc two SHMs sxmultancously, the

' “resultant vibration of O.will be along a curve ABCDAEFGA which represents
§ the figure of eight. At zero-zero position the particle is at the mean position A.
B After equal intervals of time the positions B, C, D etc. dre obtained in the same

order from the two circles of reference (Fig. 2.11). The angular frequency of

" the resultant vibration is .
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Free. Forced and
Resonant Vibrations

q‘qi

3.1. Free Vibrations
When the bob of a simple pendulum (in vacuum) is dlsplaced from its mean

position and left, it executes simple harmonic motion. The time period of .

oscillation depends only on'the length of the pendulum and the acceleration

" due to gravity: at the place. The pendulum will continue to oscillate with the

same time period and amplitude for any length of time. In such cases there is no
ioss of energy by friction or otherwise. In all similar cases, the vibrations will
be undamped free vnbrauons The amphtude of swmg remains constant.

3.2 Undamped Vibratlons

For a sxmple harmomcally v1bratmg particle, the kinetic energy for dxsplace- 4

ment y. is gzven by
( @x
2 e Ld: |
At the same instaunt, the potentlal energy of the pamcle is: Kyz where Kis
the restonng force per unit dlsplacement :
_The total energy at any instant,

. . 2'
-1 d
= (d{) +3 K

For an undamped harmomc oscillator, this total energy remains constant.

-

) Ae%m(%]f—;-x)’z:constam TR )}

" Differentiating gquation (1) with respect to time,

2 . .
m%-pl{y:O . . ‘ ....(2)
2y (K .. o
G m o o I
L Equation (3) is similar to the equation
w*myo . o
. ‘ ! \ | |
" Here .- w =(K
., m)

The solution for equation (4)is .
y=asin gmt -a)

.-'a‘sin '\’5- r'—a}
Y= TLNm )

This is only an ideal case. In the first chapter, for the metion of a pendulum,

; mgnd undamped. -

3.3 Damped Vlbratlons

| In actual pracnce, when the pendulum v1brates in air medxum. there are
v fncuonal forces and consequently energy is dissipated in each vibration. The
amphtude of swing decreases continuously with time ‘and finally the oscilla-
"tions die out. Such vibrations are called free damped vibrations. The dis-
sipated energy appears as heat elther within the. system itself or in the

LCR circuit) is propomonal to the velocity of the parucle at that mstant Let

0"

p. it Y be the dnssxpanve force due to friction etc. -

This term is to be introduced in equatlon (2)

- Thezefore, the differential equation in the case of Free-damped vibrations is,

&y dy .
£y o (6
m—s +Ky+u ) ’ ( )

YPREE, FORCED AND RESONANT VIBRATIONS | , R

Y% )y=0 N () B

loaded spring, LC circuit etc., it has been assumed that the vibrations are free -

b surrounding medium.The dissipative force due to friction etc. (resnstance in
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day u gx 'K
0 : .7
or p tz y N
This equation is similar to-a generai differential eﬁuation,
‘5’+2b——+k2y o L L®
‘The solution of this equation is _ _ » , A
T : “ y=ae¥sin(or-0) | ()
The general solution of equauon (MNis also glven by B
y=A.e('b+ b+ k%) ’+Be( b- \la -t
Here b= —E— and k2
and - o= y
or | _AJK_ ¥
o _ =N Tamt
or S O N SN oy
, . .- 2m 2n

,43 4. Damped SHM in an Electrical Circult

" In the case of an electrical circuit, the force equanon is replaced by the
voltage equation. The circuit consnsts a condenser C, inductance L and resis-
tance R (Fig. 3.1). , :
- When the condenser C is charged
by pressing the morse key, it gets
discharged through an inductance L
and resistance R when the key is
released (Fig.3.1). . =
‘Suppose, during discharge, ‘at
any instant, the charge on the con-:]
denser = Q, current flowing = Iand L_. +] -

IL Morse Key
A

rate of fall of current = % i

In this case,

But, . i i i

4
s

g=
E évt{ent: o, Q= = Qo and from equation ) (3_)
) A+B=Qo
.leferenuatmg cquauon @), - _ |
dQ A(—b+W) e( b +b*- P):
A +B(—b_\j'§2") e(—b—‘lb’—i’)t.
' ‘ - dQ
. When, ;=0, -?d-—t—r_o _ |
A(—b+‘1b2 )'+B(—b'—\l‘ P -12)=0
-b(A+B)+‘1b2 (A-B)=0"
—bQo+ b - & (A B) 0 |
o L@,
Adding (3) and 4), . o .b
_ AR
* Q°( WLT-?}
. b ) e
- A= %{”ﬁ‘ﬁ) | :
Spbu;\cﬁng (4) from (3), o N
| =01~ 7] |
..(6)"

- FORCED AND RESONANT VIBRATIONS

l; dt2 dt o S
£LQ RAQ, O _, ()
. @ tLatlc | :
Taking =2 ad 7 =
29 . b9 20=0
e get L dt

The general solution of this equanon is

_Qof,__b
B= 2(1 b-kz)

123

Ae (-b+ b= k’)r +Be (—b—%’-z)‘ @
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. e <L o - o ‘ - . ’
IcTaElle o S - o o
- : | L ' ' R= i’:;\,ﬂ.ﬁ"}_. _2.582x 10* ohms S
In this ¢ . R L N =N T N1u2x10" I
s case, the discharge is oscillatory as represented by the curve ¢ (Fig e ' ’ gt . .
T . x 10* ohms can be connected in series

’ A maximum resi‘s'tance of R =2'582 \
Jo that the discharge remains oscillatory. For the discharge to be oscillatory R
b suld be less than 2:582 x 10* ohms. - = U R

3.2). This di i Mk
). This dlschage is of simple harmonic type and the natural frequency of the
3. Find whether the ‘dischargé' of a condens'er through the

‘circuit, - .

=3 Nie- 52 ~ le 3
m VI 5 : ‘ xample 3.
' v ' ¢ a . ) : - Pllowing inductive circuit is oscillatory :
When R=0, f= + « ' C=0.1 uF, L=10 millihenry, R =200 ohms. -
2rVNLC : 1) - T o
e . ¥ If the circuit ts oscillatory, calcqutevlts frequency.

Here c=o-,1x1045,L=10x'10-3"H,R=200 ohms -
S R2=(200)2=40000=4x10“' g
4L 4x10x%107° s
AL _ax8x  =4x10
C- o1x10° -'

Results. (13When B> 3L the di e is m lat
‘ > C,the Q1scharg¢ is non-oscillatory and dead beat.

(2) When K2 = 2L the discharge s ‘aperi -
(D . C,.the dlsqharggxs aperiodic’ and critically damped.
a“ .. etors o

, -the discharge is oscilla oo : : . R
¢ illatory and the Qatural frequency R < AL , the circuit is oscillatory

"“ .As | C S .
PN U oo 40000
j o LC .42 21 10%x 1073 x 0-1 x 107 4% (10x 1072

_ P oiF = Nox10° _3 «104=47727 Ha.
2n . px AR am

(3) When R? <

of the circuit. .
N T
o ax NIC 412
Exampl . . ance
ple 3.1. A condenser of capacity 1 uF, an inductance of 0-2 henry

and a resi. . A
H sistance of 800 ohms are joined in series. Is the circuit oscillatory? B .
ereL=1pF=10%F, R=800 ohms, L=02henry. . & T i
. R? = (800) = 64 ’  henry. . 3 3.5. . Forced Vibrations : oL ‘ ,
_ R?=(800)? = 640000 = 6.4 X 10° R oo T I S
» ' ) i, Thetume period of a body executing simpte harmonic motion depends on
AL _4x02 _ 8x10° : o . . the dimensions of the body-and its elastic'propenies. The vibrations of such a
c 10° o @ b body die out with time due to dissipation of energy. If some external periodic
‘ : ' . force is constantly applied on the body,.it continues to oscillate under the

s. Such vibrations of the body are called forced

(' , influence of such external force:

As R? -.4£ . A :
R” <=—", the circuit is oscillatory. 0 ibrati
) 53 vibrations.

C

Example-3.2. In.an . '
. - - an, oscillatory circuit, L=0 ‘

What is the maxi atory circuit, L=0-2 henry, C=0-
maximum value of resistance for the circuit to gﬁ?&fillgtg?ylf nE

* Initially, the amplitude of the swing increases, then decreases with time,
' becomes minimum and again increases. Tnis will be repeated if the external
periodic force is constantly applied on the system. In such cases the body will
finally be forced to vibrate with the same frequency.as that of the applied force. -
The frequency of the. forced vibration is different from the natural frequency of
vibration of the body. The amplitude of tae forced vibration of the body

Here, . L=02 henry, C=0
Here, - L=02 henry, C=00012F=12x 107°F
+ depends on the difference between the natural frequency and the frequency of -
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the applied force. The amp.
small and vice versa,

For forced v:brauons
" equauon (6) Art. 3.3 is modlf ed in lhe form,

dty dy
m& a7
> +Ky+u dr

htude will be. large if difference in frequencxes is

Fsmpt - ....(l)-

Hcre pis the angular. frequency of the applied periodic force.

Th
e particular solution of equation (1) fepresenting the forced v1brat10ns is
Y=asin(pt—q)

i ...(2)
apcos(pt ’

jzt o) | ...(3)
=—ap’sin (pt-a)=—

] n(p ) =~ p? Y )

Subsututmg these values i in equatxon (nH

:::p :;m(pt a)+1(asm(pt—a)+uapcos(pt o) = Fsmpt
p? a [sin Pt cos a ~ cos pr sin o] + Ka {sin pt cos ot - - COS pt sin o]

+pap[cosptcosa+
Whensmpt_l gy, s1npesxna] Fsmpt 0 ...(5)

© —mp? acosa+Kacosa+papsina—F=O"

When cospt=1;sinpt=0-. O
+mp? a cos o — Kasma+ua '
ipcos oL =0
Dlvxdmg equatlon (7) by cos o and sxmhfymg -0
tang=—t2 __A .
o : K—rmp? "B : ' @)
‘From equation (8) ' ’ . | |
. sin ‘a=_i; ' ‘- _v . _. “ .
| (Az‘_’_“'—*Bz o . ‘ ’ - (9)

B ' B
cos o= |
. WE o
vaiding equation (6) by cos o -

—mp2a+Ka‘+uap,tana—' F =0
Cos QU

or a[(K ~mp?) + up tan o] = _F
cosa’

But (K — mp?) < B, andup A

&2, FORCED AND RESONANT VIBRATIONS - : 19 \:

| Substituting the values of tan'ct and cos

[_ Az] WA+ B
B+b == g5

€. Substituting the valuesof Aand B ' L
a= , : ... |
W p+(K-mpy ’ . 4
y =asin (pt - @) : S
. F . . . .,
= sin (pt — o) ...(1-2) :
‘ YN K-mp Y |
Applymg the boundary conditions, ahother solution is obtained when F=0.
) 1s corresponds to free v1brauons In the case of free vibrations the solution is
y=a e sin (0t - a) ' .. (13)
- The general solution will include both the pamcular soluuons for free and
Jo ed vibrations.

F
\f2p2+(K mp* ’

y ae? sin(cor - ) +

sin(pt—0) ...(14)

» : _ : ;
’,: Here b’z‘% o | 5

Example 3.4. The equation for. dzsplacement of a pomt on a damped
czllator is given by ’ - » ‘ ;

x=5e0%" sin (12!-): metre - |
" Find the velocity of the oscillating point at ) _ |

. _ ‘ _ |
t =% and T, where T is the time penod of the oscillator, |

(IAS 1987)
: Here, x=5¢e%" sin Fz- t _ N O
] This cquanon is similar to the equation A
: x=ae® sin ot SN ¢ 7)) 1,

[ Comparing (1 and i)

0k
2
S 2n_ 21 _
Time period T"m n/2 4s
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Differentiating equation (i) with respect to time t, -

velocxty, dx =5(- 0-25) e 02 gin (’;]t

+5x( J e cos( J: BT (i)
4 L
"4
4

() When - =T

-

11

~=1s

dx _ » -‘o~"2's . E St ) 02 n
P .l25xe | sin 2' + 2 cos. 2

5= 1253‘025-(,-125)x(0368)°75 .

' =-125><o779 i
=—0974 m/s.

-ve sngn shows that- velocxty is in opposite dlrecuon
(iWhent=T=4s

)

B (Sz")x 0:368
.=2-89 m/s.

3.6. Resonance and Sharpness of Resonance

In the case of forced vibrations, the general solution for the dxsplacement at
any instant is given by _ :

. Fo
W?p? + (K —mp? )

If the effect of v1scoc;ly of the medium is small, the amphtude

: F : '
p2p? + (K — mp?) :

under the acuon of the driving force is maximum when the denommator is -
minimurh. It is possible if K — mp® = =0or K= mp?

~bt sin (ot — a) +

y=ae sin(pt—a)

dx _ —025%4 57‘ 024 1‘_ -
o 1-:25¢ , sm24+ 2 cos 2_4.

REE, FORCED AND RESONANT VIBRATIONS — 131

1« A

1 - [
‘»" r i ) p = m
} rther, the amplitude will be infinite if y is also zero. The osclllatlons will
fhave maximum amplitude and this state of vibration of a system is called
sonance It means that, when the forced frequency is equal to the natural
ﬁ squency of vibration of the body, resonance takes place. If friction is present,
R lhe amplitude at resonance
HE . i F
VK

.51".
3
3

N ' _F , m
~or - amplitude at resonance *u Nk
). - In the case of sound, mesmdyofshaxpncssofresonancelsofgreat
lm;)onance Sharpness of resonance refers to the fall in amplitude with change _
frequency on each side of the maximum amplxtudc
@' The particular solution for displacement in'the case of forced vnbrauons is,
o y= F -
- : J‘IZP2 +(K— ”'PZ)Z
" Differentiating equation (1) with respect to time
K dy __Fp ‘ -
e == cos(pt—a) .. (2)
" &t Nyp?+ (K- mp’y’ |
. The velocity (dy/d!) is maximum when cos ( pt — @) is maximum ie. the
‘ Wt at which the particle crosses the mean position.

~

sin( pt - o) o RN

P dy _Fp L |

4 P « ...Q3)

t Joax WP+ (K-mp?Y : |

- Kinetic energy of the vibrating particle at the instant of cmssmg the mean .
posmon is given by .

. .  (dy
. KE.=im |+
k. 2 (dt max

1 2
KE.= ——-—T—ﬁp———-— ' N )
{ Wp? + (K-mp?)? : _
‘l'hemeansquareofthednvmgforcepetumtnmss
% o+FP|
2 J B
m 2m

6
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F?

Drvrdrng equatlon 4 by o e get kinetic energy per unit force which is

called the response R. : o
.
] .___%:."if_’_ P
p2p2+ (K‘—nigz)2 . Zm
mzpz o

=y
WP+ (K-inp)’

R=—o "K‘ - | ... (6)
wp” & . o

The natural freqiiency of the system in the absence of damping is ,\’;nli
.Therefore,,the term (—"—:— - szin equation (6) represents the extent to which the

' natural frequency of the system deviates from the forced frequency.

K

When == P

the natural frequency coincides with the forced frequency, and the value of R
will be»maxlmum From equation (6)

2 m m? “ L -
R: =—=|""| L.
W (“) | o
. :
1
The response R a'i

, It means that the response R is mversely proportional to the fnctmnal force.
In the absence.of friction, the response is maximum.-

The term (K - p'zjin equation (6), refers to -mistuniné. The larger is its
m .

value, the greater is the system away from resonance.

The graph between p/® along the X-axis and the response R along the
Y-axis is shown in Fig. 3.3. : : o

(i) When p/a is equal to 1 the response is maximum. For curve A, it is large
and for curve C, JLis less. The response decreases for values of p/@ greater than
l or less than 1.

-,
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R

«<1 P - >1
N w :
TS
i : Fig.3.3.
b (ify When the frictional forces are absent, i.e., u =0, R is mﬂmte and the
g -sharpness of resonance is maxnmum
i

+ (m) The sharpness of resonance decreases with increase in the value of .
¥

(iv) The sharpness of resonance dies rapidly even for a very small change
in the value of p/w from 1, in the casn. where |t is minimum.

: In the case of the resonance. tube, the dampmg force is large and the'graph
& will be similar to the curve A in Fig. 3.3. The resonance persrsts over a wide
g range and it is difficult to exactly locate the posmon of maximum sharpness of
. resonance. Hence the results obtained with the resonance tube apparatus are not’
f| * very accurate. «
] In the case of the sonometer wire, the dampmg fordes are small and the
B graph will be similar to curve C in- Frg 3.3. In this case the sharpness of
P resonance is maximum*in a very narrow region. Even a slrght variation in
" length or tension reduces the sharpness consrderably The vibrations die out
' raprdly Thus, (he results obtarned wrth a sonometer are accurate -

e

s

3.7. Phase of Resonance . ' ot

Considéring the phase lead of the forced vrhramns wnth reterenee to the
dnvmg force, in equation (8) of Art. 3. 5 R v '

-~ tana=- upz
- K-mp
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17. Discuss the phenomenon of sharpness of resonance and show how it

depends on the damping factor. (Kanpur, 1975)

18. What are free, damped and forced vibrations? Give the theory of

19.

20.

21,

‘22,

24,

25,

forced vibrations and discuss the condmon of resonance.
[Delhi (Sub ), 1976]

What are damped vibrations? Obtain an expression for the dlsplace-
ment in the case of a damped oscillatory motion. Discuss the effect of
damping on the natural frequency. [Delhi (Sub.) Supp., 1976]
What is a forced vibration? Discuss mathematically, the vibration of a

system éxecuting damped simple harmonic motion when subjected to -

an external periodic force What is sharpness of resonance? '
‘ (Delhi, 1976)

Define quality factor and bandwidth of the sharpness of resonance.
Obtain quality factor for a dnven harmomc oscillator at resonance.

" (Bhagalpur, 1990)
Explain, i in brief, (i) free oscnllanons, (i) forced oscxllatlon and (ifi)

phenomena of resonance. (Bhagalpur, 1990)
What do you understand by damped vibrations? Obtain an expression

 for displacement as a function of time for a damped oscillator. What is
the effect of dampmg on the natural frequency of the oscillator?

(Delhi, 1991)

Discuss the phenomenon of sharpness of resonance and show how it

depends on the damping factor?_ (Delhi, 1992)

‘(@) Derive the differential equation of damped oscnllatory motion
-and give its general solution.

(b) What type of motion do you get when the damping is small"

_ (Delhi, 1991)

' CHAPTER 4
Wave Motion

4.1. Wave Motion

Wave motion is a form of disturbance which travels through the medium due to
the repeated periodic motion of the particles of the medium about their mean
positions, the disturbance being handed over from one pamele to the next.
When a stone is dropped into a pond containing water, waves are produced at
the point where the stone strikes the water in the pond. The waves travel
outward, the particles of water vibrate only up and down about their mean
positions. Water particles do not travel along with the wave. Similarly when a

tuning fork is set into vibration, it produces waves in air. The wave travels from

one particle to the next but the parueles of ais vibrate about their mean
posmons

It is essential to understand the concept of wave motion in the study of
various branches in Physics. Wave motion, in general, refers to the transfer of
energy from one point to another point of the medium. Transference of various
forms of energy like sound, heat, light, X-rays, y-rays, radio-waves etc. takes
place in the form of wave motion. For the transference of energy through 8
medium, the medium must possess the propernes of elasncny, inertia and
negligible frictional resistance.

4.2. What Propagates in Wave Motion? )

Before studying the characteristics of the different fi of wave motion,

- itis essential to clearly understand—what is propagated il a wave motion ? The

answer to this question is that the physlcal condition due to a disturbance
generated at some point in the medium is propagated to other points in the
medium. In all the waves, the paiticles of the medium vnbme about their mean
posmons Hence, in-the case of wave motion, it is not matter that is pmpagated

~but it is only state of motion of the matter that is propagated. It is a form of '

dynamic condmon that is propagated from one point to the other point in the
medium. .
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According to the laws of Physics, any dynamic condition is related to
momentum and: energy. To conclude, it may be said that in wave motion

momentum and energy are transferred or propagated. It is not a case of

propagation of matter as a whole.

4.3. Characteristics of Wave Motion
1. Wave motion is a dlslurbance produced in the medium by the repeated

" periodic motion of the particles of the medium.

2. Only the wave travels forward whereas the particles of the medium
vibrate about their mean positioris.

3. There is a regular phase change between the various particles of the
medium. The particle ahead starts vxbratmg a little later than a particle just

" preceding it.

- 4. The velocity of the wave is dlfferent from the velocuy with which the
particles of the medium are vibrating about their mean positions. The wave |
 travels with a uniform velocity whereas the velocity of the particles is different

at different positions. It is maximum at the mean position and zero at’ the
extreme position of the particles.

There are two types of wave motions '™

(i) Transverse and (if) Longitudinal. .
Sound waves are longitudinal waves and light waves are transverse

: waves

4

v 4 4 Transverse Wave Motion

In this type of wave motion, the particles of the medium vibrate at right
angles to the direction of propagation of the wave. ,

To understand the propagation of transverse waves in a medlum consider
nine pamcles of the medium and the circle of reference (Fig. 4.1). The particles
are vibrating about their mearf positions up and down and the wave s travelling
from left tori ght The disturbance takes 778 seconds to travel from ong pamde to

. thenext.

¢)) Atr= 0, all the paniclcs are at their mean position.

(2) After 7/8 seconds, pamcle 1 travels a certam distance upward and the
disturbance reaches particle 2.

(3) After 2778 seconds, particle 1 has reached its extreme posmon and the

 disturbance has reached particle 3.

(4) After 3778 seconds, patticle | has completed 3/8 of its vibration and the
dxsturbance has reached particle 4. The posmons of particles 2 and 3 are alao
shown in Fig. 4.1. '

(5) In this way after T/Z seconds. pamcle l has come back to its mean

. position and the particles 2, 3 and 4 are at the positions shown in the diagram.

A
¢
;
i
'
;
J
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| The dlsturbance has reached particle 5. -

In this way the process continues and the posmons of the parucles after

- 5178, 61/8, 7T/8 and T seconds are shown in thedlagram

| o
n»a\ e

o g o . o o

2T/a""i":'l"';"’:':";f‘;

- . AR e R e - S -

=

. ‘ Fig. 4L .
After T seconds, the pameles 1, 5 and 9 are at thexr mean positions. The

~ wave has reached particle 9. Particles 1 and 9 are in the same phase The wave
has travelled a distance between particles 1 and 9 in the ume in whxch the

particle 1 has completed one vibration. v
The top point on the wave at the maximum distance from the mean position

is called crest, while the point at the maximum distance below ‘the mean

position is called trough. Thus.in a transverse wave, crests and troughs are
alternately formed. The contour of the displaced particles of the medium
represents the wave. In the case of transverse (or longitudinal) progressive
waves, this contour continuously changes position in space and the wave seems
_to advance in the dlrecuon of pmpagatnon ‘
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45. Longitudinal Wave Mohonf .

In this type of wave motion, pamales of the medium ‘vibrate alon ng the

dxrectlon of propagat:on of the wave.
Consider nine particles of the medium and the circle.of reference (Fig. 4.2).
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Fig.42. ‘

The wave travels from left to right and-the paruclec vibrate about their
mean positions. After 7/8 seconds the particle 1 goes to the right and com-
pletes: 1/8 of its vibration. The disturbance reaches the particle 2. After 7/4
scconds the partncle 1 has reached its extreme right position and completes 1/4

- ofits.vibration and the particle 2 completes 1/8 of its vibration. The disturbance
reaches the particle 3: The procéss contifiues.

After one complete time period, the positions of the various particles is as
shown in the diagram. The wave has reached particle 9. Here 1 and 9 are again

- in the same phase. Here particles 1, .5 and 9 are at their mean positions. The

particles 1 and 3 are close to the particle 2. This is the position of condensation.

* Similarly particles 9 and 8 are close to the particle 7. This is also the position of

condensation or compression. On the other hand, particles 4 and 6 are far away
from the particle 5. This is the posmon of rarefaction. Hence in a Jongitudinal
wave motion, condens?s rarefactions are altemately formed

4.6. Definitio

Wavelength. It is the distancé tmvelled by the wave in the time in which
the particle of the medium completes one vibration. It is also deﬁned as the

distance between two nearest particles. in the same phase
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‘The distance AB (Fig. 4.3) is equal to the wavelength A,

|‘ 1
- Fig.43.
= \/ﬁquency Ttis the number of vibrations made by a particle in one second

\/ﬁnpﬁtude. It is the maximum displacement of the particle from its mean

position of rest. In the diagram CD is the amplitude.
\/’l(ime period. It is the time taken by a pamde to complete one vibration.

Suppose frequency =n
Time taken to complete & vibrations = 1 second.

- Time taken to complete 1 vxbranon 1 second .

From the definition of time penod tlme taken to complete one vxbratmn is
the time period (T') .

T= or nT=1"

RI--.

R Frequency X Time period = 1
Vibratjon. It is the to and fro motion of a particle from one extreme

* position to the other and back again. It is also equal to the motion of a particle

from' the mean position to one extreme posmon. then to the other extreme
position and ﬁnally ‘back to the mean position.

Phase. It is defined ‘as the ratio of the dlsplacement of the vibrating
partxcle at any instant to the amplitude of the vibrating particle or it is defined
as the fraction of the time interval that has elapsed since the particle crossed the

mean position of rest in the posmveduecuonormsalsoequaltotheangleswept

- bythetadmsvectorsmcethewbtaungpamclelastcmssednsmeanposmonof
. rest. :
‘ 4&/@; between Frequency and Wavelength .

Velocxty of the wave is the distance travelled by the wave in one second
Distance
.Time

Wavelength (A)is the distance travelled by the wave inone ume period (7).

e o Wavelengg
- : Velocxty Tmepe_t:tod T

Veloctty =

- =
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But, frequency X time penod =1

nxT=1
rol
n
AR
TT1
"

v= nk/

//Example 4.1. If the frequency of a tuning fork is 400 and the velocity of
sound in air is 320 metres/s, fmd how far sound travels, whzle the fork com-

- pletes 30nbratzons - ,
Here,; - n=400, v= 320 metres/second A= -
" Cv=n A ‘ :
or 7L=)-2=320—08metre

. Distance travelled by.the wave ‘When th&forl\ completes 1 v1brauon
. = (-8 metre
Dtstance trave}led by the wave when the fork completes 30 vxbratlons
Y =08%x30= 24metres *

/ 4.8. Propertles of Longitudmal Progressue Waves
. 1. The pamcles of the medlum vxbrate simple harmomcaﬂy along the
dlrectton of propagauon [ of the wave.
. 2. All the particles have the same amplitude, frequency and time penod
3. There is a gradual phase difference between the succeSSlve partjcles:
4. All the particles vibrating in phase will be at a distance equal to nA. Here
n =1, 2, 3 eté. It means the minimum distance between two parttcles vibrating
" in phase is equal to the wavelength.
5. The velecity of the particle is' maximum at their mean posmon and it is
zero at their extreme positions. :
6. When the pamcle moves in the same direction as the propagatxon of the
wave, it is in a region of compressxon .
7. When the particlé moves.in a direction opposite to the dlrecuon of

propagation of the wave, itisin a regton of rarefaction.
8. When the particle is at the mean posmon l[ is a reglon .of maximum

compression or rarefaction. -
9. When the particle is at the extreme posmon, the med:um around the

particles has its normal density,’ with compression on one side and rarefaction
on the other. : : .
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10. Due to the repeated periodic motion of the pamcles, compressions and
rarefactions are produced continuously. These cornpresslons and rarefactions
travel forward along the wave and transfer ¢ energy in the dxrecuon of propaga- -
tion of the wave.

4.9. Demonstration of Transverse Waves o n

_' (@) Wave Apparatus

The formation of transverse waves can be demonstrated in the laboratory
with the help of the wave motion apparatus. The apparatus consists of a veruca]
rectangular frame fixed on a horizontal base (Fig. 4.4). The axle’ passes
escentrically through a number of circular discs with grooved edges. The
circular discs are equidistant. Vertical rods carrying spherical balls at their
upper ends rest on the circumference of their respective discs. When the axle is
rotated, the rods are displaced vertically through different distances. It is
adjusted that there is a gradual phase difference between the successive rods.
Each ball will execute simple harmonic motion and will complete one vibration
in one rotation of the discs. When the-axle is continuously ro}ated with a
uniform speed, the balls show a wave pattern and the transverse wave appears
to progress in the forward direction with the formation of alternate crests and

~ troughs. It is observed that the balls move in the vertical direction and the wave . /
“advances in the horizontal ditection. Therefore, transverse waves are produced

Y

/o

Fig.4.4.

(b) Ripple Tank

The formation of ‘transverse waves. on the surface of water can.be
‘demonstrated in the laboratory with the help of ripple tank apparatus.-

The ripple tank apparatus consists of a shallow rectangular,dish with a glass
bottom. The edges of the dish are sloping outwards so as to avoid interference
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_between the direct and the reflected waves. An electrically maintained tuning

fork having a fine style fixed to one of its prongs is adjusted so that the tip of
the style just dips in water. The field of view is illuminated from below with the
help of a strong source of light Sand a condensing lens system C (Fig. 4.5).

The tuning fork is set into vibration. The style oscillates vertically up and
down and transverse waves are produced on the surface of water. These waves
originate at the tip of the style and travel radially outwards. The image of the
water surface is obtained on the screen by reflection from the mirror M. The
wave pattern is observed on the screen. . '

If a stroboscope is used so that the dish is illuminated intermittently with

- the same frequency as that of the tuning fork, a stationary pattern is obtained on

the screen.

Using the ripplev tank appafatus. interference phenomenon can be

demonstrated fixing two ‘styles to the same prong of the tuning fork.

' Fig.45. . .

In this case, amplitudé and frequency of vibrations produced by the two styles

will be the same. The interference pattern can be observed on the screen.

If instead of a style, a thin edged blade is used, plane progressije transverse

waves are produced on thg surface of water.

fime be given by

' )Naves -11

2
o
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| 410, Demonstration of Longitudinal Waves

;v ..The formation of longitud‘ihakvvawbs can bedemdhs&;téd wnth thc hé_l:pof

b a spring. One end of the spring is fixed to a handle H and the other end.is free,

i rest of the spring is in the relaxed position (Fig. 4.6). When the handle is

5

k' brought back to its original position, the compression travels forward and there

. is rarefaction between the handle and the compression. If the handle is kept
fixed at the initial position it is seen that with time, the compression and

| rarefaction travel forward as shown in Fig. 4.6. This demonstrates the forma-
v tion of longitudinal waves in which any particle on the spring vibrates simple
harmonically along the direction of propagation of the wave. . .

. .

If the handle is vibrating continuously, continuous compressions and

‘f}; rarefactions are produced alternately all along the spring.

. e r——iec

Fig.46.

411 qu'laﬂtion‘ ofa Simple Harmdnic Wave

Consider a pzirticle O'in a medium. Let the displacément at any instant of

| y=asiner . , o)
Consider another particle A at a distance x from the particle O to its right.

" Here it is assumed that the wave is travelling witha velocity v from left to right

i

ke from particle O towards A. The displacement at A is given by -
. v = asin (¢ -o) . S @

B Y
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where « is the phase differérice between the"pa;'ti‘cles O and A. For a phase
difference of 2x; the paah difference isk. Suppose for a phase difference of o,
the path dlfference isx. o

. @ _ 2
o x A
* a2
, ST .
Also @="r==

- Subsmunng the values ofa and ® in equation (2),

= a'sin Zmn 21Lr
Y A

"”) asm (vt -x) : A ()

- Equation (3) represents the equanon fora snmple harmonic wave.
Similarly for a particle at-a distance x in the negauve direction (1 e. to the

~ leftof 0), the equatxon for displacement is,

g _}f %4 sin %— (vt +x),,:, C ‘ RN C))
4.12. Differential Equation of Wave Motion

The general equatxon of a s:mple harmonic wave is,

y =a sm -21- (vt x) ) ' ) ..

: Dxfferenuatmg equauon (l) wnh rcspect to time, |
‘ : %= %‘n—fz CS)ST (vt —=x) . (@)
Differénﬁau’hg equation (2) \;vith reSpect to time, | '
‘::tf 4";‘2’”2 2 (u1- ) S )
‘ To find the value of compressxon; dnfferenuate equanon (1) thh mpect tox,
% =-2—;{‘i cos 5 (-2 )

To find the rate of change of compression with respect to distance, dif-

‘ferentiate equation (4) with respectio x,

Zx}_:—?" in = Y ‘(vifx) “ o (5)
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From equations (2) and (4) ‘
\ i)’_ = i‘l . ': '
& - o ' BN ()
From equations (3)_and o) - ‘
: oy _ o dy o -
CEs e ‘ ... (D

Equation (7) represents the differential equation of wave motion.
The general differential equation of wave motion can be written as

d’y d’y 8

3 dzz 2 . _ ,”.,()
h | Here K=9
or ‘ ..\f—

Thus, knowmg the value of X, the valuc of the wave velocny can be

calculated.

ft‘ .4.13. Particle Velocity and Wave Velocity .

The equation for a simple harmonic wave is glwn by
2% ,
y= asm-—-(m x) S . ...

" Here v is the velocity of the wave-andy is the dxsp]acemem of the particle.

The vélocity of the particle U = dy/dt.
-. Differentiating equation (1) wnh respeu totimet,

dy _ 2mav :
== = .2
U= PRl ‘cos (vt x) _ 2)
' The maximum value of the particle velocity is . .
2mav - : R
max =~ Iy ; : T e (3)

. [Maximum Particle Velocity] = -2—%‘2- [Wave Velocity)
‘ To find the particle acceleration, differentiate equation (2) with respect to time

2 A2 i
—1—"-=—4—"—‘5”—2s'in3i’5(w—x) . .4

-

f=-<3 [asm (vt — x)J ‘
TR
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16. Obtain an expression for the velocity of sound in a gas discussing in
detail Newton’s formula and Laplace's correction. What is the effect

of temperature variation on the velocity of sound in a gas.
. (Delhi, 1976)
17. Obtain an expression for the velocity of sound in air. How does the
velocity depend on humidity, temperature and pressure? What are the

other factors which influence the velecity of sound?

: [Delhi (Suppl.), 1976]
18. At what, temperature is the velocity of sound in nitrogen gas is equal
to its velocity in oxygen at 20°C. The atomic wexghts of oxygen and
nitrogen are in the ratio 16:14. , » {Delhi, 1971)
[Hint. T2 p1 =T p2] ' [Ans.16.7°]
19. Derive an expression for the excess pressure at a point in compression
waves in a ﬂuxd and hence obtain the velocity of propagation of

C_HAPTER 6

Stationa;y Waves, Interference
and Beats

6.1. Stationary Waves

waves. (Bhagalpur, 1990) , . .
20. Find an expression for the velocity of longitudinal waves through a When two sflmp:;:armomc L ———
homogeneous, elastic medium, {Guahati, 1992) waves o same : ‘
‘ g ’ n ' R amplitude, frequency and A /\ : /-\

time period travel in op- vo2 3W5 6 7
posite  directions in a _ »
straight line, the resultant . v -

wave obtained is called a . /.\ ;
statiohary or a standing . B ‘\2_/3 & SW
wave. The formation of sta- : :
tionary waves is due to the Resultant

superposition of the two ; 3 s 4 ‘S p ;
waves on the particies of :
the medium. Fig. 6.1.

The formation of stationary
‘waves can . be - represented
graphically as follows :

Consider two wave trains A
and B of the same amplitude,
frequency and  wavelength
travelling in opposite directions.
At an instant of time ¢ = 0, the
waves are as shown in Fig. 6.1.
The resultant displacement
curve is a straight line. All the
particles of the medium are at
their mean positions.




- medium are at their mean
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At time ¢t = T/4, xhe wave A will advance through a distance A/4 towards

‘ nght and the wave B will advance through a distance A/4 towards left. The

resultant displacement pattern is shown in Fig. 6.2.
The particles 1, 3,5,and 7
are at their extreme positions

A 1T _— and particles 2, 4 and 6 are at
\3/‘ ‘ 7 their mean positions. :

At time (=772, the wave A

e
: /\ " “tance /2 towards right and the

B ~ .
1 2 3 4 € 6 7 waveB will advance througha

, \/ distance A/2 towards left (with

Resuitant reference to zero time).

T2 3 4 S L The resultant displacement
Fig. 6.3, pattern is shown in Fig. 6.3.

\ /\
z\/

\
2\/

’\/

Fig. 6.4.

All the particles of the

positions. o
" At time 1 = 3T/, the
wave A will advance
through a distance '3 M4
towards right and the wave
B will advance through'a
distance 3 M4 towards left
(with reference to zero
time). Resuuant
The resultant displace-
ment ‘paftern is shown in
Fig. 6.4.:
The particles 1, 3, 5 and

-

/'\
N

\

At time ¢ = T, the wave A will advance through a distance A towards right
and the wave B will advance through a distance X towards left (with reference
to zero time). The resultant displacement pattern is shown in Fig. 6.5.

All the particles are at their mean positions.

From the patterns discussed above it is clear that the particles of the medium
<uch as 2,4, 6 etc. always remain at their mean positions. The particles such as 1,
3,5, 7 elc. continue to vibrate simple harmonically about their mean positions with
double the amplitude of cach wave. It appears as though the wave pattern is
stationary in space. The rcsul(ant displacement paucrns at intervals of time,

* 7 are at their extreme positions and 2, 4, 6 are at their mean posmons

will ‘advance through a dis-

; ATIONARY WAVES, INTERFERENCE AND BEATS, . 179
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‘ The posmons of the particles 2, 4, 6 etc. which always remain at their mean
psitions are called nodes. Node is a position of zero dlsplacement and maxi-
strain.

v u- nodes. At the antinodes, the strain i§ minimum. The d:stance betwecn any
Wo consecutive nodes or antinodes is equal to A2 . Between a node and an
inode, the amphtude gradually fiicreases from zero to maxlmum

. Propemes of Stationary Longitudi’nal Waves

” «The stationary waves are formed due to the superposmon of two simple
\ onic Iongnudmal progressive waves of the same amplitude and periodic
ne and travelling in opposxte dlrecuons The important propemes of Lhese
Javes are :
« (1) In these waves, nodes and antinodes are formed altemately Nodes are
e -positions where the particles are dt their mean positions having maximum
rain. Antinodes are the positions where the parueles vibrate with maximum :
‘ phtude having mnmmum strain.

Waves -~ 13
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