$$= \frac{29000 + 2900 + 290 + 29}{1000}$$
$$= \frac{32219}{1000}$$
$$= 32.219$$

03 Logarithm

Exponents & Logarithms

Exponents: If a is any number then the product of n numbers each of which is a, is defined as,

Where n is called an exponent or index and a is called a base.

Example: 2^5 , 3^{-2} , x^6 , p^{-7} etc.

Logarithms: If an expression is of the form

$$b^{x} = N \cdots (1)$$
 where $N > 0$, $b > 0 \& b \ne 1$

then the logarithm of N to the base b is defined as

$$x = \log_b(N) \cdots (2)$$
 where $N > 0$, $b > 0 \& b \ne 1$

The equations (1) & (2) are equivalent. The eq. (1) is in exponential form and the eq. (2) is in logarithmic

Example: Since $2^3 = 8$, then 3 is the logarithm of 8 to the base 2 i.e., $\log_2(8) = 3$.

Laws of Logarithms: The laws of logarithms are

- **6.** $\log_{h}(MN) = \log_{h}(M) + \log_{h}(N)$
- 7. $\log_b\left(\frac{M}{N}\right) = \log_b\left(M\right) \log_b\left(N\right)$
- **8.** $\log_b(M^P) = P \log_b(M)$
- **9.** $\log_{b} b = 1$

Problem-1: Using logarithmic laws write the followings:

- b. $\log_2(3.5)$
- b. $\log_3\left(\frac{17}{24}\right)$ c. $\log_3(5^7)$

Solution:

- **a.** We have $\log_2(3.5) = \log_2 3 + \log_2 5$ **b.** We have $\log_3\left(\frac{17}{24}\right) = \log_3 17 \log_3 24$

c. We have $\log_3(5^7) = 7 \log_3 5$

Common Logarithms: The system of logarithms whose base is 10 is called the common logarithm system. When the base is omitted, it is understood that base 10 is to be used.

Thus,
$$\log 25 = \log_{10} 25$$

Natural Logarithms: The system of logarithms whose base is the Eulerian constant e is called the natural logarithm system. When we want to indicate the base of a logarithm is e we write \ln .

Thus,
$$ln 25 = log_e 25$$

NOTE: Since $10^{1.5377} = 34.49$ so $\log 34.49 = 1.5377$. Here the digit 1 before decimal point is called the characteristic and the digits . 5377 after decimal point is called the mantissa of the log.

Problem-2: Express each of the following exponential form in logarithmic form:

a.
$$4^2 = 16$$

b.
$$3^{-2} = \frac{1}{9}$$

c.
$$8^{-\frac{2}{3}} = \frac{1}{4}$$

Solution:

b. We have
$$4^2 = 16$$

Using log of base 4 we get $\log_4 4^2 = \log_4 16$
 $or, 2 \log_4 4 = \log_4 16$
 $or, 2 = \log_4 16$

a. We have $3^{-2} = \frac{1}{9}$ Using log of base 3 we get $\log_3 3^{-2} = \log_3 \left(\frac{1}{9} \right)$

c. We have
$$8^{-\frac{2}{3}} = \frac{1}{4}$$
Using log of base 8 we get
 $\log_8 8^{-\frac{2}{3}} = \log_8 \left(\frac{1}{4}\right)$
 $or, -\frac{2}{3}\log_8 8 = \log_8 \left(\frac{1}{4}\right)$
 $or, -\frac{2}{3} = \log_8 \left(\frac{1}{4}\right)$

$$or, -2\log_3 3 = \log_3 \left(\frac{1}{9}\right)$$
$$or, -2 = \log_3 \left(\frac{1}{9}\right)$$

Problem-3: Express each of the following logarithmic form in exponential form:

a.
$$\log_5 25 = 2$$

b.
$$\log_2 64 = 6$$

b.
$$\log_2 64 = 6$$
 c. $\log_{1/4} \frac{1}{16} = 2$

Solution:

a. We have $\log_5 25 = 2$ By the definition of log we get

$$25 = 5^2$$

b. We have $log_2 64 = 6$ By the definition of log we get

$$64 = 2^6$$

c. We have $\log_{1/4} \frac{1}{16} = 2$ By the definition of log we

$$\frac{1}{16} = \left(\frac{1}{4}\right)^2$$

Problem-4: Find the logarithm of 1728 to the base $2\sqrt{3}$.

Solution: We have 1728

get

After factorization by prime number we get,

$$1728 = 2^6 \cdot 3^3$$

$$or, 2^6 \cdot \left(\sqrt{3}\right)^6 = 1728$$

$$or, (2\sqrt{3})^6 = 1728$$

According to definition of logarithm we have,

$$6 = \log_{2\sqrt{3}} 1728$$

$$\therefore \log_{2\sqrt{3}} 1728 = 6$$

Problem-5: Find x if $\frac{1}{2}\log_{10}(11+4\sqrt{7})=\log_{10}(2+x)$.

Solution: Given that, $\frac{1}{2}\log_{10}(11+4\sqrt{7}) = \log_{10}(2+x)$

or,
$$\log_{10} \sqrt{11+4\sqrt{7}} = \log_{10} (2+x)$$

or,
$$\sqrt{11+4\sqrt{7}} = 2+x$$

or,
$$(\sqrt{11+4\sqrt{7}})^2 = (2+x)^2$$

or, $11+4\sqrt{7} = x^2+4x+4$
or, $x^2+4x-7=4\sqrt{7}$
or, $x^2+4x-(7+4\sqrt{7})=0$

$$\therefore x = \frac{-4\pm\sqrt{4^2-4\cdot1\cdot(7+4\sqrt{7})}}{2\cdot1}$$

$$= \frac{-4\pm\sqrt{16-4(7+4\sqrt{7})}}{2}$$

$$= \frac{-4\pm\sqrt{16-28-16\sqrt{7}}}{2}$$

$$= \frac{-4\pm\sqrt{-12-16\sqrt{7}}}{2}$$

$$= \frac{-4\pm2\sqrt{-3-4\sqrt{7}}}{2}$$

$$= -2\pm\sqrt{-3-4\sqrt{7}}$$

Problem-6: Prove that $2\log x + 2\log x^2 + 2\log x^3 + \dots + 2\log x^n = n(n+1)\log x$.

Solution: L.H.S =
$$2\log x + 2\log x^2 + 2\log x^3 + \dots + 2\log x^n$$

= $2\log x + 2\log x^2 + 2\log x^3 + \dots + 2\log x^n$
= $2\log x + 4\log x + 6\log x + \dots + 2n\log x$
= $(1+2+3+\dots+n)2\log x$
= $\frac{n(n+1)}{2} \cdot 2\log x$
= $n(n+1)\log x$
= R.H.S (Proved)

Problem-7: Express the logarithm of $\frac{\sqrt{a^3}}{c^5b^2}$ in terms of $\log a, \log b \& \log c$.

Solution: We have $\frac{\sqrt{a^3}}{c^5b^2}$

The logarithm of this part is,

$$\log\left(\frac{\sqrt{a^3}}{c^5b^2}\right)$$

$$\log\left(\frac{\sqrt{a^3}}{c^5b^2}\right)$$

$$or, x \ln a - 2x \ln c = (3x+1) \ln b$$

or,
$$x \ln a - 2x \ln c = (3x+1) \ln b$$

$$or, x \ln a - 2x \ln c = 3x \ln b + \ln b$$

$$or, x \ln a - 2x \ln c - 3x \ln b = \ln b$$

or,
$$x(\ln a - 2\ln c - 3\ln b) = \ln b$$

$$or, x (\ln a - \ln c^2 - \ln b^3) = \ln b$$

or,
$$x = \frac{\ln b}{\ln a - \ln c^2 - \ln b^3}$$

$$= \frac{\ln b}{\ln \left(\frac{a}{c^2 b^3}\right)}$$

Problem-8: Find *x* from the equation $a^x \cdot c^{-2x} = b^{3x+1}$

Solution: We have $a^x \cdot c^{-2x} = b^{3x+1}$

$$or, \ln\left(a^x \cdot c^{-2x}\right) = \ln b^{3x+1}$$

$$or, \ln a^x + \ln c^{-2x} = \ln b^{3x+1}$$

$$or$$
, $x \ln a - 2x \ln c = (3x+1) \ln b$

$$or$$
, $x \ln a - 2x \ln c = (3x+1) \ln b$

$$or, x \ln a - 2x \ln c = 3x \ln b + \ln b$$

$$or, x \ln a - 2x \ln c - 3x \ln b = \ln b$$

or,
$$x(\ln a - 2\ln c - 3\ln b) = \ln b$$

$$or, x \left(\ln a - \ln c^2 - \ln b^3 \right) = \ln b$$

or,
$$x = \frac{\ln b}{\ln a - \ln c^2 - \ln b^3}$$

$$= \frac{\ln b}{\ln \left(\frac{a}{c^2 h^3}\right)}$$

Problem-09: Solve $\log_{10}(3x+2) + \log_{10}(x-1) = 1$.

Solution: We have $\log_{10}(3x+2) + \log_{10}(x-1) = 1$

$$or$$
, $\log_{10}(3x+2)(x-1)=1$

$$or$$
, $\log_{10}(3x^2 - 3x + 2x - 2) = 1$

$$or, \log_{10}(3x^2 - x - 2) = 1$$

or,
$$3x^2 - x - 2 = 10^1$$

or,
$$3x^2 - x - 2 = 10$$

$$or, 3x^2 - x - 12 = 0$$

$$\therefore x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 3 \cdot (-12)}}{2 \cdot 1}$$

$$=\frac{1\pm\sqrt{1+24}}{2}$$

$$=\frac{1\pm\sqrt{25}}{2}$$

$$=\frac{1\pm 5}{2}$$

$$=-2, 3$$

Problem-10: Solve the equation $\frac{e^x - 1}{e^{-x} - 1} = -3$

Solution: We have $\frac{e^x - 1}{e^{-x} - 1} = -3$

$$or, \frac{e^x - 1}{\frac{1}{e^x} - 1} = -3$$

$$or, \frac{e^x - 1}{\frac{1 - e^x}{e^x}} = -3$$

or,
$$\frac{e^{2x} - e^x}{1 - e^x} = -3$$

$$or, e^{2x} - e^x = -3 + 3e^x$$

$$or, (e^x)^2 - 4e^x + 3 = 0$$

$$\therefore e^{x} = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$=\frac{4\pm\sqrt{16-12}}{2}$$

$$=\frac{4\pm\sqrt{4}}{2}$$

$$=\frac{4\pm2}{2}$$

=1,3

Problem-11: Calculate the value of p from $\log_{10} 4 + 2\log_{10} p = 2$

Solution: We have $\log_{10} 4 + 2\log_{10} p = 2$

$$or$$
, $\log_{10} 4 + \log_{10} p^2 = 2$

$$or$$
, $\log_{10} 4p^2 = 2$

or,
$$4p^2 = 10^2$$

or,
$$4p^2 = 100$$

or,
$$p^2 = 25$$

or,
$$p = \pm 5$$

04

Inequality

Number Line: A straight line whose each point indicates a single number is called a number line. Graphically it is denoted by

