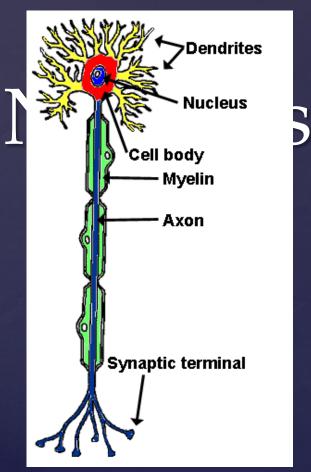

Neural Network

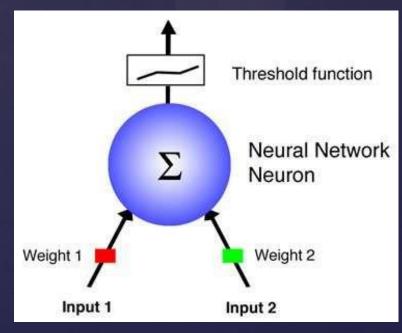
Dr. Fizar Ahmed

Contents

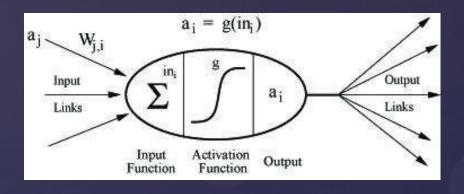
- .Introduction to Neural Network
- .Neurons
- .Activation Function
- .Types of Neural Network
- .Learning In Neural Networks
- .Application of Neural Network
- .Advantages of Neural Network
- .Disadvantages Of Neural Network


Neural Networks

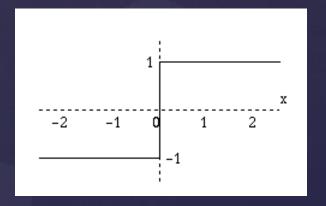
- A method of computing, based on the interaction of multiple connected processing elements.
- A powerful technique to solve many real world problems.
- The ability to learn from experience in order to improve their performance.
- Ability to deal with incomplete information

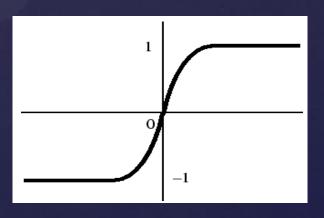

Basics Of Neural Network

- Biological approach to AI
- Developed in 1943
- Comprised of one or more layers of neurons
- Several types, we"ll focus on feed-forward and feedback networks


Biological

Artificial


Neural Network Neurons



- Receives n-inputs
- Multiplies each input by its weight
- Applies
 activation
 function to the
 sum of results
- Outputs result

Activation Functions

- Controls when unit is "active" or "inactive"
- Threshold
 function outputs
 1 when input is
 positive and 0
 otherwise
- Sigmoid function $= 1 / (1 + e^{-x})$

Types of Neural Networks

Neural Network types can be classified based on following attributes:

Connection Type

- Static (feedforward)
- Dynamic (feedback)

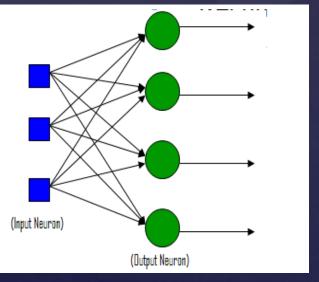
Topology

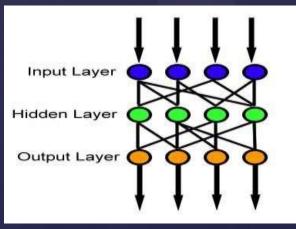
- Single layer
- Multilayer
- Recurrent

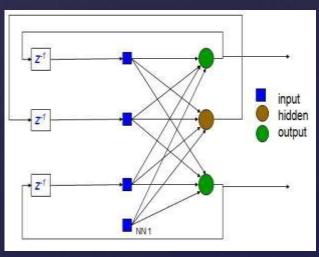
Learning Methods

- Supervised
- Unsupervised
- Reinforcement

Classification Based On Connection Types


- •Static (Feedforward)
- •Dynamic (Feedback)


Classification Based On Topology


•Single layer

• Multilayer

•Recurrent

(unit delay operator **z**-1 implies dynamic system)

Classification Based On Learning Method

- Supervised
- Unsupervised
- Reinforcement

Supervised learning

- •Each training pattern: input + desired output
- At each presentation: adapt weights
- •After many epochs convergence to a local minimum

Unsupervised Learning

- No help from the outside
- No training data, no information available on the desired output
- Learning by doing
- Used to pick out structure in the input:
 - Clustering
 - Reduction of dimensionality >
 compression
- Example: Kohonen"s Learning Law

Reinforcement learning

- Teacher: training data
- The teacher scores the performance of the training examples
- Use performance score to shuffle weights "randomly"
- Relatively slow learning due to "randomness"

Neural Network Applications

- Pattern recognition
- Investment analysis
- Control systems & monitoring
- Mobile computing
- Marketing and financial applications
- Forecasting sales, market research, meteorology

Advantages:

- •A neural network can perform tasks that a linear program can not.
- •When an element of the neural network fails, it can continue without any problem by their parallel nature.
- •A neural network learns and does not need to be reprogrammed.
- •It can be implemented in any application.
- •It can be implemented without any problem

Disadvantages:

- •The neural network needs training to operate.
- •The architecture of a neural network is different from the architecture of microprocessors therefore needs to be emulated.
- •Requires high processing time for large neural networks.

Conclusions

- Neural networks provide ability to provide more human-like AI
- Takes rough approximation and hard-coded reactions out of AI design (i.e. Rules and FSMs)
- Still require a lot of fine-tuning during development

THANK YOU

QUESTIONS?