Scan Conversion

Professor Dr. Md. Ismail Jabiullah Department of CSE **Daffodil International University**

Scan Conversion

Chapter 3:

- Points and Lines
- Line Drawing Algorithm
- DDA Algorithm
- Bresenham's Line Algorithm
 - Parameter Description
 - Algorithm
 - Example
- Circle Generating Algorithm
- Properties of Circle
- Midpoint Circle Algorithm
 - Parameter Description
 - Algorithm
 - Example

Scan Conversion a using Line Equation

The **Cartesian slope-intercept** equation for a straight line is y = mx + b ----- (1) with m->slope, b->y intercept

The 2 end points of a line segment are specified at a position (x_1, y_1) and (x_2, y_2) .

Line path between the end point(x1,y1) and(x2,y2)

Plot a Line whose Slope is between 0⁰ to 45⁰ using Slope-intercept Equation

Algorithm:

Step 1: Compute $dx = x_2 - x_1$

- Step 2: Compute $dy = y_2 y_1$
- Step 3: Compute m = dy / dx
- Step 4: Compute $y = y_1 mx_1$
- Step 5: Set (x, y) equal to the lower left-hand end-point and set x_{end} equal to the largest value of x.

If dx < 0, then $x = x_2$, $y = y_2$ and $x_{end} = x_1$.

If dx > 0, then $x = x_1$, $y = y_1$ and $x_{end} = x_2$.

Step 6: Test to determine whether the entire line has been drawn. If $x>x_{end}$, Stop. Step 7: Plot a point at current (x, y) position.

Step 8: Increment x: x = x+1.

Step 9: Compute the next value of y from the equation y = mx + c. Step 10: Go to Step 6.

Line Drawing Algorithms

- Digital Differential Analyzer (DDA) Algorithm
- Bresenham's Line Drawing Algorithm
- Scan Converting a Circle
 - Defining a Circle
 - Eight-way Symmetry of a Circle
 - Bresenham's Circle Drawing Algorithm
 - Mid-point Circle Drawing Algorithm

DDA Line Algorithm

- The **digital differential analyzer (DDA)** is a scan conversion line algorithm based on calculation either Dy or Dx.
- The line at unit intervals is one coordinate and determine corresponding integer values nearest line for the other coordinate.
- Consider first a line with positive slope.
- Step 1: If the slope is less than or equal to 1, the unit x intervals $D_x = 1$ and compute each successive y values.

$$D_{x} = 1$$

$$m = D_{y} / D_{x}$$

$$m = (y_{2} - y_{1}) / 1$$

$$m = (y_{k+1} - y_{k}) / 1$$

$$y_{k+1} = y_{k} + m$$

DDA Line Algorithm

Step 2: If the slope is greater than 1, the roles of x any y at the unit y intervals D_y=1 and compute each successive x values.

$$D_{y} = 1$$

m= D_y / D_x
m = 1 / (x₂ - x₁)
m = 1 / (x_{k+1} - x_k)
x_{k+1} = x_k + (1/m)

- Step 3: If the processing is reversed, the starting point at the right $D_x = -1$ $m = D_y / D_x$ $m = (y_2 - y_1) / -1$ $y_{k+1} = y_k - m$
- Step 4: Here, $D_y = -1$ $m = D_y / D_x$ $m = -1 / (x_2 - x_1)$ $m = -1 / (x_{k+1} - x_k)$ $x_{k+1} = x_k - (1/m)$

The Bresenham Line Algorithm

The Bresenham algorithm is another incremental scan conversion algorithm.
The big advantage of this algorithm is that it uses only integer calculations.

- Jack Bresenham worked for 27 years at IBM before entering Academia.
- Bresenham developed his famous algorithms at IBM in the early 1960s.

The Big Idea

Move across the x axis in unit intervals and at each step choose between two different y coordinates

For example,

- from position (2, 3) we have to choose between (3, 3) and (3, 4)
- We would like the point that is closer to the original line

Deriving The Bresenham Line Algorithm

At sample position x_k+1 the vertical separations from the mathematical line are labelled d_{upper} and d_{lower}

The y coordinate on the mathematical line at x_k+1 is:

 $y = m(x_k + 1) + b$

So, d_{upper} and d_{lower} are given as follows:

$$d_{lower} = y - y_k$$
$$= m(x_k + 1) + b - y_k$$

and:

$$d_{upper} = (y_k + 1) - y$$

= $y_k + 1 - m(x_k + 1) - b$

- We can use these **to make a simple decision** about
 - which pixel is closer to the mathematical line.

This simple decision is based on the difference between the two pixel positions:

$$d_{lower} - d_{upper} = 2m(x_k + 1) - 2y_k + 2b - 1$$

Let's substitute *m* with $\Delta y/\Delta x$ where Δx and Δy are the differences between the end-points:

$$\Delta x (d_{lower} - d_{upper}) = \Delta x (2 \frac{\Delta y}{\Delta x} (x_k + 1) - 2y_k + 2b - 1)$$

= $2\Delta y \cdot x_k - 2\Delta x \cdot y_k + 2\Delta y + \Delta x (2b - 1)$
= $2\Delta y \cdot x_k - 2\Delta x \cdot y_k + c$ 12 of 27

So, a decision parameter p_k for the *k*th step along a line is given by:

$$p_{k} = \Delta x (d_{lower} - d_{upper})$$
$$= 2\Delta y \cdot x_{k} - 2\Delta x \cdot y_{k} + c$$

- The sign of the **decision parameter** p_k is the same as that of $d_{lower} d_{upper}$
- If *p_k* is negative, then we choose the lower pixel, otherwise we choose the upper pixel.

Remember that, coordinate changes occur along the *x* axis in unit steps so we can do everything with integer calculations. At step k+1 the decision parameter is given as:

Subtracting p_k from this we get:

$$p_{k+1} = 2\Delta y \cdot x_{k+1} - 2\Delta x \cdot y_{k+1} + c$$

 $p_{k+1} - p_k = 2\Delta y(x_{k+1} - x_k) - 2\Delta x(y_{k+1} - y_k)$

But, x_{k+1} is the same as x_k+1 so:

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x(y_{k+1} - y_k)$$

where $y_{k+1} - y_k$ is either 0 or 1 depending on the sign of p_k

The first decision parameter \mathbf{p}_0 is evaluated at $(\mathbf{x}_0, \mathbf{y}_0)$ is given as:

$$p_0 = 2\Delta y - \Delta x$$

The Bresenham Line Algorithm

Bresenham's Line Drawing Algorithm (for |m| < 1.0)

- Step 1: Input the two line end-points, storing the left end-point in (x_0, y_0)
- **Step 2:** Plot the point (x_0, y_0)
- **Step 3:** Calculate the constants Δx , Δy , $2\Delta y$, and $(2\Delta y 2\Delta x)$ and get the first value for the decision parameter as:

$$p_0 = 2\Delta y - \Delta x$$

Step 4: At each x_k along the line, starting at k = 0, perform the following test. If $p_k < 0$, the next point to plot is (x_k+1, y_k) and:

$$p_{k+1} = p_k + 2\Delta y \tag{16 of}$$

The Bresenham Line Algorithm (cont...)

Otherwise, the next point to plot is (x_k+1, y_k+1) and:

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x$$

Step 5: Repeat **Step 4** ($\Delta x - 1$) times

Attention!

- The algorithm and derivation above assumes slopes are less than 1.
- For other slopes we need to adjust the algorithm slightly.

Bresenham Line Algorithm: Example

Let's have a go at this

Let's plot the line from (20, 10) to (30, 18)

First off calculate all of the constants:

•
$$\Delta x$$
: $(x_2 - x_1) = (30 - 20) = 10$

•
$$\Delta y: (y_2 - y_1) = (18 - 10) = 8$$

- $2\Delta y$: (2 x 8) =16
- $2\Delta y 2\Delta x$: (2x8 2x10) = (16 20) = -4

Calculate the initial decision parameter p_0 :

•
$$p_0 = 2\Delta y - \Delta x = (2x8 - 10) = (16 - 10) = 6$$

Bresenham Line Algorithm: Example (cont...)

Bresenham Line Algorithm: Exercise

Go through the **Step 1** to **Step 5** of the Bresenham line drawing algorithm for a line going from (21,12) to (29,16)

Bresenham Exercise (cont...)

Bresenham Line Algorithm: Summary Advantages and Problems

The Bresenham line algorithm has the following **advantages**:

- A fast incremental algorithm
- Uses only integer calculations

Comparing this to the DDA algorithm, DDA has the following **problems**:

- Accumulation of round-off errors can make the pixelated line drift away from what was intended
- The rounding operations and floating point arithmetic involved are time consuming

Plot a Line whose Slope is between 0⁰ to 45⁰ using **Bresenham's Line Algorithm**

Algorithm:

Step 1: Compute the initial values:

 $dx = x_2 - x_1$, $Inc_2 = 2(dy - dx)$ $dy = y_2 - y_1, d = Inc_1 - dx$ $Inc_1 = 2dy$

Step 2: Set (x, y) equal to the lower left-hand end-point and set x_{end} equal to the largest value of x.

If dx < 0, then $x = x_2$, $y = y_2$ and $x_{end} = x_1$.

If dx > 0, then $x = x_1$, $y = y_1$ and $x_{end} = x_2$.

Step 3: Plot a point at current (x, y) position.

Step 4: Test to see whether the entire line has been drawn. If $x > x_{end}$, Stop.

Step 5: Compute the location of the next pixel. If d < 0, then $d = d + inc_1$. If $d \ge 0$, then $d = d + Inc_2$, and y = y + 1.

Step 6: Increment x: x = x+1.

Step 7: Plot a point at current (x, y) position. Step 8: Go to Step 4.

Bresenham's Line Algorithm: Scan-conerting a Line from (1, 1) to (8, 5)

Algorithm:

Step 1: Find the starting values.

Step 2: In this case, $dx = x_2 - x_1 = 8 - 1 = 7$, $dy = y^2 - y^1 = 5 - 1 = 4$. Step 3: Therefore,

> Inc₁ = 2, dy = 2 x 4 = 8. Inc₂ = 2(dy - dx) = 2(4 - 7) = -6, d= Inc₁ - dx = 8 - 7 = 1.

The following table indicates the values computed by the algorithm:

24 of 27

Circle Drawing Algorithm using Polynomial Method

Algorithm:

- Step 1: Set the initial variables r = circle radius, (h, k) = co-ordinates of the circle center, x = 0, $x_{end} = r/\sqrt{2}$.
- Step 2: Test to determine whether the entire circle has been scan-converted. If $x = x_{end}$, stop.
- Step 3: Compute the value of the y-co-ordinate, where $y = \sqrt{(r^2 x^2)}$.
- Step 4: Plot the eight points, found by symmetry with respect to the center (h, k), at the current (x, y) coordinates:

Plot $(x+h, y+k)$	Plot $(-x+h, -y+k)$
Plot (y+h, x+k)	Plot $(-y+h, -x+k)$
Plot $(-y+h, x+k)$	Plot $(y+h, -x+k)$
Plot $(-x+h, y+k)$	Plot $(x+h, -y+k)$

Step 5: Increment x: x = x+1. Step 6: Go to Step 2.

Scan-Converting a Circle using Bresenham's Algorithm

Algorithm:

- Step 1: Set the initial value of the variables (h, k) = co-ordinates of the circle center, x = 0, y = circle radius r, and d = 3 2r.
- Step 2: Test to determine whether the entire circle has been scan-converted. If x>y, stop.
- Step 3: Plot the eight points, found by symmetry with respect to the center (h, k), at the current (x, y) coordinates:

Plot (x+h, y+k)	Plot $(-x+h, -y+k)$
Plot (y+h, x+k)	Plot (-y+h, -x+k)
Plot (-y+h, x+k)	Plot (y+h, -x+k)
Plot (-x+h, y+k)	Plot (x+h, -y+k)

Step 4: Compute the location of the next pixel.

If d<0, then d = d + 4x + 6, and x = x+1.

If $d \ge 0$, then d = d + 4(x-y) + 10, x = x + 1 and y = y - 1.

Step 5: Go to Step 2.

26 of 27

We have Learnt:

- Points and Lines
- Line Drawing Algorithm
- DDA Algorithm
- Bresenham's Line Algorithm
 - Parameter Description
 - Algorithm
 - Example
- Circle Generating Algorithm
- Properties of Circle
- Midpoint Circle Algorithm
 - Parameter Description
 - Algorithm
 - Example