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Introduction

» Block diagram is a shorthand, graphical
representation of a physical system, illustrating
the functional relationships among its
components.

OR

A Block Diagram is a shorthand pictorial
representation of the cause-and-effect
relationship of a system.



Introduction

« The simplest form of the block diagram is the single block,
with one input and one output.

- The interior of the rectangle representing the block usually
contains a description of or the name of the element, or the
symbol for the mathematical operation to be performed on
the input to yield the output.

« The arrows represent the direction of information or signal

flow.
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Introduction

- The operations of addition and subtraction have a special
representation.

The block becomes a small circle, called a summing point,
with the appropriate plus or minus sign associated with the
arrows entering the circle.

Any number of inputs may enter a summing point.

The output is the algebraic sum of the inputs.

Some books put a cross in the circle.
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Components of a Block Diagram for
a Linear Time Invariant System

» System components are alternatively called
elements of the system.

» Block diagram has four components:
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 In order to have the same signal or variable be an input to
more than one block or summing point, a takeoff point is
used.

- Distributes the input signal, undiminished, to several
output points.

» This permits the signal to proceed unaltered along several
different paths to several destinations.

Takeoff Point
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Example-1

« Consider the following equations in which x,, x,, x,, are
variables, and a, a, are general -coefficients or
mathematical operators.
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Example-1

« Consider the following equations in which x,, x,, x,, are
variables, and a, a, are general -coefficients or
mathematical operators.

X =a X, +a,X, —5

o




Example-2
 Consider the following equations in which x,, x,,. . ., x,,, are
variables, and a, a.,. . . , a, , are general coefficients or

mathematical operators.

Xy, =X +a, X, +a, X, 4




Example-3

« Draw the Block Diagrams of the following equations.

dx, 1
D x,=3a " .bjxldt

d°x, _dx
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Topologies

« We will now examine some common topologies
for interconnecting subsystems and derive the

single transfer function representation for each
of them.

« These common topologies will form the basis for
reducing more complicated systems to a single

block.



CASCADE

 Any finite number of blocks in series may be
algebraically combined by multiplication of
transfer functions.

- That is, n components or blocks with transfer
functions G, , G, ..., G,, connected in cascade
are equivalent to a single element G with a
transfer function given by

G=G,-G,-G,--- G,=[]G,



Example

E M, c E

= G

« Multiplication of transfer functions is
commutative; that is,

GiGj = GjGi
for anyiorj.



Cascade:
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Figure:
a) Cascaded Subsystems.
b) Equivalent Transfer Function.

The equivalent transfer function
IS

(b)

Ge(s) = G3(s)Ga(s)Gy(s)




Parallel Form:

» Parallel subsystems have a common input and
an output formed by the algebraic sum of the
outputs from all of the subsystems.
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Figure: Parallel Subsystems.




Parallel Form:

Gi(s) X(5) = R(5)G,(s)
+
R(s) Gols) X5(5) = R(5)G5(s) £ . C(s5)=[2G,(5) = G5(5) T G3(5)]R(s)
i L - -
+A
X5(5) = R(5)G5(:
Gr() 1(5) = R(5)G4(s)
Figure:
(a) a) Parallel Subsystems.
b) Equivalent Transfer Function.
R(x) C(5)

o 1G(5) 2 Go(5) £ Ga(s) f——

(b)

The equivalent transfer function is Ge(s) = £Gy(s) £ Ga(s) = Gs(s)




Feedback Form:

 The third topology is the feedback form. Let us derive the
transfer function that represents the system from its input
to its output. The typical feedback system, shown in figure:

R(s) C(s)
LU W s

L Ga(s)

Figure: Feedback (Closed Loop) Control System.

The system is said to have negative feedback if the sign at the
summing junction is negative and positive feedback if the sign
IS positive.



Feedback Form:

Input
transducer Controller Plant
R(s) + > E(5) C(s)
— Gi(s) A Gas) > Gsls) -t
Input —1 Actuating Output
signal
(error)
Figure: i) = m. |
a) Feedback Control System. 2 A
b) Simplified Model or Canonical Form. Foedback Output
c) Equivalent Transfer Function. transducer
Plant and (a)
controller
R E Cy
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[nput 3 Actuating Output Input 1 £ G(s)H(s) | Output
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The equivalent or closed-loop G(s)

Feedback
(b)

transfer function is
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Characteristic Equation

* The control ratio is the closed loop transfer function of the
system.

C(s) G(s)
R(s) 1+G(s)H(s)

* The denominator of closed loop transfer function determines the
characteristic equation of the system.

« Which is usually determined as:

1+G(s)H(s) =0



Canonical Form of a Feedback Control
System

R + E

H

H

G = direct transfer function = forward transfer function
H = feedback transfer function

GH = loop transfer function = open-loop transfer function

C G
C/R = closed-loop transfer function = control ratio — =
R 1+GH
E /R = actuating signal ratio = error ratio E - !
b R 1+GH
B /R = primary feedback ratio E = G
R 1+GH

The system is said to have negative feedback if the sign at the summing
junction is negative and positive feedback if the sign is positive.



1. Open loop transfer function Bls) _ G(s)H(s)

E(s)
2. Feed Forward Transfer functior E( s) = G(s)
S
C(s) G(s) G(s)
3. control ratio = N = &
R(s) 1+G(s)H(s) R ) e .
4. feedback ratio B(s) — G(s)H(s) T
R(s) 1+G(s)H(s) 0.1
5. error ratio Es) — ! H(s)
R(s) 1+G(s)H(s)
C(s) G(s)

6. closed loop transfer function

R(s) 1+G(s)H(s)

7. characteristic equation 1 + G(s)H(s) =0

8. closed loop poles and zeros if K=10.



Characteristic Equation

C/R = closed-loop transfer function = control ratio

C G

R 1+GH

The denominator of C/R determines the characteristic equation of the system, which is usually
determined from 1+ GH = 0 or, equivalently,

Doy + Noy=0

where D, is the denominator and N is the numerator of GH



Unity Feedback System

A unity feedback system is one in which the primary feedback b is identically equal
to the controlled output A =1 for a linear, unity feedback system

R E

G ¢ -

Any feedback system with only linear time-invariant elements can be put into the form of a unity
feedback system by using Transformation 3.

R +\ G C R

\LH
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Reduction techniques

1. Combining blocks in cascade

—— G, G, — <= { GG, ——

2. Combining blocks in parallel

LG |+
1 f* < G, +G,——
—1 G,




Reduction techniques

3. Moving a summing point behind a block
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;ie I =GT
G —
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Requction Eechques

3. Moving a summing point ahead of a block

T T TR

4. Moving a pickoff point behind a block
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5. Moving a pickoff point ahead of a block
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Reduction techniques

6. Eliminating a feedback loop
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Block Diagram Transformation Theorems

- : Equivalent Block
Transformation Equation Block Diagram Di N,
Combining Blocks = Y
1 in Cascade Y = (P PpX LA Py - Py - X PPy
Combining Blocks
in Parallel; or G N + X ¢
‘ Eliminating a ¥ =hXzhX| X P, O Bl
Forward Loop =
X P Y
Removing a Block Py p—; =
3| fromaForward | ¥ = P, X * P, X Py -
Path
Eliminating a _ = = + X | Py Y
4 Feedback Loop Y = Py(X 7 PY)| X5 7y .4 | T=P,P ;
X 1 |+ Y
Removing a Block N PiPy
5| from a Feedback |Y = P,(X 5 P,Y) Py -
Loop

The letter P is used to represent any transfer function, and W, X,
Y, Z denote any transformed signals.



Transformation Theorems Continue:

- Equivalent Block
Transformation Equation Block Diagram Di A

W+ +\ 2

I+

Rearranging z -

— = = > ¢
Summing Points wEX=%

Rearranging

Summing Points EERNEXLE
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Moving a Summing
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Transformation Theorems Continue:

Transformation Equation Block Diagram qulil;?lent Block
iagram
X P Y X P Y
Moving a Takeoff
9 | Point Ahead of a yoas PX
Block Y Y
P
X p Y X p Y
Moving a Takeoff
10| Point Beyond a Y = PX
Block X X 1
P
X ‘_r\ Z
F Bt g2 z
Moving a Takeoff ]= z 4 >
11| Point Ahead of a Z=X=z=Y 4 %
Summing Point
z <
.}—.._
X + 7\ £ X 4 V4
Moving a Takeoff X - ; e
12 Point Beyond a g =Xty
Summing Point 3 s
U +




Reduction of Complicated Block Diagrams:

The block diagram of a practical feedback control system is often quite complicated. [t may include
several feedback or feedforward loops, and multiple inputs. By means of systematic block diagram
reduction, every multiple loop linear feedback system may be reduced to canonical form.

The following general steps may be used as a basic approach in the reduction of complicated block
diagrams.

Step 1: Combine all cascade blocks using Transformation 1.
Step 2: Combine all parallel blocks using Transformation 2.
Step 3: Eliminate all minor feedback loops using Transformation 4.

Step 4: Shift summing points to the left and takeoff points to the right of the major loop, using
Transformations 7, 10, and 12.

Step 5: Repeat Steps-l to 4 until the canonical form has been achieved for a particular input.
Step 6: Repeat Steps 1 to 5 for each input, as required.



Example-4: Reduce the Block Diagram to Canonical

Form.

+ $+ C
T -

Hy

Step 1: Combine all cascade blocks using Transformation 1.

__"'GI.

- Gi"_l"

—_———

Step 22 Combine all parallel blocks using Transformation 2.
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Example-4: Continue.

Step 3: Eliminate all minor feedback loops using Transformation 4.

+

‘ G‘G‘ j
‘ Hl

G1G4

1— G,GH,

Step 4: Shift summing points to the left and takeoff points to the right of the major loop, using

Transformations 7, 10, and 12. However in this example step-4 does not apply.

Step S: Repeat Stepsal to 4 until the canonical form has been achieved for a particular input.

' e GG,

l ey G|G.H‘

C

G,y + G,

H,

Step 6: Repeat Steps 1 to 5 for each input, as required.

R +

However in this example step-6 does not apply.

G1G4(Gy + Gy) C,
1-G,GH,
H,




Example-5: Simplify the Block Diagram.

By moving the summing point of the negative feedback loop containing /1, outside the posi-

tive feedback loop containing H,, we obtain Figure

‘ G
e QD o ] o ]
LT,

Yo




Example-5: Continue.

Eliminating the positive feedback loop, we have

h ?l
1 — G1GaH, y

Yo

The elimination of the loop containing H,/G gives

R GGGy C
| G|GEH1 + GEGJHE

Finally, eliminating the feedback loop results in

R G166 C
| G[GEH] + GQG_}HQ + G|GQGJ




Example-6: Reduce the Block Diagram.

H, |«

+ + +
R(s) »Q » G, > G, » G, » G, > ¥ix)

Hs |

First, to eliminate the loop G3G4H;, we move H; behind block G,

H

Gy B
+ + X +
R P Gl - GE .Q > Ga, BE— G-i = ¥iv)
_I_

Hy [

Eliminating the loop GyG,H; we obtain



Example-6: Continue.

+ + X GG
R » G >é—> G > 374 » Y.
! 2 I— G:G3H, )

Then, eliminating the inner loop containing H,/Gy, we obtain

+ GGG
R—{ »» G 2-3°4 > Vi
_ g 1 - G3G4H,+G,G3H, ©

H; |

Finally, by reducing the loop containing H;, we obtain

&) GG,GG,y e




Example-7: Reduce the Block Diagram. (from Nise: page-
242)

¥

; (.
LON e /(5) —i@;i@-i@—p Go(s) | Gil® (5)
—A +4 —

H]{S}

A

Hz{.ﬁ'} ~

Hiy(s) |-

First, the three summing junctions can be collapsed into a single summing junction,

(K Cl
L Gy(s) —| G5(5) {ﬂ's-
H]{&'} i
Hz{&'} -
Hi(s)




Example-7: Continue.

Second,recognize that the three feedback functions, H4(s), Ha(s),and Hs(s), are
connectedin parallel. They are fed from a commonsignal source, and theiroutputs are summed.
Alsorecognize that G»(s) and G5(s) are connected in cascade.

Rs) G,(s) _t@___ G(5)Gs(s) Cs)_

L HILT}_HE[S} +H_‘q{.’i'j

Finally, the feedback system is reduced and multiplied by G4(s) to yield the
equivalent transfer function shown in Figure

R(s) _ G4(5)GH(5)Gy(5) C{SL
1 + G1(5)GH(s)[H (5) — H,5(5) + H(5)]




Example-8: For the system represented by the
following block diagram determine:

| T+1 ] —1 -




Example-8: Continue

R + RS 1 C
r _i " 1 ] N TR
.||~
o.1|-
R +<\ i K N
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Example-8: Continue

K C
P 4 ~~
S+1 ]
=
K o.1|-
G s+l |
1+GH K S

4

S+1 ]
R + ” K c,
O+Ke+1




!xample-!: !on!mue H

1. Open loop transfer functior@ = G(s)H(s)

E(s)

2. Feed Forward Transfer functic? = G(s)
S
; ~C(s) G(s) G(s)
. control ratio =
R(s) 1+G(s)H(s) E___+) R <
4. feedback ratio B(s) = G(s)H(s) T
R(s) 1+G(s)H(s) i
5. error ratio E(s) — 1 HE)
R(s) 1+G(s)H(s)
C(s)  G(s)

6. closed loop transfer functior

R(s) 1+G(s)H(s)

7. characteristic equatio 1 .+ G(s)H(s) =0

8. closed loop poles and zeros if K=10.



« Example-9: For the system represented by the following
block diagram determine:

0.1




Example-10: Reduce the system to a single transfer
function. (from Nise:page-243).

+
R(s) + §§ Vi(s) Gy(s) Vs(s) + Ei Vils) L 6y Vil(s) :évj{ﬂ Gi(s) C(s) _
~1 _T iy
75) Hay(s) |- Lvﬂm Hy(s) |
V(s
ﬁ(‘] H|{.’!T} -

First, move G5(s) to the left past the pickoff point to create parallel subsystems,
and reduce the feedback system consisting of G5(s) and F5(s).

| |

Va(s) + Vi(s) "4(5) + (G4(s) Cl(s)
G (s ;,@—. G5 - - —=
1) 2(9) [+ Gs(s)Hs(5)

;j.'{.'i}

H;_l{.i} =

H(s) =




Example-10: Continue.

Second, reduce the parallel pair consisting of 1/G5(s) and unity, and push
(51(s) to the right past the summing junction, creating parallel subsystems in the feedback.

R(s) + V,(s) + V() 1 Ga(s) C(s)
G,(5)Gs. +1 :
1(5)G2(s) Il G [T+ GiHso) -
Hy(s)
| il
G,(s)

H(s) |a—o

Third, collapse the summing junctions, add the two feedback elements
together, and combine the last two cascaded blocks.

LS VaG) |71 Gi(s C(
+ G(5)G5(s) 4{-‘-]__ |' + l‘n”f’ 4(5) \ () _
- 'xGE(EJ' 1+ Ga(s)Hs(s),
H-i(:
hm""HJ{S?I
Gi(s)




- __ __ _ 1 _ AN . ~ _ _1° _
Fourth, use the feedback formula to obtain Figure ue .

— e e = s = e == R
Ris) G (5)GH(5) Vals) |/ 1 N lhl,f Gs(s) Vv Cls)
| + Go(s)HH(s) + G (5)Go(s)H (5) I'.kGE{S} {.'I|'h1 + Ga(s)H;(s5) )
Finally, multiply the two cascaded blocks and obtain the final result,
R(s) G (5)G3(5)] 1+ Ga(s)] C(s)

[1+ Gy(s)H(s) + G,(5)Go(s)H, (s)][1 + G3(s)H3(s)]




Answer of Skill Assessment Exercise:

3
ANSWER: 7'(s) = 25_4‘1 ; ir F




