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6.4 POWER FLOW SOLUTION

Power flow studies, commonly known as load Sflow, form an important part of
power system analysis. They are necessary for planning, economic scheduling, and
control of an existing system as well as planning its future expansion. The problem
consists of determining the magnitudes and phase angle of voltages at each bus and
active and reactive power flow in each line.

In solving a power flow problem, the system is assumed to be operating under
balanced conditions and a single-phase model is used. Four quantities are associ-
ated with each bus. These are voltage magnitude |V, phase angle 4, real power P,
and reactive power Q. The system buses are generally classified into three types.

Slack bus One bus, known as slack or swing bus, is taken as reference where the
magnitude and phase angle of the voltage are specified. This bus makes up
the difference between the scheduled loads and generated power that are
caused by the losses in the network.

Load buses At these buses the active and reactive powers are specified. The mag-
nitude and the phase angle of the bus voltages are unknown. These buses are
called P-Q buses.

Regulated buses These buses are the generator buses. They are also known as
voltage-controlled buses. At these buses, the real power and voltage magni-
tude are specified. The phase angles of the voltages and the reactive power
are to be determined. The limits on the value of the reactive power are also
specified. These buses are called P-V buses.

6.4.1 POWER FLOW EQUATION

Consider a typical bus of a power system network as shown in Figure 6.7. Trans-
mission lines are represented by their equivalent 7 models where impedances have
been converted to per unit admittances on a common MVA base.

Application of KCL to this bus results in

Ii = yioVi + yir(Vi = Vi) + yaa(Vi = Vo) + -+ yin (Vi = Vi)
=(yio+yir+yiz+ -+ Yin)Vi —yisVi — yiaVp — -+ — YinVn (6.23)

or

n n
L=Vi) v =Y vV J#d (6.24)
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FIGURE 6.7
A typical bus of the power system.
The real and reactive power at bus % is
P +jQi = ViI} (6.25)
or
P, = jQi
I = ’T:i (6.26)
Substituting for I; in (6.24) yields
P—jQi _ & .
‘L{,_*_—z=vizyij‘zyijvj J# (6.27)
i =0 j=1

From the above relation, the mathematical formulation of the power flow
problem results in a system of algebraic nonlinear equations which must be solved
by iterative techniques.

6.5 GAUSS-SEIDEL POWER FLOW SOLUTION

In the power flow study, it is necessary to solve the set of nonlinear equations
represented by (6.27) for two unknown variables at each node. In the Gauss-Seidel
method (6.27) is solved for V;, and the iterative sequence becomes

P.sch__ sQsch k

A+ TV

yeD o % > j#i (6.28)
ij
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where y;; shown in lowercase letters is the actual admittance in per unit. Pgch
and Q$°" are the net real and reactive powers expressed in per unit. In writing the
KCL, current entering bus ¢ was assumed positive. Thus, for buses where real and
reactive powers are injected into the bus, such as generator buses, Pgeh and Qich
have positive values. For load buses where real and reactive powers are flowing
away from the bus, P#°" and Q3" have negative values. If (6.27) is solved for P;
and ();, we have

n n
B =RONO Y-Sy it 6
n n
QY =~ VB Sy - S uv ) j#i (6.30)

The power flow equation is usually expressed in terms of the elements of
the bus admittance matrix. Since the off-diagonal elements of the bus admittance
matrix Yy, shown by uppercase letters, are Y;; = —¥ij, and the diagonal elements
are Yj; = " y;5, (6.28) becomes

P:sch_ i0sch k
i JQ, _ Zj# Y;JV,'?( )

«(K)
pet) _ Vi 6.31
z - (631)
and .
n
P = v OB + v vy g (632)
=
n
(k) . .
QMY =S VI + vV i 639)
i=1
J#i

Y;; includes the admittance to ground of line charging susceptance and any other
fixed admittance to ground. In Section 6.7, a model is presented for transformers
containing off-nominal ratio, which includes the effect of transformer tap setting.
Since both components of voltage are specified for the slack bus, there are
2(n — 1) equations which must be solved by an iterative method. Under normal
operating conditions, the voltage magnitude of buses are in the neighborhood of
1.0 per unit or close to the voltage magnitude of the slack bus. Voltage magnitude at
load buses are somewhat lower than the slack bus value, depending on the reactive

power demand, whereas the scheduled voltage at the generator buses are somewhat

1 ] enfaraman anala i
higher. Also, the phase angle of the load buses are below the reference angle in

accordance to the real power demand, whereas the phase angle of the generator
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buses may be above the reference value depending on the amount of real power
flowing into the bus. Thus, for the Gauss-Seidel method, an initial voltage estimate
of 1.0 + 70.0 for unknown voltages is satisfactory, and the converged solution
correlates with the actual operating states.

For P-Q buses, the real and reactive powers Pf'c" and ch" are known. Start-
ing with an initial estimate, (6.31) is solved for the real and imaginary components
of voltage. For the voltage-controlled buses (P-V buses) where P°" and |V;| are

specified, first (6.33) is solved for ngﬂ), and then is used in (6.31) to solve for

Vi(k“). However, since |V;| is specified, only the imaginary part of Vi(kﬂ)

is re-
tained, and its real part is selected in order to satisfy
(el + (FF)? = |2 (6.34)
or
egk-f—l) — \/"/1,12 _ (f,i(k+1))2 (6.35)
where e( 1) and fi(kﬂ) are the real and imaginary components of the voltage
Vi(k“) in the iterative sequence.

The rate of convergence is increased by applying an acceleration factor to the
approximate solution obtained from each iteration.
V(k+1) V(k) +a(V, (k) Vz'(k)) (6.36)

ical

where « is the acceleration factor. Its value depends upon the system. The range of
1.3 to 1.7 is found to be satisfactory for typical systems.

The updated voltages immediately replace the previous values in the solution
of the subsequent equations. The process is continued until changes in the real and
imaginary components of bus voltages between successive iterations are within a
specified accuracy, i.e.,

le(kﬂ) — egk)l < e
1 1 —_
1Y — i) < e (6.37)

For the power mismatch to be reasonably small and acceptable, a very tight tol-
erance must be specified on both components of the voltage. A voltage accuracy
in the range of 0.00001 to 0.00005 pu is satisfactory. In practice, the method for
determining the completion of a solution is based on an accuracy index set up on
the power mismatch. The iteration continues until the magnitude of the largest ele-
ment in the AP and AQ columns is less than the specified value. A typlcal power
mismatch accuracy is 0.001 pu

Once a solution is converged, the net real and reactive powers at the siack bus
are computed from (6.32)} and (6.33).
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6.6 LINE FLOWS AND LOSSES

After the iterative solution of bus voltages, the next step is the computation of line
flows and line losses. Consider the line connecting the two buses ¢ and j in Figure
6.8. The line current I;;, measured at bus i and defined positive in the direction

I;; ‘,/; I, Yij ‘? Iji
I Lo
Yio Yjo
FIGURE 6.8
Transmission line model for calculating line flows.
1 — j is given by
Lij = Iy + Lo = yi;(V; = V;) + yioVs (6.38)

Similarly, the line current I;; measured at bus J and defined positive in the direction
J — iis given by

Lji = —Ip + Ijo = y;(V; — Vi) + yjoV; (6.39)

The complex powers S;; from bus 7 to j and S;; from bus j to % are

Sij = LI} (6.40)
Sji = V;I; (6.41)

‘The power loss in line ¢ — j is the algebraic sum of the power flows determined
from (6.40) and (6.41), i.e.,

Spij = Sij + Sji (6.42)

The power flow solution by the Gauss-Seidel method is demonstrated in the
following two examples.

Example 6.7 .

Figure 6.9 shows the one-line diagram of a simple three-bus power system with
generation at bus 1. The magnitude of voltage at bus 1 is adjusted to 1.05 per
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unit. The scheduled loads at buses 2 and 3 are as marked on the diagram. Line
impedances are marked in per unit on a 100-MVA base and the line charging sus-
ceptances are neglected.

1 0.02 + j0.04 2
256.6
O i
0.01 + 50.03 0.0125 + 70.025 |+ 110.2
Mvar
Slack Bus 3
V1 = 1.0520°
138.6 45.2
MW Mvar
FIGURE 6.9

One-line diagram of Example 6.7 (impedances in pu on 100-MVA base).

(a) Using the Gauss-Seidel method, determine the phasor values of the voltage at
the load buses 2 and 3 (P-Q buses) accurate to four decimal places.

(b) Find the slack bus real and reactive power.

(c) Determine the line flows and line losses. Construct a power flow diagram show-
ing the direction of line flow.

(a) Line impedances are converted to admittances
1

~ 0.02+ 70.04

Similarly, y313 = 10 — 530 and y23 = 16 — 732. The admittances are marked on the

network shown in Figure 6.10.
At the P-Q buses, the complex loads expressed in per units are

Y12 =10 — 520

5o — _(256.61-}(-)5110.2) 256671102 o

Since the actual admittances are readily available in Figure 6.10, for hand calcu-
lation, we use (6.28). Bus 1 is taken as reference bus (slack bus). Starting from

an initial estimate of V) = 1.0 + 50.0 and V¥ = 1.0 + 0.0, V5 and V5 are
computed from (6.28) as follows

Psch__ syach 0
1927 4 yioVh + yas VO
V;\"I v 4

Y12 + Y23
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| y12 = 10 — 520 2
|, 256.6
: j MW
Y13 = 10 — j30 o3 = 16 _j32 > 110.2
Mvar
Slack Bus 3
Vi1 =1.0520°
138.6 45.2
MW Mvar
FIGURE 6.10

One-line diagram of Example 6.7 (admittances in pu on 100-MVA base).

“2EPRHILI0Z 4 (10 ~ 520)(1.05 + 50) + (16 — j32)(1.0 + 50)

(26 — 552)
= 0.9825 — 50.0310
and
sch _ :ysch
L ,,,JoQ +y13V1 + y23V2(1)
A
Y13 + Y23

—AERAZ 1 (10 - 530)(1.05 + 50) + (16 — 532)(0.9825 — j0.0310)
= (26 — j62)

= 1.0011 — 50.0353
For the second iteration we have
—2.566+41.102 . . . .
o Tosasomste + (10 — 720)(1.05 + 50) + (16 — §32)(1.0011 — §0.0353)
2

(26 — 552)
= 0.9816 — §0.0520
and
@ _ Too T + (10 — 730)(1.05 + 50) + (16 — j32)(0.9816 — j0.052)
8 = (26 — j62)

= 1.0008 — j0.0459

The process is continued and a solution is converged with an accuracy of 5 x 107°
per unit in seven iterations as given below.

V) = 0.9808 — j0.0578 V¥ = 1.0004 — j0.0488
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v = 0.9803 — j0.0594 VY = 1.0002 — 50.0497
V¥ = 0.9801 — j0.0508 V¥ = 1.0001 — 50.0499
Ve = 0.9801 — 0.0599 V% = 1.0000 — j0.0500
V" = 0.9800 — 50.0600 V" = 1.0000 — 50.0500

The final solution is

V2 = 0.9800 — 50.0600 = 0.98183/—3.5035° pu
V3 = 1.0000 — 50.0500 = 1.00125/—2.8624° pu

(b) With the knowledge of all bus voltages, the slack bus power is obtained from
(6.27)

Py — jQ1 = V' Vi(y12 + 113) — (y12V2 + 13V3)]
= 1.05[1.05(20 — j50) — (10 — j20)(0.98 — 5.06) —
(10 — §30)(1.0 — j0.05)]
= 4.095 — 51.890

or the slack bus real and reactive powers are P; = 4.095 pu = 409.5 MW and
Q1 = 1.890 pu = 189 Mvar.

(c) To find the line flows, first the line currents are computed. With line charging
capacitors neglected, the line currents are )

Lz = y12(Vi — Va) = (10 — 520)[(1.05 + 50) — (0.98 — j0.06)] = 1.9 — 50.8
In = —Ip = —1.9+50.8

Iz = y13(Vi — V3) = (10 — 530)[(1.05 + 50) — (1.0 — 50.05)] = 2.0 — j1.0
I3y = —I13 = —2.0 + j1.0

Lz = ya3(Va — V3) = (16 — §32)[(0.98 — 50.06) — (1 — j0.05)] = —.64 + j.48
Isp = —Ip3 = 0.64 — j0.48

The line flows are

S12 = ViIly = (1.05 + j0.0)(1.9 + j0.8) = 1.995 + j0.84 pu
=199.5 MW + j84.0 Mvar

So1 = VoI = (0.98 — j0.06)(—1.9 — 50.8) = —1.91 — j0.67 pu
= —191.0 MW — j67.0 Mvar

05 + §0.0)(2.0 + j1.0) = 2.1 + j1.05 pu

= 210.0 MW + j105.0 Mvar



~
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S31 = VaI3; = (1.0 — 50.05)(—2.0 — j1.0) = —2.05 — 50.90 pu
= —205.0 MW — j90.0 Mvar

Sa3 = V2133 = (0.98 — j0.06)(—0.656 + j0.48) = —0.656 — 50.432 pu
= —65.6 MW — j43.2 Mvar

Ss2 = Va3, = (1.0 — j0.05)(0.64 + j0.48) = 0.664 + 50.448 pu
=66.4 MW + j44.8 Mvar

and the line losses are

Sr 12 = S12 + 891 = 85 MW + 717.0 Mvar
St 13 =513+ 531 = 5.0 MW + 715.0 Mvar
SL o3 = So3 + 532 = 0.8 MW + 51.60 Mvar

The power flow diagram is shown in Figure 6.11, where real power direction is
indicated by — and the reactive power direction is indicated by +—. The values
within parentheses are the real and reactive losses in the line.

, 1 199.5 191 2
409.5 (85)
— | —— (17.0) — >
: 84.0 67.0 256.6
: 210.0, (5) 205 . 66.4 (0.8) 65.6
189 | (15) - R (1.6) — > 110.2
105.0 90.0 44.8 43.2
T 7
138.6 45.2
FIGURE 6.11

Power flow diagram of Example 6.7 (powers in MW and Mbvar).

Example 6.8

Figure 6.12 shows the one-line diagram of a simple three-bus power system with
generators at buses 1 and 3. The magnitude of voltage at bus 1 is adjusted to 1.05
pu. Voltage magnitude at bus 3 is fixed at 1.04 pu with a real power generation
of 200 MW. A load consisting of 400 MW and 250 Mvar is taken from bus 2.
Line impedances are marked in per unit on a 100 MVA base, and the line charging
susceptances are neglected. Obtain the power flow solution by the Gauss-Seidel
method including line flows and line losses.
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0.02 + 50.04

o i

0.01 + 50.03 0.0125 + j0.025 }——> 250
Myvar
Slack Bus 3
Wi = 1.0540°
200 | V3 |= 1.04
MW

FIGURE 6.12
One-line diagram of Example 6.8 (impedances in pu on 100-MVA base).

Line impedanc‘\as converted to admittances are ;9 = 10—320, y13 = 10—330
and yo3 = 16 — j32. The load and generation expressed in per units are

Sgch — @9;—(')52—50) —4.0-3j25 pu
200
P;c’l = T(E =20 pu

Bus 1 is taken as the reference bus (slack bus). Starting from an initial estimate of
V(O) = 1.0+ 70.0 and V(O) = 1.04 4 50.0, V5 and V3 are computed from (6.28).

sch _;)sch
) ik v,,(JoQ + y12V1 + y23 Vs ( )
Vo= 2
2 ‘ Y12 + Y23
ISR + (10 — j20)(1.05 + 50) + (16 — 532)(1.04 + 50)

(26 — j52)
= 0.97462 — j0.042307

Bus 3 is a regulated bus where voltage magnitude and real power are specified. For
the voltage-controlled bus, first the reactive power is computed from (6.30)

O =~V Vi (w13 + 23) — 113V — v2sVi O]}
= —3{(1.04 — j0)[(1.04 + j0)(26 — j62) — (10 — j30)(1.05 + j0) —
(16 — 532)(0.97462 — j0.042307)]}
=1.16
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The value of le) is used as Q5" for the computation of voltage at bus 3. The
complex voltage at bus 3, denoted by Vc(31), is calculated

Psch__z0sch 1
V;(’o? +y13V1 + y23V2( )

i
vy =

Y13 + Y23
25 + (10 — 530)(1.05 + 50) + (16 — j32)(0.97462 — §0.042307)
- (26 — j62)

= 1.03783 — 50.005170

Since |V3 is held constant at 1.04 pu, only the imaginary part of Vc(; )is retained,

ie, £ = —0.005170, and its real part is obtained from

ef? = 1/(1.04)2 — (0.005170)2 = 1.030987
Thus
ViV = 1.039987 — j0.005170

For the second iteration, we have

Psch __stch

S T YV + y23V3(l)
V2

v -

Y12 + Y23
ST e + (10 = j20)(1.05) + (16 — 532)(1.039987 + 50.005170)

(26 — j52)
= 0.971057 — 50.043432

QY = —s{wy® VP (y13 + vas) — y13Vi — y23Va ]}
= —9{(1.039987 + j0.005170)[(1.039987 — j0.005170)(26 — j62) —
(10 — 530)(1.05 + jO) — (16 — 732)(0.971057 — 70.043432)]}
= 1.38796

Psch _anch.

2
- tyisVh + y23V2( )
Vs

Y13 + Y23
Tosssritapes7 + (10 — 730)(1.05) + (16 — j32)(.971057 — 5.043432)

(26 — j62)

= 1.03908 — 50.00730
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Since |V3] is held constant at 1.04 pu, only the imaginary part of Vc(g) is retained,
i.e, §2) = —0.00730, and its real part is obtained from

e = 1/(1.04)2 - (0.00730)2 = 1.039974
or
V3% = 1.039974 — 50.00730

The process is continued and a solution is converged with an accuracy of 5 x 1075
pu in seven iterations as given below.

v =0.97073 — j0.04479 QP =1.42004 V¥ =1.03996 — j0.00833
Vi = 0.97065 — j0.04533 QY =1.44833 V" = 1.03996 — ;j0.00873
v = 0.97062 — j0.04555 QY = 1.45621 V¥ =1.03996 — j0.00893
V{9 = 0.97061 — j0.04565 QF = 1.45947 V¥ =1.03996 — j0.00900
v = 0.97061 — j0.04569 Q" =1.46082 V4" = 1.03996 — j0.00903

The final solution is

Vo = 0.97168/—2.6948° pu

S3 = 2.0+ j1.4617 pu
Vs =1.04/-.498° pu
S1=2.1842 4 j1.4085 pu
N
Line flows and line losses are computed as in Example 6.7, and the results ex-
pressed in MW and Mvar are

Sia = 179.36 + j118.734 Soy = —170.97 — §101.947 Sy 12 = 8.39 + j16.79
Sys = 39.06 + j22.118  S3; = —38.88 —j 21.569 Srq3 = 0.18 + j0.548
Sps = —229.03 — j148.05 S3, = 238.88 + j167.746  Spo3 = 9.85 + 519.69

The power flow diagram is shown in Figure 6.13, where real power direction
is indicated by — and the reactive power direction is indicated by +—. The values
within parentheses are the real and reactive losses in the line.
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a0 179.362 (8.303) 170.968
SN (16.787) —— —
118.734 101.947 | 400
C; .| 39061 (o0 38878 238878 g 547) 229032
140852 = (518) —— —> (19.693)—— | 250
92118 21.569 167.746 148.053
3
200 146.177
FIGURE 6.13

Power flow diagram of Example 6.8 (powers in MW and Mvar).

6.7 TAP CHANGING TRANSFORMERS

In Section 2.6 it was shown that the flow of real power along a transmission line is
determined by the angle difference of the terminal voltages, and the flow of reactive
power is determined mainly by the magnitude difference of terminal voltages. Real
and reactive powers can be controlled by use of tap changing transformers and
regulating transformers.

In a tap changing transformer, when the ratio is at the nominal value, the
transformer is represented by a series admittance y; in per unit. With off-nominal
ratio, the per unit admittance is different from both sides of the transformer, and the
admittance must be modified to include the effect of the off-nominal ratio. Consider
a transformer with admittance y; in series with an ideal transformer representing
the off-nominal tap ratio 1:a as shown in Figure 6.14. y¢ is the admittance in per
unit based on the nominal turn ratio and a is the per unit off-nominal tap position
allowing for small adjustment in voltage of usually 10 percent. In the case of
phase shifting transformers, a is a complex number. Consider a fictitious bus z
between the turn ratio and admittance of the transformer. Since the complex power
on either side of the ideal transformer is the same, it follows that if the voltage goes
through a positive phase angle shift, the current will go through a negative phase
angle shift. Thus, for the assumed direction of currents, we have

1
Ve = ;Vj (6.43)
I; = —a]; (6.44)
The current I; is given by

Ii = yt(V'i - V:z:)




