K-MEAN Clustering

Dr. Fizar Ahmed

What is k-mean clustering

K-mean clustering is an iterative algorithm that tries to partition the dataset into K pre-defined distinct non-overlapping subgroups (clusters) where each data point belongs to only one group.

The way kmeans algorithm works is as follows:

- Specify number of clusters K.
- Initialize centroids by first shuffling the dataset and then randomly selecting K data points for the centroids without replacement.
- Keep iterating until there is no change to the centroids. i.e assignment of data points to clusters isn't changing.
- Compute the sum of the squared distance between data points and all centroids.
- Assign each data point to the closest cluster (centroid).
- Compute the centroids for the clusters by taking the average of the all data points that belong to each cluster.

Flowchart of k-means clustering algorithm

Application of K-MEAN Clustering

Apply K-Mean Clustering for the following data sets for two clusters. Tabulate all the assignments.

Sample No	X	Y
1	185	72
2	170	56
3	168	60
4	179	68
5	182	72
6	188	77

• Given k = 2

Initial Centroid

Cluster	X	Y
k1	185	72
k2	170	56

Calculate Euclidean distance using the given equation.

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^2 + (x-b)^2}$$

Initial Centroid

Cluster	X	Y
k1	185	72
k2	170	56

• Calculate Euclidean distance using the given equation.

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^2 + (x-b)^2}$$

Cluster 1 (185,72)=
$$\sqrt{(185-185)^2+(72-72)^2}=0$$

Distance from Cluster 2 = $\sqrt{(170-185)^2+(56-72)^2}$

Distance from Cluster
$$2 = \sqrt{(170 - 185)^2 + (56 - 72)^2}$$

 $(170,56) = \sqrt{(-15)^2 + (-16)^2}$

$$=\sqrt{255+256}$$

 $=\sqrt{481}$

Calculate Euclidean distance using the given equation.

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^2 + (x-b)^2}$$

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^{-1}(x-b)^{-2}}$$

Distance from Cluster $1 = \sqrt{(185 - 170)^2 + (72 - 56)^2}$
 $= \sqrt{(15)^2 + (16)^2}$
 $= \sqrt{255 + 256}$
 $= \sqrt{481}$
 $= 21.93$
Cluster $2(170,56) = \sqrt{(170 - 170)^2 + (56 - 56)^2} = 0$

	Centroid		
Cluster	X	Y	ASSIGNMENT
k1	0	21.93	1
k2	21.93	0	2

Calculate Euclidean distance for the next dataset (168,60)

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^2 + (x-b)^2}$$

Distance from Cluster
$$1 = \sqrt{(168 - 185)^2 + (60 - 72)^2}$$

(185,72)
$$= \sqrt{(-17)^2 + (-12)^2}$$

= 20.808

$$(185,72) = \sqrt{(-17)^2 + (-12)^2}$$

$$= \sqrt{283 + 144}$$

$$= \sqrt{433}$$

Distance from Cluster
$$I = \sqrt{(168 - 185)^2 + (60 - 72)^2}$$

$$(185,72) = \sqrt{(-17)^2 + (-12)^2}$$

Calculate Euclidean distance for the next dataset (168,60)

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^2 + (x-b)^2}$$

Distance from Cluster
$$2 = \sqrt{(168 - 170)^2 + (60 - 56)^2}$$

(170,56)
$$= \sqrt{(-2)^2 + (-4)^2}$$

$$= \sqrt{4 + 16}$$

$$= \sqrt{20}$$

$$=4.472$$

		Euclidean Di	stance
Dataset	Cluster 1	Cluster 2	ASSIGNMENT
(168,60)	20.808	4.472	2

Update the cluster centroid.

Cluster	X	Y
k1	185	72
k2	= (170 + 168)/2 $= 169$	= (60+56)/2 = 58

Calculate Euclidean distance for the next dataset (179,68)

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^2 + (x-b)^2}$$

Distance from Cluster
$$1 = \sqrt{(179 - 185)^2 + (68 - 72)^2}$$

 $(185,72) = \sqrt{(-6)^2 + (-4)^2}$

$$(185,72) = \sqrt{(-6)^2 + (-4)^2}$$

$$= \sqrt{36 + 16}$$

= 7.211103

$$= \sqrt{36 + 16}$$
$$= \sqrt{52}$$

Distance from Cluster
$$1 = \sqrt{(179 - 185)^2 + (68 - 72)^2}$$

■ Calculate Euclidean distance for the next dataset (179,68)

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^2 + (x-b)^2}$$

Distance from Cluster
$$2 = \sqrt{(179 - 169)^2 + (68 - 58)^2}$$

$$(169,58) = \sqrt{(10)^2 + (10)^2}$$

$$= \sqrt{100 + 100}$$

$$= \sqrt{100 + 100}$$

$$= \sqrt{200}$$

$$= 14.14214$$

	Euclidean Distance		istance
Dataset	Cluster 1	Cluster 2	ASSIGNMENT
(179,68)	7.211103	14.14214	1

 ${f U}$ pdate the cluster centroid.

Cluster	X	Y
k1	= 185+179/2 =182	= 72+68/2 =70
k2	169	58

Calculate Euclidean distance for the next dataset (182,72)

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^2 + (x-b)^2}$$

Distance from Cluster
$$1 = \sqrt{(182 - 182)^2 + (72 - 70)^2}$$

Distance from Cluster 1 =
$$\sqrt{(182 - 182)^2 + (72 - 70)^2}$$

$$(182,70) = \sqrt{(0)^2 + (2)^2}$$

$$(182,70) = \sqrt{(0)^2 + (2)^2}$$

$$= \sqrt{0 + 4}$$

$$= \sqrt{0+4}$$

$$= \sqrt{4}$$

$$= \sqrt{0 + 4}$$

$$= \sqrt{4}$$

$$= 2$$

Calculate Euclidean distance for the next dataset (182,72)

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^2 + (x-b)^2}$$

Distance from Cluster
$$2 = \sqrt{(182 - 169)^2 + (72 - 58)^2}$$

 $(169,58) = \sqrt{(13)^2 + (14)^2}$

$$=\sqrt{169+196}$$

$$=\sqrt{169+196}$$

= $\sqrt{365}$

	Euclidean Distance		
Dataset	Cluster 1	Cluster 2	ASSIGNMENT
(182,72)	2	19.10	1

Update the cluster centroid.

Cluster	X	Y
k1	= 182 + 182/2 = 182	= 70+72/2 = 71
k2	169	58

Calculate Euclidean distance for the next dataset (188,77)

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^2 + (x-b)^2}$$

Distance from Cluster
$$1 = \sqrt{(188 - 182)^2 + (77 - 71)^2}$$

Distance from Cluster
$$1 = \sqrt{(188 - 182)^2 + (77 - 71)^2}$$

 $= \sqrt{(6)^2 + (6)^2}$

$$(182,71) = \sqrt{(6)^2 + (6)^2}$$

$$= \sqrt{36 + 36}$$

 $=\sqrt{72}$

= 8.4852

$$(182,71) = \sqrt{(6)^2 + (6)^2}$$

	Euclidean Distance		
Dataset	Cluster 1	Cluster 2	ASSIGNMENT
(188,77)	8.4852	26.87	1

Updated cluster centroid.

Cluster	X	Y
k1	= 182 + 188/2 = 185	= 71+77/2 = 74
k2	169	58

Final Assignment

Dataset No	X	Y	Assignment
1	185	72	1
2	170	56	2
3	168	60	2
4	179	68	1
5	182	72	1
6	188	77	1

Thank you