
Operating Systems

CSE 3202
Operating Systems Lab 2

Vi Text Editor & Shell

Programming 1

Running vi

To run vi and create a new file, simply run the command 'vi' from any shell prompt:

$ vi

Alternatively, to load an existing text file into vi, run the command 'vi [filename]', from the shell
prompt:

$ vi myfile.txt

Your file will be loaded into vi, and the cursor will be placed at the beginning of the first line.

Note that an empty line is shown as a tilde (~).

Command Mode and Insert Mode

vi is different from many editors, in that it has two main modes of operation: command mode,

and insert mode. This is the cause of much of the confusion when a new user is learning vi, but it

is actually very simple to understand.

When you first load the editor, you will be placed into command mode. To switch into insert

mode, simply press the 'i' key. Although nothing will change on the screen to indicate the new

mode, any thing that you type from now on will appear in the screen - this is what you are used to

if you have ever used any other editor, or word processor. Try typing a few lines of text. When

you press 'return' or 'enter' a new line will be created, and you may continue typing.

When you have finished typing, you may return to command mode. This is done by pressing your
'Esc' key. In command mode, key presses do not appear on the screen, but instead are used to
indicate various commands to vi.

At first, you may often mistake command mode and insert mode. For example, you may think

you are in insert mode, and start typing your text, when in fact you are in command mode, and

each keypress you make will issue a command to vi. Be careful - you may accidentally modify or

delete parts of your file.

If you are unsure which mode you are in, press 'Esc'. If you were in insert mode, you will be

returned to command mode. If you were already in command mode, you will be left in command

mode (possibly with a 'beep', to indicate that you were already in command mode).

An Exercise

Try this simple exercise to get used to the two modes:

1. Load vi (if you haven't already), by typing:

$ vi

(don't forget - the $ is the system's prompt, and may be different on your system. You only type
the 'vi' part, shown in bold.)

The screen should show a blank file, with each blank line represented by a tilde (~), for example:

~

~

Operating Systems

By default you are in command mode.

2. Switch to insert mode, by pressing the 'i' key. Then type some text, using ENTER or RETURN

to start new lines. For example:

Hello. This is my first session in the vi editor.

This is the second line of text.

~
~

~

3. When you have finished entering your sample text, press 'Esc' to return to command mode.

4. Now we will learn a useful command: to save the file. The command for this is ':w' (note the

colon before the 'w'). After the 'w', put a space, and the name you want to store the file as. For

example:

:w firstfile

Type it now. Notice how the text ':w' appears at the bottom on the screen. When you have

finished the command, press ENTER or RETURN. You should see a confirmation that the file

has been saved, which may include the number of lines in the file, and possibly the file size.

5. To finish this simple introduction to the editor, we will learn one final command: How to close

the editor. The command for this is ':q' (again, with a colon before the 'q'). Don't forget you need

to be in command mode. If you're not already in command mode, or you're not sure which mode

you're in, press 'Esc' now. Then issue the command:

:q

You should be returned to the UNIX prompt.

Sometimes, you may have made changes to a file that you do not want to save. This may be

because you have decided the changes are incorrect, or you have become confused using vi (not

usual at first!), and incorrectly made some changes, maybe by typing into command mode instead

of insert mode. To exit vi without saving, and ignoring any warnings about unsaved data, use a

variation of the ':q' command, with an exclamation mark after it:

:q!

This will return you to the prompt, without saving any changes to the file, and with no warnings

about unsaved data. Use this command carefully.

A Simple (but useful) Electronic Diary

As an exercise, create an electronic diary, that you can use to store your schedule, one week at a

time. This will use many of the skills you have learned so far, and will let you see how you

already know enough to use UNIX to help with every day tasks. Follow these steps:

1. Use vi to create a file named 'weekly-diary-template'. The file should look something like this:

My Schedule for Week Commencing:

Day AM PM Evening

--

Mon

Tue

Wed

Thur

Fri

Sat

Sun

2. Use the 'cp' command to make a new copy of the file, which should be named after the date of

the Monday in the current week, for example '12-October-2009'. The command may be

something like:

Operating Systems

$ cp weekly-diary-template diary-16-Nov-2015

You should now have two files: the template, and the new copy of the template, which is named
after the current week.

3. Use vi to fill in your schedule. Only make changes to the version of the file including the date.

Leave the template as it is, ready to create next week's diary when you need it.

4. Whenever you need to start a new week's diary, use a similar 'cp' command. Again, copy the

template file to a new file containing the date of the Monday in that week. For example, the

following week, you may use:

$ cp weekly-diary-template diary-16-Nov-2015

Start using the electronic diary on a regular basis. This will give you good practice in vi, and
basic file management commands.

Vi Tips

 Topic Hints
1 The vi operating

modes.
Command mode. The vi editor opens in command mode awaiting a
command.

Press the ESC key to enter the command mode at any other time.

Text input mode. Enter text input mode by pressing i,

a or o commands (see below)

External mode. This mode is used to access Unix system commands

whilst still in the editor.

2 How to get into and
out of the editor.

vi filename - Invoke the text editor to edit a file
view filename - View (read-only) a text file.

:q! Abort the edit session without saving.

:w Write the file to disk and stay in the editor.

:wq Write the file to disk and quit the editor.

3 Cursor and display
control

Ctrl/e - Scroll forward 1 line (Ctrl/Y for backwards)
Ctrl/d - Scroll forward 1/2 screen (Ctrl/U for backwards)

Ctrl/f - Scroll forward 1 screen (Ctrl/B for backwards)

Use j, k, h, l keys to move cursor up, down, left, right
Use H, M, L to move cursor to top (home), middle or lower position
of current screen.

4 How to insert and
delete text.

i - Insert new text until ESC is pressed (to return back to command
mode).

a - Append new text until ESC is pressed.

o - Open a new line after the current line and add new text until ESC

is pressed.

x,X - delete characters

dd - delete current line

5 How to undo your
mistakes.

u - Undo the most recent text change.
U - Undo all of the changes made to the current line.

Repaint the screen by pressing Ctrl/L then Ctrl/R. This is sometimes

useful if you have got the screen is an unusual state.

Examples of use of metacharacters. When used in the vi editor press the ESC key then the

colon key before typing in the metacharacters. Note how the search strings are placed between

forward slashes. If you look at the examples above you can imagine how complicated a search

can get. The examples below will give you a flavour of what can be achieved, if you want to do

anything more complicated, it is quite acceptable to proceed with a book on your desk or assisted

by the man pages or a website.

 Example Explanation

1 /Monday/ This positions the cursor on the first occurrence of the word Monday.

2 /^Monday/ This positions the cursor on the first line that starts with the word Monday.

3 /Monday$/ This positions the cursor on the first line that ends with the work Monday.

4 /Monday/p Perform a search for the word Monday and print out any line containing
that word.

5 10,20 Perform a search restricted between lines 10 and 20 for the

Operating Systems

Command Description

x Delete a single character at the current cursor position (ccp).
(4x deletes 4 characters.)

X Delete single character to the left of ccp.
(4X deletes 4 characters to the left of ccp).

dw Delete word. (4dw deletes 4 words)

dd Delete line. (4dd deletes 4 lines)

cw Delete word (leaving you in insert mode, i.e. change word)

cc Delete line (leaving you in insert mode, i.e. change line)

s Change character - delete character and start insert mode

D Delete from cursor to end of line

dG Delete all lines, including current line to end of file.

d1G Delete all lines, including current line to beginning of file.

dnG Delete all lines, including current line to line n in the file.

J Join the current line with the line that follows.

Getting in and out of the vi text editor

Command Description

:q Abort an editing session. The current editing command must be finished
before the abort will work.

:q! Force an immediate abort - no matter what start the current session is in.

:w Write the file to disk.

:wq Write the file to disk then exit the editor.

Cursor movement

Command Description. Move...

h one space left

j one line down

k one line up

l one space right

^ to beginning of current line

$ to end of current line

Enter to beginning of first word on next line

1G to the first visible character in the first line of the file

G to the first visible character in the last line of the file

nG to the first visible character in the nth line of the file

CTRL/G Display info on the current position of the cursor.

:n line n

w beginning of next word

e end of next word

CTRL/E Forward 1 line

CTRL/Y Backward 1 line

CTRL/D Forward 1/2 screen

CTRL/U Backward 1/2 screen

CTRL/F Forward 1 screen

CTRL/B Backward 1 screen
 Type n before the command for multiple steps (n is an integer)

Inserting Text
Command Description

a Append to the right of the cursor.

A Append at the end of the current line.

i Insert starting at the left of the cursor position.

I Insert at the beginning of the current line.

o Open a line below the cursor, then enter insert mode

O Open a line above the cursor, then enter insert mode

:r newfile Add the contents of the file newfile starting below the current line.

Deleting Text

Operating Systems

Shell Programming 1

The shell provides a simple user interface to the UNIX system providing the user with a

command line interpreter. Shells also provide a powerful programming language with which we

can create shell programs (sometimes called shell scripts) to create useful software tools that can

be used to control or administer a UNIX system. A shell program is simply a file containing a set

of UNIX commands that are to be executed sequentially. The file needs to have executed

permissions set on it so that it can be executed just by typing in the name of the file at the

command prompt.

The shell provides much more than simply 'batch' processing of a list of UNIX commands. It has

many features of a high-level programming language, such as:

 Variables for storing data

 Decision-making controls (the if and case statements)

 Looping controls (the for,while and until loops)

 Function calls for program modularity

The best way to study shell programming is to look at as many examples as possible. Each of the

following examples are written in 3 parts:

 The shell program. (The lines are numbered only to aid with the explanation, do not type

them into the program)

 The output generated by executing the shell program

 An explanation of the program

Type each of these example programs into a file and run them, make sure that you

understand what each program does and why.

To execute a shell program held in a file named shelldemo1 do the following

$ chmod +x shelldemo1
(This puts execute permission on the file - a topic we will look at in later sessions)
$./shelldemo1
(This runs or executes the program. The dot represents your current directory)

Demo Program 1 - Demonstrates the use of comments, user-defined variables and

echo.

1. #!/bin/sh

2. #Filename: shelldemo1 Author: RS

3. #Define variables

4. name=John

5. car="Ford Escort"

6. age=21

7. #Display the contents of the variables

8. echo "My name is $name"

9. echo "I am $age years old and \c"

10. echo "I drive a $car."

Program output

My name is John

I am 21 years old and I drive a Ford Escort.

Operating Systems

1. #!/bin/sh

2. #Filename: shelldemo2 Author: RS

3. #Define variables

4. todaysdate=`date`

5. myworkingdirectory=`pwd`

6. #Display the contents of the variables

7. echo "The date is $todaysdate"

8. echo "My current working directory is $myworkingdirectory"

1. #!/bin/sh

2. #Filename: shelldemo3 Author: RS

3. echo "Please enter your first name: \c"

4. read firstname

5. echo "Please enter your surname: \c"

6. read surname

7. echo "Please enter your date of birth: (dd/mm/yyyy): \c"

8. read dateofbirth

9. echo "Welcome $firstname $surname, your date of birth is on record

as $dateofbirth."

1. #!/bin/sh

2. #Filename: shelldemo4 Author: RS

3. echo "This program has obtained its input from the command line"

4. echo "Welcome $1 $2, your date of birth is on record as $3."

Demo Program 2 - Demonstrates how the output of Unix commands can be stored in

user-defined variables

Program output

The date is Fri Aug 17 14:30:58 BST 2001

My present working directory is /home/martin/shelldemos

Demo Program 3 - Demonstrating how the read command is used to get input from

the user via the keyboard.

Program output (user input is shown in bold italics)

Please enter your first name: Joe

Please enter your surname: Bloggs

Please enter your date of birth (dd/mm/yyyy): 01/04/1980
Welcome Joe Bloggs, your date of birth is on record as 01/04/1980

Demo Program 4 - Demonstrating how user input can be obtained from the command

line as command line arguments.

Program output

This program is exectued by entering the command:

./shelldemo4 Joe Bloggs 01/04/1980

Welcome Joe Bloggs, your date of birth is on record as 01/04/1980.

Explanation

This program is executed by typing in the shell program name followed by 3 pieces of

information (program arguments).

The positions of the words on the command line are identified by the following special variables

(here is the full list):

$0 The command name

$1 The first argument (Joe in this example)

$2 The second argument (Bloggs in this example)
$3 The third argument (01/04/1980 in this example)
.

.

$9 The ninth argument

$# The number of arguments

$* A space separated list of all the arguments.

Operating Systems

Demo Program 5 - Demonstrating how decisions are made

using the if...then statement (testing and branching).

1. #!/bin/sh

2. #Filename: shelldemo5 Author: RS

3. clear

4. echo "Would you like to see a joke (y/n)? \c"

5. read reply

6. if ["$reply" = "y"]

7. then

8. echo "Question: How many surrealists does it take to change a light

bulb?"

9. echo "Answer: Fish."

10. fi

11. echo "\n\nHave a nice day."

Program output (examples of both yes and no user responses are shown)

Would you like to see a joke (y/n)? y

Question: How many surrealists does it take to change a light bulb?

Answer: Fish

Have a nice day.

Would you like to see a joke (y/n)? n

Have a nice day

Line 6 - The start of the if statement. Notice the test is in square brackets with a space either

side of them and that there is a space either side of the equals sign.

Demo Program 6 - Demonstrating how decisions are made

using the if...then...else statement (testing and branching).

1. #!/bin/sh

2. #Filename: shelldemo6 Author: RS

3. clear

4. echo "Would you like to see a joke (y/n)? \c"

5. read reply

6. if ["$reply" = "y"]

7. then

8. echo "Question: How many surrealists does it take to change a light

bulb?"

9. echo "Answer: Fish."

10. else

11. echo "Not in the mood for jokes? Never mind perhaps

another day."

12. fi

13. echo "\n\nHave a nice day."

Program output (examples of both yes and no user responses are shown)

Would you like to see a joke (y/n)? y

Question: How many surrealists does it take to change a light bulb?

Answer: Fish.

Have a nice day.

Would you like to see a joke (y/n)? n

Not in the mood for jokes? Never mind perhaps another day.

Have a nice day

Demo Program 7 - Demonstrating how decisions are made using

nested if...then...else statements (testing and branching).

1. #!/bin/sh

2. #Filename: shelldemo7 Author: RS

Operating Systems

3. echo "UNIX COMMAND SELECTOR"

4. echo "1. Show date"

5. echo "2. Show hostname"

6. echo "3. Show this month's calendar"

7. echo "Please make your selection (1,2,3) \c"

8. read menunumber

9. if [$menunumber -eq 1]

10. then

11. date

12. else if [$menunumber -eq 2]

13. then

14. hostname

15. else if [$menunumber -eq 3]

16. then

17. cal

18. else

19. echo "INVALID CHOICE! \07\07"

20. fi

21. fi

22. fi

23. echo "\nThank you for using the Unix command selector."

Program output (The example is for the user input of 1)

UNIX COMMAND SELECTOR

1. Show date

2. Show hostname

3. Show this month's calendar

Please make your selection (1,2,3) 1

Tues Oct 23 17:32:45 BST 2001

Thank you for using the Unix command selector.

Explanation

Lines 3-7 Display a title, menu and prompt the user to select the number of a menu option.
Line 8 - The user's response is read into a user defined variable named menunumber.
Lines 9-22 A series of nested if...then...else statements each performing a test for one of the possible menu
option numbers.
The 3 possible Unix commands are: 1. date 2. hostname 3. cal
Notice how -eq is used to test for equality between two numbers.
Notice how \07\07 are used to get the computer to beep twice.
Line 23 Displays a final ending message.

Nested if...then...else structures always look complicated as there is a lot of coding to contend with. A

simpler way of writing the nested if...then...else parts is shown below using the if...then...elif with one

final fi. The word elif is a contraction of the words else if.

if [$menunumber -eq 1]

then
date

elif [$menunumber -eq 2]

then
hostname

elif [$menunumber -eq 3]

then
cal

else

echo "INVALID CHOICE! \07\07"

fi

This may be a little better to deal with but nested if...then..elif's are still a handful.

Courtesy: Rushdi Shams Sir

