
•  Theory
–  Introduce Prolog`s built-in abilities for performing

arithmetic
–  Apply these to simple list processing problems,

using accumulators
–  Look at tail-recursive predicates and explain why

they are more efficient than predicates that are
not tail-recursive

Lecture on Arithmatic

Arithmetic in Prolog

•  Prolog provides a number of basic
arithmetic tools

•  Integer and real numbers

2 + 3 = 5
3 x 4 = 12
5 – 3 = 2
3 – 5 = -2
4 : 2 = 2
1 is the remainder when 7 is

divided by 2

?- 5 is 2+3.
?- 12 is 3*4.
?- 2 is 5-3.
?- -2 is 3-5.
?- 2 is 4/2.
?- 1 is mod(7,2).

Arithmetic Prolog

Example queries

?- 10 is 5+5.
yes

?- 4 is 2+3.
no

?- X is 3 * 4.
X=12
yes

?- R is mod(7,2).
R=1
yes

Defining predicates with arithmetic

addThreeAndDouble(X, Y):-
 Y is (X+3) * 2.

Defining predicates with arithmetic

addThreeAndDouble(X, Y):-
 Y is (X+3) * 2.

?- addThreeAndDouble(1,X).
X=8
yes

?- addThreeAndDouble(2,X).
X=10
yes

A closer look

•  It is important to know that +, -, / and *
do not carry out any arithmetic

•  Expressions such as 3+2, 4-7, 5/5 are
ordinary Prolog terms
– Functor: +, -, /, *
– Arity: 2
– Arguments: integers

A closer look

?- X = 3 + 2.

A closer look

?- X = 3 + 2.
X = 3+2
yes

?-

A closer look

?- X = 3 + 2.
X = 3+2
yes

?- 3 + 2 = X.

A closer look

?- X = 3 + 2.
X = 3+2
yes

?- 3 + 2 = X.
X = 3+2
yes

?-

The is/2 predicate

•  To force Prolog to actually evaluate
arithmetic expressions, we have to use

 is

just as we did in the other examples

•  This is an instruction for Prolog to carry
out calculations

•  Because this is not an ordinary Prolog
predicate, there are some restrictions

The is/2 predicate

?- X is 3 + 2.

The is/2 predicate

?- X is 3 + 2.
X = 5
yes

?-

The is/2 predicate

?- X is 3 + 2.
X = 5
yes

?- 3 + 2 is X.

The is/2 predicate

?- X is 3 + 2.
X = 5
yes

?- 3 + 2 is X.
ERROR: is/2: Arguments are not sufficiently instantiated

?-

The is/2 predicate

?- X is 3 + 2.
X = 5
yes

?- 3 + 2 is X.
ERROR: is/2: Arguments are not sufficiently instantiated

?- Result is 2+2+2+2+2.

The is/2 predicate

?- X is 3 + 2.
X = 5
yes

?- 3 + 2 is X.
ERROR: is/2: Arguments are not sufficiently instantiated

?- Result is 2+2+2+2+2.
Result = 10
yes

?-

Restrictions on use of is/2

•  We are free to use variables on the
right hand side of the is predicate

•  But when Prolog actually carries out the
evaluation, the variables must be
instantiated with a variable-free Prolog
term

•  This Prolog term must be an arithmetic
expression

Notation

•  Two final remarks on arithmetic
expressions
– 3+2, 4/2, 4-5 are just ordinary Prolog terms

in a user-friendly notation:
3+2 is really +(3,2) and so on.

– Also the is predicate is a two-place Prolog
predicate

Notation

•  Two final remarks on arithmetic
expressions
– 3+2, 4/2, 4-5 are just ordinary Prolog terms

in a user-friendly notation:
3+2 is really +(3,2) and so on.

– Also the is predicate is a two-place Prolog
predicate

?- is(X,+(3,2)).
X = 5
yes

Arithmetic and Lists

•  How long is a list?
– The empty list has length:

zero;
– A non-empty list has length:

one plus length of its tail.

Length of a list in Prolog

len([],0).
len([_|L],N):-
 len(L,X),
 N is X + 1.

?-

Length of a list in Prolog

len([],0).
len([_|L],N):-
 len(L,X),
 N is X + 1.

?- len([a,b,c,d,e,[a,x],t],X).

Length of a list in Prolog

len([],0).
len([_|L],N):-
 len(L,X),
 N is X + 1.

?- len([a,b,c,d,e,[a,x],t],X).
X=7
yes
?-

Accumulators

•  This is quite a good program
– Easy to understand
– Relatively efficient

•  But there is another method of finding
the length of a list
–  Introduce the idea of accumulators
– Accumulators are variables that hold

intermediate results

Defining acclen/3

•  The predicate acclen/3 has three
arguments
– The list whose length we want to find
– The length of the list, an integer
– An accumulator, keeping track of the

intermediate values for the length

Defining acclen/3

•  The accumulator of acclen/3
–  Initial value of the accumulator is 0
– Add 1 to accumulator each time we can

recursively take the head of a list
– When we reach the empty list, the

accumulator contains the length of the list

Length of a list in Prolog

acclen([],Acc,Length):-
 Length = Acc.

acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

?-

Length of a list in Prolog

acclen([],Acc,Length):-
 Length = Acc.

acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

?-

add 1 to the
accumulator each time
we take off a head

from the list

Length of a list in Prolog

acclen([],Acc,Length):-
 Length = Acc.

acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

?-

When we reach the empty
list, the accumulator
contains the length of

the list

Length of a list in Prolog

acclen([],Acc,Acc).

acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

?-

Length of a list in Prolog

acclen([],Acc,Acc).

acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

?-acclen([a,b,c],0,Len).
Len=3
yes

?-

Search tree for acclen/3

?- acclen([a,b,c],0,Len).

acclen([],Acc,Acc).

acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

Search tree for acclen/3

?- acclen([a,b,c],0,Len).
 / \

acclen([],Acc,Acc).

acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

Search tree for acclen/3

?- acclen([a,b,c],0,Len).
 / \
 no ?- acclen([b,c],1,Len).
 / \

acclen([],Acc,Acc).

acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

Search tree for acclen/3

?- acclen([a,b,c],0,Len).
 / \
 no ?- acclen([b,c],1,Len).
 / \
 no ?- acclen([c],2,Len).
 / \

acclen([],Acc,Acc).

acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

Search tree for acclen/3

?- acclen([a,b,c],0,Len).
 / \
 no ?- acclen([b,c],1,Len).
 / \
 no ?- acclen([c],2,Len).
 / \
 no ?- acclen([],3,Len).
 / \

acclen([],Acc,Acc).

acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

Search tree for acclen/3

?- acclen([a,b,c],0,Len).
 / \
 no ?- acclen([b,c],1,Len).
 / \
 no ?- acclen([c],2,Len).
 / \
 no ?- acclen([],3,Len).
 / \
 Len=3 no

acclen([],Acc,Acc).

acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

Adding a wrapper predicate

acclen([],Acc,Acc).

acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

length(List,Length):-
 acclen(List,0,Length).

?-length([a,b,c], X).
X=3
yes

Tail recursion

•  Why is acclen/3 better than len/2 ?
– acclen/3 is tail-recursive, and len/2 is not

•  Difference:
–  In tail recursive predicates the results is

fully calculated once we reach the base
clause

–  In recursive predicates that are not tail
recursive, there are still goals on the stack
when we reach the base clause

Comparison

acclen([],Acc,Acc).
acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

len([],0).
len([_|L],NewLength):-
 len(L,Length),
 NewLength is Length + 1.

Not tail-recursive Tail-recursive

Search tree for len/2
?- len([a,b,c], Len).

len([],0).
len([_|L],NewLength):-
 len(L,Length),
 NewLength is Length + 1.

Search tree for len/2
?- len([a,b,c], Len).
 / \
 no ?- len([b,c],Len1),

 Len is Len1 + 1.

len([],0).
len([_|L],NewLength):-
 len(L,Length),
 NewLength is Length + 1.

Search tree for len/2
?- len([a,b,c], Len).
 / \
 no ?- len([b,c],Len1),

 Len is Len1 + 1.
 / \
 no ?- len([c], Len2),

 Len1 is Len2+1,
 Len is Len1+1.

len([],0).
len([_|L],NewLength):-
 len(L,Length),
 NewLength is Length + 1.

Search tree for len/2
?- len([a,b,c], Len).
 / \
 no ?- len([b,c],Len1),

 Len is Len1 + 1.
 / \
 no ?- len([c], Len2),

 Len1 is Len2+1,
 Len is Len1+1.
 / \

 no ?- len([], Len3),
 Len2 is Len3+1,
 Len1 is Len2+1,

 Len is Len1 + 1.

len([],0).
len([_|L],NewLength):-
 len(L,Length),
 NewLength is Length + 1.

Search tree for len/2
?- len([a,b,c], Len).
 / \
 no ?- len([b,c],Len1),

 Len is Len1 + 1.
 / \
 no ?- len([c], Len2),

 Len1 is Len2+1,
 Len is Len1+1.
 / \

 no ?- len([], Len3),
 Len2 is Len3+1,
 Len1 is Len2+1,

 Len is Len1 + 1.
 / \

 Len3=0, Len2=1, no
 Len1=2, Len=3

len([],0).
len([_|L],NewLength):-
 len(L,Length),
 NewLength is Length + 1.

Search tree for acclen/3

?- acclen([a,b,c],0,Len).
 / \
 no ?- acclen([b,c],1,Len).
 / \
 no ?- acclen([c],2,Len).
 / \
 no ?- acclen([],3,Len).
 / \
 Len=3 no

acclen([],Acc,Acc).

acclen([_|L],OldAcc,Length):-
 NewAcc is OldAcc + 1,
 acclen(L,NewAcc,Length).

Comparing Integers

•  Some Prolog arithmetic predicates
actually do carry out arithmetic by
themselves

•  These are the operators that compare
integers

Comparing Integers

x < y
x ≤ y
x = y
x ≠ y
x ≥ y
x > y

X < Y
X =< Y
X =:= Y
X =\= Y
X >= Y
X > Y

Arithmetic Prolog

Comparison Operators

•  Have the obvious meaning
•  Force both left and right hand argument

to be evaluated
?- 2 < 4+1.
yes

?- 4+3 > 5+5.
no

Comparison Operators

•  Have the obvious meaning
•  Force both left and right hand argument

to be evaluated
?- 4 = 4.
yes

?- 2+2 = 4.
no

?- 2+2 =:= 4.
yes

Comparing numbers

•  We are going to define a predicate that takes
two arguments, and is true when:
–  The first argument is a list of integers
–  The second argument is the highest integer in the

list
•  Basic idea

–  We will use an accumulator
–  The accumulator keeps track of the highest value

encountered so far
–  If we find a higher value, the accumulator will be

updated

Definition of accMax/3

accMax([H|T],A,Max):-
 H > A,
 accMax(T,H,Max).

accMax([H|T],A,Max):-
 H =< A,
 accMax(T,A,Max).

accMax([],A,A).

?- accMax([1,0,5,4],0,Max).
Max=5
yes

Adding a wrapper max/2

accMax([H|T],A,Max):-
 H > A,
 accMax(T,H,Max).

accMax([H|T],A,Max):-
 H =< A,
 accMax(T,A,Max).

accMax([],A,A).

max([H|T],Max):-
 accMax(T,H,Max).

?- max([1,0,5,4], Max).
Max=5
yes

?- max([-3, -1, -5, -4], Max).
Max= -1
yes

?-

Summary of this lecture

•  In this lecture we showed how Prolog
does arithmetic

•  We demonstrated the difference
between tail-recursive predicates and
predicates that are not tail-recursive

•  We introduced the programming
technique of using accumulators

•  We also introduced the idea of using
wrapper predicates

