# 2D Transformation3D Transformation

### Professor Dr. Md. Ismail Jabiullah Department of CSE Daffodil International University

### Contents

#### Chapter 5: Two-Dimensional Geometric Transformation

- Basic Transformation
  - Translations
  - Rotation
  - Scaling
  - Reflection
  - Shear

#### Chapter 11: Three-Dimensional Geometric Transformation

- Basic Transformation
  - Translations
  - Rotation
  - Scaling
  - Reflection
  - Shear

### Contents

### **Chapter 5 and Chapter 11**

- Transformation
- Types of Transformation
- Why we use Transformation
- 3D Transformation
  - 3D Translation
  - 3D Rotation
  - 3D Scaling
  - 3D Reflection
  - 3D Shearing

# Transformation

- Transformations are a fundamental part of the computer graphics.
- Transformations are the movement of the object in Cartesian plane .



### Transformation

- Transformations are of 6 Kinds:
  - Geometric Transformation
    - Translation
    - Rotation about the Origin
    - Scaling with respect to the Origin
    - Mirror Reflection about an Axix
  - Inverse Geometric Transformation
    - Translation
    - Rotation about the Origin
    - Scaling with respect to the Origin
    - Mirror Reflection about an Axix
  - Co-ordinate Transformation
    - Translation
    - Rotation about the Origin
    - Scaling with respect to the Origin
    - Mirror Reflection about an Axix
  - Inverse Co-ordinate Transformation
    - Translation
    - Rotation about the Origin
    - Scaling with respect to the Origin
    - Mirror Reflection about an Axix
  - Composite Transformation
  - Instance Transformation

### **Types of Transformation**

- > There are two types of transformation in computer graphics.
  - (1) 2D transformation
  - (2) 3D transformation
- > Types of 2D and 3D transformation
  - 1. Translation
  - 2. Rotation
  - 3. Scaling
  - 4. Shearing
  - 5. Mirror reflection

### **Why We Use Transformation**

- > Transformation are used to position objects, to shape object, to change viewing positions, and even how something is viewed.
- > In simple words transformation is used for
  - (1) Modeling
  - (2) viewing

### **3D Transformation**

- > When the transformation takes place on a 3D plane. It is called 3D transformation.
- > Generalize from 2D by including **z** coordinate

Straight forward for translation and scale, rotation more difficult

Homogeneous coordinates: 4 components

**Transformation matrices:** 4×4 elements

$$\begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

### **3D Translation**

- > Moving of object is called translation.
- In 3 dimensional homogeneous coordinate representation, a point is transformed from position

$$P = (x, y, z)$$
 to  $P' = (x', y', z')$ 

> This can be written as:-

Using  $P' = T \cdot P$ 

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



# **3D Translation**

> The matrix representation is equivalent to the three equation.  $x'=x+t_x$ ,

 $y'=y+t_y$ ,

 $z'=z+t_z$  where parameter  $t_x, t_y, t_z$  are specifying translation distance for the coordinate direction x, y, z are assigned any real value.



## **3D Rotation**

• Where an object is to be rotated about an axis that is parallel to one of the coordinate axis, we can obtain the desired rotation with the following transformation sequence.

#### **Coordinate axis rotation**

Z- axis Rotation (Roll) Y-axis Rotation (Yaw) X-axis Rotation (Pitch)



## **X-Axis Rotation**

The equation for X-axis rotation

$$x' = x$$
  
y' = y cos $\theta$  - z sin $\theta$   
z' = y sin $\theta$  + z cos $\theta$ 

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



## **Y-Axis Rotation**

The equation for Y-axis rotaion

$$x' = x \cos\theta + z \sin\theta$$
  
y' = y  
z' = z \cos\theta - x \sin\theta

| $\begin{bmatrix} x' \end{bmatrix}$ |  | $\cos\theta$  | 0 | sinθ         | 0 | $\begin{bmatrix} x \end{bmatrix}$ |
|------------------------------------|--|---------------|---|--------------|---|-----------------------------------|
| <i>y</i> '                         |  | 0             | 1 | 0            | 0 | y                                 |
| <i>z</i> '                         |  | $-\sin\theta$ | 0 | $\cos\theta$ | 0 | Z                                 |
| 1                                  |  | 0             | 0 | 0            | 1 | 1                                 |



### **Z-Axis Rotation**

The equation for Z-axis rotation  $x' = x \cos\theta - y \sin\theta$   $y' = x \sin\theta + y \cos\theta$ z' = z



$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

# **3D Scaling**

 Changes the size of the object and repositions the object relative to the coordinate origin.

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



# **3D Scaling**

The equations for scaling  $x' = x \cdot sx$   $S_{sx,sy,sz} \square y' = y \cdot sy$  $z' = z \cdot sz$ 



# **3D Reflection**

- Reflection in computer graphics is used to emulate reflective objects like mirrors and shiny surfaces
- Reflection may be:
  - > an x-axis, y-axis, z-axis. and also
  - > in the planes xy-plane, yz-plane, and zx-plane.
- Reflection relative to a given Axis are
  - equivalent to 180 Degree rotations.



# **3D Reflection**

> Reflection about x-axis:-

**x'=x y'=-y z'=-z**  

$$1 \ 0 \ 0 \ 0$$
  
 $0 \ -1 \ 0 \ 0$   
 $0 \ 0 \ -1 \ 0$   
 $0 \ 0 \ -1 \ 0$   
Reflection about y-axis:-

y'=y x'=-x z'=-z

★ ☆



# **3D Reflection**

- > The matrix for reflection about y-axis:-
  - $\begin{array}{cccccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array}$
- Reflection about z-axis:-

$$\mathbf{x'} = -\mathbf{x} \qquad \mathbf{y'} = -\mathbf{y} \qquad \mathbf{z'} = \mathbf{z}$$

 $\begin{array}{ccccccc} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}$ 

### **3D Shearing**

- > Modify object shapes
- > Useful for perspective projections
- > When an object is viewed from different directions and at different distances, the appearance of the object will be different.
- > Such view is called perspective view.
- > Perspective projections mimic what the human eyes see.

e.g. draw a cube (3D) on a screen (2D) Alter the values for **x** and **y** by an amount proportional to the distance from  $z_{ref}$ 



### **3D Shearing**

- > Matrix for 3d shearing
- > Where a and b can be assigned any real value.





# **3D Shearing** • In (y, z) w.r.t. x value $SH_{yz} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ sh_y & 1 & 0 & 0 \\ sh_z & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

• In (z, x) w.r.t. y value 
$$SH_{xz} = \begin{bmatrix} 1 & sh_x & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & sh_z & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• In (x, y) w.r.t. z value 
$$SH_{xy} = \begin{bmatrix} 1 & 0 & sh_x & 0 \\ 0 & 1 & sh_y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
  
20 of 22

# **3D Shearing**

Shear along Z-axis  

$$\begin{array}{c}
y \\
x \\
x \\
x \\
x \\
y \\
z \\
1
\end{array}$$
Shear along Z-axis  

$$\begin{array}{c}
y \\
x \\
x \\
y \\
z \\
1
\end{array}$$

$$\begin{array}{c}
y \\
x \\
y \\
z \\
1
\end{array}$$

$$\begin{array}{c}
x \\
y \\
z \\
1
\end{array}$$

$$\begin{array}{c}
x \\
y \\
z \\
1
\end{array}$$

$$\begin{array}{c}
x \\
y \\
z \\
1
\end{array}$$

$$\begin{array}{c}
x \\
y \\
z \\
1
\end{array}$$

#### **Solve Related Problems**