
Scan Conversion

Professor Dr. Md. Ismail Jabiullah

Department of CSE

Daffodil International University

1 of 27

Scan Conversion

Chapter 3:

 Points and Lines

 Line Drawing Algorithm

 DDA Algorithm

 Bresenham’s Line Algorithm
 Parameter Description

 Algorithm

 Example

 Circle Generating Algorithm

 Properties of Circle

 Midpoint Circle Algorithm
 Parameter Description

 Algorithm

 Example

2 of 27

Scan Conversion a using Line Equation

 The Cartesian slope-intercept equation for a straight line is

 y = mx + b ------ (1)
 with m->slope, b->y intercept

The 2 end points of a line segment are specified at a position

 (x1, y1) and (x2, y2).

3 of 27

Plot a Line whose Slope is between 00 to 450 using

Slope-intercept Equation

Algorithm:

Step 1: Compute dx = x2 –x1

Step 2: Compute dy = y2 –y1

Step 3: Compute m = dy / dx

Step 4: Compute y = y1 – mx1

Step 5: Set (x, y) equal to the lower left-hand end-point and set xend equal to the

largest value of x.

 If dx < 0, then x = x2, y = y2 and xend = x1.

 If dx > 0, then x = x1, y = y1 and xend = x2.

Step 6: Test to determine whether the entire line has been drawn. If x>xend, Stop.

Step 7: Plot a point at current (x, y) position.

Step 8: Increment x: x = x+1.

Step 9: Compute the next value of y from the equation y = mx + c.

Step 10: Go to Step 6.

4 of 27

Line Drawing Algorithms

 Digital Differential Analyzer (DDA) Algorithm

 Bresenham’s Line Drawing Algorithm

 Scan Converting a Circle

 Defining a Circle

 Eight-way Symmetry of a Circle

 Bresenham’s Circle Drawing Algorithm

 Mid-point Circle Drawing Algorithm

5 of 27

DDA Line Algorithm

 The digital differential analyzer (DDA) is a scan conversion line

algorithm based on calculation either Dy or Dx.

 The line at unit intervals is one coordinate and determine corresponding integer

values nearest line for the other coordinate.

 Consider first a line with positive slope.

 Step 1: If the slope is less than or equal to 1, the unit x intervals Dx =1 and

compute each successive y values.

 Dx =1

 m= Dy / Dx

m = (y2 – y1) / 1

 m = (yk+1 – yk)/ 1

yk+1 = yk + m

6 of 27

DDA Line Algorithm

 Step 2: If the slope is greater than 1, the roles of x any y at the unit y

intervals Dy =1 and compute each successive x values.

 Dy =1

m= Dy / Dx

m = 1 / (x2 – x1)

m = 1 / (xk+1 – xk)

 xk+1 = xk + (1/m)

 Step 3: If the processing is reversed, the starting point at the right

 Dx =-1

 m= Dy / Dx

m = (y2 – y1) / -1

yk+1 = yk - m

 Step 4: Here, Dy =-1

m= Dy / Dx

m = -1 / (x2 – x1)

m = -1 / (xk+1 – xk)

 xk+1 = xk – (1/m)

7 of 27

The Bresenham Line Algorithm
 The Bresenham algorithm is another incremental scan conversion algorithm.

 The big advantage of this algorithm is that it uses only integer calculations.

• Jack Bresenham worked for 27 years at IBM before entering Academia.

• Bresenham developed his famous algorithms at IBM in the early 1960s.
8 of 27

The Big Idea
Move across the x axis in unit intervals and at each step choose

between two different y coordinates

2 3 4 5

2

4

3

5

For example,

• from position (2, 3) we have to

choose between (3, 3) and (3, 4)

• We would like the point that is

closer to the original line

(xk, yk)

(xk+1, yk)

(xk+1, yk+1)

9 of 27

The y coordinate on the mathematical line at xk+1 is:

Deriving The Bresenham Line Algorithm

At sample position xk+1 the

vertical separations from the

mathematical line are labelled

dupper and dlower

bxmy k )1(

y

yk

yk+1

xk+1

dlower

dupper

10 of 27

So, dupper and dlower are given as follows:

and:

 We can use these to make a simple decision about

 which pixel is closer to the mathematical line.

Deriving The Bresenham Line Algorithm

(cont…)

klower yyd 

kk ybxm )1(

yyd kupper )1(

bxmy kk )1(1

11 of 27

This simple decision is based on the difference between the two pixel

positions:

Let’s substitute m with ∆y/∆x where ∆x and ∆y are the differences

between the end-points:

Deriving The Bresenham Line Algorithm

(cont…)

122)1(2  byxmdd kkupperlower

)122)1(2()(



 byx

x

y
xddx kkupperlower

)12(222  bxyyxxy kk

cyxxy kk  22 12 of 27

So, a decision parameter pk for the kth step along a line is

given by:

 The sign of the decision parameter pk is the same as that of

dlower – dupper

 If pk is negative, then we choose the lower pixel, otherwise

we choose the upper pixel.

Deriving The Bresenham Line Algorithm

(cont…)

cyxxy

ddxp

kk

upperlowerk





22

)(

13 of 27

Remember that, coordinate changes occur along the x axis in unit

steps so we can do everything with integer calculations.

At step k+1 the decision parameter is given as:

Subtracting pk from this we get:

Deriving The Bresenham Line Algorithm

(cont…)

cyxxyp kkk   111 22

)(2)(2 111 kkkkkk yyxxxypp  

14 of 27

But, xk+1 is the same as xk+1 so:

where yk+1 - yk is either 0 or 1 depending on the sign of pk

The first decision parameter p0 is evaluated at (x0, y0) is given as:

Deriving The Bresenham Line Algorithm

(cont…)

)(22 11 kkkk yyxypp  

xyp  20

15 of 27

The Bresenham Line Algorithm
Bresenham’s Line Drawing Algorithm

(for |m| < 1.0)

Step 1: Input the two line end-points, storing the left end-point in

(x0, y0)

Step 2: Plot the point (x0, y0)

Step 3: Calculate the constants Δx, Δy, 2Δy, and (2Δy - 2Δx)

and get the first value for the decision parameter as:

Step 4: At each xk along the line, starting at k = 0, perform the

following test. If pk < 0, the next point to plot is

(xk+1, yk) and:

xyp  20

ypp kk  21 16 of 27

The Bresenham Line Algorithm (cont…)

Attention!

 The algorithm and derivation above assumes slopes are less

than 1.

 For other slopes we need to adjust the algorithm slightly.

 Otherwise, the next point to plot is (xk+1, yk+1) and:

Step 5: Repeat Step 4 (Δx – 1) times

xypp kk  221

17 of 27

Bresenham Line Algorithm: Example

Let’s have a go at this

Let’s plot the line from (20, 10) to (30, 18)

First off calculate all of the constants:

 Δx: (x2 –x1) = (30-20) =10

 Δy: (y2 –y1) = (18-10) = 8

 2Δy: (2 x 8) =16

 2Δy - 2Δx: (2x8 – 2x10) = (16 - 20) = -4

Calculate the initial decision parameter p0:

 p0 = 2Δy – Δx = (2x8 - 10) = (16 - 10) = 6

18 of 27

Bresenham Line Algorithm: Example

(cont…)

17

16

15

14

13

12

11

10

18

29 27 26 25 24 23 22 21 20 28 30

k pk (xk+1,yk+1)

0

1

2

3

4

5

6

7

8

9

P0

P1

(x1,y1)=(20,10)

19 of 27

Bresenham Line Algorithm:

Exercise
Go through the Step 1 to Step 5 of the Bresenham line drawing

algorithm for a line going from (21,12) to (29,16)

20 of 27

Bresenham Exercise (cont…)

17

16

15

14

13

12

11

10

18

29 27 26 25 24 23 22 21 20 28 30

k pk (xk+1,yk+1)

0

1

2

3

4

5

6

7

8
21 of 27

Bresenham Line Algorithm: Summary

Advantages and Problems

The Bresenham line algorithm has the following advantages:

 A fast incremental algorithm

 Uses only integer calculations

Comparing this to the DDA algorithm, DDA has the following

problems:

 Accumulation of round-off errors can make the pixelated

line drift away from what was intended

 The rounding operations and floating point arithmetic

involved are time consuming

22 of 27

Plot a Line whose Slope is between 00 to 450 using

Bresenham’s Line Algorithm
Algorithm:

Step 1: Compute the initial values:

 dx = x2 – x1, Inc2 = 2(dy – dx)

 dy = y2 – y1, d = Inc1 – dx

 Inc1 = 2dy

Step 2: Set (x, y) equal to the lower left-hand end-point and set xend equal to

the largest value of x.

 If dx < 0, then x = x2, y = y2 and xend = x1.

 If dx > 0, then x = x1, y = y1 and xend = x2.

Step 3: Plot a point at current (x, y) position.

Step 4: Test to see whether the entire line has been drawn. If x>xend, Stop.

Step 5: Compute the location of the next pixel. If d<0, then d = d+ inc1. If

d>=0, then d = d + Inc2, and y = y + 1.

Step 6: Increment x: x = x+1.

Step 7: Plot a point at current (x, y) position.

Step 8: Go to Step 4.
23 of 27

Bresenham’s Line Algorithm: Scan-conerting a Line

from (1, 1) to (8, 5)

Algorithm:

Step 1: Find the starting values.

Step 2: In this case, dx = x2 – x1 = 8 – 1 = 7, dy = y2 – y1 = 5 – 1 = 4.

Step 3: Therefore,

 Inc1 = 2, dy = 2 x 4 = 8.

 Inc2 = 2(dy –dx) = 2(4 - 7) = - 6, d= Inc1 – dx = 8 – 7 = 1.

The following table indicates the values computed by the algorithm:

24 of 27

Circle Drawing Algorithm using Polynomial Method

Algorithm:

Step 1: Set the initial variables r = circle radius, (h, k) = co-ordinates of the circle

center, x = 0, xend = r/2.

Step 2: Test to determine whether the entire circle has been scan-converted.

 If x = xend, stop.

Step 3: Compute the value of the y-co-ordinate, where y = (r2 – x2).

Step 4: Plot the eight points, found by symmetry with respect to the center (h, k),

at the current (x, y) coordinates:

 Plot (x+h, y+k) Plot (-x+h, -y+k)

 Plot (y+h, x+k) Plot (-y+h, -x+k)

 Plot (-y+h, x+k) Plot (y+h, -x+k)

 Plot (-x+h, y+k) Plot (x+h, -y+k)

Step 5: Increment x: x = x+1.

Step 6: Go to Step 2.

25 of 27

Scan-Converting a Circle using

Bresenham’s Algorithm
Algorithm:

Step 1: Set the initial value of the variables (h, k) = co-ordinates of the circle

center, x = 0, y = circle radius r, and d= 3 -2r.

Step 2: Test to determine whether the entire circle has been scan-converted. If

x>y, stop.

Step 3: Plot the eight points, found by symmetry with respect to the center (h,

k), at the current (x, y) coordinates:

 Plot (x+h, y+k) Plot (-x+h, -y+k)

 Plot (y+h, x+k) Plot (-y+h, -x+k)

 Plot (-y+h, x+k) Plot (y+h, -x+k)

 Plot (-x+h, y+k) Plot (x+h, -y+k)

Step 4: Compute the location of the next pixel.

 If d<0, then d = d + 4x + 6, and x = x+1.

 If d>= 0, then d= d + 4(x-y) +10, x= x + 1 and y = y -1.

Step 5: Go to Step 2.
26 of 27

We have Learnt:

Points and Lines

Line Drawing Algorithm

DDA Algorithm

Bresenham’s Line Algorithm

Parameter Description

Algorithm

Example

Circle Generating Algorithm

Properties of Circle

Midpoint Circle Algorithm

Parameter Description

Algorithm

Example
27 of 27

