

Information Gain

- Information gain (IG) measures how much "information" a feature gives us about the class.
 - Features that perfectly partition should give maximal information.
 - Unrelated features should give no information.
- It measures the reduction in entropy.
 - Entropy: (im)purity in an arbitrary collection of examples.

Criterion of a Split

Suppose we want to split on the first variable (x_1) :

λ_1	<u> </u>	_	3	4	5	6	7	8
y	0	0	0	1	1	1	1	1

If we split at $x_1 < 3.5$, we get an optimal split. If we split at $x_1 < 4.5$, we make a mistake (misclassification).

Idea: A better split should make the samples "pure" (homogeneous).

Measures for Selecting the Best Split

Impurity measures include:

$$\mathrm{Entropy} = -\sum_{i=1}^K p_k \log_2 p_k$$

$$\mathrm{Gini} = 1 - \sum_{i=1}^K p_k^2$$

$$\mathrm{Classification\ error} = 1 - \max_i p_k$$

where p_k denotes the proportion of instances belonging to class k (K = 1, ..., k), and $0 \log_2 0 = 0$.

What is Entropy?

And how do we compute it?

Measuring Information

Consider the following probability space with a random variable that takes four values: A, B, C, and D.

If we select a random variable, it gives us information about its horizontal position.

Measuring Information

Let's say the horizontal position of the point is represented by a string of zeros and ones.

Larger regions are encoded with fewer bits; smaller regions are encoded with more bits.

Expected Information

The *expected value* is the sum over all values of the product of the probability of the value and the value.

Expected Information

Each time a region of color got smaller by one half:

- The number of bits of information we got when it did happen went up by one.
- The change that it did happen went down by a factor of $\frac{1}{2}$.

That is, the information of an event *x* is the logarithm of one over its probability:

$$Information(x) = \log_2\left(\frac{1}{P(R=x)}\right)$$

Expected Information

So in general, the expected information or "entropy" of a random variable is the same as the expected value with the Value filled in with the Information:

Entropy of
$$R = \sum_{x} P(R = x) \cdot Information(x)$$

$$= \sum_{x} P(R = x) \cdot \log_2 \left(\frac{1}{P(R = x)}\right)$$

$$= -\sum_{x} P(R = x) \cdot \log_2 P(R = x)$$

Properties of Entropy

Maximized when elements are heterogeneous (impure):

If
$$p_k = \frac{1}{k}$$
, then
$$\text{Entropy} = H = -K \cdot \frac{1}{k} \log_2 \frac{1}{k} = \log_2 K$$

Minimized when elements are homogenous (pure):

If
$$p_i = 1$$
 or $p_i = 0$, then
Entropy = $H = 0$

Information Gain

With entropy defined as:

$$H = -\sum_{i=1}^{K} p_k \log_2 p_k$$

Then the change in entropy, or *Information Gain*, is defined as:

$$\Delta H = H - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$$

where m is the total number of instances, with m_k instances belonging to class k, where K = 1, ..., k.

12

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

13

Outlook	Temperature	Humidita		<u>.</u>
		Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

$$H(Y) = -\sum_{i=1}^{K} p_k \log_2 p_k$$
$$= -\frac{5}{14} \log_2 \frac{5}{14} - \frac{9}{14} \log_2 \frac{9}{14}$$
$$= 0.94$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

$$InfoGain(Humidity) = H(Y) - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$$
$$= 0.94 - \frac{7}{14} H_L - \frac{7}{14} H_R$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

$$InfoGain(Humidity) = H(Y) - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$$

$$0.94 - \frac{7}{14} H_L - \frac{7}{14} H_R$$

$$H_L = -\frac{6}{7}\log_2\frac{6}{7} - \frac{1}{7}\log_2\frac{1}{7}$$

16

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

InfoGain(Humidity) =
$$H(Y) - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$$

$$0.94 - \frac{7}{14} H_L - \frac{7}{14} H_R$$

$$H_L = -\frac{6}{7} \log_2 \frac{6}{7} - \frac{1}{7} \log_2 \frac{1}{7}$$

$$= 0.592$$

= 0.592

$$H_R = -\frac{3}{7}\log_2\frac{3}{7} - \frac{4}{7}\log_2\frac{4}{7}$$
= 0.985

17

Information Gain: Example

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

 $InfoGain(Humidity) = H(Y) - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$ $0.94 - \frac{7}{14} 0.592 - \frac{7}{14} 0.985$ = 0.94 - 0.296 - 0.4925 = 0.1515

- Information gain for each feature:
 - Outlook = 0.247
 - -Temperature = 0.029
 - Humidity = 0.152
 - -Windy = 0.048
- Initial split is on outlook, because it is the feature with the highest information gain.

Now we search for the best split at the next level:

Temperature = 0.571

19

Windy = 0.020

Humidity = 0.971

The final decision tree:

Note that not all leaves need to be pure; sometimes similar (even identical) instances have different classes. Splitting stops when data cannot be split any further.

Gini Index

The Gini index is defined as:

$$Gini = 1 - \sum_{i=1}^{K} p_k^2$$

where p_k denotes the proportion of instances belonging to class k (K = 1, ..., k).

Gini Index Properties

Maximized when elements are heterogeneous (impure):

If
$$p_k = \frac{1}{k}$$
, then

Gini =
$$1 - \sum_{k=1}^{K} \frac{1}{k^2} = 1 - \frac{1}{k}$$

Minimized when elements are homogenous (pure):

If
$$p_i = 1$$
 or $p_i = 0$, then

$$Gini = 1 - 1 - 0 = 0$$

Gini Index Example

Suppose we want to split on the first variable (x_1) :

$$Gini = 1 - {3/8}^2 - {5/8}^2 = {15/32}$$
If we split at $x_1 < 3.5$: $\Delta Gini = \frac{15}{32} - \frac{3}{8} \cdot 0 - \frac{5}{8} \cdot 0 = {15/32}$

If we split at
$$x_1 < 4.5$$
: $\Delta Gini = \frac{15}{32} - \frac{4}{8} \cdot \frac{3}{8} - \frac{4}{8} \cdot 0 = \frac{9}{32}$

Classification Error

The classification error is defined as:

Classification error =
$$1 - \max_{i} p_k$$

where p_k denotes the proportion of instances belonging to class k (K = 1, ..., k).

Classification Error Properties

Tends to create impure nodes:

Splitting at b has lower classification error than a, but results in both nodes being impure.

Splitting Based on Nominal Features

Multi-way split: Use as many partitions as distinct values.

• **Binary split:** Divides values into two subsets. Need to find optimal partitioning.

Splitting Based on Continuous Features

- Discretization: Form an ordinal categorical feature
 - Static: discretize once at the beginning (global)
 - Dynamic: discretize ranges at different levels (local)

• **Binary decision:** Consider all possible splits and finds the best cut.

Highly Branching Features

- Features with a large number of values can be problematic
 - -e.g.: ID code
- Subsets are more likely to be pure if there are a large number of values
 - Information gain is biased toward choosing features with a large number of values
 - The selection of a feature that is non-optimal for predication can result in *overfitting*.

Dataset with Highly Branching Features

ID	Outlook	Temperature	Humidity	Windy	Play
A	Sunny	Hot	High	False	No
В	Sunny	Hot	High	True	No
С	Overcast	Hot	High	False	Yes
D	Rainy	Mild	High	False	Yes
E	Rainy	Cool	Normal	False	Yes
F	Rainy	Cool	Normal	True	No
G	Overcast	Cool	Normal	True	Yes
Н	Sunny	Mild	High	False	No
\mathbf{I}	Sunny	Cool	Normal	False	Yes
$\dots \dots $	Rainy	Mild	Normal	False	Yes
K	Sunny	Mild	Normal	True	Yes
L	Overcast	Mild	High	True	Yes
M	Overcast	Hot	Normal	False	Yes
N	Rainy	Mild	High	True	No

IG with Highly Branching Features

The entropy of the split is 0, since each leaf node is "pure", having only one case.

Gain Ratio

- A modification of information gain that reduces its bias on highly branching features.
- It takes into account the number and size of branches when choosing a feature.
- It does this by normalizing information gain by the "intrinsic information" of a split, which is defined as the information need to determine the branch to which an instance belongs.

Intrinsic Information

 The intrinsic information represents the potential information generated by splitting the dataset into v partitions:

IntrinsicInfo(D) =
$$-\sum_{j=1}^{v} \frac{|D_j|}{D} \cdot \log_2\left(\frac{|D_j|}{D}\right)$$

- High intrinsic info: partitions have more or less the same size
- Low intrinsic info: few partitions hold most of the tuples.

Gain Ratio Defined

The gain ratio is defined as:

$$GainRatio(F) = \frac{Gain(F)}{IntinsicInfo(F)}$$

• The feature with the maximum gain ratio is selected as the splitting feature.

Comparing Feature Selection Measures

- Information Gain
 - Biased toward multivalued features.
- Gain Ratio
 - Tends to prefer unbalanced splits in which one partition is much smaller than the other.
- Gini Index
 - Has difficulties when the number of classes is large.
 - Favors tests that result in equal-sized partitions with purity.
- Classification Error
 - No. Just, no.

