
•  Theory
–  Introduce lists, an important recursive data

structure often used in Prolog programming
–  Define the member/2 predicate, a fundamental

Prolog tool for manipulating lists
–  Illustrate the idea of recursing down lists

Lists

• Exercises

Lists

•  A list is a finite sequence of elements
•  Examples of lists in Prolog:

[mia, vincent, jules, yolanda]
[mia, robber(honeybunny), X, 2, mia]
[]
[mia, [vincent, jules], [butch, friend(butch)]]
[[], dead(z), [2, [b,c]], [], Z, [2, [b,c]]]

Important things about lists

•  List elements are enclosed in square
brackets

•  The length of a list is the number of
elements it has

•  All sorts of Prolog terms can be
elements of a list

•  There is a special list:
the empty list []

Head and Tail

•  A non-empty list can be thought of as
consisting of two parts
– The head
– The tail

•  The head is the first item in the list
•  The tail is everything else

– The tail is the list that remains when we
take the first element away

– The tail of a list is always a list

Head and Tail example 1

•  [mia, vincent, jules, yolanda]

Head:
Tail:

Head and Tail example 1

•  [mia, vincent, jules, yolanda]

Head: mia
Tail:

Head and Tail example 1

•  [mia, vincent, jules, yolanda]

Head: mia
Tail: [vincent, jules, yolanda]

Head and Tail example 2

•  [[], dead(z), [2, [b,c]], [], Z, [2, [b,c]]]

Head:
Tail:

Head and Tail example 2

•  [[], dead(z), [2, [b,c]], [], Z, [2, [b,c]]]

Head: []
Tail:

Head and Tail example 2

•  [[], dead(z), [2, [b,c]], [], Z, [2, [b,c]]]

Head: []
Tail: [dead(z), [2, [b,c]], [], Z, [2, [b,c]]]

Head and Tail example 3

•  [dead(z)]

Head:
Tail:

Head and Tail example 3

•  [dead(z)]

Head: dead(z)
Tail:

Head and Tail example 3

•  [dead(z)]

Head: dead(z)
Tail: []

Head and tail of empty list

•  The empty list has neither a head
nor a tail

•  For Prolog, [] is a special simple list
without any internal structure

•  The empty list plays an important
role in recursive predicates for list
processing in Prolog

The built-in operator |

•  Prolog has a special built-in operator |
which can be used to decompose a list
into its head and tail

•  The | operator is a key tool for writing
Prolog list manipulation predicates

The built-in operator |

?- [Head|Tail] = [mia, vincent, jules, yolanda].

Head = mia
Tail = [vincent,jules,yolanda]
yes

?-

The built-in operator |

?- [X|Y] = [mia, vincent, jules, yolanda].

X = mia
Y = [vincent,jules,yolanda]
yes

?-

The built-in operator |

?- [X|Y] = [].

no

?-

The built-in operator |

?- [X,Y|Tail] = [[], dead(z), [2, [b,c]], [], Z, [2, [b,c]]] .

X = []
Y = dead(z)
Z = _4543
Tail = [[2, [b,c]], [], Z, [2, [b,c]]]
yes

?-

Anonymous variable

•  Suppose we are interested in the
second and fourth element of a list

?- [X1,X2,X3,X4|Tail] = [mia, vincent, marsellus, jody, yolanda].
X1 = mia
X2 = vincent
X3 = marsellus
X4 = jody
Tail = [yolanda]
yes

?-

Anonymous variables

•  There is a simpler way of obtaining only
the information we want:

?- [_,X2, _,X4|_] = [mia, vincent, marsellus, jody, yolanda].
X2 = vincent
X4 = jody
yes

?-

•  The underscore is the anonymous
variable

The anonymous variable

•  Is used when you need to use a
variable, but you are not interested in
what Prolog instantiates it to

•  Each occurrence of the anonymous
variable is independent, i.e. can be
bound to something different

Member

•  One of the most basic things we would
like to know is whether something is an
element of a list or not

•  So let's write a predicate that when
given a term X and a list L, tells us
whether or not X belongs to L

•  This predicate is usually called

 member/2

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?-

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(yolanda,[yolanda,trudy,vincent,jules]).

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(yolanda,[yolanda,trudy,vincent,jules]).
yes
?-

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(vincent,[yolanda,trudy,vincent,jules]).

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(vincent,[yolanda,trudy,vincent,jules]).
yes
?-

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(zed,[yolanda,trudy,vincent,jules]).

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(zed,[yolanda,trudy,vincent,jules]).
no
?-

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(X,[yolanda,trudy,vincent,jules]).

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(X,[yolanda,trudy,vincent,jules]).
X = yolanda

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(X,[yolanda,trudy,vincent,jules]).
X = yolanda;
X = trudy;
X = vincent;
X = jules;
no

Rewriting member/2

member(X,[X|_]).
member(X,[_|T]):- member(X,T).

Recursing down lists

•  The member/2 predicate works by
recursively working its way down a list
– doing something to the head, and then
–  recursively doing the same thing to the tail

•  This technique is very common in
Prolog. Therefore:
–  It's very important that you master it
– So let's look at another example!

Example: a2b/2

The predicate a2b/2 takes two lists as
arguments and succeeds

–  if the first argument is a list of a's, and
–  the second argument is a list of b's of

exactly the same length

Example: a2b/2

The predicate a2b/2 takes two lists as
arguments and succeeds

–  if the first argument is a list of a's, and
–  the second argument is a list of b's of

exactly the same length
?- a2b([a,a,a,a],[b,b,b,b]).
yes
?- a2b([a,a,a,a],[b,b,b]).
no
?- a2b([a,c,a,a],[b,b,b,t]).
no

Defining a2b/2: step 1

•  Often the best away to solve such
problems is to think about the simplest
possible case

•  Here it means: the empty list

a2b([],[]).

Defining a2b/2: step 2

•  Now think recursively!
•  When should a2b/2 decide that two

non-empty lists are a list of as and a list
of bs of exactly the same length?

a2b([],[]).
a2b([a|L1],[b|L2]):- a2b(L1,L2).

Testing a2b/2

a2b([],[]).
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,a,a],[b,b,b]).

Testing a2b/2

a2b([],[]).
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,a,a],[b,b,b]).
yes
?-

Testing a2b/2

a2b([],[]).
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,a,a,a],[b,b,b]).

Testing a2b/2

a2b([],[]).
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,a,a,a],[b,b,b]).
no
?-

Testing a2b/2

a2b([],[]).
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,t,a,a],[b,b,b,c]).

Testing a2b/2

a2b([],[]).
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,t,a,a],[b,b,b,c]).
no
?-

Further investigating a2b/2

a2b([],[]).
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,a,a,a,a], X).

Further investigating a2b/2

a2b([],[]).
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,a,a,a,a], X).
X = [b,b,b,b,b]
yes
?-

Further investigating a2b/2

a2b([],[]).
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b(X,[b,b,b,b,b,b,b]).

Further investigating a2b/2

a2b([],[]).
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b(X,[b,b,b,b,b,b,b]).
X = [a,a,a,a,a,a,a]
yes
?-

Summary of this lecture

•  In this lecture we introduced list and
recursive predicates that work on lists

•  The kind of programming that these
predicates illustrated is fundamental to
Prolog

•  You will see that most Predicates you
will write in your Prolog career will be
variants of these predicates

