1

Data Understanding

Data Preprocessing Classification

Information Gain

- Information gain (IG) measures how much "information" a feature gives us about the class.
	- Features that perfectly partition should give maximal information.
	- Unrelated features should give no information.
- It measures the reduction in **entropy**.
	- Entropy: (im)purity in an arbitrary collection of examples.

2

Data Understanding

Data Preprocessing Classification

& Regression

Criterion of a Split

Suppose we want to split on the first variable (x_1) :

If we split at $x_1 < 3.5$, we get an optimal split. If we split at $x_1 < 4.5$, we make a mistake (misclassification).

> Idea: *A better split should make the samples "pure" (homogeneous).*

Data Understanding

Data <u>Preprocessing</u> Classification
Reprocessing Repression

& Regression

Measures for Selecting the Best Split

Impurity measures include:

$$
\text{Entropy} = -\sum_{i=1}^{K} p_k \log_2 p_k
$$
\n
$$
\text{Gini} = 1 - \sum_{i=1}^{K} p_k^2
$$
\n
$$
\text{Classification error} = 1 - \max_{i} p_k
$$

where p_k denotes the proportion of instances belonging to class k ($K = 1, ..., k$), and $0 \log_2 0 = 0$. 3

4

Data Understanding

Data
Preprocessing Preprocessing
Example 2 Regression

What is Entropy?

And how do we compute it?

5

Data Understanding

Data <u>Pata</u>
Preprocessing Classification
Repression

& Regression

Measuring Information

Consider the following probability space with a random variable that takes four values: A, B, C , and D .

If we select a random variable, it gives us information about its horizontal position.

6

Data Understanding

Data Preprocessing Classification

& Regression

Measuring Information

Let's say the horizontal position of the point is represented by a string of zeros and ones.

Larger regions are encoded with fewer bits; smaller regions are encoded with more bits.

7

Data Understanding

Data Preprocessing Classification
R. Boggesing

& Regression

Expected Information

The *expected value* is the sum over all values of the product of the probability of the value and the value.

8

Data Understanding

Data Preprocessing Classification

& Regression

Expected Information

Each time a region of color got smaller by one half:

– The number of bits of information we got when it did happen went up by one.

– The change that it did happen went down by a factor of $\frac{1}{2}$.

That is, the information of an event x is the logarithm of one over its probability: . 1919. godine u predstavanje u predstavanje u predstavanje u predstavanje u predstavanje u predstavanje u pre
Dogodine u predstavanje u predstavanje u predstavanje u predstavanje u predstavanje u predstavanje u predstav

$$
Information(x) = \log_2\left(\frac{1}{P(R = x)}\right)
$$

9

Data Understanding

Data Preprocessing Classification

Expected Information

So in general, the expected information or "entropy" of a random variable is the same as the expected value with the Value filled in with the Information:

Entropy of
$$
R = \sum_{x} P(R = x) \cdot Information(x)
$$

= $\sum_{x} P(R = x) \cdot log_2 \left(\frac{1}{P(R = x)}\right)$
= $-\sum_{x} P(R = x) \cdot log_2 P(R = x)$

Data **Understanding**

Data <u>Preprocessing</u> Classification
R. Boggessing

& Regression

Properties of Entropy

Maximized when elements are heterogeneous (impure):

If
$$
p_k = \frac{1}{k}
$$
, then
Entropy = $H = -K \cdot \frac{1}{k} \log_2 \frac{1}{k} = \log_2 K$

Minimized when elements are homogenous (pure): If $p_i = 1$ or $p_i = 0$, then Entropy = $H = 0$

Data Understanding

Data Preprocessing Classification
R. Boggesing

& Regression

Information Gain

With entropy defined as:

$$
H = -\sum_{i=1}^{K} p_k \log_2 p_k
$$

Then the change in entropy, or *Information Gain*, is defined as:

$$
\Delta H = H - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R
$$

where *m* is the total number of instances, with m_k instances belonging to class k, where $K = 1, ..., k$.

Data Understanding Data
Preprocessing Preprocessing
Example 2 Regression

Information Gain: Example

Data Understanding Data
Preprocessing Preprocessing
Example 2 Regression

Information Gain: Example

 $H(Y) = -\sum p_k \log_2 p_k$ \boldsymbol{K} $i=1$ $= -\frac{5}{4}$ $rac{5}{14}$ log₂ $rac{5}{14}$ 14 $-\frac{9}{1}$ $\frac{9}{14}$ log₂ $\frac{9}{14}$ 14 $= 0.94$

Data Understanding

Data <u>Data</u>
Preprocessing Classification
Repression

& Regression

Information Gain: Example

 $InfoGain(Humidity) =$ $H(Y)$ – $\stackrel{\rightharpoonup }{m_L}$ \overline{m} H_L $\breve{m_R}$ \overline{m} H_R $= 0.94 -$ 7 $\frac{1}{14}H_L$ – 7 $\frac{1}{14}H_R$

Data Understanding

Data Data
Preprocessing Classification
Reconservation

& Regression

Information Gain: Example

 $InfoGain(Humidity) =$ $H(Y)$ – \grave{m}_L \overline{m} H_L – $\widetilde m_R^{}$ \overline{m} $H_R^{\rm{}}$ 0.94 − 7 $\frac{1}{14}H_L$ – 7 $\frac{1}{14}H_R$

 $H_L = -\frac{6}{7}$ $\frac{6}{7}$ log₂ $\frac{6}{7}$ 7 $-\frac{1}{7}$ $\frac{1}{7}$ log₂ $\frac{1}{7}$ 7

Data Understanding

Data Data
Preprocessing Classification
Repression

& Regression

Information Gain: Example

 $InfoGain(Humidity) =$ $H(Y)$ – $\stackrel{\rightharpoonup}{m_L}$ \overline{m} H_L $\stackrel{\sim}{m_R}$ \overline{m} H_R 0.94 − 7 $\frac{1}{14}H_L$ – 7 $\frac{1}{14}H_R$

$$
H_L = -\frac{6}{7} \log_2 \frac{6}{7} - \frac{1}{7} \log_2 \frac{1}{7}
$$

= 0.592

$$
H_R = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7}
$$

= 0.985

Data Understanding

Data Data
Preprocessing Classification
Repression

& Regression

Information Gain: Example

 $InfoGain(Humidity) =$ $H(Y)$ – $\stackrel{\rightharpoonup }{m_L}$ \overline{m} $H_L =$ $\widetilde{m_R}$ \overline{m} H_R 0.94 − 7 $\frac{1}{14}$ 0.592 − 7 $\frac{1}{14}$ 0.985 $= 0.94 - 0.296 - 0.4925$ $= 0.1515$

Data Understanding

Data Preprocessing Classification

& Regression

Information Gain: Example

- Information gain for each feature:
	- $-$ Outlook = 0.247
	- $-$ Temperature = 0.029
	- $-$ Humidity = 0.152
	- $-Windy = 0.048$
- Initial split is on outlook, because it is the feature with the highest information gain.

Preprocessing Classification
Reconservation Classification

& Regression

• Now we search for the best split at the next level:

Data

Data Understanding

Temperature $= 0.571$ Windy $= 0.020$ Humidity $= 0.971$

Preliminaries

Data Understanding

Data <u>Preprocessing</u> Classification
R. Boggessing

& Regression

Information Gain: Example

• The final decision tree:

Note that not all leaves need to be pure; sometimes similar (even identical) instances have different classes. Splitting stops when data cannot be split any further.

21

Data Understanding

Data Data
Preprocessing Classification
Reconservation

& Regression

Gini Index

The Gini index is defined as:

$$
Gini = 1 - \sum_{i=1}^{K} p_k^2
$$

where p_k denotes the proportion of instances belonging to class k ($K = 1, ..., k$).

Data Understanding

Data <u>Preprocessing</u> Classification
Reprocessing Repression

& Regression

Gini Index Properties

Maximized when elements are heterogeneous (impure): If $p_k =$ 1 \boldsymbol{k} , then $Gini = 1 - \sum$ 1 $k²$ $= 1 -$ 1 \overline{k} K $k=1$

Minimized when elements are homogenous (pure): If $p_i = 1$ or $p_i = 0$, then Gini = $1 - 1 - 0 = 0$ 22

Data Understanding

Data <u>Data</u>
Preprocessing Classification
Regression

& Regression

Gini Index Example

Suppose we want to split on the first variable (x_1) :

x_1	1	2	3	4	5	6	7	8
y	0	0	0	1	1	1	1	1

$$
Gini = 1 - \left(\frac{3}{8}\right)^2 - \left(\frac{5}{8}\right)^2 = \frac{15}{32}
$$

If we split at $x_1 < 3.5$: $\Delta Gini = \frac{15}{32} - \frac{3}{8} \cdot 0 - \frac{5}{8} \cdot 0 = \frac{15}{32}$
If we split at $x_1 < 4.5$: $\Delta Gini = \frac{15}{32} - \frac{4}{8} \cdot \frac{3}{8} - \frac{4}{8} \cdot 0 = \frac{9}{32}$

Data Understanding

Data Preprocessing Classification

Classification Error

The classification error is defined as: Classification error = $1 - max$ \boldsymbol{i} p_k

where p_k denotes the proportion of instances belonging to class k $(K = 1, ..., k)$.

Data Understanding

Data Preprocessing Classification

& Regression

Classification Error Properties

Tends to create impure nodes:

Splitting at b has lower classification error than a , but results in both nodes being impure.

Preliminaries Data Data Preprocessing Classification
R. Boggesing Understanding & Regression

Splitting Based on Nominal Features

• **Multi-way split:** Use as many partitions as distinct values.

• **Binary split:** Divides values into two subsets. Need to find optimal partitioning.

Splitting Based on Continuous Features

& Regression

Preprocessing Classification

Data

• **Discretization**: Form an ordinal categorical feature – Static: discretize once at the beginning (global) – Dynamic: discretize ranges at different levels (local)

• **Binary decision:** Consider all possible splits and finds the best cut.

Preliminaries

Data Understanding

Data Understanding

Data Preprocessing Classification

& Regression

Highly Branching Features

- Features with a large number of values can be problematic – e.g.: ID code
- Subsets are more likely to be pure if there are a large number of values
	- Information gain is biased toward choosing features with a large number of values
	- The selection of a feature that is non-optimal for predication can result in *overfitting*.

Data **Understanding**

Data Preprocessing Classification
R. Recression

& Regression

Dataset with Highly Branching Features

Preliminaries Data Data Preprocessing Classification
Reconservation Classification Understanding & Regression

IG with Highly Branching Features

The entropy of the split is 0, since each leaf node is "pure", having only one case.

Data Understanding

Data Preprocessing Classification

Gain Ratio

- A modification of information gain that reduces its bias on highly branching features.
- It takes into account the number and size of branches when choosing a feature.
- It does this by normalizing information gain by the "*intrinsic information*" of a split, which is defined as the information need to determine the branch to which an instance belongs.

Data Understanding

Data Preprocessing Classification
References

Intrinsic Information

• The intrinsic information represents the potential information generated by splitting the dataset into ν partitions:

$$
IntrinsicInfo(D) = -\sum_{j=1}^{v} \frac{|D_j|}{D} \cdot \log_2\left(\frac{|D_j|}{D}\right)
$$

• High intrinsic info: partitions have more or less the same size • Low intrinsic info: few partitions hold most of the tuples.

Data Understanding

Data **Preprocessing Classification**
8. Boomssing

& Regression

Gain Ratio Defined

• The gain ratio is defined as:

$GainRatio(F) =$ Gain(F IntinsicInfo(F

• The feature with the maximum gain ratio is selected as the splitting feature.

Data Preprocessing Classification

Comparing Feature Selection Measures

- Information Gain
	- Biased toward multivalued features.
- Gain Ratio
	- Tends to prefer unbalanced splits in which one partition is much smaller than the other.
- Gini Index
	- Has difficulties when the number of classes is large.
	- Favors tests that result in equal-sized partitions with purity.
- Classification Error
	- No. Just, no.