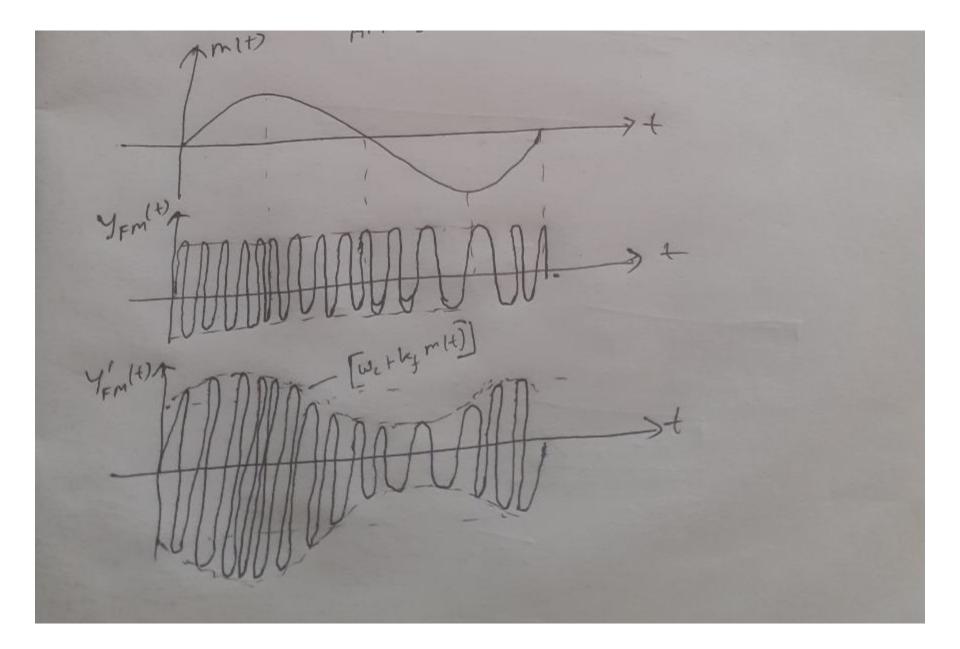
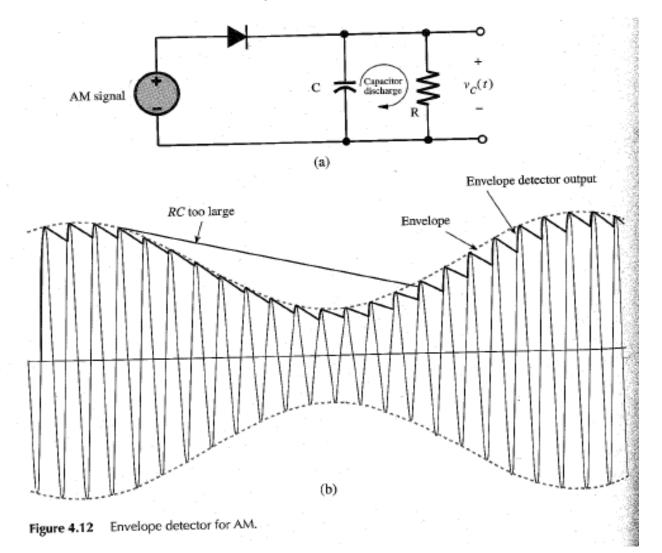
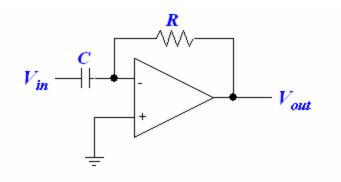
FM Demodulator



Envelope Detector



Differentiator Circuit



- > For DC Block we can use a capacitor
- > Then We can use an amplifier to amplify the original message signal

Class Work:

Draw the complete Circuit Diagram of FM Receiver or Demodulator And Submit in Google Classroom and Facebook Group

Concept of Instantaneous Frequency and FM Modulated Signal and Transmitted Power

Concept of Instantanious Freedom of End FM
Say a (annier Signal

$$H(t) = A Cos(wet + \theta_t)$$

 $= A Cos \theta$
Now instantanious Freedom of in
 $\omega_i = \frac{d\theta}{dt} = \frac{d}{dt} (w_t + \theta_0) = w_t + \theta_{t-0}$
So $\theta(t) = \int_0^t \omega_i dt$
For, FM instantanious Freedom of
 $\omega_i(t) = \omega_t + u_t m(t)$ where
 $\omega_i(t) = \omega_t + u_t m(t)$ where

So O(4) =
$$\int_{0}^{1} (\omega_{e} + \omega_{e} m(4)) dt$$

= $\omega_{e}t + \omega_{e} \int_{0}^{1} m(4) dt$
So FM Modulated signal.
 $W_{EM}(4) = A \cos \left[\omega_{e}t + \omega_{e} \int_{0}^{1} m(4) dt\right]$
So Fort FM The instantanious Frequency
 $W_{e} = \frac{W}{2}$
So Fort FM The instantanious Frequency
 $W_{e} = \frac{W_{e}}{2}$
Here Cannien frequency Diviation in
 $W_{e} = M(4)$
Maximum Cannier Deviation is, $\Delta f = Max$ value of Kym(4)

EXAMPLE 5.5 An angle-modulated signal with carrier frequency $\omega_c = 2\pi \times 10^5$ is described by the equation

 $\varphi_{\rm EM}(t) = 10\cos(\omega_c t + 5\sin 3000t + 10\sin 2000\pi t)$

- (a) Find the power of the modulated signal.
- (b) Find the frequency deviation Δf .
- (c) Find the deviation ratio β .
- (d) Find the phase deviation $\Delta \phi$.
- (e) Estimate the bandwidth of $\varphi_{\rm EM}(t)$.

The signal bandwidth is the highest frequency in m(t) (or its derivative). In this case $B = 2000\pi/2\pi = 1000$ Hz.

(a) The carrier amplitude is 10, and the power is

$$P = 10^2/2 = 50$$

(b) To find the frequency deviation Δf , we find the instantaneous frequency ω_i , given by

$$\omega_{l} = \frac{d}{dt}\theta(t) = \omega_{c} + 15,000 \cos 3000t + 20,000\pi \cos 2000\pi t$$

The carrier deviation is 15,000 cos $3000t + 20,000\pi$ cos $2000\pi t$. The two sinusoids will add in phase at some point, and the maximum value of this expression is 15,000 + 20,000 π . This is the maximum carrier deviation $\Delta \omega$. Hence,

$$\Delta f = \frac{\Delta \omega}{2\pi} = 12,387.32 \text{ Hz}$$

(c)

$$\beta = \frac{\Delta f}{B} = \frac{12,387.32}{1000} = 12.387$$

(d) The angle $\theta(t) = \omega t + (5 \sin 3000t + 10 \sin 2000\pi t)$. The phase deviation is the maximum value of the angle inside the parentheses, and is given by $\Delta \phi = 15$ rad.

(e)

$$B_{EM} = 2(\Delta f + B) = 26,774.65 \text{ Hz}$$