Scan-Conversion

Topics

- Scan-Converting
- a Point,
- a Line,
- a Circle,
- an Ellipse,
- Arcs and Sectors
- a Rectangle
- a Character

Scan-Converting a Point

- A mathematical point (\mathbf{x}, \mathbf{y}) where x and y are real numbers within an image area, needs to be scan-converted to a pixel at location (x^{\prime}, y^{\prime}).
- This may be done by making x^{\prime} to be the integer part of \mathbf{x} and y^{\prime} the integer part of y.
- In other words,

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\operatorname{Floor}(\mathbf{x}) \text { and } \\
& \mathbf{y}^{\prime}=\operatorname{Floor}(\mathbf{y}),
\end{aligned}
$$

- the function Floor() returns the largest integer that is less than or equal to the argument.
- All points that satisfy

$$
\left.x^{\prime}<=x<=x^{\prime}+1 \text { and } y^{\prime}<=y<=y^{\prime}+1 \text { are mapped to pixel (} x^{\prime}, y^{\prime}\right) \text {. }
$$

For example,

- point $p_{1}(1.7,0.8)$ is represented by pixel $(1,0)$.
- point $\mathbf{p}_{2}(\mathbf{2 . 3}, 1.9)$ is represented by pixel $(\mathbf{2}, \mathbf{1})$.
- point $p_{2}(3.7,4.9)$ is represented by pixel $(3,4)$.
- point $\mathbf{p}_{2}(7.6,8.9)$ is represented by pixel $(\mathbf{7}, 8)$.

Scan-Converting a Line

- A line in computer graphics typically refers to a line segment, which is a portion of a straight line that extends indefinitely in opposite directions.
- It is defined by its two endpoints and the line equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, where m is called the slope and b is the y intercept of the line.
- Two endpoints are described by $\mathbf{P}_{1}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$ and $\mathbf{P}_{2}\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)$.
- The line equation describes the coordinates of all points the lie between the two endpoints.
- The slope-intercept equation is not suitable for vertical lines.
- Horizontal, vertical, and diagonal ($|\mathbf{m}|=1$) lines can and often should, be handled as special cases without going through the following scan-conversion algorithms.
- A line connects two points.
- It is a basic element in graphics.
- To draw a line, you need two points between which you can draw a line.
- In the following three algorithms, we refer the one point of line as $\left(x_{0}, y_{0}\right)$ and the second point of line as ($\mathrm{x}_{1}, \mathrm{y}_{1}$).

Algorithms are:

- DDA (Digital Differential Analyzer) Algorithm
- Bresenham's Line Algorithm
- Mid-Point Algorithm

DDA (Digital Differential Analyzer) Algorithm

Digital Differential Analyzer(DDA) algorithm is the simple line generation algorithm which is explained step by step here.

Step 1: Get the input of two end points $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$ and $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)$.
Step 2: Calculate the differences between two end points.

$$
\begin{aligned}
& d x=x_{1}-x_{0} \\
& d y=y_{1}-y_{0}
\end{aligned}
$$

Step 3: Based on the calculated difference in Step 2, you need to identify the number of steps to put pixel. If $\mathrm{dx}>\mathrm{dy}$, then you need more steps in x coordinate; otherwise in y coordinate.

$$
\begin{aligned}
& \text { if }(d x>d y) \\
& \text { else } \\
& \text { Steps }=\text { absolute }(d x) \\
& \\
& \text { Steps }=\operatorname{absolute}(d y)
\end{aligned}
$$

Step 4: Calculate the increment in x coordinate and y coordinate.

$$
\begin{aligned}
& \mathrm{X}_{\text {increment }}=\mathrm{dx} / \text { (float) steps; } \\
& \mathrm{Y}_{\text {increment }}=\mathrm{dy} / \text { (float) steps; }
\end{aligned}
$$

Step 5: Put the pixel by successfully incrementing x and y coordinates accordingly and complete the drawing of the line.

```
for(int v=0; v < Steps; v++)
{
    x = x + Xincrement;
    y=y + Y increment;
    putpixel(x,y);
}
```


Bresenham's Line Algorithm

The Bresenham algorithm is another incremental scan conversion algorithm. The big advantage of this algorithm is that, it uses only integer calculations. Moving across the x axis in unit intervals and at each step choose between two different y coordinates.

Step 1: Input the two end-points of line, storing the left end-point in $(x 0, y 0)$. Step 2: Plot the point $(x 0, y 0)$.
Step 3: Calculate the constants dx, dy, 2dy, and $2 d y-2 d x$ and get the first value for the decision parameter as -

$$
p 0=2 d y-d x
$$

Step 4: At each $X k$ along the line, starting at $\mathrm{k}=0$, perform the following test If $p k<0$, the next point to plot is $(x k+1, y k)$ and $p k+1=p k+2 d y$ Otherwise, $\quad p k+1=p k+2 d y-2 d x$

Step 5: Repeat step $4 d x-1$ times. For $m>1$, find out whether you need to increment x while incrementing y each time. After solving, the equation for decision parameter $P k$ will be very similar, just the x and y in the equation gets interchanged.

Bresenham's Line Algorithm

In short,
Bresenham's algorithm for scan-converting a line from $\mathrm{P}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to $\mathrm{P}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ with $\mathrm{x}_{1}{ }^{\prime}<\mathrm{x}_{2}$ ' and $\mathrm{o}<\mathrm{m}<1$ can be stated as follows:

```
int }\textrm{x}=\mp@subsup{\textrm{x}}{1}{},\textrm{y}=\mp@subsup{\textrm{y}}{1}{\prime}
int dx = x 
int d = 2dy - dx;
setPixel(x,y);
while(x<x ( 
{
X ++
if(d<0)
    d=d + dS;
else
{
    y++
    d=d + dT;
}
setPixel(x, y);
}
```


Bresenham's Line Algorithm: Description

- Here we first initialize decision variable d and set pixel P_{1}.
- During each iteration of the while loop, we increment x to the next horizontal position, then use the current value of d to select the bottom or top (increment y) pixel and update d, and at the end set the chosen pixel.
- As for lines that have other m values we can make use of the fact that they can be mirrored either horizontally, vertically, or diagonally into this 0^{0} to 45^{0} angle range.
- For example, a line from $\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{y}_{1}{ }^{\prime}\right)$) ($\left(\mathrm{x}_{2}{ }^{\prime}, \mathrm{y}_{2}{ }^{\prime}\right)$ with $-1<=\mathrm{m}<0$ has a horizontally mirrored counterpart from ($\mathrm{x}_{1}{ }^{\prime},-\mathrm{y}_{1}{ }^{\prime}$) to ($\mathrm{x}_{2}{ }^{\prime},-\mathrm{y}_{2}{ }^{\prime}$) with $0<=\mathrm{m}<1$.
- We can simply use the algorithm to scan-convert this counterpart, but negate the y coordinate at the end of each iteration to set the right pixel for the line.
- For a line whose slope is in the 45° to 90° range, we can obtain its mirrored counterpart by exchanging the x and y coordinates of its endpoints.
- We can then scan-convert this counterpart but we must exchange x and y in the call to setPixel.

Scan-Converting a Circle

- A circle is a symmetrical figure.
- Any circle-generating algorithm can take advantage of the circle's symmetry to plot eight points for each value that the algorithm calculates.
- Eight-way symmetry is used to reflecting each calculated point around each 45° axis.
- For example, if point 1 were calculated with a circle algorithm, seven more points could be found by reflection.
- The reflection is accomplished by reversing the x, y coordinates as in point $\mathbf{2}$,
- reversing the x, y coordinates and reflecting about the y axis as in point $\mathbf{3}$,
- reflecting about the y axis as in point 4 ,
- switching the signs of x and y as in point 5 ,
- reversing the x, y coordinates and reflecting about the x axis as in point 6 ,
- reversing the x , y coordinates and reflecting about the y axis as in point 7 , and
- reflecting about the x axis as in point 8 .

Scan-Converting a Circle ...

To summarize,

$$
\begin{array}{ll}
\mathrm{p}_{1}=(\mathrm{x}, \mathrm{y}) & \mathrm{p}_{5}=(-\mathrm{x},-\mathrm{y}) \\
\mathrm{p}_{2}=(\mathrm{y}, \mathrm{x}) & \mathrm{p}_{6}=(-\mathrm{y},-\mathrm{x}) \\
\mathrm{p}_{3}=(-\mathrm{y}, \mathrm{x}) & \mathrm{p}_{7}=(\mathrm{y},-\mathrm{x}) \\
\mathrm{p}_{4}=(-\mathrm{x}, \mathrm{y}) & \mathrm{p}_{8}=(\mathrm{x},-\mathrm{y})
\end{array}
$$

Fig. 34 Elght-way symutry of a circle.

Defining a Circle

- There are two standard methods of mathematically defining a circle centered at the origin.
- Polynomial Method
- Trigonometric Method
- The first method defines a circle with the second-order polynomial equation:

$$
\text { where } \begin{aligned}
& y^{2}=r^{2}-x^{2}, \\
& x=\text { the } x \text { coordinate, } \\
& y=\text { the } y \text { coordinate and } \\
& r=\text { the circle radius. }
\end{aligned}
$$

- With this method, each x coordinate in the sector, from 90° to 45°, is found by stepping
- x from 0 to $r /(\sqrt{ } 2)$, and
- each y coordinate is found by evaluating $\sqrt{ }\left(r^{2}-x^{2}\right)$ for each step of x .
- This is a very inefficient method, however, because for each point both x and r must be squared and subtracted from each other, then the square root of the result must be found.

Defining a Circle

- The second method of defining a circle makes use of trigonometric functions:

$$
\begin{aligned}
& x=r \cos \theta \text { and } \\
& y=r \sin \theta \\
& \text { where } \quad \theta=\text { current angle } \\
& \\
& \left.\qquad \begin{array}{l}
r=\text { circle radius } \\
\\
\qquad y=x \text { coordinate } \\
y
\end{array}\right)
\end{aligned}
$$

- By this method, θ is stepped from 0 to $\pi / 4$, and each value of x and y is calculated.
- However, computation of the values of $\sin \theta$ and $\cos \theta$ is even more timeconsuming than the calculations required by the first method.

Mathematical Problems

Solved Problems

Problem 01: Indicate which raster locations would be chosen by Bresenham's Algorithm when scan-converting a line from pixel coordinate $(1,1)$ to pixel coordinate $(8,5)$.

Indicate which raster locations would be chosen by Bresenham's algonithm when scan-converting a line from pixel coordinate (1,1) to pixel coordinate $(8,5)$.

SOLUTION

First, the starting values must be found. In this case

$$
x=x_{2}=x_{1}=8=1=7 \quad d y=y_{2}-h_{1}=5-1=4
$$

Therefore:

$$
\begin{gathered}
I m c_{1}=2 d y=2 \times 4=5 \\
M c_{2}=2(d y-d x)=2 \times(4-7)=-6 \\
d=h c_{1}-d x=8-7=1
\end{gathered}
$$

The following table indicates the values conputed by the algorithm (see also Fig. 3-33).

d	x	y
1	1	1
$1+I n c_{2}=-5$	2	2
$-5+I n c_{1}=3$	3	2
$3+I n c_{2}=-3$	4	3
$-3+I n c_{1}=5$	5	3
$5+I c_{2}=-1$	6	4
$-1+I n c_{1}=7$	7	4
$7+I n c_{2}=1$	8	5

Solved Problems

Problem 08: Modify the description of Bresenham's line Algorithm in the text to set all pixels from inside the loop structure.

Modify the description of Bresenham's line algorithm in the text to set all pixels from inside the loop structure.

SOLUTION 1

```
    int }x=\mp@subsup{x}{1}{\prime\prime},y=\mp@subsup{y}{1}{\prime
    int d}=\mp@subsup{x}{2}{\prime}-\mp@subsup{x}{1}{\prime},dy=\mp@subsup{y}{2}{\prime}-\mp@subsup{y}{1}{\prime},d\textrm{T}=2(dy-dx),d\textrm{S}=2d
    int d=2dy-d";
    while (x<<= 位) (
        setPixel(y, y/5
        [++;
        if (d<c0)
            d=d+dS;
        else {
            y++;
            d=d+dT;
        }
    ;
```

SOLUTION 2

```
int x=\mp@subsup{x}{1}{\prime}-1,y=\mp@subsup{y}{1}{\prime};
int dx =\mp@subsup{x}{2}{\prime}-\mp@subsup{x}{1}{\prime},dy=\mp@subsup{y}{2}{\prime}-\mp@subsup{y}{1}{\prime},d\textrm{T}=2(dy-dx),d\textrm{S}=2dy;
int d=-dx;
```



```
        x+!;
        if (d<0)
        d=d+dS;
        else {
        y++;
        d=d+dT;
        }
        setPixel(x,y);
}
```


Solved Problems

Problem 09: What steps are required to generate a circle using the polynomial method.
What steps are required to generate a circle using the polynomial method?

SOLUTION

1. Set the infitial variables; $F=$ circle radius; $(h, k)=$ opordinites of the circle center $r=0$; $i=$ step size; $x_{\text {曷 }}=r / \sqrt{2}$

2. Conipute the value of the y coordinate, where $y=\sqrt{r^{2}=w^{2}}$,
3. Plot the eight pointr, found by symmetry with respect io the center (h, k), at the corrent (X, y) coordinates:

$$
\begin{array}{ll}
\operatorname{Plot}\left(x+h_{0} y+k\right) & \operatorname{Plot}\left(-x+h_{2}-y+k\right) \\
\operatorname{Plod}\left(y+h_{1} x+k\right) & \operatorname{Plot}\left(-y+h_{2}-x+k\right) \\
\operatorname{Plot}\left(-y+h_{1} x+k\right) & \operatorname{Plot}\left(y+h_{1}-x+k\right) \\
\operatorname{Plot}\left(-x+h_{1} y+k\right) & \operatorname{Plot}\left(x+h_{1}-y+k\right)
\end{array}
$$

3. Incrument $x^{2}=4+1$.
4. Go to step 2.

Solved Problems

Problem 10: What steps are required to scan-convert a circle using the trigonometric method.

What steps are required to scan-conver a circle using the trigonometric method?

SOLUTION

1. Set the initial variables: $r=$ circle radius: $\left(h_{\mathrm{s}} k\right)=$ coordinates of the circle center; $i=$ step size; $\theta_{\text {rad }} \equiv \pi / 4$ radians $=45^{\circ}-\theta=0$.
2. Test to deternine whether the entire circle has been scan-converted. If $\theta>\theta_{\text {tedd }}$, stop.
3. Compute the value of the x and y coordinates:
4. Plot the eight points, found by symmetry with respect to the center (h, k), at the current (i, y) cootdinates:

$$
\begin{array}{ll}
\operatorname{Plot}\left(x+h_{1} y+k\right) & \operatorname{Plot}\left(-x+h_{1}-y+k\right) \\
\operatorname{Plot}\left(y+h_{1} x+k\right) & \operatorname{Plot}\left(-y+h_{1}-x+k\right) \\
\operatorname{Plot}\left(-y+h_{1} x+k\right) & \operatorname{Plot}\left(y+h_{1}-x+k\right) \\
\operatorname{Plot}\left(-x+h_{1} y+k\right) & \operatorname{Plot}\left(x+h_{1}-y+h\right)
\end{array}
$$

5. Increment $0: 0=0+i$
6. Go to step 2.

Solved Problems

Problem 11: What steps are required to scan-convert a circle using Bresenham's algorithm
What steps are required to scan-convert a circle using Brescoham's algonithm?

SOLUTION

1. Set the initial values of the varables, $(h, k)=$ coordinates of cirole center $I=0 ; y=$ circle cadius F and $d \equiv 3-2 \underline{2}$
2. Test to detemaine whether the entire circle has been scan-converted. If $x>\rho$, stop.
3. Plot the eight points, found by symmetry with fespect to the center (h, k), at the curfent (x, y) cootdinates,

$$
\begin{array}{ll}
\operatorname{Plot}\left(x+h_{1} y+k\right) & \operatorname{Plot}\left(-x+h_{1}-y+k\right) \\
\operatorname{Plot}\left(y+h_{1} x+k\right) & \operatorname{Plot}\left(-y+h_{4}-x+k\right) \\
\operatorname{Plot}\left(-y+h_{2} x+k\right) & \operatorname{Plot}\left(y+h_{1}-x+k\right) \\
\operatorname{Plot}\left(-k+h_{1} y+k\right) & \operatorname{Plot}\left(x+h_{1}-y+k\right)
\end{array}
$$

4. Compute the location of the next pixel. If $d<0$, then $d=d+4 x+6$ and $x=x+1$. If $d \geq 0$, then $d=d+4(x-y)+10, x=x+1$, and $y=y=1$.
5. Go to step 2

Solved Problems

Problem 12:

In the derivation of Bresenhams circle algonithm we have used a decision varable $d_{i}=$ $D(\mathrm{~T})+D(\mathrm{~S})$ to help choose between pixels S and T . However, function D as defined in the text is not a true measure of the distance from the center of a pixel to the true circle. Show that when $d_{i}=0$ the two pixels S and T are not really equally far away from the true circle.

SOLUTION

Let 4 S be the actual didance from S to the true circle and $d \mathrm{~T}$ be the whiul distince fom T to the true circle (see Fig- 3 -35). Also substitute, for,$_{1}+1$ and y for y_{i} in the formula for d_{1} to make the following proof easter to read:

$$
d_{i}=2 x^{2}+y^{2}+(y-1)^{2}-2 r^{2}=0
$$

Since $(r+d T)^{2}=x^{2}+y^{2}$ and $(r-d S)^{2}=r^{2}+(y-1)^{2}$ we have

$$
2 n d T+d T^{4}=x^{2}+y^{2}-r^{2} \quad \text { and } \quad-2 r d S+d S^{2}=x^{2}+(y-1)^{2}-r^{2}
$$

Hence

$$
\begin{gathered}
2 n d \mathrm{~T}+d \mathrm{~T}^{2}-2 r d \mathrm{~S}+d \mathrm{~S}^{2}-0 \\
d \mathrm{~T}(2 \mathrm{~F}+d \mathrm{~T})=d \mathrm{~S}(2 r-d \mathrm{~S})
\end{gathered}
$$

Shoe $d \mathrm{~T} / d \mathrm{~S}=(2 r-d S) /(2 r+d \mathrm{~T})<1_{+}$we have $d \mathrm{~T}<d \mathrm{~S}$. This means that, when $d_{i}=0$, pixel T is actually closer to the true circle than pixel S.

Solved Problems

Problem 13: Write a
Write a desciption of the mildpoint circle algoithmin in which decision panametet p is updated using x_{i+1} and y_{i+1} instead of x_{i} and y_{i}

SOLUTION

```
Haltr=0, y=\mp@subsup{F}{2}{}p=1-r;
while (tr=y)|
    GELED(5,y)
    n+#
    |}(p<0
        p=p+2q+1;
    efl
        y--*
        p=p+2(p-y)+1
    |
I
```


Solved Problems

What steps are required to generate ane ellipse using the polynomial method?

SOLUTION

1. Set the initial variables $a=$ length of major axis; $b=$ length of minor axis $(h, k)=$ coordinates of ellipse ander; $\bar{x}=0 ; 1=$ step sixe $x_{\text {em }}=a$.
2. Test to deternine whether the entire etlipse has been scan-converted. If $x>x_{\text {end }}$ stop.
3. Compute the value of the y ooordinate:

$$
y=b \sqrt{1=\frac{x^{2}}{a^{2}}}
$$

4. Plot the four points, found by symutry, at the curnent (x, j) coordinates:

$$
\begin{array}{ll}
\operatorname{Plot}\left(x+h_{5} y+k\right) & \operatorname{Plot}\left(-x+h_{i}=y+k\right) \\
\operatorname{Plot}\left(-x+h_{1} y+k\right) & \operatorname{Plot}\left(t+h_{2}-y+k\right)
\end{array}
$$

5. Increment $x=x+1$.
6. Go to step 2.

Solved Problems

What gleps afe required to scan-convert an ellipse using the trigonometric method?

SOLUTION

1. Set the intital sariables, $a=$ lengh of major sxis, $b=$ length of minor axis, $(h, k)=$ coondinates of ellipse centar, $i=$ counter step sity; $\theta_{\text {end }}=\pi / 2 ; \theta=0$.
2. Test to determine whetber the entire ellipge has been scin-ctiverted if if \Rightarrow tedd stop,
3. Compute the values of the x and y coondinates:

$$
x=a \cos (\theta) \quad y=b \sin (\theta)
$$

4. Plot the four points, found by symmeryy, it the currest (x, y) condinates:

$$
\begin{array}{ll}
\operatorname{Pot}\left(x+h_{1} y+k\right) & \operatorname{Plot}\left(-x+h_{\mathrm{H}}-y+k\right) \\
\operatorname{Plot}\left(-\Phi+h_{1} y+k\right) & \operatorname{Pata}\left(x+h_{1}-y+k\right)
\end{array}
$$

5. Increment $\theta \theta=\theta+i$
6. Go to step 2.

Solved Problems

What steps are required to scan-convert an anc using the trigonometric method?

SOLUTION

 $\theta=$ sarting angle; $\theta_{1}=$ etwitigg angle.

3. Conipute the rituet of the x ind y toondinter

$$
x=a \cos (\theta)+h \quad y=a \sin (9)+k
$$

4. Poot the pointe ie the curfent (x, y) coodinates Plot $(1, y)$

5. G0 to step 2
(Note for the are of a circle $a=b=$ circle ndius r.)

Solved Problems

What streps are required to generate an are of a circle using the polynomial method?

SOLUTION

1. Set the initial yariables: $f=$ radus; $(h, k)=$ condinats of are center; $x=x$ coordinate of start of ares; $x_{1}=x$ coordinate of end of are, $i=$ ownater stap size.

2. Compute the value of the y courditate;

$$
y=\sqrt{r^{2}-x^{2}}
$$

$$
\text { Plat }(x+h, y+k)
$$

5. Increnent $x=x+1$
6. Gotostep 2

Solved Problems

Problem 18:

Write a pseudocode procedure to implement the beundary.fil algorithm in the text in its basic form, using the 4 -contected definition for region pixels.

SOLUTION

```
BoundaryFill (int my, fill_wow, boundary_color)
|
    tat color,
    g+Pwel(m,y, कdar)
    If(color l= boundary_color ed color f= fill_ofor) |
            getPixe(%,y,fill_color):
            BoundaryFilli
            BoundiryPill
            BoundaryPili(s = 1, y, fil_colorit boundary_colort
            BoundaryFili(r,y - 1, fil_color, boundry_colm)
    H
}
```


Solved Problems

Write a pseudo-code procedare for generating the Koch curve K_{n} (after the one in the text for generating C_{n}).

SOLUTION

```
Roch-curve (flost \(+y\), len, alphia tot n)
1
    if \((n>0)\) f
        len = lead?;
        Koch-curve (x, \(y\), len, alpha, \(n-1)\) :
```



```
        \(y=y+\operatorname{len}{ }^{*} \sin (\) alpha) \(;\)
        Koch-ctirye \(\left(x_{1}, y_{1}\right.\) lon, alpha \(\left.-60, n=1\right)\);
    \(x=x+\operatorname{len}^{*} \cos (a \mid p h a-60):\)
    \(y=y+\ln n^{\circ} \sin (a \operatorname{la} h a-60)\)
    Koch-curved \(y\), len, alphai \(+60, n-1\) )
    \(x=x+\operatorname{len}\) coss (alpha +60 );
    \(y=y+\) len \({ }^{*}\) 迆 \(n\) (alpha +60 );
    Koch-curve ( \(x\) y, len, alpha, \(n=1\) ):
    1 etse
    \(\operatorname{line}\left(x_{1}, y, x+\operatorname{len}{ }^{*} \cos (a \mid p h a), y+\operatorname{len} n^{*} \sin (a \mid p h a) ;\right.\)
\}
```


Solved Problems

Problem 20: Presume that the following statement produces a filled triangle with vertices at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)=$

$$
\text { triangle }\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{1}, y_{9}\right)
$$

Winte a paepdo-code procedure for generating the Sierpinski gasket $\mathrm{S}_{\text {a }}$ (after the procedure in the tuax for generating C_{i}).

SOLUTION

```
SGasket (float \(x_{12}, y_{11}, x_{2}, y_{2}, x_{2}, y_{3 i}\) int \(n\) )
1
    float \(x_{12}, y_{12}, x_{13}, y_{13}, x_{23}, y_{23}\);
    if \((n>0)\) i
        \(x_{12}=\left(x_{1}+x_{2}\right) / 2\)
        \(y_{12}=\left(y_{1}+y_{2}\right) / 2\),
        \(x_{13}=\left(x_{1}+x_{1}\right) / 2\)
        \(y_{12}=\left(y_{1}+y_{2}\right) / 2\);
        \(x_{22}=\left(x_{2}+x_{1}\right) / 2 ;\)
        \(y_{22}=\left(y_{2}+y_{1}\right) / 2\)
        S-Gasket \(\left(x_{1}, y_{11}, x_{12}, y_{12}, x_{121}, y_{13}, n-1\right)\)
        S-Gasket \(\left(x_{12}, y_{12}, x_{22}, y_{1}+x_{23}, y_{23}, n-1\right)\) )
        S-Gasket \(\left(x_{13}, y_{13}, x_{21}, y_{2,}, x_{3}, y_{3}, n=1\right)_{1}\)
    ) else
        triangle \(\left(x_{1}, y_{1}, x_{1}, y_{2}, x_{2}, y_{3}\right)\)
!
```

Thanks

