Make file:
A make file is a simple bash script that is traditionally used to compile/run our code files. This means make files usually live in the “src” directory.

Sequence of dependency:
The sequencing of most project activities is determined by certain attributes of the dependency between and among the activities. Dependencies are the relationships among tasks, activities, or other schedule items that determine the order in which activities need to be performed. In determining activity sequencing, it needs to be considered whether or not activities need to happen in a particular order. Some activities need to happen in a certain order. Some don't and can be scheduled at any time. Others still can be performed in parallel, occurring at the same time. The first dimension to examine is whether a dependency sequence is mandatory or discretionary. The second dimension asks if that dependency is internal or external.
 Mandatory Dependency – This is a dependency ordering that has to take place and can be thought of as a, "must." Mandatory dependencies are also known as hard-logic and are fixed limitations, often determined by physics, legal requirements, or other non-flexible elements. Discretionary Dependency – Discretionary dependency orders aren't physically, legally, or otherwise fixed, but still considered to be a good idea to keep. "Should," is the best word to keep in mind when thinking about this type of dependency. They are considered discretionary because they are at the discretion of the project team who decides to implement them. Internal Dependency – Internal dependencies are dependencies resulting from forces internal to the organization conducting the project. They can be mandatory or discretionary and include processes, procedures, practices, or rules imposed by or created from within the organization. External Dependencies – These sequence dependencies are determined as such by forces outside of the organization undertaking the project. Laws, safety standards, principles of physics, and other dependency creators outside of the organization's control are examples of external dependencies. As with internal dependencies, external dependencies can be mandatory or discretionary.

Makefile in Linux for Compilation
If we have multiple source files in c, c++ and others language and want to compile them from Terminal Command, it is hard to write every time. To solve such kind of problem, we use Makefile because during the compilation of large project we need to write numbers of source files as well as linker flags are required, that are not so easy to write again and again.
Makefile is a tool to simplify or to organize code for compilation. Makefile is a set of commands (similar to terminal commands) with variable names and targets to create object file and to remove them. In a single make file, we can create multiple targets to compile and to remove object, binary files. We can compile our project (program) any number of times by using Makefile.
Example: Suppose, we have 3 files main.c (main source file), misc.c (source file that contains function definition), misc.h (that contain function declaration). Here we will declare and define a function named myFunc() to print something – this function will be defined and declared in misc.c and misc.h respectively.
misc.c
#include <stdio.h>
#include "misc.h"
 void myFunc(void)
{
 printf("Body of myFunc function.\n");
}

misc.h
#ifndef MISC_H
 #define MISC_H
 void myFunc(void);
#endif

main.c
#include <stdio.h>
#include "misc.h"
 int main()
{
 printf("Hello, World.\n");
 myFunc();
 fflush(stdout);
 return 0;}

Makefile to compile these files
#make file - this is a comment section
 all: #target name
 gcc main.c misc.c -o main

1. Save file with name "Makefile".
2. Insert comment followed by # character.
3. all is a target name, insert: after target name.
4. gcc is compiler name, main.c, misc.c source file names, -o is linker flag and main is binary file name.

