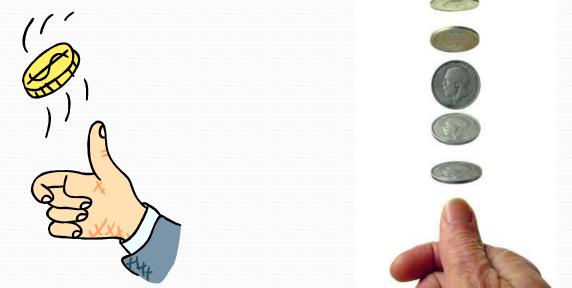
BAYES RULE

Probability

• **Probability** is the measure of the likelihood that an event will occur. Probability is quantified as a number between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty).

Example

• A simple example is the toss of a fair (unbiased) coin. Since the two outcomes are equally probable, the probability of "heads" equals the probability of "tails", so the probability is 1/2 (or 50%) chance of either "heads" or "tails".



Conditional Probability

a conditional probability measures the probability of an event given that (by assumption, presumption, assertion or evidence) another event has occurred. If the event of interest is *A* and the event *B* is known or assumed to have occurred, "the conditional probability of *A* given *B*", or "the probability of *A* under the condition *B*", is usually written as *P*(*A*|*B*)

When to Apply Bayes' Theorem

- Part of the challenge in applying Bayes' theorem involves recognizing the types of problems that warrant its use. You should consider Bayes' theorem when the following conditions exist.
- Within the sample space, there exists an event B, for which P(B) > 0.
- The analytical goal is to compute a conditional probability of the form: $P(A_k | B)$.
- You know at least one of the two sets of probabilities described below.
 - P($A_k \cap B$) for each A_k
 - P(A_k) and P($B | A_k$) for each A_k

BAYES RULE

- The Bayes Theorem was developed and named for Thomas Bayes(1702-1761)
- Show the Relation between one conditional probability and its inverse.
- Provide a mathematical rule for revising an estimate or forecast in light of experience and observation.

In the 18th Century, Thomas Bayes,

> Ponder this question:

"Does God really exist?"

•Being interested in the mathematics, he attempt to develop a formula to arrive at the probability that God does exist based on the evidence that was available to him on earth.

Later, **Laplace** refined **Bayes' work** and gave it the name "Bayes' Theorem".

Definition

 In probability theory and statistics, Bayes' theorem (alternatively Bayes' law or Bayes' rule) describes the probability of an event, based on conditions that might be related to the event.

$$P(A/B) = \frac{P(B/A)P(A)}{P(B)}$$

• Bayes' Theorem is a method of revising a probability, given that additional information is obtained. For two event:

$$P(A/B) = \frac{P(B/A)P(A)}{P(B)}$$

Explanation...

- Where A and B are events:
- P(A) and P(B) are the probabilities of A and B without regard to each other.
- P(A | B), a conditional probability, is the probability of observing event A given that B is true.
- P(B | A) is the probability of observing event B given that A is true.

Bayesian inference

• **Bayesian inference** is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as evidence. It Involves:

Prior Probability:

The initial Probability based on the present level of information.

Posterior Probability:

A revised Probability based on additional information.

Example of Bayes Rule

 Marie is getting married tomorrow, at an outdoor ceremony in the desert. In recent years, it has rained only 5 days each year. Unfortunately, the weatherman has predicted rain for tomorrow. When it actually rains, the weatherman correctly forecasts rain 90% of the time. When it doesn't rain, he incorrectly forecasts rain 10% of the time. What is the probability that it will rain on the day of Marie's wedding?

- The sample space is defined by two mutually-exclusive events - it rains or it does not rain. Additionally, a third event occurs when the weatherman predicts rain. Notation for these events appears below.
- \succ Event A₁. It rains on Marie's wedding.
- > Event A_2 . It does not rain on Marie's wedding.
- > Event B. The weatherman predicts rain.

• In terms of probabilities, we know the following:

> P(A₁) = 5/365 = 0.0136985 [It rains 5 days out of the year.]

- > $P(A_2) = 360/365 = 0.9863014$ [It does not rain 360 days out of the year.]
- > P(B | A_1) = 0.9 [When it rains, the weatherman predicts rain 90% of the time.]
- > P(B | A_2) = 0.1 [When it does not rain, the weatherman predicts rain 10% of the time.]

We want to know $P(A_1 | B)$, the probability it will rain on the day of Marie's wedding, given a forecast for rain by the weatherman. The answer can be determined from Bayes' theorem, as shown below.

 $P(A_1) P(B | A_1)$

 $P(A_{1} | B) = \frac{P(A_{1}) P(B | A_{1}) + P(A_{2}) P(B | A_{2})}{P(A_{1} | B) = (0.014)(0.9) / [(0.014)(0.9) + (0.986)(0.1)]}$ $P(A_{1} | B) = 0.111$

THANK YOU !!!