CSE 421 Computer Graphics:
2D Transformations

Professor Dr. Md. Ismail Jabiullah

2D Transformations

2D Transformations

v

v

v

OpenGl transformations:
glTranslatef (tx, ty, tz);
glRotatef (theta, vx, vy, vz)

glScalef (sx,sy,sz)

2D Transformations

Applications:

- Animation

v
[
>

X y - Image/object manipulation
\ - Viewing transformation

/ - etc.

v

Applications of 2D Transformations

* 2D geometric transformations

e Animation (demo ,demo)

* Image warping

* I[mage morphing

https://www.youtube.com/watch?v=3kG5nzeBAxM
http://www.dgp.utoronto.ca/~jflaszlo/interactive-control.html

2D Transformation

Required readings: Scan Conversion

Given a 2D object, transformation is to change the
object’s

— Position (translation)

— Size (scaling)

— Orientation (rotation)

— Shapes (shear)

Apply a sequence of matrix multiplications to the

object vertices

Point Representation

* We can use a column vector (a 2x1 matrix) to
represent a 2D point X

Y

A general form of linear transformation can be
written as:

X' =ax+by+c
OR

= <X

oaw
—_ =h 0

(el
=< X

y =dx+ey+f

Translation

* Re-position a point along a straight line
* Given a point (x,y), and the translation distance
(tx,ty)

The new point: (X, y) Xy
X =X+ tX i

OR P =P + T where P’=‘x:‘ p=‘x‘T= tx‘
Yy

3x3 2D Translation Matrix

X| = X + tx
1 Use 3 x 1 vector
X' 1 0 tx X
y'| = 0O 1 ty| * |y
1 0 0 1 1

= Note that now it becomes a matrix-vector multiplication

Translation

 How to translate an object with multiple

vertices?

[]

—

Translate individual
vertices

,,,,,
[W . |
/ /

2D Rotation

* Default rotation center: Origin (0,0)

y @
’\\ . 0> 0 : Rotate counter clockwise
0 x
y @
j " 0< 0 : Rotate clockwise
0 = »

2D Rotation

(x,y) -> Rotate about the originby 6 | ¢8%

> (X, Y) . ® (XV)

¢
How to compute (x/, y') ? >

2D Rotation

(x,y) -> Rotate about the originby 6 | Y ¢8%
- (X, Y') S

T

How to compute (x/, y') ? i > a

X = rcos (¢p) y=rsin ()

14

X"= rcos(¢p+0) y =rsin (¢ +06)

2D Rotation

X= rcos () y=rsin (o)
X"= rcos(vp+0) y=rsin(¢+0)

XI

0

(x7y")

e (xvy)

r cos (¢ + 0)
RELCOR8) cos() — ESi®) 5D

= X cos(0) — vy sin(0)

v’ = rsin (¢ +0)
~ BRI coso) + [EERR=in(o)

= y cos(0) + x sin(6)

14

Matrix form?

14

| cos(0)
| sin(0)

14

X
)4

3x3?

2D Rotation

0

(x7y")

e (xvy)

-sin(0)
cos(0)

X
Y

15

3x3 2D Rotation Matrix

X" |] cos(B6) -sin(B)| | x (X,y")
y' sin(0) cos(0)| | Y
o_ o (xy)
! L
X1 jcos(6) -sin(6) O X
y’ sin(0) cos(0) O y
1 0 0 1 1

2D Rotation

= How to rotate an object with multiple
vertices?

I:I |
— (fpmmeemeeed ‘
\NL/ L/
1 1
1 1
1 1
0 ' '
1 1
1 I
1 1

Rotate individual
Vertices

/////

/ /

2D Scaling

Scale: Alter the size of an object by a scaling factor
(Sx, Sy), i.e.

-

(1,1)

(2,2)

Sx=2,Sy =2
E—

Sx 0
0 Sy

(2,2)

v

(44)

18

(1,1)

(2,2)

2D Scaling

Sx =2, Sy =2

(2,2)

(4/4)

= Not only the object size is changed, it also moved!!

= Usually this is an undesirable effect

= We will discuss later (soon) how to fix it

3x3 2D Scaling Matrix

X'| | Sx 0 X
‘y"_‘o Sy‘ ‘y‘

!

Sx 0 0
0 Sy 0 |*
0 0 1

< X

Put it all together

* Translation:

X1 x| |t
r: +
Y|y
* Rotation:
x’_cosH —sin g t,
y| |sin@ cosé | [t,
e Scaling:
x| IS, O]t
y'| |0 S,| |ty

Or, 3x3 Matrix Representations

* Translation:

X’ 1 0 X

y'| = 0 1 ty| * |y

1 0O 0 1 1
* Rotation:

X" | _|cos(®) -sin(6) O X

Yy’ sin(6) cos(®) O *|y

1 0 0 1 1
e Scaling: v S 0 0 y

y | =] 0 Sy 0]*y

1 0 0 1 1

Why use 3x3 matrices?

Why Use 3x3 Matrices?

* So that we can perform all transformations using
matrix/vector multiplications

* This allows us to pre-multiply all the matrices together

 The point (x,y) needs to be represented as
(x,y,1) -> this is called Homogeneous
coordinates!

* How to represent a vector (v,,v,)?

Why Use 3x3 Matrices?

* So that we can perform all transformations using
matrix/vector multiplications

* This allows us to pre-multiply all the matrices together

 The point (x,y) needs to be represented as
(x,y,1) -> this is called Homogeneous
coordinates!

* How to represent a vector (v,,v,)? (v,,v,,0)

Shearing

—

* Y coordinates are unaffected, but x coordinates are
translated linearly with y

 Thatis:
- Y=y
— x'=x+y*h

X

oo+
O = J

0
0
1

=< X
=< X

25

Shearing inY

L~

—_ < X
ocounu
o~ O
= o O
=< X

—

Interesting Facts:
= A 2D rotation is three shears
= Shearing will not change the area of the object

= Any 2D shearing can be done by a rotation, followed
by a scaling, and followed by a rotation

Reflection

27

Refl:ection

28

Refl:ection

1 29

Reflection about X-axis

m

30

Reflection about X-axis

m

1 00
0 -10

—_ << X

0 01

fen |
s

B S

31

P

Reflection about Y-axis

A

P

32

Reflection about Y-axis

33

What’s the Transformation Matrix?

A

*
‘Jd

34

What’s the Transformation Matrix?

35

Rotation Revisit

s | he standard rotation matrix is used to
rotate about the origin (0,0)

cos(6) -sin(6) O ‘
sin(0) cos(8) O m—> s
0 O 1 /,:j///v ‘

= What if I want to rotate about an
arbitrary center? ‘

36

Arbitrary Rotation Center

* To rotate about an arbitrary point P (px,py) by O:

T (px,py)

Arbitrary Rotation Center

* To rotate about an arbitrary point P (px,py) by O:

— Translate the object so that P will coincide with the
origin: T(-px, -py)

T (px,py)

/7 I
4
4
4
4

@

Arbitrary Rotation Center

* To rotate about an arbitrary point P (px,py) by O:
— Translate the object so that P will coincide with the
origin: T(-px, -py)
— Rotate the object: R(0)

T (px,py)

A A
o ‘
/7
4
7/
7

|- |- ﬂ
> e > &

39

Arbitrary Rotation Center

* To rotate about an arbitrary point P (px,py) by O:
— Translate the object so that P will coincide with the
origin: T(-px, -py)
— Rotate the object: R(0O)
— Translate the object back: T(px,py)

T (px,pY) | | | ‘

- ‘ -
4
e
7
4
7’
> . > & >

40

Arbitrary Rotation Center

= [ranslate the object so that P will coincide with
the origin: T(-px, -py)

= Rotate the object: R(6)

= [ranslate the object back: T(px,py)

s Put in matrix form: T(px,py) R(®) T(-px, -py) * P

X’ 10 px cos(0) -sin(6) O 1 0 -px| |X
y'i= 101 py sin(@) cos(6) O 01 -py y
1 00 1 0 0 1 00 1 1

Scaling Revisit

= The standard scaling matrix will only

anchor at (0,0) ‘_
| e
N

= What if I want to scale about an arbitrary
pivot point? ‘

Sx 0 O
0 Sy O
0 O 1

42

Arbitrary Scaling Pivot

= [0 scale about an arbitrary fixed point P
(PX,PY):

, (Px,py)
u’/ -

Arbitrary Scaling Pivot

= [0 scale about an arbitrary fixed point P
(PX,PY):

» Translate the object so that P will coincide with
the origin: T(-px, -py)

, (Px,py)
u’/ -

44

Arbitrary Scaling Pivot

= [0 scale about an arbitrary fixed point P
(PX,PY):

» Translate the object so that P will coincide with
the origin: T(-px, -py)
= Scale the object: S(sx, sy)

, (Px,py)
u’/ - - -

45

Arbitrary Scaling Pivot

= [0 scale about an arbitrary fixed point P

(px,py):

» Translate the object so that P will coincide with

the origin: T(-px, -py)
= Scale the object: S(sx, sy)
= Translate the object back: T(px,py)

, (PX,pY)
u’/ - - -

46

Reflection about An Arbitrary Line

L

Reflection about An Arbitrary Line

A — Rotate the object to align the

E reflection vector with x axis:Rr9)

48

Reflection about An Arbitrary Line

A — Rotate the object to align the
A reflection vector with x axis:Rr(-9)

— Reflect the object

49

Reflection about An Arbitrary Line

Ag

— Rotate the object to align the
reflection vector with x axis:Rr(-9)

— Reflect the object

@

— Rotate the object back: Rr©)

50

Affine Transformation

* Translation, Scaling, Rotation, Shearing are all affine

transformation

Affine Transformation

* Translation, Scaling, Rotation, Shearing are all affine
transformation

e Affine transformation — transformed point P’ (x’,y’) is a
linear combination of the original point P (x,y), i.e.

m, m, My, |X
Yi=My My, M-y
1 0 0 1|11

Affine Transformation

* Translation, Scaling, Rotation, Shearing are all affine
transformation

* Affine transformation — transformed point P’ (x’,y’) is a
linear combination of the original point P (x,y), i.e.

mll m12 m13 X

Yi=My My, M-y
1 0 0 1|11

* Any 2D affine transformation can be decomposed into a

rotation, followed by a scaling, followed by a shearing, and
followed by a translation.

Affine matrix = translation x shearing x scaling x rotation

Composing Transformation

* Composing Transformation — the process of applying
several transformation in succession to form one overall
transformation

* If we apply transforming a point P using M1 matrix first,
and then transforming using M2, and then M3, then we
have:

(M3 x (M2 x (M1 xP)))

Composing Transformation

* Composing Transformation — the process of applying
several transformation in succession to form one overall
transformation

* If we apply transforming a point P using M1 matrix first,
and then transforming using M2, and then M3, then we
have:

(M3 x (M2 x (M1 xP))) =M3xM2xM1xP
| |

(pre-multiply) '
M

Arbitrary Rotation Center

1 (px,py)

X
yl
1

10 px

01 py
00 1

cos(0)
sin(0)
0

A A
! ‘
,
’
,
/ ‘
,
z a
|- |- |-
> —F > & >

-sin(6) O
cos(0) 0

0

1

1
0
0

0
1
0

_pX
1%
1

X
)4
1

56

Arbitrary Rotation Center

P | @
- - O ¢ "
X 10 px cos(6) -sin(6) O 1 0 -px| |X
y'i= 101 py sin(6) cos(6) O 01 -py| |y
1 00 1 0 0 1 00 1 1

- - -

M3 M2 M1

| |

-

M= M3*Mx*M; o

Composing Transformation

* Matrix multiplication is associative
M3 xM2xM1=(M3xM2)xM1=M3x(M2xM1)

* Transformation products may not be commutative AxB =B xA

Transformation Order Matters!

 Example: rotation and translation are not commutative

Translate (5,0) and then Rotate 60 degree
/

OR

Rotate 60 degree and then translate (5,0)??

' . Rotate and then translate !!

59

Composing Transformation

* Matrix multiplication is associative
M3 xM2xM1=(M3xM2)xM1=M3x(M2xM1)

* Transformation products may not be commutative AxB =B xA

e Some cases where AxB=BxA

A B
translation translation
scaling scaling

rotation rotation

Finding Affine Transformations

* How many points determines affine transformation

61

Finding Affine Transformations

* How many points determines affine transformation

62

Finding Affine Transformations

Image of 3 points determines affine transformation

63

Finding Affine Transformations

* Image of 3 points determines affine transformation

(M,, M

12 MlB\(pX\ /p'\

22 My Py [=| Py
.00 1 A1) (1)

=<
<

64

Finding Affine Transformations

Image of 3 points determines affine transformation

- Each pair gives us 2 linear equations
on 6 unknowns!

- In total, 6 unknowns 6 linear
equations.

(Mll
M21

. 0

My,
M,,
0

MlB\
M 23

1)

65

Finding Affine Transformations

* Image of 3 points determines affine transformation

<

12 MlB\/px\ /p'\
22 My Py [=| Py
0 1 A1) (1)

<

66

Finding Affine Transformations

Image of 3 points determines affine transformation

What's the corresponding point in
the right image?

67

Finding Affine Transformations

* Image of 3 points determines affine transformation

the right image? Pl =1 My, My, Mos |l Prow
1 o 0 1)1
68

What's the corresponding point in {prgew} [MM M., Mlg}LpW}

That’s All

