CHAPTER

10

SYMMETRICAL COMPONENTS
AND UNBALANCED FAULT

10.1 INTRODUCTION

Different types of unbalanced faults are the single line-to-ground fault line-to-line
fault, and double line-to-ground fault.

The fault study that was presented in Chapter 9 has considered only three-
phase balanced faults, which lends itself to a simple per phase approach. Various
methods have been devised for the solution of unbalanced faults. However, since
the one-line diagram simplifies the solution of the balanced three-phase problems,
the method of symmetrical components that resolves the solution of unbalanced
circuit into a solution of a number of balanced circuits is used. In this chapter, the
symmetrical components method is discussed. It is then applied to the unbalanced
faults, which allows once again the treatment of the problem on a simple per phase
basis. Two functions are developed for the symmetrical components transforma-
tions. These are abc2sc, which provides transformation from phase quantities to
symmetrical components, and sc2abc for the inverse transformation. In addition,
these functions produce plots of unbalanced phasors and their symmetrical com-
ponents. Finally, unbalanced faults are computed using the concept of symmet-
rical components. Three functions named lgfault(zdata0, zbus0, zdatal, zbusl,
zdata2, zbus2, V), Iifault(zdatal, zbusl, zdata2, zbus2, V), and digfault(zdata0,
zbus0, zdatal, zbusl, zdata2, zbus2, V) are developed for the line-to-ground,
line-to-line, and the double line-to-ground fault studies.
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400 10. SYMMETRICAL COMPONENTS AND UNBALANCED FAULT

10.2 FUNDAMENTALS OF
SYMMETRICAL COMPONENTS

Symmetrical components allow unbalanced phase quantities such as currents and
voltages to be replaced by three separate balanced symmetrical components.

In three-phase system the phase sequence is defined as the order in which
they pass through a positive maximum. Consider the phasor representation of a
three-phase balanced current shown in Figure 10.1(a).
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FIGURE 10.1

Representation of symmetrical components.

By convention, the direction of rotation of the phasors is taken to be counterclock-
wise. The three phasors are written as
I,=11/0° =1}
I} = I1/240° = @21} (10.1)
I} =I1/120° = oI}

where we have defined an operator a that causes a counterclockwise rotation of
120°, such that

a =1/120° = —0.5 + 50.866
a? = 1/240° = —0.5 — j0.866 (10.2)
a® =1/360° = 1+ ;0

From above, it is clear that
l14a+a2=0 (10.3)

The order of the phasors is abc. This is designated the positive phase sequence.
When the order is acb as in Figure 10.1(b), it is designated the negative phase
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sequence. The negative phase sequence quantities are represented as

I2=12/00 =12
I2 = I2/120° = al? (10.4)
I? = I2/240° = a®I?

When analyzing certain types of unbalanced faults, it will be found that a third set
of balanced phasors must be introduced. These phasors, known as the zero phase
sequence, are found to be in phase with each other. Zero phase sequence currents,
as in Figure 10.1(c), would be designated

0=1=r (10.5)

The superscripts 1, 2, and 0 are being used to represent positive, negative, and
zero-sequence quantities, respectively. In some texts the notation 0, +, — is used
instead of 0, 1, 2. The symmetrical components method was introduced by Dr.
C. L. Fortescue in 1918. Based on his theory, three-phase unbalanced phasors of
a three-phase system can be resolved into three balanced systems of phasors as

follows.

1. Positive-sequence components consisting of a set of balanced three-phase
components with a phase sequence abc.

2. Negative-sequence components consisting of a set of balanced three-phase
components with a phase sequence acb. "

3. Zero-sequence components consisting of three single-phase components, all
equal in magnitude but with the same phase angles.

Consider the three-phase unbalanced currents I,, Iy, and I, shown in Figure
10.2 (page 405). We are seeking to find the three symmetrical components of the
current such that
L=R+I1+12
L =R+ +If (10.6)
I=I0+1}+1I7
According to the definition of the symmetrical components as given by (10.1),
(10.4), and (10.5), we can rewrite (10.6) all in terms of phase a components.

I,=10+1}+1?
I = IO + oI} + aI? 10.7)
I, = 1% + aI! + a®I2
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or
1, 1 1 1 I5
I j=]1 a2 a I} (10.8)
I, 1 a a? I?

We rewrite the above equation in matrix notation as
obe = A 1012 (10.9)

where A is known as symmetrical components transformation matrix (SCTM)
which transforms phasor currents I%*° into component currents I%!2, and is

1 1 1
A=|1 a? a (10.10)
1 a a?
Solving (10.9) for the symmetrical components of currents, we have
2= A1 (10.11)
The inverse of A is given by
([T 11
A'=_-11 a a2 (10.12)
3 1 a2 a
From (10.10) and (10.12), we conclude that
Al= %A* (10.13)
Substituting for A~ in (10.11), we have
10 TR I,
I | = 3 1 a a2 I (10.14)
I? 1 a2 a I

or in component form, the symmetrical components are
Ig = %(Ia + Iy + Ic)
I} = (I, + aly + a2I) (10.15)
2 = {(la + &I + al,)

From (10.15), we note that the zero-sequence component of current is equal to
one-third of the sum of the phase currents. Therefore, when the phase currents sum
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to zero, e.g., in a three-phase system with ungrounded neutral, the zero-sequence
current cannot exist. If the neutral of the power system is grounded, zero-sequence
current flows between the neutral and the ground.

Similar expressions exist for voltages. Thus the unbalanced phase voltages in
terms of the symmetrical components voltages are

Vo=V04+V2I4+V?
Vo = VO + a?V} + aV2 (10.16)
Ve =V2+aV} +a?V?

or in matrix notation
vabe = A Vo2 (10.17)
The symmetrical components in terms of the unbalanced voltages are

V2=t(VatVo+ Vo)
V= 31(Va+aVs+a®Ve) (10.18)
VZ=1(Vo+a?Vp+aVl)

or in matrix notation
VOIZ = A1 yabe (10.19)

The apparent power may also be expressed in terms of the symmetrical compo-
nents. The three-phase complex power is

Siag) = Ve 1% (10.20)
Substituting (10.9) and (10.17) in (10.20), we obtain
Sagy = (AVI2)" (A22)"
= V02T AT AN IQ? (10.21)
Since AT = A, then from (10.13), AT A* = 3, and the complex power becomes
S(ag) =3 (V012T1012*)
= 3VOI%" 4+ 3V} 4 3V2Y (10.22)

Equation (10.22) shows that the total unbalanced power can be obtained from the
sum of the symmetrical component powers. Often the subscript a of the symmet-
rical components are omitted, e.g., I 0 1! and I? are understood to refer to phase a.
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Transformation from phase quantities to symmetrical components in MAT.
LAB is very easy. Once the symmetrical components transformation matrix A is
defined, its inverse is found using the MATLAB function inv. However, for quick
calculations and graphical demonstration, the following functions are developed
for symmetrical components analysis.

sctm The symmetrical components transformation matrix A is defined in this
script file. Typing sctm defines A.

phasor(F) This function makes plots of phasors. The variable F may be expressed
in an n x 1 array in rectangular complex form or as an n X 2 matrix. In the
latter case, the first column is the phasor magnitude and the second column
is its phase angle in degree.

Fo12 = abe2sc(Fy;.) This function returns the symmetrical components of a set
of unbalanced phasors in rectangular form. F,;, may be expressed ina 3 x 1
array in rectangular complex form or as a 3 x 2 matrix. In the latter case,
the first column is the phasor magnitude and the second column is its phase
angle in degree for a, b, and c phases. In addition, the function produces a
plot of the unbalanced phasors and its symmetrical components.

Fype = sc2abe(Fpy2) This function returns the unbalanced phasor in rectangular
form when symmetrical components are specified. Fp12 may be expressed
in a 3 x 1 array in rectangular complex form or as a 3 x 2 matrix. In the
latter case, the first column is the phasor magnitude and the second column
is its phase angle in degree for the zero-, positive-, and negative-sequence
components, respectively. In addition, the function produces a plot of the
unbalanced phasors and its symmetrical components.

Zo12 = zabe2se(Z ) This function transforms the phase impedance matrix to the
sequence impedance matrix, given by (10.30).

F}, =rec2pol(F;) This function converts the rectangular phasor F,. into polar form
Fp.

F = pol2rec(Fy,) This function converts the polar phasor F}, into rectangular form
F,..

Example 10.1

Obtain the symmetrical components of a set of unbalanced currents I, = 1.6/25°,
I, = 1.0/180° and I, = 0.9/132°.




10.2. FUNDAMENTALS OF SYMMETRICAL COMPONENTS 405

The commands

Iabc = [1.6 25
1.0

180
0.9 132};
1012 = abc2sc(Iabc); % Symmetrical components of phase a
1012p= rec2pol(I012) % Rectangular to polar form
result in
I012P =

0.4512 96.4529
0.9435 -0.0550
0.6024 22.3157

and the plots of the phasors are shown in Figure 10.2.

I a-b-cset I Zero-sequence set
a
/ I 2 1 l? I g
Ib \/ \
1
I Positive-sequence set Negative-sequence set
I
I
I
5
I;
FIGURE 10.2

Resolution of unbalanced phasors into syrhmetrical components.

Example 10.2

The symmetrical components of a set of unbalanced three-phase voltages are V9=
0.6£90°, V! = 1.0/30°, and V2 = 0.8/—30°. Obtain the original unbalanced
phasors.

The commands
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Vo012 = [0.6 90
1.0 30
0.8 -30];
Vabc = sc2abc(V012) ;%Unbalanced phasor to symmetrical comp.
Vabcp= rec2pol(Vabc) % Rectangular to polar form
result in
Vabecp =

1.7088 24.1825
0.400 90.0000
1.7088 155.8175

and the plots of the phasors are shown in Figure 10.3.

a-b-cset Zero-sequence set

V;; Va Vao Vbo Vco
Positive-sequence set Negativeésequence set
V,

b
Vc 1 Val

TN

‘/02 Va,2
‘/b 1

FIGURE 10.3
Transformation of the symmetrical components into phasor components.

10.3 SEQUENCE IMPEDANCES

This is the impedance of an equipment or component to the current of different se-
quences. The impedance offered to the flow of positive-sequence currents is known
as the positive-sequence impedance and is denoted by Z!. The impedance of-
fered to the flow of negative-sequence currents is known as the negative-sequence
impedance, shown by Z2. When zero-sequence currents flow, the impedance is
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called the zero-sequence impedance, shown by Z°. The sequence impedances of
transmission lines, generators, and transformers are considered briefly here.

10.3.1 SEQUENCE IMPEDANCES
OF Y-CONNECTED LOADS

A three-phase balanced load with self and mutual elements is shown in Figure 10.4.
The load neutral is grounded through an impedance Z,.

FIGURE 104
Balanced Y-connected load.

The line-to-ground voltages are

Va = ZsIa + ZmIb + ZmIc + ZnIn
Vo= Zplo+ ZoIy + ZpI. + 2,1, (10.23)
Ve = Znlo+ ZmIy + Zsl. + ZnIy

From Kirchhoff’s current law, we have
L=I,+L+1, (10.24)
Substituting for I, from (10.24) into (10.23) and rewriting this equation in matrix

form, yields

| Zm+Zn Zs+Z, Zm+Z, I } (10.25)
Ve Zm+ Zn Zm+Zn Zs+ 2y, I.

Va} [Zs—i—Zn I+ Zp Zm+Zn:|[Ia

or in compact form

Vabc — ZabcIabc (10.26)
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where

s+ Zpn Zm+Zpn Zpm+ 2y
2% =\ Zp+Zn Zot+Zn Zm+ Zn (10.27)
Writing V%€ and I in terms of their symmetrical components, we get
AVO12 — Zabe 1012 (10.28)
Multiplying (10.28) by A1, we get

V012 —_ A—lzabcAIOI2
a a
= 70121012 (10.29)

where

Substituting for Z2%, A, and A~! from (10.27), (10.10), and (10.'12), we have

2012 — 1

1 1 10[Zs+Zn Zmp+2Zn Zm+2Z,7[1 1 1
1 a @& || Zm+Zn Zs4Zn Zm+Zn||1 a® a | (10.31)
1 a? I+ Zg Zm+Zn  Zs+Zp 2

a 1 a a

Performing the above multiplications, we get

Zs+3Z, +22Z,, 0 0
7012 = 0 Zs— Zm 0 (10.32)
0 0 Zs — Zm
When there is no mutual coupling, we set Z,, = 0, and the impedance matrix
becomes
Zs+3Z, 0 O
7012 = 0 Zs 0 (10.33)
0 0 Z

. The impedance matrix has nonzero elements appearing only on the principal diago-
nal, and it is a diagonal matrix. Therefore, for a balanced load, the three sequences
are independent. That is, currents of each phase sequence will produce voltage
drops of the same phase sequence only. This is a very important property, as it
permits the analysis of each sequence network on a per phase basis.
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10.3.2 SEQUENCE IMPEDANCES
OF TRANSMISSION LINES

Transmission line parameters were derived in Chapter 4. For static devices such
as transmission lines, the phase sequence has no effect on the impedance, because
the voltages and currents encounter the same geometry of the line, irrespective of
the sequence. Thus, positive- and negative-sequence impedances are equal, i.e.,
AR DA

In deriving the line parameters, the effect of ground and shielding conductors
were neglected. Zero-sequence currents are in phase and flow through the a,b,c con-
ductors to return through the grounded neutral. The ground or any shielding wire
are effectively in the path of zero sequence. Thus, Z9, which includes the effect
of the return path through the ground, is generally different from Z ! and Z2. The
determination of the zero sequence impedance with the presence of earth neutral
wires is quite involved and the interested reader is referred to the Carson’s formula
[14]. To get an idea of the order of Z° we will consider the following simplified
configuration. Consider 1-m length of a three-phase line with equilaterally spaced
conductors as shown in Figure 10.5. The phase conductors carry zero-sequence
(single-phase) currents with return paths through a grounded neutral. The ground
surface is approximated to an equivalent fictitious conductor located at the average
distance D, from each of the three phases. Since conductor n carries the return
current in opposite direction, we have

R+R+12+1,=0 : (10.34)

IO

a

D D
zg@f{—D—»\@Ig
Dy,

Ground

[TTTTTTITTT7
oI,

FIGURE 10.5
Zero-sequence current flow with earth return.
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Since I = I? = I?, we have |
I, =-3I° (10.35)

Utilizing the relation for the flux linkages of a conductor in a group expressed by
(4.29), the total flux linkage of phase a conductor is

- 1 1 1 1
Ago =2 x 1077 (Iglnﬁ +L?1nB +131n-5+1n1nD—n) (10.36)

Substituting for I, I2, and I,, in terms of I?, we get

1 1 1 1
= 10(1In= -l — - —
a0 =2 x 10 Ia(lnT,—I-lnD-l-lnD 3lnD )

- D}
=2x10""I01n —pz Wbm (10.37)

Since Lo = Aq0/12, the zero sequence inductance per phase in mH per kilometer
length is

D3
Lo =021n =2

DD?
! D3

D D
=0.2In - +3 (0.2Aln _D£> mH/Km (10.38)

=0.2In

The first term above is the same as the positive-sequence inductance given by
(4.33). Thus the zero sequence reactance can be expressed as

X%=x143x, (10.39)

where
D,
Xn=2nf (0.2ln 3) m2/km (10.40)

The zero-sequence impedance of the transmission line is more than three times
larger than the positive- or negative-sequence impedance.

10.3.3 SEQUENCE IMPEDANCES
OF SYNCHRONOUS MACHINE

The inductances of a synchronous machine depend upon the phase order of the
sequence current relative to the direction of rotation of the rotor. The positive-
sequence generator impedance is the value found when positive-sequence current
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flows from the action of an imposed positive-sequence set of voltages. We have
seen that the generator positive-sequence reactance varies, and in Section 9.2 one of
the reactances X, :i' , X;, or Xy was used for the balanced three-phase fault studies.

When negative-sequence currents are impressed in the stator, the net flux in
the air gap rotates at opposite direction to that of the rotor. That is, the net flux
rotates at twice synchronous speed relative to the rotor. Since the field voltage is
associated with the positive-sequence variables, the field winding has no influence.
Consequently, only the damper winding produces an effect in the quadrature axis.
Hence, there is no distinction between the transient and subtransient reactances in
the quadrature axis as there is in the direct axis. The negative-sequence reactance
is close to the positive-sequence subtransient reactance, i.e.,

X2~ X, (10.41)

Zero-sequence impedance is the impedance offered by the machine to the flow
of the zero-sequence current. We recall that a set of zero sequence currents are
all identical. Therefore, if the spatial distribution of mmf is assumed sinusoidal,
the resultant air-gap flux would be zero, and there is no reactance due to arma-
ture reaction. The machine offers a very small reactance due to the leakage flux.
Therefore, the zero-sequence reactance is approximated to the leakage reactance,
ie.,

X%~ X, (10.42)

10.3.4 SEQUENCE IMPEDANCES
OF TRANSFORMER

In Chapter 3 we obtained the per phase equivalent circuit for a three-phase trans-
former. In power transformers, the core losses and the magnetization current are on
the order of 1 percent of the rated value; therefore, the magnetizing branch is ne-
glected. The transformer is modeled with the equivalent series leakage impedance.
Since the transformer is a static device, the leakage impedance will not change
if the phase sequence is changed. Therefore, the positive- and negative-sequence
impedances are the same. Also, if the transformer permits zero-sequence current
flow at all, the phase impedance to zero-sequence is equal to the leakage impedance,
and we have

=721=2%2=2, (10.43)

From Section 3.9.1, we recall that in a Y-A, or a A-Y transformer, the positive-
sequence line voltage on HV side leads the corresponding line voltage on the
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LV side by 30°. For the negative-sequence voltage the corresponding phase shift
is —30°. The equivalent circuit for the zero-sequence impedance depends on the
winding connections and also upon whether or not the neutrals are grounded. Fig-
ure 10.6 shows some of the more common transformer configurations and their
zero-sequence equivalent circuits. We recall that in a transformer, when the core
reluctance is neglected, there is an exact mmf balance between the primary and
secondary. This means that current can flow in the primary only if there is a cur-
rent in the secondary. Based on this observation we can check the validity of the
zero-sequence circuits by applying a set of zero-sequence voltage to the primary
and calculating the resulting currents.

(a) Y-Y connections with both neutrals grounded — We know that the zero se-
quence current equals the sum of phase currents. Since both neutrals are grounded,
there is a path for the zero sequence current to flow in the primary and secondary,
and the transformer exhibits the equivalent leakage impedance per phase as shown
in Figure 10.6(a).

(b) Y-Y connection with the primary neutral grounded — The primary neutral
is grounded, but since the secondary neutral is isolated, the secondary phase current
must sum up to zero. This means that the zero-sequence current in the secondary
is zero. Consequently, the zero sequence current in the primary is zero, reflecting
infinite impedance or an open circuit as shown in Figure 10.6(b).

(¢) Y-A with grounded neutral ~ In this configuration the primary currents
can flow because there is zero-sequence circulating current in the A-connected
secondary and a ground return path for the Y-connected primary. Note that no zero-
sequence current can leave the A terminals, thus there is an isolation between the
primary and secondary sides as shown in Figure 10.6(c).

(d) Y-A connection with isolated neutral - In this configuration, because the
neutral is isolated, zero sequence current cannot flow and the equivalent circuit re-
flects an infinite impedance or an open as shown in Figure 10.6(d).

(e) A-A connection - In this configuration zero-sequence currents circulate
in the A-connected windings, but no currents can leave the A terminals, and the
equivalent circuit is as shown in Figure 10.6(¢).

Notice that the neutral impedance plays an important part in the equivalent
circuit. When the neutral is grounded through an impedance Z,,, because I, = 31,
in the equivalent circuit the neutral impedance appears as 32, in the path of Ip.
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Symbol Connection diagram Zero-sequence circuit
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FIGURE 10.6
Transformer zero-sequence equivalent circuits.




414 10. SYMMETRICAL COMPONENTS AND UNBALANCED FAULT

Example 10.3

A balanced three-phase voltage of 100-V line-to-neutral is applied to a balanced
Y-connected load with ungrounded neutral as shown in Figure 10.7. The three-
phase load consists of three mutually-coupled reactances. Each phase has a series
reactance of Z; = 512 (), and the mutual coupling between phases is Z,,, = 74 Q.

I,
o— —
+
I
o— —
v, + .
Ic y
Vb o___/\/\/\/\_rwv\__——*
+
Ve
. T
FIGURE 10.7

Circuit for Exampie 10.3.

(a) Determine the line currents by mesh analysis without using symmetrical com-
ponents.
(b) Determine the line currents using symmetrical components.

(a) Applying KVL to the two independent mesh equations yields

Zolo + Zoly — ZoTy — Zoply = Vy — Vi = Vi |Ln/6
LIy + Zp I, — Z I, — Iy =V, -V, = lVLIZ—-ﬂ'/2

Also from KCL, we have
I+ +1I.=0

Writing above equations in matrix form, results in

(Zs = Zm) —(Zs — Zn) 0 I \ARIG
0 (Zs = Zm)  —(Zs — Zum) } [ I, ] = [ VLlZ—m/2 }
1 1 1 I 0

or in compact form

b
zmeshIa ¢ = mesh
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Solving the above equations results in the line currents
Iabc = Zmesh—-lvmesh
The following commands

% (a) Solution by mesh analysis
Zs=j*12; Zm=j*4; Va = 100; VL=Va*sqrt(3);
z= [(Zs-Zm) -(Zs-Zm) 0

0 (Zs-Zm) -(Zs-Zm)

1 1 1
V=[VL*cos(pi/6)+j*VL*sin(pi/6)

VL*cos(-pi/2)+j*VL*sin(-pi/2)
0 1;

Y=inv(Z)
Iabc=Y*V; % Line currents (Rectangular form)
Iabcp=[abs(Iabc), angle(Iabc)*180/pil % Line currents (Polar)

result in
Iabcp =
12.5 -90.0
12.5 150.0
12.5 30.0

(b) Using the symmetrical components method, we have

012 __ r7012y012
V3 =771

0
Vo2 — [ 1A ]
0
and from (10.32)

Zs+2Zm 0 0
7012 — 0 Zs— Zm 0

0 0 Zs—Zm

where

for the sequence components of currents, we get
1012 — [2012]—1V012

We write the following commands
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% (b) Solution by symmetrical components method ‘
2012=[Zs+2*xZm O 0 % Symmetrical components matrix
0 Zs-Zm O
0 0 2Zs-Zm];
V012=[0; Va ; 0]; ASymmetrical components of phase voltages
1012=inv(Z012)*V012; %Symmetrical components of line currents
a=cos(2¥pi/3)+j*sin(2%pi/3);
A=[1 1 1; 1a"2 a; 1aa"2]; % Transformation matrix
Iabc=A*I1012; % Line currents (Rectangular form)
Tabcp=[abs(Iabc), angle(Iabc)*180/pi] Y% Line currents (Polar)

which result in

Iabep =
12.5 -90.0
12.5 150.0
12.5 30.0

This is the same result as in part (a).

Example 10.4

A three-phase unbalanced source with the following phase-to-neutral voltages

200 £25°
vebe — | 100 /—155°
80 /100°

is applied to the circuit in Figure 10.4 (page 407). The load series impedance per
phase is Z; = 8 + ;24 and the mutual impedance between phases is Z,, = j4. The
load and source neutrals are solidly grounded. Determine

(a) The load sequence impedance matrix Z%12 = A—17abcA

(b) The symmetrical components of voltage.

(c) The symmetrical components of current.

(d) The load phase currents.

(¢) The complex power delivered to the load in terms of symmetrical components,
Sap = 3(VoIg + Vi IL" + V2IZ).

(f) The complex power delivered to the load by summing up the power in each
phase, S3p = VoI + VoI + VI

We write the following commands




Vabc

Zabc

Z012
Vo1i2
V01i2p
1012
1012p
Iabc
Iabcp

([
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[200 25
100 -155
80  100];

[8+j*24 j*4 j*4
j*4 8+j*24 j*4

j*4 j*4 8+j*24];
zabc2sc(Zabc) % Symmetrical components of impedance
abc2sc(Vabe) ; % Symmetrical components of voltage
rec2pol(V012) % Rectangular to polar form
inv(Z012)*V012; % Symmetrical components of current
rec2pol(1012) % Rectangular to polar form
sc2abc(1012); % Phase currents
rec2pol(Iabc) % Rectangular to polar form

S3ph =3%(V012.’)*conj(I1012)Pover using symmetrical components

Vabcr

= Vabc(:, 1).*(cos(pi/180*Vabc(:, 2)) +...

j*sin(pi/180%Vabc(:, 2)));
S3ph=(Vabcr. ’)*conj (Iabc)

% Power using phase currents and voltages

The result is

2012

1012p

Iabcp

S3ph

S3ph

\

8.00 + 32.00i 0.00 + 0.00i 0.00 + 0.00i
0.00 + 0.00i 8.00 + 20.00i 0.00 + 0.00i
0.00 - 0.00i 0.00 - 0.00i 8.00 + 20.00i

47 .7739 57.6268
112.7841 -0.0331
61.6231 45.8825

1.4484 -18.3369

5.2359 -68.2317
2.8608 -22.3161
8.7507 -47.0439
5.2292 143.2451
3.0280 39.0675

9.0471e+002+ 2.3373e+0031

9.0471e+002+ 2.3373e+003i
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10.4 SEQUENCE NETWORKS
OF A LOADED GENERATOR

Figure 10.8 represents a three-phase synchronous generator with neutral grounded
through an impedance Z,. The generator is supplying a three-phase balanced load,

I,

—0
+

—+0

—_— ‘/b

||}—

FIGURE 10.8
Three-phase balanced source and impedance.

The synchronous machine generates balanced three-phase internal voltages and is
represented as a positive-sequence set of phasors

a

1
E%e — [ a? } E, (10.44)

The machine is supplying a three-phase balanced load. Applying Kirchhoff’s volt-
age law to each phase we obtain

Vo = E, - ZsIa - ZnIn
Ww=Ey—Z,I,— Z,I, ' (10.45)
Vc = Ec - ZcIé - ZnIn

Substituting for I, = I, + I + I, and writing (10.45) in matrix form, we get

Va Ea Zs+Zn Zn Zn Ia
Vo |=1| B | - Zn  Ze+Zn  Zn I, | (10.46)

Ve E, Zn Zn  Zs+Zn I
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or in compact form, we have
Vabc — Eabc - ZabcIabc (10.47)

where V¢ is the phase terminal voltage vector and Ieb¢ js the phase current vec-
tor. Transforming the terminal voltages and current phasors into their symmetrical
components results in

AV2 = AEJ? _ 790 A0 (10.48)
Multiplying (10.48) by A1, we get
Vng — E212 - A—lzabcA1212

= 012 _ Z012§012 (10.49)
where
(11 17[Z+2,  Z Zn 111
1 a2 o Zn Zn Zs+ Zn 1 a o
(10.50)

Performing the above multiplications, we get

Zs+ 32, 0 0 Z9 0 0
7012 — 0 Zy ol=|0 2zt o (10.51)
0 0 Zs | 0 0 22
Since the generated emf is balanced, there is only positive-sequence voltage, i.e.,
0
B2 = [ E, (10.52)
0 |

Substituting for E0'2 and Z°'? in (10.49), we get

Vo 0 z° 0 o IS
Vil=|E |-]0 2t 0 I} (10.53)
Ve

0 0o o0 2z? I?
Since the above equation is very imponant,'we write it in component form, and we
get

V2=0-2°I]
Vl=E,-Z'I} (10.54)
V2=0-2%1I2
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I + +
E() % % A
| 5 5 3
FIGURE 10.9

Sequence networks: (a) Positive-sequence; (b) negative-sequence; (c) zero-sequence.

The three equations given by (10.54) can be represented by the three equivalent
sequence networks shown in Figure 10.9.
We make the following important observations.

¢ The three sequences are independent.

o The positive-sequence network is the same as the one-line diagram used in

ying balanced three-phase currents and voltages.
e Only the positive-sequence network has a voltage source. Therefore, the
positive-sequence current causes only positive-sequence voltage drops.

e There is no voltage source in the negative- or zero-sequence networks.

 Negative- and zero-sequence currents cause negative- and zero-sequence
voltage drops only.

e The neutral of the system is the reference for positive-and negative-sequence
networks, but ground is the reference for the zero-sequence networks. There-
fore, the zero-sequence current can flow only if the circuit from the system
neutrals to ground is complete.

o The grounding impedance is reflected in the zero sequence network as 32Z,.

* The three-sequence systems can be solved separately on a per phase basis.
The phase currents and voltages can then be determined by superposing their
symmetrical components of current and voltage respectively.

We are now ready with mathematical tools to analyze various types of unbalanced
faults. First, the fault current is obtained using Thévenin’s method and algebraic
manipulation of sequence networks. The analysis will then be extended to find the
bus voltages and fault current during fault, for different types of faults using the
bus impedance matrix.
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10.5 SINGLE LINE-TO-GROUND FAULT

Figure 10.10 illustrates a three-phase generator with neutral grounded through
impedance Z,.

Io

—

FIGURE 10.10
Line-to-ground fault on phase a.

Suppose a line-to-ground fault occurs on phase a through impedance Zy.
Assuming the generator is initially on no-load, the boundary conditions at the fault
point are

Vo = %1, (10.55)
I=I.=0 (10.56)

Substituting for I, = I, = 0, the symmetrical components of currents from (10.14)

are
0 TR I,
I} =31 a a? 0 (10.57)
I? 1 a2 a 0

From the above equation, we find that

P=1l=1= %Ia (10.58)

Phase a voltage in terms of symmetrical components is

Vo=Vo+VI+V2 (10.59)
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Substituting for V), V!, and V2 from (10.54) and noting I = I = I2, we get
Vo=FE,—(Z"+ 22+ 2010 (10.60)

where Z° = Z; + 3Z,. Substituting for V;, from (10.55), and noting I, = 319, we
get

32718 = E, — (2" + 2% + Z91° (10.61)
or

1D = Eo
¢ Z'+ 22420437

(10.62)

The fault current is

=370 = _ .
Lo =30, ZY+ 22+ 2%+ 32

Substituting for the symmetrical components of currents in (10.54), the symmetri-
cal components of voltage and phase voltages at the point of fault are obtained.

Equations (10.58) and (10.62) can be represented by connecting the sequence
networks in series as shown in the equivalent circuit of Figure 10.11. Thus, for line-
to-ground faults, the Thévenin impedance to the point of fault is obtained for each
sequence network, and the three sequence networks are placed in series. In many
practical applications, the positive- and negative-sequence impedances are found
to be equal. If the generator neutral is solidly grounded, Z, = 0 and for bolted
faults Zy = 0.

1 71 2 12 0 70
N%\ia_" __rvgf\_ﬂlio__ N%\IL>'

+ + +
Ea Val Va2 Vao
T 3Z;
g ——

FIGURE 10.11
Sequence network connection for line-to-ground fault.




10.6. LINE-TO-LINEFAULT 423

10.6 LINE-TO-LINE FAULT

Figure 10.12 shows a three-phase generator with a fault through an impedance
Zjs between phases b and c. Assuming the generator is initially on no-load, the
boundary conditions at the fault point are

Vo —Ve= 251 (10.64)
ILy+1.=0 (10.65)
I,=0 (10.66)
Substituting for I, = 0, and I, = —1I, the symmetrical components of currents
from (10.14) are
19 1 1 1 1 0
Il | = 3 1 a a? I (10.67)
I? 1 o> a —Ip

From the above equation, we find that

=0 (10.68)
Il = %(a — a1, (10.69)
I2 = —1?;(a2 —a), (10.70)

FIGURE 10.12
Line-to-line fault between phase b and c.
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Also, from (10.69) and (10.70), we note that

I

I} =12 (10.71)

From (10.16), we have

Vo= Ve = (a® —a)(V; = V)

Substituting for V' and V2 from (10.54) and noting I2 = —I?, we get
(@® — a)[Eq — (2" + ZD)I}] = 21, (10.73)
Substituting for I from (10.69), we get

31!
?)(a? - a)

E,—(Z'+ 2)1} = z; @ a (10.74)

Since (a — a%)(a? — a) = 3, solving for I results in

Il = Zl—w%u*zf (10.75)
The phase currents are
I, 1 1 1 0
[Ib]=[1a2 aJ[Ig] (10.76)
I. 1 a a? -1l
The fault current is
Iy=~I, = (a% - a)I! (10.77)
or
I, = —jV31} (10.78)

Substituting for the symmetrical components of currents in (10.54), the symmetri-
cal components of voltage and phase voltages at the point of fault are obtained.

Equations (10.71) and (10.75) can be represented by connecting the positive-
and negative-sequence networks in opposition as shown in the equivalent circuit of
Figure 10.13. In many practical applications, the positive- and negative-sequence
impedances are found to be equal. For a bolted fault, Z r=0.
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Zt 1} l 72 I?
-~ | T a,
+ +
E(Y) %) V2
1 & ]
| S
FIGURE 10.13

Sequence network connection for line-to-line fault.

10.7 DOUBLE LINE-TO-GROUND FAULT

Figure 10.14 shows a three-phase generator with a fault on phases b and c through
an impedance Z; to ground. Assuming the generator is initially on no-load, the
boundary conditions at the fault point are

Vo= Vo= Z;(Ip+ L) (10.79)
L=I+I}+12=0 (10.80)

From (10.16), the phase voltages V; and V, are

I,=0

—

ll}

FIGURE 10.14
Double line-to-ground fault.
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Vo = V2 +a?V! + aV? (10.81)
Ve =V2 +aV} + a?v? (10.82)
Since V}, = V,, from above we note that
vi=v? (10.83)
Substituting for the symmetrical components of currents in (10.79), we get
Vb = Z§(ID + a®I} + al? + IO + aIl + o2I?)
=Z5(210 ~ I, - I})
=321 (10.84)
Substituting for V;, from (10.84) and for Va2 from (10.83) into (10.81), we have
32410 = VO + (a® + a)V}!
=V, -V} (10.85)

Substituting for the symmetrical components of voltage from (10.54) into (10.85)
and solving for I?, we get ’

E,-27Z'I!

0—_298 < 10.86

fa zZ%+3Z t ( )

Also, substituting for the symmetrical components of voltage in (10.83), we obtain

—olrl
2= _&# (10.87)

Substituting for I? and I2 into (10.80) and solving for I}, we get
I; = 2

a™ Z%(Z+3z5)

zZ'+ Z2+Z0+3Z;
Equations (10.86)—(10.88) can be represented by connecting the positive-sequence
impedance in series with the parallel combination of the negative-sequence and
zero-sequence networks as shown in the equivalent circuit of Figure 10.15. The
value of I} found from (10.88) is substituted in (10.86) and (10.87), and 12 and I

are found. The phase currents are then found from (10.8). Finally, the fault current
is obtained from

(10.88)

I;=I+I,=3° (10.89)
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A5 2z, | 28|
+

E, @ 7 V2 Vo

l - - -

T 3Z;
FIGURE 10.15
Sequence network connection for double line-to-ground fauit.

Example 10.5

The one-line diagram of a simple power system is shown in Figure 10.16. The
neutral of each generator is grounded through a current-limiting reactor of 0.25/3
per unit on a 100-MVA base. The system data expressed in per unit on a common
100-MVA base is tabulated below. The generators are running on no-load at their
rated voltage and rated frequency with their emfs in phase.

Determine the fault current for the following faults.

(a) A balanced three-phase fault at bus 3 through a fault impedance Z; = ;0.1
per unit.

(b) A single line-to-ground fault at bus 3 through a fault impedance Z; =
70.10 per unit.

(c) A line-to-line fault at bus 3 through a fault impedance Z; = ;0.1 per unit.

(d) A double line-to-ground fault at bus 3 through a fault impedance Z; =
jO.1 per unit.

Item Base MVA Voltage Rating X! X2 X0
G 100 20kV 0.15 0.15 0.05
G 100 20kV 015 015 0.05
T 100 20/220 kV 0.10 0.10 0.10
Ty 100 20/220 kV 0.10 0.10 0.10
Ly 100 220kV 0.125 0.125 030
Lis 100 220kV 0.15 0.15 035
Log 100 220kV 025 025 07125
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NN
Ak Al

1
JAN
Ya

YY)

1 )2

FIGURE 10.16
The one-line diagram for Example 10.5.

The positive-sequence impedance network is shown in Figure 10.17.

§0.035714 70.059524
§0.071428

FIGURE 10.17
Positive-sequence impedance diagram for Example 10.5.

To find Thévenin impedance viewed from the faulted bus (bus 3), we convert
the delta formed by buses 123 to an equivalent Y as shown in Figure 10.17(b).

_ (j0.125)(j0.15)

Zys g = 100357143
Zpy = YOIBNGO) _ o eoenng

70.525
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_ (40.15)(j0.25) _ .
Z3s = osm §0.0714286

Combining the parallel branches, the positive-sequence Thévenin impedance is

. (j0.2857143)(j0.3095238) . .
= 0.0714286
Zs3 50.5952381 +50.07

= j0.1485714 + j0.0714286 = j0.22

This is shown in Figure 10.18(a).

70.22 70.22
‘ Y'Y ’e) YY) O
Eo( _)
O O
(a) Positive-sequence network (b) Negative-sequence network

TICTIIDE 10 12
X AT VAN,

AAAAA

Reduction of the positive-sequence Thévenin ecjuivalent network.

Since the negative-sequence impedance of each element is the same as the positive-
sequence impedance, we have

Z33 = Z35 = j0.22

and the negative-sequence network is as shown in Figure 10.18(b). The equivalent
circuit for the zero-sequence network is constructed according to the transformer
winding connections of Figure 10.6 and is shown in Figure 10.19.

To find Thévenin impedance viewed from the faulted bus (bus 3), we convert
the delta formed by buses 123 to an equivalent Y as shown in Figure 10.19(b).

(j0.30)(j0.35)

= T —40. 42

Z1s 13625 40 '07706
(50.30)(j0.7125)

Zas 71.3625 §0.1568807
(j0.35)(jO.7125)

Z3g = = 50.1830257

3s 71.3625 70

Combining the parallel branches, the zero-sequence Thévenin impedance is

o (j0.4770642)(j0.2568807)
- 183027
Z33 50.7339449 +50.1830275

= j0.1669725 + 50.1830275 = 50.35
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70.25

70.05

70.156881
0.183026

FIGURE 10.19
Zero-sequence impedance diagram for Example 10.5.

50.35

—rYY

FIGURE 10.20
Zero-sequence network for Example 10.5.

The zero-sequence impedance diagram is shown in Figure 10.20.

(a) Balanced three-phase fault at bus 3.
Assuming the no-load generated emfs are equal to 1.0 per unit, the fault cur-
rent is

%Y 1.0
I8(F) = —2©_ _ i =
3 (F) Z+Z; 30224501
' =820.1/—90° A

-33.125 pu

(b) Single line-to-ground fault at bus 3.

From (10.62), the sequence components of the fault current are
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Bef=n=—r V0
Z33+ Z33+ Z33 + 325
B 1.0
T §0.22 + 50.22 + 50.35 + 3(50.1)
= —30.9174 pu

The fault current is

Ig 1 1 1 n 312 —52.7523
Bl=|1a? a Bl=} 0 |= 0 pu
IS 1 a a2] L1 0 0

(c) Line-to line fault at bus 3.
The zero-sequence component of current is zero, i.e.,

Va
30) = - = —41.8519 pu

L=-I}= = B
3 3T ZL+Z%+ 2y j0.22+0.22 + j0.1

The fault current is

Ig 1 1 1 0 0
Bl=11a a —41.8519 | = | —3.2075
Ig 1 a d? 71.8519 3.2075

(d) Double line-to line-fault at bus 3.
From (10.88), the positive-sequence component of the fault current is

I} = ‘?(20)0 = ! = —§2.6017 pu
22,(2%,+3Z . 70.22(50.35+50.3) :
Z3s + ﬁf&% J0.22 + 532 ¥50.35+53
The negative-sequence component of current from F(IO. 87)is
Ve _ZIII 1 = (70.22)(—42 1
2=- 3(0) 2 3813 (0. )( 72.60 7)=j1.9438 pu
233 j0.22
The zero-sequence component of current from (10.86) is
Ve Zl Il _(a .
B=- 3(0) s3fs 1 (70.22)(—32.6017) — j0.6579 pu

2% +3%Z; 50.35 +50.3
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and the phase currents are

Ig 1 1 1 70.6579 0
Bl=|1a® a —52.6017 | = | 4.058/165.93°
IS 1 a d? 71.9438 4.058£14.07°

The fault current is

L(F) = I% + I§ = 1.9732/90°

10.8 UNBALANCED FAULT ANALYSIS
USING BUS IMPEDANCE MATRIX

We have seen that when the network is balanced, the symmetrical components
impedances are diagonal, so that it is possible to calculate Zy,s separately for
zero-, positive-, and negative-sequence networks. Also, we have observed that for
a fault at bus k, the diagonal element in the k axis of the bus impedance matrix
Zyys is the Thévenin impedance to the point of fault. In order to obtain a solution
for the unbalanced faults, the bus impedance matrix for each sequence network is
obtained sepgrately, then the sequence impedances Z%, Z';, and Z24y, are con-
nected together as described in Figures 10.11, 10.13, and 10.15. The fault formulas
for various unbalanced faults is summarized below. In writing the symmetrical
components of voltage and currents, the subscript a is left out and the symmetrical
components are understood to refer to phase a.

10.8.1 SINGLE LINE-TO-GROUND FAULT USING Z;,,,

Consider a fault between phase a and ground through an impedance Z; at bus k as
shown in Figure 10.21. The line-to-ground fault requires that positive-, negative-,
and zero-sequence networks for phase a be placed in series in order to compute the
zero-sequence fault current as given by (10.62). Thus, in general, for a fault at bus
k, the symmetrical components of fault current is

_ Vi(0)
P ZL Y23 F Z%. +32;

(10.90)

where Zy;, Z{,., and Z, are the diagonal elements in the k axis of the correspond-
ing bus impedance matrix and Vj(0) is the prefault voltage at bus k. The fault phase
current is

Ige = ATV (10.91)




