CE 414: Prestressed Concrete Lecture 9 Flexural Analysis (Contd. III)

Course Instructor: Saurav Barua

Assistant Professor, Department of Civil Engineering, DIU

Email: saurav.ce@diu.edu.bd

Phone: 01715334075

Contents

- ☐ Flanged section
- Moment for flanged section
- Moment for web section

Fig. 5-18. Flanged section .

sion and tension forces at ultimate. The commentary of the ACI Code contains equations for M_u to cover this case which it terms "flanged section."

$$M_{u} = \phi \left[A_{pw} f_{ps} \left(d - \frac{a}{2} \right) + 0.85 f_{c}^{"} (b - b_{w}) h_{f} \left(d - \frac{h_{f}}{2} \right) \right]$$
 (5-25)

where

$$A_{pw} = A_{ps} - A_{pf} \tag{5-26}$$

and

$$A_{pf} = 0.85 f_c' (b - b_w) h_f / f_{ps}$$
 (5-27)

EXAMPLE 5-9

The same I-shaped prestressed concrete beam as example 5-8 but the steel area is increased to $A_{ps} = 3.67$ in.² The effective steel stress remains 160 ksi. The c.g.s. of the strands is 4.5 in. above the bottom of the beam as shown in Fig. 5-19 along with the

Fig. 5-19. Example 5-9.

shape of the cross section: material properties are same as example 5-8: $f_{pu} = 270$ ksi, $f'_c = 7000$ psi. Find the ultimate resisting moment for the section for design following the ACI Code. $(A_{ps} = 2368 \text{ mm}^2, f_{se} = 1103 \text{ N/mm}^2, f_{pu} = 1862 \text{ N/mm}^2, \text{ and } f'_c = 48 \text{ N/mm}^2)$ Solution

$$\rho_p = \frac{3.67}{(18)(31.5)} = 0.00647$$

Use equation 5-15 to estimate steel stress at ultimate.

$$f_{ps} = 270,000 \left[1 - (0.5)(0.00647) \left(\frac{270,000}{7,000} \right) \right]$$

 $f_{ps} = 236,000 \text{ psi} = 236 \text{ ksi } (1627 \text{ N/mm}^2)$

Check the reinforcement index after the flanged section is evaluated below.

Referring to Fig. 5-18 and 5-19 determine the extent of the compression zone

$$T'(total) = (3.67)(236) = 866 \text{ k} (3,852 \text{ kN})$$

Area of compression zone =
$$\frac{866}{0.85f_c'}$$
 = 145.5 in.² (93.87×10³ mm²)

Flange area =
$$18 \times 7$$
 = $126.0 \text{ in.}^2 (81.29 \times 10^3 \text{ mm}^2)$

Web area below flange =
$$19.5 \text{ in.}^2 (12.58 \times 10^3 \text{ mm}^2)$$

$$a = 7 + \frac{19.5}{5.5} = 7 + 3.55 = 10.55$$
 in. (268 mm)

This verifies that the section is behaving as "flanged" as shown by Fig. 5-18 and M_{u} can now be evaluated.

Referring to Fig. 5-18 and using ACI Commentary equations

$$A_{pf} = (0.85)(7000)(18.0 - 5.5)(7)/236,000 = 2.21 \text{ in.}^2 (1426 \text{ mm}^2)$$
 (5-27)

$$A_{pw} = 3.67 - 2.21 = 1.46 \text{ in.}^2 (942 \text{ mm}^2)$$
 (5-26)

Check reinforcement index for the flanged section;

$$\rho_{pw} = A_{pw}/b_w d = 1.46/(5.5)(31.5) = 0.00843$$

$$\omega_{pw} = (0.00843)(236,000)/7000 = 0.284 < 0.30$$

$$M'$$
 for web part = $A_{pw} f_{ps} \left(d - \frac{a}{2} \right)$
 $M'_{web} = (1.46)(236) \left(31.5 - \frac{10.55}{2} \right) = 9,040 \text{ in.-k} (1,021.5 \text{ kN} - \text{m})$
 M' for flange part = $0.85 f'_c (b - b_w) h_f \left(d - \frac{h_f}{2} \right)$
 $M'_{flange} = (0.85)(7.0)(18.0 - 5.5)(7)(31.5 - 7/2) = 14,580 \text{ in.-k} (1647.5 \text{ kN} - \text{m})$
 $M'_{total} = 9040 + 14,580 = 23,620 \text{ in.-k} (2669 \text{ kN} - \text{m}) = M_n$

we may write it in the form:

$$M_u = \phi \left[M'_{\text{web}} + M'_{\text{flange}} \right] = \phi \left[M'_{\text{total}} \right]$$

thus

$$M_u = (0.9)(23,620) = 21,260 \text{ in.-k} (2,402 \text{ kN} - \text{m})$$