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Scan Conversion a using Line Equation 

 The Cartesian slope-intercept equation for a straight line is 

   y = mx + b      ------         (1) 
   with m->slope, b->y intercept 

 
The 2 end points of a line segment are specified at a position  

  (x1, y1) and (x2, y2). 
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Plot a Line whose Slope is between 00 to 450 using 

Slope-intercept Equation 

Algorithm: 

Step 1: Compute dx = x2 –x1 

Step 2: Compute dy = y2 –y1 

Step 3: Compute m = dy / dx 

Step 4: Compute y = y1 – mx1 

Step 5: Set (x, y) equal to the lower left-hand end-point and set xend equal to the 

largest value of x.  

 If dx < 0, then x = x2, y = y2 and xend = x1.  

 If dx > 0, then x = x1, y = y1 and xend = x2.  

Step 6: Test to determine whether the entire line has been drawn. If x>xend, Stop.  

Step 7: Plot a point at current (x, y) position. 

Step 8: Increment x: x = x+1. 

Step 9: Compute the next value of y from the equation y = mx + c. 

Step 10: Go to Step 6. 
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Line Drawing Algorithms 

 Digital Differential Analyzer (DDA) Algorithm 

 Bresenham’s Line Drawing Algorithm 

 Scan Converting a Circle 

 Defining a Circle 

 Eight-way Symmetry of a Circle 

 Bresenham’s Circle Drawing Algorithm 

 Mid-point Circle Drawing Algorithm 
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DDA Line Algorithm 

 The digital differential analyzer (DDA) is a scan conversion line 

algorithm based on calculation either Dy or Dx. 

 The line at unit intervals is one coordinate and determine corresponding integer 

values nearest line for the other coordinate. 

 Consider first a line with positive slope. 

 Step 1: If the slope is less than or equal to 1, the unit x intervals Dx =1 and 

compute each successive y values. 

 Dx =1 

 m= Dy / Dx 

m = ( y2 – y1 ) / 1 

 m = (yk+1 – yk)/ 1  

yk+1 = yk + m 
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DDA Line Algorithm 

 Step 2: If the slope is greater than 1, the roles of x any y at the unit y 

intervals Dy =1  and compute each successive x values. 

 Dy =1 

m= Dy / Dx  

m = 1 / (x2 – x1 ) 

m = 1 / (xk+1 – xk) 

 xk+1 = xk + (1/m) 

                                                                       

 

 Step 3: If the processing is reversed, the starting point at the right     

 Dx =-1 

 m= Dy / Dx 

m = ( y2 – y1 ) / -1 

yk+1 = yk - m    

 

 
 Step 4: Here,  Dy =-1 

m= Dy / Dx  

m = -1 / (x2 – x1 ) 

m = -1 / (xk+1 – xk) 

 xk+1 = xk – (1/m) 
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The Bresenham Line Algorithm 
 The Bresenham algorithm is another incremental scan conversion algorithm. 

 The big advantage of this algorithm is that it uses only integer calculations. 

• Jack Bresenham worked for 27 years at IBM before entering Academia.  

• Bresenham developed his famous algorithms at IBM in the early 1960s. 
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The Big Idea 
Move across the x axis in unit intervals and at each step choose 

between two different y coordinates 

2 3 4 5 

2 

4 

3 

5 

For example,  

• from position (2, 3) we have to 

choose between (3, 3) and (3, 4) 

• We would like the point that is 

closer to the original line 

(xk, yk) 

(xk+1, yk) 

(xk+1, yk+1) 
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The y coordinate on the mathematical line at xk+1 is: 

Deriving The Bresenham Line Algorithm 

At sample position xk+1 the 

vertical separations from the 

mathematical line are labelled 

dupper and dlower 

bxmy k  )1(

y 

yk 

yk+1 

xk+1 

dlower 

dupper 
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So, dupper and dlower are given as follows: 

 

 

and: 

 

 

 

 

 

 We can use these to make a simple decision about  

 which pixel is closer to the mathematical line. 

Deriving The Bresenham Line Algorithm 

(cont…) 

klower yyd 

kk ybxm  )1(

yyd kupper  )1(

bxmy kk  )1(1

11 of 27 



This simple decision is based on the difference between the two pixel 

positions: 

 

 

 

Let’s substitute m with ∆y/∆x where ∆x and ∆y are the differences 

between the end-points: 

Deriving The Bresenham Line Algorithm 

(cont…) 

122)1(2  byxmdd kkupperlower

)122)1(2()( 



 byx

x

y
xddx kkupperlower

)12(222  bxyyxxy kk
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So, a decision parameter pk for the kth step along a line is 

given by: 

 

 

 

 

 The sign of the decision parameter pk is the same as that of 

dlower – dupper 

 If pk is negative, then we choose the lower pixel, otherwise 

we choose the upper pixel. 

Deriving The Bresenham Line Algorithm 

(cont…) 

cyxxy

ddxp

kk

upperlowerk





22

)(
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Remember that, coordinate changes occur along the x axis in unit 

steps so we can do everything with integer calculations. 

At step k+1 the decision parameter is given as: 

 

Subtracting pk from this we get: 

 

Deriving The Bresenham Line Algorithm 

(cont…) 

cyxxyp kkk   111 22

)(2)(2 111 kkkkkk yyxxxypp  
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But, xk+1 is the same as xk+1 so: 

 

 

where yk+1 - yk is either 0 or 1 depending on the sign of pk 

 

The first decision parameter p0 is evaluated at (x0, y0) is given as: 

Deriving The Bresenham Line Algorithm 

(cont…) 

)(22 11 kkkk yyxypp  

xyp  20

15 of 27 



The Bresenham Line Algorithm 
Bresenham’s Line Drawing Algorithm 

(for |m| < 1.0) 

Step 1: Input the two line end-points, storing the left end-point in 

(x0, y0) 

Step 2: Plot the point (x0, y0) 

Step 3: Calculate the constants Δx, Δy, 2Δy, and (2Δy - 2Δx) 

and get the first value for the decision parameter as: 

 

Step 4: At each xk along the line, starting at k = 0, perform the 

following test. If pk < 0, the next point to plot is  

(xk+1, yk) and: 

xyp  20
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The Bresenham Line Algorithm (cont…) 

Attention!  

 The algorithm and derivation above assumes slopes are less 

than 1.  

 For other slopes we need to adjust the algorithm slightly. 

 Otherwise, the next point to plot is (xk+1, yk+1) and: 

 
Step 5: Repeat Step 4 (Δx – 1) times 

xypp kk  221
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Bresenham Line Algorithm: Example 

Let’s have a go at this 

Let’s plot the line from (20, 10) to (30, 18) 

First off calculate all of the constants: 

 Δx:  (x2 –x1) = (30-20) =10 

 Δy: (y2 –y1) = (18-10) = 8 

 2Δy:  (2 x 8) =16 

 2Δy - 2Δx: (2x8 – 2x10) = (16 - 20) = -4 

Calculate the initial decision parameter p0: 

 p0 = 2Δy – Δx = (2x8 - 10) = (16 - 10) = 6 
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Bresenham Line Algorithm: Example 

(cont…) 
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(x1,y1)=(20,10) 
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Bresenham Line Algorithm: 

Exercise 
Go through the Step 1 to Step 5 of the Bresenham line drawing 

algorithm for a line going from (21,12) to (29,16) 
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Bresenham Exercise (cont…) 
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Bresenham Line Algorithm: Summary 

Advantages and Problems 

The Bresenham line algorithm has the following advantages: 

 A fast incremental algorithm 

 Uses only integer calculations 

 

Comparing this to the DDA algorithm, DDA has the following 

problems: 

 Accumulation of round-off errors can make the pixelated 

line drift away from what was intended 

 The rounding operations and floating point arithmetic 

involved are time consuming 
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Plot a Line whose Slope is between 00 to 450 using 

Bresenham’s Line Algorithm 
Algorithm:  

Step 1: Compute the initial values:  

 dx = x2 – x1, Inc2 = 2(dy – dx) 

 dy = y2 – y1, d = Inc1 – dx 

 Inc1 = 2dy 

Step 2: Set (x, y) equal to the lower left-hand end-point and set xend equal to 

the largest value of x.  

 If dx < 0, then x = x2, y = y2 and xend = x1.  

 If dx > 0, then x = x1, y = y1 and xend = x2.  

Step 3: Plot a point at current (x, y) position. 

Step 4: Test to see whether the entire line has been drawn. If x>xend, Stop.  

Step 5: Compute the location of the next pixel. If d<0, then d = d+ inc1. If 

d>=0, then d = d + Inc2, and  y = y + 1. 

Step 6: Increment x: x = x+1. 

Step 7: Plot a point at current (x, y) position. 

Step 8: Go to Step 4. 
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Bresenham’s Line Algorithm: Scan-conerting a Line 

from (1, 1) to (8, 5) 

Algorithm:  

Step 1: Find the starting values.  

Step 2: In this case, dx = x2 – x1 = 8 – 1 = 7, dy = y2 – y1 = 5 – 1 = 4. 

Step 3: Therefore,  

 Inc1 = 2, dy = 2 x 4 = 8.  

 Inc2 =  2(dy –dx) = 2(4 - 7) = - 6, d= Inc1 – dx = 8 – 7 = 1. 

The following table indicates the values computed by the algorithm: 
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Circle Drawing Algorithm using Polynomial Method 

Algorithm:  

Step 1: Set the initial variables r = circle radius, (h, k) = co-ordinates of the circle 

center, x = 0, xend = r/2.  

Step 2: Test to determine whether the entire circle has been scan-converted.  

 If x = xend, stop. 

Step 3: Compute the value of the y-co-ordinate, where y = (r2 – x2). 

Step 4: Plot the eight points, found by symmetry  with respect to the center (h, k), 

at the current (x, y) coordinates: 

  Plot (x+h, y+k)  Plot (-x+h, -y+k) 

  Plot (y+h, x+k)  Plot (-y+h, -x+k) 

  Plot (-y+h, x+k)  Plot (y+h, -x+k) 

  Plot (-x+h, y+k)  Plot (x+h, -y+k) 

Step 5: Increment x: x = x+1.  

Step 6: Go to Step 2. 
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Scan-Converting a Circle using 

Bresenham’s Algorithm 
Algorithm:  

Step 1: Set the initial value of the variables (h, k) = co-ordinates of the circle 

center, x = 0, y = circle radius r, and d= 3 -2r.  

Step 2: Test to determine whether the entire circle has been scan-converted. If 

x>y, stop. 

Step 3: Plot the eight points, found by symmetry  with respect to the center (h, 

k), at the current (x, y) coordinates: 

  Plot (x+h, y+k)  Plot (-x+h, -y+k) 

  Plot (y+h, x+k)  Plot (-y+h, -x+k) 

  Plot (-y+h, x+k)  Plot (y+h, -x+k) 

  Plot (-x+h, y+k)  Plot (x+h, -y+k) 

Step 4: Compute the location of the next pixel.  

 If d<0, then d = d + 4x + 6, and x = x+1.  

 If d>= 0, then d= d + 4(x-y) +10, x= x + 1 and y = y -1. 

Step 5: Go to Step 2. 
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