Scan Conversion

Professor Dr. Md. Ismail Jabiullah
Department of CSE
Daffodil International University

Scan Conversion

Chapter 3:

- Points and Lines
- Line Drawing Algorithm
- DDA Algorithm
- Bresenham's Line Algorithm
- Parameter Description
- Algorithm
- Example
- Circle Generating Algorithm
- Properties of Circle
- Midpoint Circle Algorithm
- Parameter Description
- Algorithm
- Example

Scan Conversion a using Line Equation

The Cartesian slope-intercept equation for a straight line is

$$
\begin{aligned}
& y=m x+b-----\quad(1) \\
& \quad \text { with } m->\text { slope, } b->y \text { intercept }
\end{aligned}
$$

The 2 end points of a line segment are specified at a position

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \text { and }\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) .
$$

Line path between the end point(xlyl) and ($\mathrm{x} 2, \mathrm{y} 2$)

Plot a Line whose Slope is between 0^{0} to $\mathbf{4 5}^{0}$ using Slope-intercept Equation

Algorithm:

Step 1: Compute $\mathrm{dx}=\mathrm{x}_{2}-\mathrm{x}_{1}$
Step 2: Compute dy $=y_{2}-y_{1}$
Step 3: Compute $\mathrm{m}=\mathrm{dy} / \mathrm{dx}$
Step 4: Compute $y=y_{1}-\mathrm{mx}_{1}$
Step 5: Set (x, y) equal to the lower left-hand end-point and set $\mathrm{x}_{\text {end }}$ equal to the largest value of x .
If $d x<0$, then $x=x_{2}, y=y_{2}$ and $x_{\text {end }}=x_{1}$.
If $d x>0$, then $x=x_{1}, y=y_{1}$ and $x_{\text {end }}=x_{2}$.
Step 6: Test to determine whether the entire line has been drawn. If $\mathrm{x}>\mathrm{x}_{\text {end }}$, Stop.
Step 7: Plot a point at current (x, y) position.
Step 8: Increment $\mathrm{x}: \mathrm{x}=\mathrm{x}+1$.
Step 9: Compute the next value of y from the equation $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.
Step 10: Go to Step 6.

Line Drawing Algorithms

- Digital Differential Analyzer (DDA) Algorithm
- Bresenham's Line Drawing Algorithm
- Scan Converting a Circle
- Defining a Circle
- Eight-way Symmetry of a Circle
- Bresenham's Circle Drawing Algorithm
- Mid-point Circle Drawing Algorithm

DDA Line Algorithm

- The digital differential analyzer (DDA) is a scan conversion line algorithm based on calculation either Dy or Dx.
- The line at unit intervals is one coordinate and determine corresponding integer values nearest line for the other coordinate.
- Consider first a line with positive slope.
- Step 1: If the slope is less than or equal to 1 , the unit x intervals $D_{x}=1$ and compute each successive y values.
$\mathrm{D}_{\mathrm{x}}=1$

$$
\begin{aligned}
& \mathrm{m}=\mathrm{D}_{\mathrm{y}} / \mathrm{D}_{\mathrm{x}} \\
& \mathrm{~m}=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) / 1 \\
& \mathrm{~m}=\left(\mathrm{y}_{\mathrm{k}+1}-\mathrm{y}_{\mathrm{k}}\right) / 1 \\
& \mathrm{y}_{\mathrm{k}+1}=\mathrm{y}_{\mathrm{k}}+\mathrm{m}
\end{aligned}
$$

DDA Line Algorithm

- Step 2: If the slope is greater than 1 , the roles of x any y at the unit y intervals $\mathrm{D}_{\mathrm{y}}=1$ and compute each successive x values.

$$
\begin{aligned}
& D_{y}=1 \\
& m=D_{y} / D_{x} \\
& m=1 /\left(x_{2}-x_{1}\right) \\
& m=1 /\left(x_{k+1}-x_{k}\right) \\
& x_{k+1}=x_{k}+(1 / m)
\end{aligned}
$$

- Step 3: If the processing is reversed, the starting point at the right

$$
D_{x}=-1
$$

$$
\begin{aligned}
& m=D_{y} / D_{x} \\
& m=\left(y_{2}-y_{1}\right) /-1 \\
& y_{k+1}=y_{k}-m
\end{aligned}
$$

- Step 4: Here, $D_{y}=-1$

$$
\begin{gathered}
\mathrm{m}=\mathrm{D}_{\mathrm{y}} / \mathrm{D}_{\mathrm{x}} \\
\mathrm{~m}=-1 /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \\
\mathrm{m}=-1 /\left(\mathrm{x}_{\mathrm{k}+1}-\mathrm{x}_{\mathrm{k}}\right) \\
\mathrm{x}_{\mathrm{k}+1}=\mathrm{x}_{\mathrm{k}}-(1 / \mathrm{m})
\end{gathered}
$$

The Bresenham Line Algorithm

- The Bresenham algorithm is another incremental scan conversion algorithm.
- The big advantage of this algorithm is that it uses only integer calculations.

- Jack Bresenham worked for $\mathbf{2 7}$ years at IBM before entering Academia.
- Bresenham developed his famous algorithms at IBM in the early 1960s.

The Big Idea

Move across the \boldsymbol{x} axis in unit intervals and at each step choose between two different \boldsymbol{y} coordinates

For example,

- from position $(2,3)$ we have to choose between $(\mathbf{3}, \mathbf{3})$ and $(\mathbf{3}, 4)$
- We would like the point that is closer to the original line

Deriving The Bresenham Line Algorithm

At sample position $\boldsymbol{x}_{\boldsymbol{k}}+\mathbf{1}$ the vertical separations from the mathematical line are labelled $\boldsymbol{d}_{\text {upper }}$ and $\boldsymbol{d}_{\text {lower }}$

The \boldsymbol{y} coordinate on the mathematical line at $\boldsymbol{x}_{\boldsymbol{k}}+\mathbf{1}$ is:

$$
y=m\left(x_{k}+1\right)+b
$$

Deriving The Bresenham Line Algorithm

(cont...)

So, $d_{\text {upper }}$ and $d_{\text {lower }}$ are given as follows:

$$
\begin{aligned}
& d_{\text {lower }}=y-y_{k} \\
&=m\left(x_{k}+1\right)+b-y_{k} \\
& \begin{aligned}
d_{\text {upper }} & = \\
& \left(y_{k}+1\right)-y \\
& =y_{k}+1-m\left(x_{k}+1\right)-b
\end{aligned}
\end{aligned}
$$

and:

- We can use these to make a simple decision about
- which pixel is closer to the mathematical line.

Deriving The Bresenham Line Algorithm

(cont...)

This simple decision is based on the difference between the two pixel positions:

$$
d_{l o w e r}-d_{u p p e r}=2 m\left(x_{k}+1\right)-2 y_{k}+2 b-1
$$

Let's substitute \boldsymbol{m} with $\Delta y / \Delta x$ where Δx and Δy are the differences between the end-points:

$$
\begin{aligned}
\Delta x\left(d_{\text {lower }}-d_{\text {upper }}\right) & =\Delta x\left(2 \frac{\Delta y}{\Delta x}\left(x_{k}+1\right)-2 y_{k}+2 b-1\right) \\
& =2 \Delta y \cdot x_{k}-2 \Delta x \cdot y_{k}+2 \Delta y+\Delta x(2 b-1) \\
& =2 \Delta y \cdot x_{k}-2 \Delta x \cdot y_{k}+c \quad 12 \text { of } 27
\end{aligned}
$$

Deriving The Bresenham Line Algorithm

(cont...)

So, a decision parameter p_{k} for the k th step along a line is given by:

$$
\begin{aligned}
p_{k} & =\Delta x\left(d_{\text {lower }}-d_{\text {upper }}\right) \\
& =2 \Delta y \cdot x_{k}-2 \Delta x \cdot y_{k}+c
\end{aligned}
$$

- The sign of the decision parameter \boldsymbol{p}_{k} is the same as that of $d_{\text {lower }}-d_{\text {upper }}$
- If $\boldsymbol{p}_{\boldsymbol{k}}$ is negative, then we choose the lower pixel, otherwise we choose the upper pixel.

Deriving The Bresenham Line Algorithm

(cont...)

Remember that, coordinate changes occur along the \boldsymbol{x} axis in unit steps so we can do everything with integer calculations.
At step $k+1$ the decision parameter is given as:

Subtracting $\boldsymbol{p}_{\boldsymbol{k}}$ from this we get:

$$
p_{k+1}=2 \Delta y \cdot x_{k+1}-2 \Delta x \cdot y_{k+1}+c
$$

$$
p_{k+1}-p_{k}=2 \Delta y\left(x_{k+1}-x_{k}\right)-2 \Delta x\left(y_{k+1}-y_{k}\right)
$$

Deriving The Bresenham Line Algorithm (cont...)

But, $\boldsymbol{x}_{\boldsymbol{k}+\boldsymbol{1}}$ is the same as $\boldsymbol{x}_{\boldsymbol{k}}+\mathbf{1}$ so:

$$
p_{k+1}=p_{k}+2 \Delta y-2 \Delta x\left(y_{k+1}-y_{k}\right)
$$

where $\boldsymbol{y}_{\boldsymbol{k}+\boldsymbol{1}}-\boldsymbol{y}_{\boldsymbol{k}}$ is either $\mathbf{0}$ or $\mathbf{1}$ depending on the sign of $\boldsymbol{p}_{\boldsymbol{k}}$

The first decision parameter $\mathbf{p}_{\mathbf{0}}$ is evaluated at $\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}\right)$ is given as:

$$
p_{0}=2 \Delta y-\Delta x
$$

The Bresenham Line Algorithm

Bresenham's Line Drawing Algorithm

(for $|m|<1.0$)
Step 1: Input the two line end-points, storing the left end-point in $\left(x_{0}, y_{0}\right)$
Step 2: Plot the point $\left(\boldsymbol{x}_{\boldsymbol{v}}, \boldsymbol{y}_{\boldsymbol{0}}\right)$
Step 3: Calculate the constants $\Delta x, \Delta y, 2 \Delta y$, and ($\mathbf{2 \Delta y} \boldsymbol{- 2 \Delta x}$) and get the first value for the decision parameter as:

$$
p_{0}=2 \Delta y-\Delta x
$$

Step 4: At each $\boldsymbol{x}_{\boldsymbol{k}}$ along the line, starting at $k=0$, perform the following test. If $p_{k}<0$, the next point to plot is $\left(x_{k}+l, y_{k}\right)$ and:

$$
p_{k+1}=p_{k}+2 \Delta y
$$

The Bresenham Line Algorithm (cont...)

Otherwise, the next point to plot is $\left(x_{k}+1, y_{k}+1\right)$ and:

$$
p_{k+1}=p_{k}+2 \Delta y-2 \Delta x
$$

Step 5: Repeat Step $4(\Delta x-1)$ times

Attention!

- The algorithm and derivation above assumes slopes are less than 1.
- For other slopes we need to adjust the algorithm slightly.

Bresenham Line Algorithm: Example

Let's have a go at this
Let's plot the line from $(20,10)$ to $(30,18)$
First off calculate all of the constants:

- $\Delta x:\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=(30-20)=10$
- $\Delta y:\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)=(18-10)=8$
- $2 \Delta y:(2 \times 8)=16$
- $2 \Delta y-2 \Delta x:(2 \mathrm{x} 8-2 \mathrm{x} 10)=(16-20)=-4$

Calculate the initial decision parameter p_{0} :

- $p_{0}=2 \Delta y-\Delta x=(2 \mathrm{x} 8-10)=(16-10)=6$

Bresenham Line Algorithm: Example

(cont...)

Bresenham Line Algorithm:

Exercise

Go through the Step 1 to Step 5 of the Bresenham line drawing algorithm for a line going from $(21,12)$ to $(29,16)$

Bresenham Exercise (cont...)

	k	p_{k}	$\left(\mathrm{x}_{\mathrm{k}+1}, \mathrm{y}_{\mathrm{k}+1}\right)$
	0		
	1		
	2		
	3		
$13-$	4		
	5		
	6		
	7		
			21 of 27

Bresenham Line Algorithm: Summary Advantages and Problems

The Bresenham line algorithm has the following advantages:

- A fast incremental algorithm
- Uses only integer calculations

Comparing this to the DDA algorithm, DDA has the following problems:

- Accumulation of round-off errors can make the pixelated line drift away from what was intended
- The rounding operations and floating point arithmetic involved are time consuming

Plot a Line whose Slope is between 0^{0} to 45^{0} using
 Algorithm:
 Bresenham's Line Algorithm

Step 1: Compute the initial values:

$$
\begin{aligned}
& d x=x_{2}-x_{1}, \operatorname{Inc}_{2}=2(d y-d x) \\
& d y=y_{2}-y_{1}, d=\operatorname{Inc}_{1}-d x \\
& \operatorname{Inc}_{1}=2 d y
\end{aligned}
$$

Step 2: Set (x, y) equal to the lower left-hand end-point and set $\mathrm{x}_{\text {end }}$ equal to the largest value of x.
If $d x<0$, then $x=x_{2}, y=y_{2}$ and $x_{\text {end }}=x_{1}$.
If $d x>0$, then $x=x_{1}, y=y_{1}$ and $x_{\text {end }}=x_{2}$.
Step 3: Plot a point at current (x, y) position.
Step 4: Test to see whether the entire line has been drawn. If $\mathrm{x}>\mathrm{x}_{\text {end }}$, Stop.
Step 5: Compute the location of the next pixel. If $\mathrm{d}<0$, then $\mathrm{d}=\mathrm{d}+$ inc $_{1}$. If $\mathrm{d}>=0$, then $\mathrm{d}=\mathrm{d}+\mathrm{Inc}_{2}$, and $\mathrm{y}=\mathrm{y}+1$.
Step 6: Increment x : $\mathrm{x}=\mathrm{x}+1$.
Step 7: Plot a point at current (x, y) position.
Step 8: Go to Step 4.

Bresenham's Line Algorithm: Scan-conerting a Line from $(1,1)$ to $(8,5)$

Algorithm:

Step 1: Find the starting values.
Step 2: In this case, $\mathrm{dx}=\mathrm{x}_{2}-\mathrm{x}_{1}=8-1=7, \mathrm{dy}=\mathrm{y} 2-\mathrm{y} 1=5-1=4$.
Step 3: Therefore,

$$
\begin{aligned}
& \operatorname{Inc}_{1}=2, d y=2 \times 4=8 \\
& \operatorname{Inc} 2=2(d y-d x)=2(4-7)=-6, d=\operatorname{Inc}_{1}-d x=8-7=1
\end{aligned}
$$

The following table indicates the values computed by the algorithm:

1	I	y	
1	!	!	
$1+\mathrm{ma}_{2}=-5$	7	2	
$-5+m=5$	1	1	
$y+M_{M}=-1$	4	3	
$-1+1 x_{1}=5$	3	3	
$5+h_{2}=-\\|$	6	4	
$-1+\lambda L_{i}=7$	7	4	
+ $+1 x_{2}=1$	1	4	

Circle Drawing Algorithm using Polynomial Method

Algorithm:

Step 1: Set the initial variables $\mathrm{r}=$ circle radius, $(\mathrm{h}, \mathrm{k})=$ co-ordinates of the circle center, $\mathrm{x}=0, \mathrm{x}_{\text {end }}=\mathrm{r} / \sqrt{ } 2$.
Step 2: Test to determine whether the entire circle has been scan-converted. If $x=x_{\text {end }}$, stop.
Step 3: Compute the value of the y-co-ordinate, where $y=\sqrt{ }\left(r^{2}-x^{2}\right)$.
Step 4: Plot the eight points, found by symmetry with respect to the center (h, k), at the current (x, y) coordinates:

$$
\begin{array}{ll}
\operatorname{Plot}(x+h, y+k) & \operatorname{Plot}(-x+h,-y+k) \\
\operatorname{Plot}(y+h, x+k) & \operatorname{Plot}(-y+h,-x+k) \\
\operatorname{Plot}(-y+h, x+k) & \operatorname{Plot}(y+h,-x+k) \\
\operatorname{Plot}(-x+h, y+k) & \operatorname{Plot}(x+h,-y+k)
\end{array}
$$

Step 5: Increment $\mathrm{x}: \mathrm{x}=\mathrm{x}+1$.
Step 6: Go to Step 2.

Scan-Converting a Circle using Bresenham's Algorithm

Algorithm:

Step 1: Set the initial value of the variables $(\mathrm{h}, \mathrm{k})=$ co-ordinates of the circle center, $\mathrm{x}=0, \mathrm{y}=$ circle radius r , and $\mathrm{d}=3-2 \mathrm{r}$.
Step 2: Test to determine whether the entire circle has been scan-converted. If $x>y$, stop.
Step 3: Plot the eight points, found by symmetry with respect to the center (h, k), at the current (x, y) coordinates:

$\operatorname{Plot}(x+h, y+k)$	$\operatorname{Plot}(-x+h,-y+k)$
$\operatorname{Plot}(y+h, x+k)$	$\operatorname{Plot}(-y+h,-x+k)$
$\operatorname{Plot}(-y+h, x+k)$	$\operatorname{Plot}(y+h,-x+k)$
$\operatorname{Plot}(-x+h, y+k)$	$\operatorname{Plot}(x+h,-y+k)$

Step 4: Compute the location of the next pixel.
If $\mathrm{d}<0$, then $\mathrm{d}=\mathrm{d}+4 \mathrm{x}+6$, and $\mathrm{x}=\mathrm{x}+1$.
If $\mathrm{d}>=0$, then $\mathrm{d}=\mathrm{d}+4(\mathrm{x}-\mathrm{y})+10, \mathrm{x}=\mathrm{x}+1$ and $\mathrm{y}=\mathrm{y}-1$.
Step 5: Go to Step 2.

We have Learnt:

-Points and Lines
-Line Drawing Algorithm
-DDA Algorithm
-Bresenham's Line Algorithm
-Parameter Description

- Algorithm
- Example
-Circle Generating Algorithm
- Properties of Circle
- Midpoint Circle Algorithm
- Parameter Description
- Algorithm
-Example

