

What Readers Are Saying About

Arduino: A Quick-Start Guide

The most comprehensive book on the Arduino platform I have read.

Loaded with excellent examples and references, Arduino: A Quick-Start

Guide gets beginners up and running in no time and provides experi-

enced developers with a wealth of inspiration for their own projects.

Haroon Baig

Creator of the Twitwee Clock, http://www.haroonbaig.com

Excellently paced for those who have never experimented with elec-

tronics or microcontrollers before and packed with valuable tidbits

even for advanced Arduino tinkerers.

Georg Kaindl

Creator, Arduino DHCP, DNS, and Bonjour libs

The Arduino platform is a great way for anyone to get into embedded

systems, and this book is the road map. From first baby steps to com-

plex sensors and even game controllers, there is no better way to get

going on the Arduino.

Tony Williamitis

Senior embedded systems engineer

I recommend this engaging and informative book to software develop-

ers who want to learn the basics of electronics, as well as to anyone

looking to interface their computers with the physical world.

René Bohne

Software developer and creator of LumiNet

http://www.haroonbaig.com

Arduino
A Quick-Start Guide

Maik Schmidt

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Susannah Pfalzer

Indexing: Potomac Indexing, LLC

Copy edit: Kim Wimpsett

Layout: Samuel Langhorne

Production: Janet Furlow

Customer support: Ellie Callahan

International: Juliet Benda

Copyright © 2011 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-66-2

ISBN-13: 978-1-934356-66-1

Printed on acid-free paper.

P1.0 printing, Janurary, 2011

Version: 2011-1-24

Download from Wow! eBook <www.wowebook.com>

http://www.pragprog.com

For Yvonne.

The greatest little sister on earth.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Contents
Acknowledgments 11

Preface 13

Who Should Read This Book 14

What’s in This Book . 14

Arduino Uno and the Arduino Platform 16

Code Examples and Conventions 16

Online Resources . 17

The Parts You Need 18

Starter Packs . 18

Complete Parts List . 19

I Getting Started with Arduino 22

1 Welcome to the Arduino 23

1.1 What You Need . 24

1.2 What Exactly Is an Arduino? 24

1.3 Exploring the Arduino Board 25

1.4 Installing the Arduino IDE 31

1.5 Meeting the Arduino IDE 33

1.6 Compiling and Uploading Programs 38

1.7 Working with LEDs 41

1.8 What If It Doesn’t Work? 43

1.9 Exercises . 44

2 Inside the Arduino 46

2.1 What You Need . 46

2.2 Managing Projects and Sketches 47

2.3 Changing Preferences 48

2.4 Using Serial Ports . 49

2.5 What If It Doesn’t Work? 60

2.6 Exercises . 61

Download from Wow! eBook <www.wowebook.com>

CONTENTS 8

II Eight Arduino Projects 62

3 Building Binary Dice 63

3.1 What You Need . 63

3.2 Working with Breadboards 64

3.3 Using an LED on a Breadboard 66

3.4 First Version of a Binary Die 69

3.5 Working with Buttons 74

3.6 Adding Our Own Button 79

3.7 Building a Dice Game 80

3.8 What If It Doesn’t Work? 86

3.9 Exercises . 87

4 Building a Morse Code Generator Library 88

4.1 What You Need . 88

4.2 Learning the Basics of Morse Code 88

4.3 Building a Morse Code Generator 89

4.4 Fleshing Out the Generator’s Interface 91

4.5 Outputting Morse Code Symbols 92

4.6 Installing and Using the Telegraph Class 94

4.7 Final Touches . 97

4.8 What If It Doesn’t Work? 99

4.9 Exercises . 100

5 Sensing the World Around Us 102

5.1 What You Need . 103

5.2 Measuring Distances with an Ultrasonic Sensor . . 104

5.3 Increasing Precision Using Floating-Point Numbers 110

5.4 Increasing Precision Using a Temperature Sensor . 113

5.5 Transferring Data Back to Your Computer Using Pro-

cessing . 119

5.6 Representing Sensor Data 123

5.7 Building the Application’s Foundation 125

5.8 Implementing Serial Communication in Processing 126

5.9 Visualizing Sensor Data 128

5.10 What If It Doesn’t Work? 131

5.11 Exercises . 131

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=8

CONTENTS 9

6 Building a Motion-Sensing Game Controller 132

6.1 What You Need . 133

6.2 Wiring Up the Accelerometer 134

6.3 Bringing Your Accelerometer to Life 135

6.4 Finding and Polishing Edge Values 137

6.5 Building Your Own Game Controller 140

6.6 Writing Your Own Game 144

6.7 More Projects . 152

6.8 What If It Doesn’t Work? 153

6.9 Exercises . 153

7 Tinkering with the Wii Nunchuk 154

7.1 What You Need . 154

7.2 Wiring a Wii Nunchuk 155

7.3 Talking to a Nunchuk 156

7.4 Building a Nunchuk Class 159

7.5 Using Our Nunchuk Class 162

7.6 Rotating a Colorful Cube 163

7.7 What If It Doesn’t Work? 169

7.8 Exercises . 169

8 Networking with Arduino 170

8.1 What You Need . 171

8.2 Using Your PC to Transfer Sensor Data to the Inter-

net . 172

8.3 Registering an Application with Twitter 174

8.4 Tweeting Messages with Processing 175

8.5 Networking Using an Ethernet Shield 179

8.6 Emailing from the Command Line 186

8.7 Emailing Directly from an Arduino 188

8.8 Detecting Motion Using a Passive Infrared Sensor . 192

8.9 Bringing It All Together 196

8.10 What If It Doesn’t Work? 199

8.11 Exercises . 201

9 Creating Your Own Universal Remote Control 202

9.1 What You Need . 203

9.2 Understanding Infrared Remote Controls 204

9.3 Grabbing Remote Control Codes 205

9.4 Building Your Own Apple Remote 209

9.5 Controlling Devices Remotely with Your Browser . . 212

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=9

CONTENTS 10

9.6 Building an Infrared Proxy 214

9.7 What If It Doesn’t Work? 221

9.8 Exercises . 222

10 Controlling Motors with Arduino 223

10.1 What You Need . 223

10.2 Introducing Motors 224

10.3 First Steps with a Servo Motor 225

10.4 Building a Blaminatr 228

10.5 What If It Doesn’t Work? 233

10.6 Exercises . 234

III Appendixes 236

A Basics of Electronics 237

A.1 Current, Voltage, and Resistance 237

A.2 Learning How to Solder 241

B Advanced Arduino Programming 247

B.1 The Arduino Programming Language 247

B.2 Bit Operations . 249

C Advanced Serial Programming 251

C.1 Learning More About Serial Communication 251

C.2 Serial Communication Using Various Programming

Languages . 253

D Bibliography 266

Index 267

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=10

Acknowledgments
Writing books doesn’t get easier the more often I do it—I think there

will never be a time when I can do it on my own. I will always depend

on the help of others, and a lot of wonderful people contributed to this

book.

I have to start by thanking my unbelievably talented editor, Susannah

Davidson Pfalzer. Only because of her insightful advice, her patience,

and her encouragement have I finished this book. I owe her so much!

Also, the Pragmatic Bookshelf team again has been amazingly profes-

sional, and my publishers have been very sympathetic when I went

through some hard times. I am so thankful for that!

This book would not have been possible without the stunning work of

the whole Arduino team! Thank you so much for creating the Arduino!

A big “thank-you!” goes to all the people who contributed material to

this book: Christian Rattat took all the book’s photos, Kaan Karaca

created the Blaminatr’s display, and Tod E. Kurt kindly allowed me to

use his excellent C code for accessing an Arduino via serial port.

I have created all circuit diagrams with Fritzing,1 and I’d like to thank

the Fritzing team for making such a great tool available for free!

For an author, there’s nothing more motivating than feedback. I’d like

to thank my reviewers: René Bohne, Stefan Christoph, Georg Kaindl,

Kaan Karaca, Christian Rattat, Stefan Rödder, Christoph Schwaeppe,

Federico Tomassetti, and Tony Williamitis. This book is so much better

because of your insightful comments and suggestions! I am also grate-

ful to all readers who have sent in errata during the beta book period.

When I had written the first half of this book, my mother passed away

in February 2010. It has been one of the hardest times in my life, and

1. http://fritzing.org/

Download from Wow! eBook <www.wowebook.com>

http://fritzing.org/

ACKNOWLEDGMENTS 12

without the support of my family and my friends, I would have never

finished this book. We miss you so much, Mom!

Finally, I’d like to thank Tanja for giving me confidence and for bringing

fun back into my life when I needed it most!

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=12

Preface
Welcome to the Arduino, and welcome to the exciting world of physical

computing! Arduino2 is an open source project consisting of both hard-

ware and software. It was originally created to give designers and artists

a prototyping platform for interaction design courses. Today hobby-

ists and experts all over the world use it to create physical computing

projects, and you can too.

The Arduino lets us get hands-on again with computers in a way we

haven’t been able to since the 1980s, when you could build your own

computer. And Arduino makes it easier than ever to develop hand-

crafted electronics projects ranging from prototypes to sophisticated

gadgets. Gone are the days when you had to learn lots of theory about

electronics and arcane programming languages before you could even

get an LED blinking. You can create your first Arduino project in a few

minutes without needing advanced electrical engineering course work.

In fact, you don’t need to know anything about electronics projects to

read this book, and you’ll get your hands dirty right from the begin-

ning. You’ll not only learn how to use some of the most important elec-

tronic parts in the first pages, you’ll also learn how to write the software

needed to bring your projects to life.

This book dispenses with theory and stays hands-on throughout. I’ll

explain all the basics you need to build the book’s projects, and every

chapter has a troubleshooting section to help when things go wrong.

This book is a quick-start guide that gets you up to speed quickly and

enables you to immediately create your own projects.

2. http://arduino.cc

Download from Wow! eBook <www.wowebook.com>

http://arduino.cc

WHO SHOULD READ THIS BOOK 14

Who Should Read This Book

If you are interested in electronics—and especially in building your

own toys, games, and gadgets—then this book is for you. Although the

Arduino is a nice tool for designers and artists, only software developers

are able to unleash its full power. So, if you’ve already developed some

software—preferably with C/C++ or Java—then you’ll get a lot out of

this book.

But there’s one more thing: you have to build, try, and modify the

projects in this book. Have fun. Don’t worry about making mistakes.

The troubleshooting sections—and the hands-on experience you’ll gain

as you become more confident project by project—will make it all worth-

while. Reading about electronics without doing the projects yourself

isn’t even half the battle (you know the old saying: we remember 5 per-

cent of what we hear, 10 percent of what we write, and 95 percent of

what we personally suffer). And don’t be afraid: you really don’t need

any previous electronics project experience!

If you’ve never written a piece of software before, start with a program-

ming course or read a beginner’s book about programming first (Learn

to Program [Pin06] is a nice starting point). Then, learn to program in

C with The C Programming Language [KR98] or in C++ with The C++

Programming Language [Str00].

What’s in This Book

This book consists of three parts (“Getting Started with Arduino,” “Eight

Arduino Projects,” and the appendixes). In the first part, you’ll learn all

the basics you need to build the projects in the second part, so read the

chapters in order and do all the exercises. The chapters in the second

part also build on each other, reusing techniques and code from earlier

chapters.

Here’s a short walk-through:

• The book starts with the basics of Arduino development. You’ll

learn how to use the IDE and how to compile and upload pro-

grams. You’ll quickly build your first project—electronic dice—that

shows you how to work with basic parts such as LEDs, buttons,

and resistors. By implementing a Morse code generator, you’ll see

how easy it is to create your own Arduino libraries.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=14

WHAT’S IN THIS BOOK 15

• Then you’ll learn how to work with analog and digital sensors.

You’ll use a temperature sensor and an ultrasonic sensor to build

a very accurate digital metering ruler. Then you’ll use a three-axis

accelerometer to build your own motion-sensing game controller,

together with a cool breakout game clone.

• In electronics, you don’t necessarily have to build gadgets yourself.

You can also tinker with existing hardware, and you’ll see how

easy it is to take full control of Nintendo’s Wii Nunchuk so you

can use it in your own applications.

• Using a Nunchuk to control applications or devices is nice, but

often it’s more convenient to have a wireless remote control. So,

you’ll learn how to build your own universal remote control that

you can even control using a web browser.

• Speaking of web browsers: connecting the Arduino to the Inter-

net is easy, so you’ll build a burglar alarm that sends you an

email whenever someone is moving in your living room during your

absence.

• Finally, you’ll work with motors by creating a fun device for your

next software project. It connects to your continuous integration

system, and whenever the build fails, it moves an arrow to point

to the name of the developer who is responsible.

• In the appendixes, you’ll learn about the basics of electricity and

soldering. You’ll also find advanced information about program-

ming a serial port and programming the Arduino in general.

Every chapter starts with a detailed list of all parts and tools you need

to build the chapter’s projects. Every chapter contains lots of photos

and diagrams showing how everything fits together. You’ll get inspired

with descriptions of real-world Arduino projects in sidebars throughout

the book.

Things won’t always work out as expected, and debugging circuits can

be a difficult and challenging task. So in every chapter you’ll find a

“What If It Doesn’t Work?” section that explains the most common prob-

lems and their solutions.

Before you read the solutions in the “What If It Doesn’t Work?” sec-

tions, though, try to solve the problems yourself, because that’s the

most effective way of learning. In the unlikely case that you don’t run

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=15

ARDUINO UNO AND THE ARDUINO PLATFORM 16

into any problems, you’ll find a list of exercises to build your skills at

the end of every chapter.

All the projects in this book have been tested on the Arduino Uno, the

Arduino Duemilanove, and with the Arduino IDE versions 18 to 21. If

possible, you should always use the latest version.

Arduino Uno and the Arduino Platform

After releasing several Arduino boards and Arduino IDE versions, the

Arduino team decided to specify a version 1.0 of the platform. It will

be the reference for all future developments, and they announced it

on the first day of 2010.3 Since then, they have released the Arduino

Uno, and they have also improved the IDE and its supporting libraries

step-by-step.

At the moment of this writing, it is still not completely clear what

Arduino 1.0 will look like. The Arduino team tries to keep this release as

backward compatible as possible. This book is up-to-date for the new

Arduino Uno boards. All the projects will also work with older Arduino

boards such as the Duemilanove or Diecimila. This book is current for

version 21 of the Arduino platform. You can follow the progress of the

Arduino platform online.4

Code Examples and Conventions

Although this is a book about open source hardware and electronics,

you will find a lot of code examples. We need them to bring the hardware

to life and make it do what we want it to do.

We use C/C++ for all programs that will eventually run on the Arduino.

For applications running on our PC, we use Processing,5 but in Sec-

tion C.2, Serial Communication Using Various Programming Languages,

on page 253, you’ll also learn how to use several other programming

languages to communicate with an Arduino.

Whenever you find a slippery road icon beside a paragraph, slow down

and read carefully. They announce difficult or dangerous techniques.

3. http://arduino.cc/blog/2010/01/01/uno-punto-zero/

4. http://code.google.com/p/arduino/issues/list?q=milestone=1.0

5. http://processing.org

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://arduino.cc/blog/2010/01/01/uno-punto-zero/
http://code.google.com/p/arduino/issues/list?q=milestone=1.0
http://processing.org
http://books.pragprog.com/titles/msard/errata/add?pdf_page=16

ONLINE RESOURCES 17

Online Resources

This book has its own web page at http://pragprog.com/titles/msard where

you can download the code for all examples (if you have the ebook ver-

sion of this book, clicking the little gray box above each code example

downloads that source file directly). You can also participate in a dis-

cussion forum and meet other readers and me. If you find bugs, typos,

or other annoyances, please let me and the world know about them on

the book’s errata page.6

On the web page you will also find a link to a Flickr7 photo set. It

contains all the book’s photos in high resolution. There you can also

see photos of reader projects, and we’d really like to see photos of your

projects, too!

Let’s get started!

6. http://www.pragprog.com/titles/msard/errata

7. http://flickr.com

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/msard
http://www.pragprog.com/titles/msard/errata
http://flickr.com
http://books.pragprog.com/titles/msard/errata/add?pdf_page=17

The Parts You Need
Here’s a list of the parts you need to work through all the projects in

this book. In addition, each chapter lists the parts you’ll need for that

chapter’s projects, so you can try projects chapter-by-chapter without

buying all the components at once. Although there look to be a lot of

components here, they’re all fairly inexpensive, and you can buy all the

parts you need for all the projects in this book for about $200.

Starter Packs

Many online shops sell Arduino components and electronic parts. Some

of the best are Makershed8 and Adafruit.9 They have awesome starter

packs, and I strongly recommend buying one of these.

The best and cheapest solution is to buy the Arduino Projects Pack from

Makershed (product code MSAPK). It contains nearly all the parts you

need to build the book’s examples, as well as many more useful parts

that you can use for your own side projects. If you buy the Arduino

Projects Pack, you’ll need to buy these additional parts separately:

• Parallax PING))) sensor

• TMP36 temperature sensor from Analog Devices

• ADXL335 accelerometer breakout board

• 6 pin 0.1" standard header

• Nintendo Nunchuk controller

• A Passive Infrared Sensor

• An infrared LED

• An infrared receiver

• An Ethernet shield

8. http://makershed.com

9. http://adafruit.com

Download from Wow! eBook <www.wowebook.com>

http://makershed.com
http://adafruit.com

COMPLETE PARTS LIST 19

Alternatively, Adafruit also sells an Arduino Starter Pack (product ID

170). It’s cheaper, but it doesn’t contain as many parts. For example, it

doesn’t have a Protoshield or a tilt sensor.

All shops constantly improve their starter packs, so it’s a good idea to

scan their online catalogs carefully.

Complete Parts List

If you prefer to buy parts piece by piece (or chapter by chapter) rather

than a starter pack, here is a list of all the parts used in the book. Each

chapter also has a parts list and photo with all parts needed for that

chapter. Suggested websites where you can buy the parts are listed here

for your convenience, but many of these parts are available elsewhere

also, so feel free to shop around.

Good shops for buying individual components parts are RadioShack,10

Digi-Key,11 sparkfun,12 and Mouser.13

• An Arduino board such as the Uno, Duemilanove, or Diecimila

available from Adafruit (product ID 50) or Makershed (product

code MKSP4).

• A standard A-B USB cable for USB 1.1 or 2.0. You might already

have a few. If not, you can order it at RadioShack (catalog number

55011289).

• A half-size breadboard from Makershed (product code MKKN2) or

from Adafruit (product ID 64).

• Three LEDs (four additional ones are needed for an optional exer-

cise). Buying LEDs one at a time isn’t too useful; a better idea is

to buy a pack of 20 at RadioShack (catalog number 276-1622).

• One 100Ω resistor, two 10kΩ resistors, and three 1kΩ resistors.

It’s also not too useful to buy single resistors; buy a value pack

such as catalog number 271-308 from RadioShack.

• Two pushbuttons. Don’t buy a single button switch; buy at least

four instead, available at RadioShack (catalog number 275-002).

10. http://radioshack.com

11. http://digikey.com

12. http://sparkfun.com

13. http://mouser.com

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://radioshack.com
http://digikey.com
http://sparkfun.com
http://mouser.com
http://books.pragprog.com/titles/msard/errata/add?pdf_page=19

COMPLETE PARTS LIST 20

• Some wires, preferably breadboard jumper wires. You can buy

them at Makershed (product code MKSEEED3) or Adafruit (prod-

uct ID 153).

• A Parallax PING))) sensor (product code MKPX5) from Makershed.

• A Passive Infrared Sensor (product code MKPX6) from Makershed.

• A TMP36 temperature sensor from Analog Devices.14 You can get

it from Adafruit (product ID165).

• An ADXL335 accelerometer breakout board. You can buy it at

Adafruit (product ID 163).

• A 6 pin 0.1" standard header (included, if you order the ADXL335

from Adafruit). Alternatively, you can order from sparkfun (search

for breakaway headers). Usually, you can only buy stripes that

have more pins. In this case, you have to cut it accordingly.

• A Nintendo Nunchuk controller. You can buy it at nearly every toy

store or at http://www.amazon.com/, for example.

• An Arduino Ethernet shield (product code MKSP7) from Maker-

shed.

• An infrared sensor such as the PNA4602. You can buy it a Adafruit

(product ID 157) or Digi-Key (search for PNA4602).

• An infrared LED. You can get it from RadioShack (catalog number

276-143) or from sparkfun (search for infrared LED).

• A 5V servo motor such as the Hitec HS-322HD or the Vigor Hex-

tronic. You can get one from Adafruit (product id 155) or sparkfun.

Search for standard servos with an operating voltage of 4.8V–6V.

For some of the exercises, you’ll need some optional parts:

• An Arduino Proto Shield from Adafruit (product ID 51) or Maker-

shed (product code MKAD6). You’ll also need a tiny breadboard

(product code MKKN1 at Makershed). I highly recommend this

shield!

• A piezo speaker or buzzer. Search for piezo buzzer at RadioShack

or get it from Adafruit (product ID 160).

14. http://www.analog.com/en/sensors/digital-temperature-sensors/tmp36/products/product.html

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.amazon.com/
http://www.analog.com/en/sensors/digital-temperature-sensors/tmp36/products/product.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=20

COMPLETE PARTS LIST 21

• A tilt sensor. Get it from Adafruit (product ID 173), or buy it at

Mouser (part number 107-2006-EV).

For the soldering tutorial, you need the following things:

• A 25W–30W soldering iron with a tip (preferably 1/16") and a sol-

dering stand.

• Standard 60/40 solder (rosin-core) spool for electronics work. It

should have a 0.031" diameter.

• A sponge.

You can find these things in every electronics store, and many have

soldering kits for beginners that contain some useful additional tools.

Take a look at Adafruit (product ID 136) or Makershed (product code

MKEE2).

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=21

Part I

Getting Started with Arduino

Download from Wow! eBook <www.wowebook.com>

Chapter 1

Welcome to the Arduino
The Arduino was originally built for designers and artists—people with

little technical expertise. Even without programming experience, the

Arduino enabled them to create sophisticated design prototypes and

some amazing interactive artworks. So, it should come as no surprise

that the first steps with the Arduino are very easy, even more so for

people with a strong technical background.

But it’s still important to get the basics right. You’ll get the most out

of working with the Arduino if you’re familiar with the Arduino board

itself, with its development environment, and with techniques such as

serial communication.

One thing to understand before getting started is physical computing. If

you have worked with computers before, you might wonder what this

means. After all, computers are physical objects, and they accept input

from physical keyboards and mice. They output sound and video to

physical speakers and displays. So, isn’t all computing physical com-

puting in the end?

In principle, regular computing is a subset of physical computing: key-

board and mouse are sensors for real-world inputs, and displays or

printers are actuators. But controlling special sensors and actuators,

using a regular computer is very difficult. Using an Arduino, it’s a piece

of cake to control sophisticated and sometimes even weird devices.

In the rest of this book, you’ll learn how, and in this chapter you’ll

get started with physical computing by learning how to control the

Arduino, what tools you need, and how to install and configure them.

Then we’ll quickly get to the fun part: you’ll develop your first program

for the Arduino.

Download from Wow! eBook <www.wowebook.com>

WHAT YOU NEED 24

1.1 What You Need

• An Arduino board such as the Uno, Duemilanove, or Diecimila.

• A USB cable to connect the Arduino to your computer.

• An LED.

• The Arduino IDE (see Section 1.4, Installing the Arduino IDE, on

page 31). You will need it in every chapter, so after this chapter,

I’ll no longer mention it explicitly.

1.2 What Exactly Is an Arduino?

Beginners often get confused when they discover the Arduino project.

When looking for the Arduino, they hear and read strange names such

as Uno, Duemilanove, Diecimila, LilyPad, or Seeduino. The problem is

that there is no such thing as “the Arduino.”

A couple of years ago the Arduino team designed a microcontroller

board and released it under an open source license. You could buy fully

assembled boards in a few electronics shops, but people interested in

electronics could also download its schematic1 and build it themselves.

Over the years the Arduino team improved the board’s design and

released several new versions. They usually had Italian names such

as Uno, Duemilanove, or Diecimila, and you can find a list of all boards

that were ever created by the Arduino team online.2

Figure 1.1, on the following page shows a small selection of Arduinos.

They may differ in their appearance, but they have a lot in common,

and you can program them all with the same tools and libraries.

The Arduino team did not only constantly improve the hardware design.

They also invented new designs for special purposes. For example, they

created the Arduino LilyPad3 to embed a microcontroller board into

textiles. You can use it to build interactive T-shirts, for example.

In addition to the official boards, you can find countless Arduino clones

on the Web. Everybody is allowed to use and change the original board

design, and many people created their very own version of an Arduino-

compatible board. Among many others, you can find the Freeduino,

1. http://arduino.cc/en/uploads/Main/arduino-uno-schematic.pdf

2. http://arduino.cc/en/Main/Boards

3. http://arduino.cc/en/Main/ArduinoBoardLilyPad

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://arduino.cc/en/uploads/Main/arduino-uno-schematic.pdf
http://arduino.cc/en/Main/Boards
http://arduino.cc/en/Main/ArduinoBoardLilyPad
http://books.pragprog.com/titles/msard/errata/add?pdf_page=24

EXPLORING THE ARDUINO BOARD 25

Figure 1.1: You can choose fom many different Arduinos.

Seeduino, Boarduino, and the amazing Paperduino,4 an Arduino clone

without a printed circuit board. All its parts are attached to an ordinary

piece of paper.

Arduino is a registered trademark—only the official boards are named

“Arduino.”—so clones usually have names ending with “duino.” You

can use every clone that is fully compatible with the original Arduino to

build all the book’s projects.

1.3 Exploring the Arduino Board

In Figure 1.2, on the next page, you can see a photo of an Arduino Uno

board and its most important parts. I’ll explain them one by one. Let’s

start with the USB connector. To connect an Arduino to your computer,

4. http://lab.guilhermemartins.net/2009/05/06/paperduino-prints/

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://lab.guilhermemartins.net/2009/05/06/paperduino-prints/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=25

EXPLORING THE ARDUINO BOARD 26

Digital I/O Pins

Power Jack

USB Connector

Reset
Button

Micro-
Controller

Power Supply
Analog Input Pins

Figure 1.2: The Arduino’s most important components

you just need an USB cable. Then you can use the USB connection for

various purposes:

• Upload new software to the board (you’ll see how to do this in

Section 1.6, Compiling and Uploading Programs, on page 38).

• Communicate with the Arduino board and your computer (you’ll

learn that in Section 2.4, Using Serial Ports, on page 49).

• Supply the Arduino board with power.

As an electronic device, the Arduino needs power. One way to power it

is to connect it to a computer’s USB port, but that isn’t a good solution

in some cases. Some projects don’t necessarily need a computer, and it

would be overkill to use a whole computer just to power the Arduino.

Also, the USB port only delivers 5 volts, and sometimes you need more.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=26

EXPLORING THE ARDUINO BOARD 27

Figure 1.3: You can power an Arduino with an AC adapter.

In these situations, the best solution usually is an AC adapter (see

Figure 1.3) supplying 9 volts (the recommended range is 7V to 12V).5

You need an adapter with a 2.1 mm barrel tip and a positive center (you

don’t need to understand what that means right now; just ask for it in

your local electronics store). Plug it into the Arduino’s power jack, and

it will start immediately, even if it isn’t connected to a computer. By the

way, even if you connect the Arduino to an USB port, it will use the

external power supply if available.

Please note that older versions of the Arduino board (Arduino-NG and

Diecimila) don’t switch automatically between an external power supply

and a USB supply. They come with a power selection jumper labeled

PWR_SEL, and you manually have to set it to EXT or USB, respectively

(see Figure 1.4, on the next page).

Now you know two ways to supply the Arduino with power. But the

Arduino isn’t greedy and happily shares its power with other devices.

At the bottom of Figure 1.2, on the preceding page, you can see several

sockets (sometimes I’ll also call them pins, because internally they are

connected to pins in the microcontroller) related to power supply:

• Using the pins labeled 3V3 and 5V, you can power external devices

connected to the Arduino with 3.3 volts or 5 volts.

5. http://www.arduino.cc/playground/Learning/WhatAdapter

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.arduino.cc/playground/Learning/WhatAdapter
http://books.pragprog.com/titles/msard/errata/add?pdf_page=27

EXPLORING THE ARDUINO BOARD 28

Jumper

Figure 1.4: Older Arduinos have a power source selection jumper.

• Two ground pins labeled Gnd allow your external devices to share

a common ground with the Arduino.

• Some projects need to be portable, so they’ll use a portable power

supply such as batteries. You connect an external power source

such as a battery pack to the Vin and Gnd sockets.

If you connect an AC adapter to the Arduino’s power jack, you can

supply the adapter’s voltage through this pin.

On the lower right of the board, you see six analog input pins named

A0–A5. You can use them to connect analog sensors to the Arduino.

They take sensor data and convert it into a number between 0 and

1023. In Chapter 5, Sensing the World Around Us, on page 102, we’ll

use them to connect a temperature sensor to the Arduino.

At the board’s top are 14 digital IO pins named D0–D13. Depending on

your needs, you can use these pins for both digital input and output,

so you can read the state of a pushbutton or switch to turn on and off

an LED (we’ll do this in Section 3.5, Working with Buttons, on page 74).

Six of them (D3, D5, D6, D9, D10, and D11) can also act as analog

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=28

EXPLORING THE ARDUINO BOARD 29

Analog and Digital Signals

Nearly all physical processes are analog. Whenever you
observe a natural phenomenon such as electricity or sound,
you’re actually receiving an analog signal. One of the most
important properties of these analog signals is that they are
continuous. For every given point in time, you can measure the
strength of the signal, and in principle you could register even
the tiniest variation of the signal.

But although we live in an analog world, we are also living
in the digital age. When the first computers were built a few
decades ago, people quickly realized that it’s much easier to
work with real-world information when it’s represented as num-
bers and not as an analog signal such as voltage or volume. For
example, it’s much easier to manipulate sounds using a com-
puter when the sound waves are stored as a sequence of num-
bers. Every number in this sequence could represent the signal’s
loudness at a certain point in time.

So instead of storing the complete analog signal (as is done
on records), we measure the signal only at certain points in
time (see Figure 1.5, on the following page). We call this pro-
cess sampling, and the values we store are called samples. The
frequency we use to determine new samples is called sampling
rate. For an audio CD, the sampling rate is 44.1 kHz: we gather
44,100 samples per second.

We also have to limit the samples to a certain range. On an
audio CD, every sample uses 16 bits. In Figure 1.5, on the next
page, the range is denoted by two dashed lines, and we had
to cut off a peak at the beginning of the signal.

Although you can connect both analog and digital devices to
the Arduino, you usually don’t have to think much about it. The
Arduino automatically performs the conversion from analog to
digital, and vice versa, for you.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=29

EXPLORING THE ARDUINO BOARD 30

70 1 2 3 4 5 6

Figure 1.5: Digitizing an analog signal

output pins. In this mode, they convert values from 0 to 255 into an

analog voltage.

All these pins are connected to a microcontroller. A microcontroller com-

bines a CPU with some peripheral functions such as IO channels. Many

different types of microcontrollers are available, but the Arduino usu-

ally comes with an ATmega328 or an ATmega168. Both are 8-bit micro-

controllers produced by a company named Atmel.

Although modern computers load programs from a hard drive, micro-

controllers usually have to be programmed. That means you have to

load your software into the microcontroller via a cable, and once the

program has been uploaded, it stays in the microcontroller until it gets

overwritten with a new program. Whenever you supply power to the

Arduino, the program currently stored in its microcontroller gets exe-

cuted automatically. Sometimes you want the Arduino to start right

from the beginning. With the reset button on the right side of the board,

you can do that. If you press it, everything gets reinitialized, and the

program stored in the microcontroller starts again (we use it in Sec-

tion 3.4, First Version of a Binary Die, on page 69).

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=30

INSTALLING THE ARDUINO IDE 31

In this section, we had a closer look at the Arduino Uno, the newest

Arduino board. But several other types are available, and although

they’re the same in principle, they differ in some details. The Arduino

Mega25606 has many more IO pins than all other Arduinos and uses

the powerful ATmega2560 microcontroller, while the Arduino Nano7

was designed to be used on a breadboard, so it doesn’t have any sock-

ets. From my experience, beginners should start with one of the “stan-

dard” boards, that is, with an Uno or a Duemilanove.

1.4 Installing the Arduino IDE

To make it as easy as possible to get started with the Arduino, the

Arduino developers have created a simple but useful integrated devel-

opment environment (IDE). It runs on many different operating sys-

tems. Before you can create your first projects, you have to install it.

Installing the Arduino IDE on Windows

The Arduino IDE runs on all the latest versions of Microsoft Windows,

such as Windows XP, Windows Vista, and Windows 7. Installing the

software is easy, because it comes as a self-contained ZIP archive,8 so

you don’t even need an installer. Download the archive, and extract it

to a location of your choice.

Before you first start the IDE, you must install drivers for the Arduino’s

USB port. This process depends on the Arduino board you’re using and

on your flavor of Windows, but you always have to plug the Arduino

into a USB port first to start the driver installation process.

On Windows Vista, driver installation usually happens automatically.

Lean back and watch the hardware wizard’s messages pass by until it

says that you can use the newly installed USB hardware.

Windows XP and Windows 7 may not find the drivers on Microsoft’s

update sites automatically. Sooner or later the hardware wizard asks

you for the path to the right drivers after you have told it to skip auto-

matic driver installation from the Internet. Depending on your Arduino

board, you have to point it to the right location in the Arduino installa-

tion directory. For the Arduino Uno and the Arduino Mega 2560, choose

6. http://arduino.cc/en/Main/ArduinoBoardMega2560

7. http://arduino.cc/en/Main/ArduinoBoardNano

8. http://arduino.cc/en/Main/Software

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://arduino.cc/en/Main/ArduinoBoardMega2560
http://arduino.cc/en/Main/ArduinoBoardNano
http://arduino.cc/en/Main/Software
http://books.pragprog.com/titles/msard/errata/add?pdf_page=31

INSTALLING THE ARDUINO IDE 32

Arduino UNO.inf (respectively, Arduino MEGA 2560.inf) in the drivers direc-

tory. For older boards such as the Duemilanove, Diecimila, or Nano,

choose the drivers/FTDI USB Drivers directory

After the drivers have been installed, you can start the Arduino exe-

cutable from the archive’s main directory by double-clicking it. Follow

the instructions on the screen to install the IDE.

Please note that the USB drivers don’t change as often as the Arduino

IDE. Whenever you install a new version of the IDE, check whether you

have to install new drivers, too. Usually, it isn’t necessary.

Installing the Arduino IDE on Mac OS X

The Arduino IDE is available as a disk image for the most recent Mac

OS X.9 Download it, double-click it, and then drag the Arduino icon to

your Applications folder.

If you’re using an Arduino Uno or an Arduino Mega 2560, you are

done and can start the IDE. Before you can use the IDE with an older

Arduino such as the Duemilanove, Diecimila, or Nano, you have to

install drivers for the Arduino’s serial port. A universal binary is in the

disk image—double-click the FTDIUSBSerialDriver_10_4_10_5_10_6.pkg file for

your platform, and follow the installation instructions on the screen.

When installing a new version of the Arduino IDE, you usually don’t

have to install the FTDI drivers again (only when a more recent version

of the drivers is available).

Installing the Arduino IDE on Linux

Installation procedures on Linux distributions are still not very homo-

geneous. The Arduino IDE works fine on nearly all modern Linux ver-

sions, but the installation process heavily differs from distribution to

distribution. Also, you often have to install additional software (the Java

virtual machine, for example) that comes preinstalled with other oper-

ating systems.

It’s best to check the official documentation10 and look up the instruc-

tions for your preferred system.

Now that we have the drivers and the IDE installed, let’s see what it has

to offer.

9. http://arduino.cc/en/Main/Software

10. http://www.arduino.cc/playground/Learning/Linux

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://arduino.cc/en/Main/Software
http://www.arduino.cc/playground/Learning/Linux
http://books.pragprog.com/titles/msard/errata/add?pdf_page=32

MEETING THE ARDUINO IDE 33

Figure 1.6: The Arduino IDE is well arranged.

1.5 Meeting the Arduino IDE

If you have used an IDE such as Eclipse, Xcode, or Microsoft Visual Stu-

dio before, you’d better lower your expectations, because the Arduino

IDE is really simple. It mainly consists of an editor, a compiler, a loader,

and a serial monitor (see Figure 1.6 or, even better, start the IDE on

your computer).

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=33

MEETING THE ARDUINO IDE 34

Verify

Stop

New

Open

Save

Upload

Serial Monitor

Figure 1.7: The IDE’s toolbar gives you quick access to important func-

tions.

It has no advanced features such as a debugger or code completion.

You can change only a few preferences, and as a Java application it

does not fully integrate into the Mac desktop. It’s still usable, though,

and even has decent support for project management.

In Figure 1.7, you can see the IDE’s toolbar that gives you instant

access to the functions you’ll need most:

• With the Verify button, you can compile the program that’s cur-

rently in the editor. So, in some respects, “Verify” is a bit of a

misnomer, because clicking the button does not only verify the

program syntactically. It also turns it into a representation suit-

able for the Arduino board.

• The New button creates a new program by emptying the content

of the current editor window. Before that happens, the IDE gives

you the opportunity to store all unsaved changes.

• With Open, you can open an existing program from the file system.

• Save saves the current program.

• When you click the Upload button, the IDE compiles the current

program and uploads it to the Arduino board you have chosen in

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=34

MEETING THE ARDUINO IDE 35

Power

Status LED

Serial

Communication

Figure 1.8: The Arduino board comes with several LEDs.

the IDE’s Tools > Serial Port menu (you’ll learn more about this in

Section 1.6, Compiling and Uploading Programs, on page 38).

• The Arduino can communicate with a computer via a serial con-

nection. Clicking the Serial Monitor button opens a serial monitor

window that allows you to watch the data sent by an Arduino and

also to send data back.

• The Stop button stops the serial monitor.

Although using the IDE is easy, you might run into problems or want to

look up something special. In such cases, take a look at the Help menu.

It points to many useful resources at the Arduino’s website that provide

quick solutions not only to all typical problems but also to reference

material and tutorials.

To get familiar with the IDE’s most important features, we’ll create a

simple program that makes an light-emitting diode (LED) blink. An

LED is a cheap and efficient light source, and the Arduino already

comes with several LEDs. One LED shows whether the Arduino is cur-

rently powered, and two other LEDs blink when data is transmitted or

received via a serial connection (see them in Figure 1.8).

In our first little project, we’ll make the Arduino’s status LED blink.

The status LED is connected to digital IO pin 13. Digital pins act as a

kind of switch and can be in one of two states: HIGH or LOW. If set to

HIGH, the output pin is set to 5 volts, causing a current to flow through

the LED, so it lights up. If it’s set back to LOW, the current flow stops,

and the LED turns off. You do not need to know exactly how electricity

works at the moment, but if you’re curious, take a look at Section A.1,

Current, Voltage, and Resistance, on page 237.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=35

MEETING THE ARDUINO IDE 36

Open the IDE, and enter the following code in the editor:

Download welcome/HelloWorld/HelloWorld.pde

Line 1 const unsigned int LED_PIN = 13;
- const unsigned int PAUSE = 500;
-

- void setup() {
5 pinMode(LED_PIN, OUTPUT);
- }
-

- void loop() {
- digitalWrite(LED_PIN, HIGH);

10 delay(PAUSE);
- digitalWrite(LED_PIN, LOW);
- delay(PAUSE);
- }

Let’s see how this works and dissect the program’s source code piece by

piece. In the first two lines we define two int constants using the const

keyword. LED_PIN refers to the number of the digital IO pin we’re using,

and PAUSE defines the length of the blink period in milliseconds.

Every Arduino program needs a function named setup(), and ours starts

in line 4. A function definition always adheres to the following scheme:

<return value type> <function name> ’(’ <list of parameters> ’)’

In our case the function’s name is setup(), and its return value type is

void: it returns nothing. setup() doesn’t expect any arguments, so we left

the parameter list empty. Before we continue with the dissection of our

program, you should learn a bit more about the Arduino’s data types.

Arduino Data Types

Every piece of data you store in an Arduino program needs a type.

Depending on your needs, you can choose from the following:

• boolean values take up one byte of memory and can be true or false.

• char variables take up one byte of memory and store numbers

from -128 to 127. These numbers usually represent characters

encoded in ASCII; that is, in the following example, c1 and c2 have

the same value:

char c1 = 'A';

char c2 = 65;

Note that you have to use single quotes for char literals.

• byte variables use one byte and store values from 0 to 255.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/welcome/HelloWorld/HelloWorld.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=36

MEETING THE ARDUINO IDE 37

• An int variable needs two bytes of memory; you can use it to store

numbers from -32,768 to 32,767. Its unsigned pendant unsigned

int also consumes two bytes of memory but stores numbers from

0 to 65,535.

• For bigger numbers, use long. It consumes four bytes of mem-

ory and stores values from -2,147,483,648 to 2,147,483,647. The

unsigned variant unsigned long also needs four bytes but ranges

from 0 to 4,294,967,295.

• float and double are the same at the moment, and you can use

these types for storing floating-point numbers. Both use four bytes

of memory and are able to store values from -3.4028235E+38 to

3.4028235E+38.

• You need void only for function declarations. It denotes that a

function doesn’t return a value.

• Arrays store collections of values having the same type:

int values[2]; // A two-element array

int values[0] = 42; // Set the first element

int values[1] = -42; // Set the second element

int more_values[] = { 42, -42 };

int first = more_values[0]; // first == 42

In the preceding example, the arrays values and more_values con-

tain the same elements. We have used only two different ways of

initializing an array. Note that the array index starts at 0, and keep

in mind that uninitialized array elements contain random values.

• A string is an array of char values. The Arduino environment sup-

ports the creation of strings with some syntactic sugar—all these

declarations create strings with the same contents.

char string1[8] = { 'A', 'r', 'd', 'u', 'i', 'n', 'o', '\0' };

char string2[] = "Arduino";

char string3[8] = "Arduino";

char string4[] = { 65, 114, 100, 117, 105, 110, 111, 0 };

Strings should always be terminated by a zero byte. When you

use double quotes to create a string, the zero byte will be added

automatically. That’s why you have to add one byte to the size of

the corresponding array.

In Section 8.7, Emailing Directly from an Arduino, on page 188,

you’ll learn how to use the Arduino’s new String class.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=37

COMPILING AND UPLOADING PROGRAMS 38

Arduino calls setup() once when it boots, and we use it for initializing the

Arduino board and all the hardware we have connected to it. We use

the pinMode() method to turn pin 13 into an output pin. This makes

sure the pin is able to provide enough current to light up an LED. The

default state of a pin is INPUT, and both INPUT and OUTPUT are predefined

constants.11

Another mandatory function named loop() begins in line 8. It contains

the main logic of a program, and the Arduino calls it in an infinite loop.

Our program’s main logic has to turn on the LED connected to pin 13

first. To do this, we use digitalWrite() and pass it the number of our pin

and the constant HIGH. This means the pin will output 5 volts until

further notice, and the LED connected to the pin lights up.

The program then calls delay() and waits for 500 milliseconds doing

nothing. During this pause, pin 13 remains in HIGH state, and the LED

continues to burn. The LED is eventually turned off when we set the

pin’s state back to LOW using digitalWrite() again. We wait another 500

milliseconds, and then the loop() function ends. The Arduino starts it

again, and the LED blinks.

In the next section, you’ll learn how to bring the program to life and

transfer it to the Arduino.

1.6 Compiling and Uploading Programs

Before you compile and upload a program to the Arduino, you have to

configure two things in the IDE: the type of Arduino you’re using and

the serial port your Arduino is connected to.

Identifying the Arduino type is easy, because it is printed on the board.

Popular types are Uno, Duemilanove, Diecimila, Nano, Mega, Mini, NG,

BT, LilyPad, Pro, or Pro Mini. In some cases, you also have to check

what microcontroller your Arduino uses—most have an ATmega168 or

an ATmega328. You can find the microcontroller type printed on the

microcontroller itself. When you have identified the exact type of your

Arduino, choose it from the Tools > Board menu.

Now you have to choose the serial port your Arduino is connected

to from the Tools > Serial Port menu. On Mac OS X, the name of

the serial port starts with /dev/cu.usbserial or /dev/cu.usbmodem (on my

11. See http://arduino.cc/en/Tutorial/DigitalPins for the official documentation.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://arduino.cc/en/Tutorial/DigitalPins
http://books.pragprog.com/titles/msard/errata/add?pdf_page=38

COMPILING AND UPLOADING PROGRAMS 39

MacBook Pro, it’s /dev/cu.usbmodemfa141). On Linux systems, it should

be /dev/ttyUSB0, /dev/ttyUSB1, or something similar depending on the

number of USB ports your computer has.

On Windows systems, it’s a bit more complicated to find out the right

serial port, but it’s still not difficult. Go to the Device Manager, and

look for USB Serial Port below the Ports (COM & LPT) menu entry (see

Figure 1.9, on the following page). Usually the port is named COM1,

COM2, or something similar.

After you have chosen the right serial port, click the Verify button, and

you should see the following output in the IDE’s message area (the

Arduino IDE calls programs sketches):

Binary sketch size: 1010 bytes (of a 32256 byte maximum)

This means the IDE has successfully compiled the source code into

1,010 bytes of machine code that we can upload to the Arduino. If you

see an error message instead, check whether you have typed in the

program correctly (when in doubt, download the code from the book’s

website).12 Depending on the Arduino board you’re using, the byte max-

imum may differ. On an Arduino Duemilanove, it’s usually 14336, for

example.

Now click the Upload button, and after a few seconds, you should see

the following output in the message area:

Binary sketch size: 1010 bytes (of a 32256 byte maximum)

This is exactly the same message we got after compiling the program,

and it tells us that the 1,010 bytes of machine code were transferred

successfully to the Arduino. In case of any errors, check whether you

have selected the correct Arduino type and the correct serial port in the

Tools menu.

During the upload process, the TX and RX LEDs will flicker for a few

seconds. This is normal, and it happens whenever the Arduino and

your computer communicate via the serial port. When the Arduino

sends information, it turns on the TX LED. When it gets some bits,

it turns on the RX LED. Because the communication is pretty fast, the

LEDs start to flicker, and you cannot identify the transmission of a

single byte (if you can, you are probably an alien).

12. http://www.pragprog.com/titles/msard

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.pragprog.com/titles/msard
http://books.pragprog.com/titles/msard/errata/add?pdf_page=39

COMPILING AND UPLOADING PROGRAMS 40

Figure 1.9: Look up the serial port an Arduino is connected to on Win-

dows XP.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=40

WORKING WITH LEDS 41

Figure 1.10: What’s happening on pin 13 while the LED blinks.

As soon as the code has been transmitted completely, the Arduino exe-

cutes it. In our case, this means the status LED starts to blink. It turns

on for half a second, then it turns off for half a second, and so on.

In Figure 1.10, you can see a diagram showing the activity on the pin

while the program is running. The pin starts in LOW state and does not

output any current. We set it to HIGH in the software using digitalWrite()

and let it output 5 volts for 500 milliseconds. Finally, we set it back to

LOW for 500 milliseconds and repeat the whole process.

Admittedly, the status LED does not look very spectacular. So, in the

next section, we’ll attach a “real” LED to the Arduino.

1.7 Working with LEDs

The LEDs that come with the Arduino are nice for testing purposes, but

you should not use them in your own electronics projects. They all have

a specific meaning, and it’s bad style to use them in a different context.

Also, they are very small and not very bright, so it’s a good idea to get

some additional LEDs and learn how to connect them to the Arduino.

It’s really easy.

We will not use the same type of LEDs that are mounted on the Arduino

board. They are surface-mounted devices (SMD) that are difficult to

handle. You will rarely work with SMD parts, because for most of them

you need special equipment and a lot of experience. They save costs

as soon as you start mass production of an electronic device, but pure

hobbyists won’t need them often.

The LEDs that we need are through-hole parts; you can see some in

Figure 1.11, on the following page. They are named through-hole parts

because they are mounted to a circuit board through holes. That’s

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=41

WORKING WITH LEDS 42

Figure 1.11: A collection of through-hole LEDs

why they usually have one or more long wires. First you put the wires

through holes in a printed circuit board. Then you usually bend, sol-

der, and cut them to attach the part to the board. Where available, you

can also plug them into sockets as we have them on the Arduino or

on breadboards (you’ll learn more about breadboards in Section 3.2,

Working with Breadboards, on page 64).

In Figure 1.12, on the following page, you can see how to attach an

LED to an Arduino. Put the short connector of the LED to the ground

pin (GND) and the longer one to pin 13. You can do that while the blink

sketch is still running. Both the status LED and the external LED will

start to blink.

Make absolutely sure that you’re using pin 13! If you connect the LED

to any other pin, it will probably be destroyed. The reason is that pin

13 has an internal resistor that the other pins don’t have (you’ll learn

more about this in Chapter 3, Building Binary Dice, on page 63).

That’s it! You’ve just added your first external electronics part to your

Arduino, and you have created your first physical computing project.

You’ve written some code, and it makes the world a bit brighter. Your

very own digital version of “fiat lux.”13

You will need the theory and skills you have learned in this chapter

for nearly every Arduino project. In the next chapter, you’ll see how to

gain more control over LEDs, and you’ll learn how to benefit from more

advanced features of the Arduino IDE.

13. http://en.wikipedia.org/wiki/Fiat_lux

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/Fiat_lux
http://books.pragprog.com/titles/msard/errata/add?pdf_page=42

WHAT IF IT DOESN’T WORK? 43

Figure 1.12: Connect an LED to the Arduino.

1.8 What If It Doesn’t Work?

Don’t panic! If it doesn’t work, you’ve probably attached the LED in the

wrong way. When assembling an electronics project, parts fall into two

categories: those you can mount any way you like and those that need

a special direction. An LED has two connectors: an anode (positive)

and a cathode (negative). It’s easy to mix them up, and my science

teacher taught me the following mnemonic: the cathode is necative. It’s

also easy to remember what the negative connector of an LED is: it is

shorter, minus, less than. If you are a more positive person, then think

of the anode as being bigger plus more. You can alternatively identify a

LED’s connectors using its case. On the negative side the case is flat,

while it’s round on the positive side.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=43

EXERCISES 44

Choosing the wrong serial port or Arduino type also is a common mis-

take. If you get an error message such as “Serial port already in use”

when uploading a sketch, check whether you have chosen the right

serial port from the Tools > Serial Port menu. If you get messages

such as “Problem uploading to board” or “programmer is not respond-

ing,” check whether you have chosen the right Arduino board from the

Tools > Board menu.

Your Arduino programs, like all programs, will contain bugs. Typos and

syntax errors will be detected by the compiler. In Figure 1.13, on the fol-

lowing page, you can see a typical error message. Instead of pinMode(),

we called pinMod(), and because the compiler did not find a function

having that name, it stopped with an error message. The Arduino IDE

highlights the line, showing the error with a yellow background, and

prints a helpful error message.

Other bugs might be more subtle and sometimes you have to care-

fully study your code and use some plain old debugging techniques (in

Debug It! Find, Repair, and Prevent Bugs in Your Code [But09] you can

find plenty of useful advice on this topic).

It might happen—although it’s rare—that you actually have a damaged

LED. If none of the tricks mentioned helps, try another LED.

1.9 Exercises

• Try different blink patterns using more pauses and vary the pause

length (they don’t necessarily have to be all the same). Also, exper-

iment with very short pauses that make the LED blink at a high

frequency. Can you explain the effect you’re observing?

• Let the LED output your name in Morse code.14

14. http://en.wikipedia.org/wiki/Morse_code

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/Morse_code
http://books.pragprog.com/titles/msard/errata/add?pdf_page=44

EXERCISES 45

Figure 1.13: The Arduino IDE explains syntax errors nicely.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=45

Chapter 2

Inside the Arduino
For simple applications, all you have learned about the Arduino IDE in

the preceding chapter is sufficient. But soon your projects will get more

ambitious, and then it will come in handy to split them into separate

files that you can manage as a whole. So in this chapter, you’ll learn

how to stay in control over bigger projects with the Arduino IDE.

Usually, bigger projects need not only more software but also more

hardware—you will rarely use the Arduino board in isolation. For exam-

ple, you will use many more sensors than you might imagine, and you’ll

have to transmit the data they measure back to your computer. To

exchange data with the Arduino, you’ll use its serial port. This chapter

explains everything you need to know about serial communication. To

make things more tangible, you’ll learn how to turn your computer into

a very expensive light switch that lets you control an LED using the

keyboard.

2.1 What You Need

To try this chapter’s examples, you need only a few things:

• An Arduino board such as the Uno, Duemilanove, or Diecimila

• A USB cable to connect the Arduino to your computer

• An LED (optional)

• A software serial terminal such as Putty (for Windows users) or

screen for Linux and Mac OS X users (optional)

Download from Wow! eBook <www.wowebook.com>

MANAGING PROJECTS AND SKETCHES 47

2.2 Managing Projects and Sketches

Modern software developers can choose from a variety of development

tools that automate repetitive and boring tasks. That’s also true for

embedded systems like the Arduino. You can use integrated develop-

ment environments (IDEs) to manage your programs, too. The most

popular one has been created by the Arduino team.

The Arduino IDE manages all files belonging to your project. It also pro-

vides convenient access to all the tools you need to create the binaries

that will run on your Arduino board. Conveniently, it does so unob-

trusively. For example, you might have noticed that the Arduino IDE

stores all code you enter automatically. This is to prevent beginners

from losing data or code accidentally (not to mention that even the pros

lose data from time to time, too).

Organizing all the files belonging to a project automatically is one of

the most important features of an IDE. Under the hood, the Arduino

IDE creates a directory for every new project, and it stores all the files

belonging to the project in this directory. To add new files to a project,

click the tabs button on the right to open the tabs pop-up menu, and

then choose New Tab (see Figure 2.1). To add an existing file, use the

Sketch > Add File menu item.

As you might have guessed already from the names of the menu items,

the Arduino IDE calls projects sketches. If you do not choose a name,

it gives them a name starting with sketch_. You can change the name

whenever you like using the Save As command. If you do not save a

sketch explicitly, the IDE stores it in a predefined folder you can look

Figure 2.1: The tabs menu in action

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=47

CHANGING PREFERENCES 48

up in the preferences menu. You can change this behavior so that the

IDE asks you for a name when you create a new sketch. Whenever you

get lost, you can check what folder the current sketch is in using the

Sketch > Show Sketch Folder menu item.

The IDE uses directories not only to organize projects. It also stores

some interesting things in the following folders:

• The examples folder contains sample sketches that you can use as

a basis for your own experiments. Get to them via the File > Open

dialog box. Take some time to browse through them, even if you

do not understand anything you see right now.

• The libraries directory contains libraries for various purposes and

devices. Whenever you use a new sensor, for example, chances are

good that you have to copy a supporting library to this folder.

The Arduino IDE makes your life easier by choosing reasonable defaults

for a lot of settings. But it also allows you to change most of these

settings, and you’ll see how in the next section.

2.3 Changing Preferences

For your early projects, the IDE’s defaults might be appropriate, but

sooner or later you’ll want to change some things. As you can see in

Figure 2.2, on the following page, the IDE lets you change only a few

preferences directly. But the dialog box refers to a file named prefer-

ences.txt containing more preferences. This file is a Java properties file

consisting of key/value pairs. Here you see a few of them:

...

editor.external.bgcolor=#168299

preproc.web_colors=true

editor.font.macosx=Monaco,plain,10

sketchbook.auto_clean=true

update.check=true

build.verbose=true

upload.verbose=true

...

Most of these properties control the user interface; that is, they change

fonts, colors, and so on. But they can also change the application’s

behavior. For example, you can enable more verbose output for opera-

tions such as compiling or uploading a sketch. Edit preferences.txt, and

set both build.verbose and upload.verbose to true. Then load the blinking

LED sketch from Chapter 1, Welcome to the Arduino, on page 23 and

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=48

USING SERIAL PORTS 49

Figure 2.2: The IDE lets you change some preferences.

compile it again. The output in the message panel should look similar

to Figure 2.3, on the following page (in recent versions of the IDE, you

can achieve the same effect by holding down the Shift key when you

click the Verify/Compile or Upload button in the toolbar).

Note that the IDE updates some of the preferences’ values when it

shuts down. So before you change any preferences directly in the pref-

erences.txt file, you have to stop the Arduino IDE first.

Now that you’re familiar with the Arduino IDE, let’s do some program-

ming. We’ll make the Arduino talk to the outside world.

2.4 Using Serial Ports

Arduino makes many stand-alone applications possible—projects that

do not involve any additional computers. In such cases you need to con-

nect the Arduino to a computer once to upload the software, and after

that, it needs only a power supply. More often, people use the Arduino

to enhance the capabilities of a computer using sensors or by giving

access to additional hardware. Usually, you control external hardware

via a serial port, so it is a good idea to learn how to communicate seri-

ally with the Arduino.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=49

USING SERIAL PORTS 50

Figure 2.3: IDE in verbose mode showing output of command-line tools

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=50

USING SERIAL PORTS 51

The Arduino Programming Language

People sometimes seem to be a bit irritated when it comes to
the language the Arduino gets programmed in. That’s mainly
because the typical sample sketches look as if they were writ-
ten in a language that has been exclusively designed for pro-
gramming the Arduino. But that’s not the case—it is plain old
C++ (which implies that it supports C, too).

Every Arduino uses an AVR microcontroller designed by a com-
pany named Atmel. (Atmel says that the name AVR does not
stand for anything.) These microcontrollers are very popular,
and many hardware projects use them. One of the reasons
for their popularity is the excellent tool chain that comes with
them. It is based on the GNU C++ compiler tools and has been
optimized for generating code for AVR microcontrollers.

That means you feed C++ code to the compiler that is not
translated into machine code for your computer but for an AVR
microcontroller. This technique is called cross-compiling and is
the usual way to program embedded devices.

Although the standards for serial communication have changed over

the past few years (for example, we are using USB today, and our com-

puters no longer have RS232 connectors), the basic working principles

remain the same. In the simplest case, we can connect two devices

using only three wires: a common ground, a line for transmitting data

(TX), and one for receiving data (RX).

Device #1

GND

TX

RX

Device #2

GND

TX

RX

Serial communication might sound a bit old-school, but it’s still the

preferred way for hardware devices to communicate. For example, the

S in USB stands for “serial”—and when was the last time you saw a

parallel port? (Perhaps this is a good time to clean up the garage and

throw out that old PC that you wanted to turn into a media center

someday....)

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=51

USING SERIAL PORTS 52

For uploading software, the Arduino has a serial port, and we can use it

to connect the Arduino to other devices, too (in Section 1.6, Compiling

and Uploading Programs, on page 38, you learn how to look up the

serial port your Arduino is connected to). In this section, we will use

it to control Arduino’s status LED using our computer’s keyboard. The

LED should be turned on when you press 1, and it should be turned

off when you press 2. Here’s all the code we need:

Download welcome/LedSwitch/LedSwitch.pde

Line 1 const unsigned int LED_PIN = 13;
- const unsigned int BAUD_RATE = 9600;
-

- void setup() {
5 pinMode(LED_PIN, OUTPUT);
- Serial.begin(BAUD_RATE);
- }
-

- void loop() {
10 if (Serial.available() > 0) {

- int command = Serial.read();
- if (command == '1') {
- digitalWrite(LED_PIN, HIGH);
- Serial.println("LED on");

15 } else if (command == '2') {
- digitalWrite(LED_PIN, LOW);
- Serial.println("LED off");
- } else {
- Serial.print("Unknown command: ");

20 Serial.println(command);
- }
- }
- }

As in our previous examples, we define a constant for the pin the LED

is connected to and set it to OUTPUT mode in the setup() function. In

line 6, we initialize the serial port using the begin() function of the Serial

class, passing a baud rate of 9600 (you can learn what a baud rate is in

Section C.1, Learning More About Serial Communication, on page 251).

That’s all we need to send and receive data via the serial port in our

program.

So, let’s read and interpret the data. The loop() function starts by calling

Serial’s available() method in line 10. available() returns the number of

bytes waiting on the serial port. If any data is available, we read it

using Serial.read(). read() returns the first byte of incoming data if data

is available and -1 otherwise.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/welcome/LedSwitch/LedSwitch.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=52

USING SERIAL PORTS 53

Fashionable LEDs

Both pervasive and wearable computing got very popular over
the past years, so T-shirts with an equalizer are still cool but not
that exciting any longer.∗ But by using a few LEDs, you can cre-
ate some astonishing accessories for the ladies. For example,
Japanese engineers have created LED eyelashes.†

This particular product does not use an Arduino, but with the
Lilypad,‡ you can easily create similar things yourself. You have
to be extremely careful with LEDs, because most of them are
very bright and can cause serious damage to your eyes!

∗. http://www.thinkgeek.com/tshirts-apparel/interactive/8a5b/

†. http://blog.makezine.com/archive/2009/10/led_eyelashes.html

‡. http://www.arduino.cc/en/Main/ArduinoBoardLilyPad

If the byte we have read represents the character 1, we switch on the

LED and send back the message “LED on” over the serial port. We use

Serial.println(), which adds a carriage return character (ASCII code 13)

followed by a newline (ASCII code 10) to the text.

If we received the character 2, we switch off the LED. If we received an

unsupported command, we send back a corresponding message and

the command we did not understand. Serial.print() works exactly like

Serial.println(), but it does not add carriage return and newline characters

to the message.

Let’s see how the program works in practice. Compile it, upload it to

your Arduino, and then switch to the serial monitor (optionally you can

attach an LED to pin 13; otherwise, you can only control the Arduino’s

status LED). At first glance, nothing has happened. That’s because we

have not sent a command to the Arduino yet. Enter a 1 in the text box,

and then click the Send button. Two things should happen now: the

LED is switched on, and the message “LED on” appears in the serial

monitor window (see Figure 2.4, on the next page). We are controlling a

LED using our computer’s keyboard!

Play around a bit with the commands 1 and 2, and also observe what

happens when you send an unknown command. If you type in an

uppercase A, for example, the Arduino will send back the message

“Unknown command: 65.” The number 65 is the ASCII code of the let-

ter A, and the Arduino outputs the data it got in its most basic form.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.thinkgeek.com/tshirts-apparel/interactive/8a5b/
http://blog.makezine.com/archive/2009/10/led_eyelashes.html
http://www.arduino.cc/en/Main/ArduinoBoardLilyPad
http://books.pragprog.com/titles/msard/errata/add?pdf_page=53

USING SERIAL PORTS 54

Figure 2.4: The Arduino IDE’s serial monitor

That’s the default behavior of Serial’s print() method, and you can change

it by passing a format specifier to your function calls. To see the effect,

replace line 20 with the following statements:

Serial.println(command, DEC);

Serial.println(command, HEX);

Serial.println(command, OCT);

Serial.println(command, BIN);

Serial.println(command, BYTE);

The output looks as follows when you send the character A again:

Unknown command: 65

41

101

1000001

A

Depending on the format specifier, Serial.println() automatically converts

a byte into another representation. DEC outputs a byte as a decimal

number, HEX as a hexadecimal number, and so on. Note that such an

operation usually changes the length of the data that gets transmitted.

The binary representation of the single byte 65, for example, needs 7

bytes, because it contains seven characters.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=54

USING SERIAL PORTS 55

Numbering Systems

It’s an evolutionary accident that 10 is the basis for our numbering

system. If we had only four fingers on each hand, it’d be probably eight,

and we’d probably have invented computers a few centuries earlier.

For thousands of years, people have used denominational number sys-

tems, and we represent a number like 4711 as follows:

4×103 + 7×102 + 1×101 + 1×100

This makes arithmetic operations very convenient. But when working

with computers that only interpret binary numbers, it’s often advanta-

geous to use numbering systems based on the numbers 2 (binary), 8

(octal), or 16 (hexadecimal).

For example, the decimal number 4711 can be represented in octal and

hexadecimal as follows:

• 1×84 + 1×83 + 1×82 + 4×81 + 7×80 = 011147

• 1×163 + 2×162 + 6×161 + 7×160 = 0x1267

In Arduino programs, you can define literals for all these numbering

systems:

int decimal = 4711;

int binary = B1001001100111;

int octal = 011147;

int hexadecimal = 0x1267;

Binary numbers start with a B character, octal numbers with a 0, and

hexadecimal numbers start with 0x.

Using Different Serial Terminals

For trivial applications, the IDE’s serial monitor is sufficient, but you

cannot easily combine it with other applications, and it lacks some

features (for example, it could not send newline characters in older IDE

versions). That means you should have an alternative serial terminal to

send data, and you can find plenty of them for every operating system.

Serial Terminals for Windows

Putty1 is an excellent choice for Windows users. It is free, and it comes

as an executable that does not even have to be installed. Figure 2.5, on

the following page shows how to configure it for communication on a

serial port.

1. http://www.chiark.greenend.org.uk/~sgtatham/putty/

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=55

USING SERIAL PORTS 56

Figure 2.5: Configuring Putty to make it work with Arduino

After you have configured Putty, you can open a serial connection to the

Arduino. In Figure 2.6, on the next page, you can see the corresponding

dialog box. Click Open, and you’ll see an empty terminal window.

Now press 1 and 2 a few times to switch on and off the LED. In Fig-

ure 2.7, on the following page, you can see a typical session.

Serial Terminals for Linux and Mac OS X

Linux and Mac users can use the screen command to communicate

with the Arduino on a serial port. Check which serial port the Arduino

is connected to (for example, in the IDE’s Tools > Board menu), and

then run a command like this (with an older board the name of the

serial port might be something like /dev/cu.usbserial-A9007LUY, and on

Linux systems it might be /dev/ttyUSB1 or something similar):

$ screen /dev/cu.usbmodemfa141 9600

screen expects the name of the serial port and the baud rate to be used.

In Figure 2.8, on page 58, you can see a typical session. To quit the

screen command, press Ctrl-a followed by Ctrl-k.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=56

USING SERIAL PORTS 57

Figure 2.6: Opening a serial session to Arduino with Putty

Figure 2.7: Putty communicates with Arduino.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=57

USING SERIAL PORTS 58

Figure 2.8: The screen command communicates with Arduino.

We can now communicate with the Arduino, and this has great impli-

cations: whatever is controlled by the Arduino can also be controlled

by your computer, and vice versa. Switching LEDs on and off is not too

spectacular, but try to imagine what’s possible now. You could move

robots, automate your home, or create interactive games.

Here are some more important facts about serial communication:

• The Arduino’s serial receive buffer can hold up to 128 bytes. When

sending large amounts of data at high speed, you have to synchro-

nize sender and receiver to prevent data loss. Usually, the receiver

sends an acknowledgment to the sender whenever it is ready to

consume a new chunk of data.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=58

USING SERIAL PORTS 59

Exciting LED Projects

From what you have seen in this and the preceding sections,
you might think that LEDs are useful but not very exciting. You
can use them for showing a device’s status or even to build a
complete TV set, but that’s something you are used to.

But LEDs are the basis for some really spectacular projects. One
of the most amazing ones is the BEDAZZLER.∗ The BEDAZZLER is
a nonlethal weapon that uses blinking LEDs to cause nausea,
dizziness, headache, flash blindness, eye pain, and vomiting.
Originally it has been developed for the military, but now it is
available as an open source project.†

All scientific curiosity aside, you should keep in mind that the
BEDAZZLER is a weapon. Do not use it as a toy, and do not target
it at humans or animals.

∗. http://www.instructables.com/id/Bedazzler-DIY-non-lethal-weaponry/

†. http://www.ladyada.net/make/bedazzler/

• You can control many devices using serial communication, but the

regular Arduino has only one serial port. If you need more, take a

look at the Arduino Mega 2560, which has four serial ports.2

• A Universal Asynchronous Receiver/Transmitter (UART)3 device

supports serial communication on the Arduino. This device han-

dles serial communication while the CPU can take care of other

tasks. This greatly improves the system’s overall performance.

The UART uses digital pins 0 (RX) and 1 (TX), which means you

cannot use them for other purposes when communicating on the

serial port. If you need them, you can disable serial communica-

tion using Serial.end().

• With the SoftwareSerial4 library, you can use any digital pin for

serial communication. It has some serious limitations regarding

speed and reliability, and it does not support all functions that

are available when using a regular serial port.

2. http://arduino.cc/en/Main/ArduinoBoardMega2560

3. http://en.wikipedia.org/wiki/UART

4. http://www.arduino.cc/en/Reference/SoftwareSerial

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.instructables.com/id/Bedazzler-DIY-non-lethal-weaponry/
http://www.ladyada.net/make/bedazzler/
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://en.wikipedia.org/wiki/UART
http://www.arduino.cc/en/Reference/SoftwareSerial
http://books.pragprog.com/titles/msard/errata/add?pdf_page=59

WHAT IF IT DOESN’T WORK? 60

Figure 2.9: A wrong baud rate creates a lot of garbage.

In this chapter, you saw how to communicate with the Arduino using

the serial port, which opens the door to a whole new world of physical

computing projects (see Section C.1, Learning More About Serial Com-

munication, on page 251 for more details about serial communication).

In the next chapters, you’ll learn how to gather interesting facts about

the real world using sensors, and you’ll learn how to change the real

world by moving objects. Serial communication is the basis for letting

you control all these actions using the Arduino and your PC.

2.5 What If It Doesn’t Work?

If anything goes wrong with the examples in this chapter, you should

take a look at Section 1.8, What If It Doesn’t Work?, on page 43 first.

If you still run into problems, it may be because of some issues with

serial communication. For example, you might have set the wrong baud

rate; in Figure 2.9, you can see what’s happening in such a case.

Make sure that the baud rate you have set in your call to Serial.begin()

matches the baud rate in the serial monitor.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=60

EXERCISES 61

2.6 Exercises

• Add new commands to the sample program. For example, the com-

mand 3 could make the LED blink for a while.

• Try to make the commands more readable; that is, instead of 1,

use the command on, and instead of 2, use off.

If you have problems solving this exercise, read Chapter 4, Build-

ing a Morse Code Generator Library, on page 88 first.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=61

Part II

Eight Arduino Projects

Download from Wow! eBook <www.wowebook.com>

Chapter 3

Building Binary Dice
Things will really start to get interesting now that you’ve learned the

basics of Arduino development. You now have the skills to create your

first complex, stand-alone projects. After you have worked through this

chapter, you’ll know how to work with LEDs, buttons, breadboards,

and resistors. Combining these parts with an Arduino gives you nearly

endless opportunities for new and cool projects.

Our first project will be creating an electronic die. While regular dice

display their results using one to six dots, ours will use LEDs instead.

For our first experiments, a single LED has been sufficient, but for

the dice we need more than one. You need to connect several external

LEDs to the Arduino. Because you cannot attach them all directly to

the Arduino, you’ll learn how to work with breadboards. Also, you need

a button that rolls the dice, so you’ll learn how to work with pushbut-

tons, too. To connect pushbuttons and LEDs to the Arduino, you need

another important electronic part: the resistor. So, at the end of the

chapter, you’ll have many new tools in your toolbox.

3.1 What You Need

1. A half-size breadboard

2. Three LEDs (for the exercises you’ll need additional LEDs)

3. Two 10kΩ resistors (see Section A.1, Current, Voltage, and Resis-

tance, on page 237 to learn more about resistors)

4. Three 1kΩ resistors

5. Two pushbuttons

6. Some wires

Download from Wow! eBook <www.wowebook.com>

WORKING WITH BREADBOARDS 64

!

"

#
$

%

&

&

Figure 3.1: All the parts you need for this chapter

7. An Arduino board such as the Uno, Duemilanove, or Diecimila

8. A USB cable to connect the Arduino to your computer

9. A tilt sensor (optional)

Figure 3.1 shows the parts needed to build the projects in this chapter.

You’ll find such photos in most of the following chapters. The numbers

in the photo correspond to the numbers in the parts list. The photos do

not show standard parts such as the Arduino board or an USB cable.

3.2 Working with Breadboards

Connecting parts such as LEDs directly to the Arduino is only an option

in the most trivial cases. Usually, you will prototype your projects on a

breadboard that you connect to the Arduino. A breadboard “emulates”

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=64

WORKING WITH BREADBOARDS 65

Figure 3.2: A collection of breadboards

a circuit board. You don’t have to solder parts to the board; instead,

you can simply plug them into it.

Breadboards come in various types and sizes (in Figure 3.2, you can

see two of them), but they all work the same way. They have a lot of

sockets that you can use for plugging in through-hole parts or wires.

That alone wouldn’t be a big deal, but the sockets are connected in a

special way. In Figure 3.3, on the next page, you can see how.

As you can see, most sockets are connected in columns. If one socket

of a column is connected to a power supply, then automatically all the

other sockets in this column are powered, too. On the bigger board

in the photo, you can also see four rows of connected sockets. This

is convenient for bigger circuits. Usually, you connect one row to your

power supply and one to the ground. This way, you can distribute power

and ground to any point on the board. Now let’s see how to put parts

on a breadboard.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=65

USING AN LED ON A BREADBOARD 66

Figure 3.3: How sockets on a breadboard are connected

3.3 Using an LED on a Breadboard

Up to now, we used the LEDs that are installed on the Arduino board,

and we connected one LED directly to the Arduino. In this section, we’ll

plug an LED into a breadboard and then connect the breadboard to the

Arduino.

In Figure 3.4, on the following page, you can see a photo of our final cir-

cuit. It consists of an Arduino, a breadboard, an LED, three wires, and a

1kΩ resistor (more on that part in a few minutes). Connect the Arduino

to the breadboard using two wires. Connect pin 12 with the ninth col-

umn of the breadboard, and connect the ground pin with the tenth

column. This automatically connects all sockets in column 9 to pin 12

and all sockets in column 10 to the ground. This choice of columns was

arbitrary, and you could have used other columns instead.

Plug the LED’s negative connector (the shorter one) into column 10 and

its positive connector into column 9. When you plug in parts or wires

into a breadboard, you have to press them firmly until they slip in. You

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=66

USING AN LED ON A BREADBOARD 67

Figure 3.4: Connecting an LED on a breadboard to the Arduino

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=67

USING AN LED ON A BREADBOARD 68

Figure 3.5: A resistor in various processing stages

might need more than one try, especially on new boards, and it often

comes in handy to shorten the connectors before plugging them into the

breadboard. Make sure that you can still identify the negative and the

positive connector after you have shortened them. Shorten the negative

one a bit more, for example. Also wear safety glasses to protect your

eyes when cutting the connectors!

The things we have done until now have been straightforward. That is,

in principle we have only extended the Arduino’s ground pin and its

IO pin number 12. Why do we have to add a resistor, and what is a

resistor? A resistor limits the amount of current that flows through an

electric connection. In our case, it protects the LED from consuming too

much power, because this would destroy the LED. You always have to

use a resistor when powering an LED! In Section A.1, Current, Voltage,

and Resistance, on page 237, you can learn more about resistors and

their color bands. In Figure 3.5, you can see a resistor in various stages:

regular, bent, and cut.

You might ask yourself why we didn’t have to use a resistor when we

connected the LED directly to the Arduino. The answer is simple: pin

13 comes with an internal resistor of 1kΩ. Now that we use pin 12, we

have to add our own resistor.

We don’t want to fiddle around too much with the connectors, so we

build the circuit as shown in Figure 3.6, on the next page. That is, we

use both sides of the breadboard by connecting them with a short wire.

Note that the resistor bridges the sides, too.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=68

FIRST VERSION OF A BINARY DIE 69

Figure 3.6: You can use both sides of a breadboard.

3.4 First Version of a Binary Die

You’re certainly familiar with regular dice displaying results in a range

from one to six. To emulate such dice exactly with an electronic device,

you’d need seven LEDs and some fairly complicated business logic.

We’ll take a shortcut and display the result of a die roll in binary.

For a binary die, we need only three LEDs that represent the current

result. We turn the result into a binary number, and for every bit that is

set, we will light up a corresponding LED. The following diagram shows

how the die results are mapped to LEDs (a black triangle stands for a

shining LED).

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=69

FIRST VERSION OF A BINARY DIE 70

=

=

=

=

=

=

We already know how to control a single LED on a breadboard. Con-

trolling three LEDs is similar and requires only more wires, LEDs, 1kΩ

resistors, and pins. In Figure 3.7, on the following page, you can see

the first working version of a binary die.

The most important difference is the common ground. When you need

ground for a single LED, you can connect it to the LED directly. But

we need ground for three LEDs now, so we’ll use the breadboard’s rows

for the first time. Connect the row marked with a hyphen (-) to the

Arduino’s ground pin, and all sockets in this row will work as ground

pins, too. Then you can connect this row’s sockets to the LEDs using

short wires.

Everything else in this circuit should look familiar, because we only had

to clone the basic LED circuit from the previous section three times.

Note that we have connected the three circuits to pins 10, 11, and 12.

The only thing missing is some software:

Download BinaryDice/BinaryDice.pde

Line 1 const unsigned int LED_BIT0 = 12;
- const unsigned int LED_BIT1 = 11;
- const unsigned int LED_BIT2 = 10;
-

5 void setup() {
- pinMode(LED_BIT0, OUTPUT);
- pinMode(LED_BIT1, OUTPUT);
- pinMode(LED_BIT2, OUTPUT);
-

10 randomSeed(analogRead(A0));
- long result = random(1, 7);
- output_result(result);
- }
-

15 void loop() {
- }
-

- void output_result(const long result) {
- digitalWrite(LED_BIT0, result & B001);

20 digitalWrite(LED_BIT1, result & B010);
- digitalWrite(LED_BIT2, result & B100);
- }

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/BinaryDice/BinaryDice.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=70

FIRST VERSION OF A BINARY DIE 71

Figure 3.7: A first working version of our binary die

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=71

FIRST VERSION OF A BINARY DIE 72

More LEDs, Dice, and Cubes

Building binary dice is fun, and it’s an easy project even for
beginners. But what about the opposite—reading real dice?
Steve Hoefer∗ has built a dice reader using an Arduino, and
it’s really impressive. He uses five pairs of infrared emitters
and receivers to “scan” a die’s surface. It’s a fairly advanced
project, and you can learn a lot from it.

Another interesting project is an LED cube: building a cube con-
sisting of LEDs.† It’s surprisingly difficult to control more than a
few LEDs, but you can produce astonishing results.

∗. http://grathio.com/2009/08/dice-reader-version-2.html

†. http://arduinofun.com/blog/2009/12/02/led-cube-and-arduino-lib-build-it/

This is all the code we need to implement the first version of binary

dice. As usual, we define some constants for the output pins the LEDs

are connected to. In the setup() function, we set all the pins into OUTPUT

mode. For the dice, we need random numbers in the range between one

and six. The random() function returns random numbers in a specified

range using a pseudorandom number generator. In line 10, we initialize

the generator with some noise we read from analog input pin A0 (see

the sidebar on the next page to learn why we have to do that). You might

wonder where the constant A0 is from. Since version 19, the Arduino

IDE defines constants for all analog pins named A0, A1, and so on.

Then we actually generate a new random number between one and six

and output it using the output_result() function. (the seven in the call to

random() is correct, because it expects the upper limit plus one).

The function output_result() takes a number and outputs its lower three

bits by switching on or off our three LEDs accordingly. Here we use the

& operator and binary literals. The & operator takes two numbers and

combines them bitwise. When two corresponding bits are 1, the result

of the & operator is 1, too. Otherwise, it is 0. The B prefix allows you to

put binary numbers directly into your source code. For example, B11 is

the same as 3.

You might have noticed that the loop() function was left empty, and

you might wonder how such dice work. It’s pretty simple: whenever

you restart the Arduino, it outputs a new number, and to roll the dice

again, you have to press the reset button.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://grathio.com/2009/08/dice-reader-version-2.html
http://arduinofun.com/blog/2009/12/02/led-cube-and-arduino-lib-build-it/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=72

FIRST VERSION OF A BINARY DIE 73

Generating Random Numbers

Some computing problems are surprisingly difficult, and cre-
ating good random numbers is one of them. After all, one
of the most important properties of a computer is determinis-
tic behavior. Still, we often need—at least seemingly—random
behavior for a variety of purposes, ranging from games to cryp-
tographic algorithms.

The most popular approach (used in Arduino’s random() func-
tion, for example) is to create pseudorandom numbers.∗ They
seem to be random, but they actually are the result of a for-
mula. Different kinds of algorithms exist, but usually each new
pseudorandom number is calculated from its predecessors.
This implies that you need an initialization value to create the
first random number of the sequence. This initialization value
is called a random seed, and to create different sequences
of pseudorandom numbers, you have to use different random
seeds.

Creating pseudorandom numbers is cheap, but if you know the
algorithm and the random seed, you can easily predict them.
So, you shouldn’t use them for cryptographic purposes.

In the real world, you can find countless random processes, and
with the Arduino, it’s easy to measure them to create real ran-
dom numbers. Often it’s sufficient to read some random noise
from analog pin 0 and pass it as the random seed to the ran-

domSeed() function. You can also use this noise to create real
random numbers; there is even a library for that purpose.†

If you need strong random numbers, the Arduino is a perfect
device for creating them. You can find many projects that
observe natural processes solely to create random numbers.
One of them watches an hourglass using the Arduino, for exam-
ple.‡

∗. http://en.wikipedia.org/wiki/Pseudo-random_numbers

†. http://code.google.com/p/tinkerit/wiki/TrueRandom

‡. http://www.circuitlake.com/usb-hourglass-sand-timer.html

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/Pseudo-random_numbers
http://code.google.com/p/tinkerit/wiki/TrueRandom
http://www.circuitlake.com/usb-hourglass-sand-timer.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=73

WORKING WITH BUTTONS 74

Compile the code, upload it to the Arduino, and play a bit with your

binary dice. You have mastered your first advanced electronics project!

Enjoy it for a moment!

So, whenever you want to see a new result, you have to reset the

Arduino. That’s probably the most pragmatic user interface you can

build, and for a first prototype, this is OK. But often you need more

than one button, and it’s also more elegant to add your own button

anyway. So, that’s what we’ll do in the next section.

3.5 Working with Buttons

In this section, we’ll add our own pushbutton to our binary dice, so

we no longer have to abuse the Arduino’s reset button to roll the dice.

We’ll start small and build a circuit that uses a pushbutton to control

a single LED.

So, what exactly is a pushbutton? Here are three views of a typical

pushbutton that can be used as the Arduino’s reset button.

Connected

Connected

Top Front Side

It has four connectors that fit perfectly on a breadboard (at least after

you have straightened them with a pair of pliers). Two opposite pins

connect when the button is pushed; otherwise, they are disconnected.

In Figure 3.8, on the following page, you can see a simple circuit using a

pushbutton. Connect pin 7 (chosen completely arbitrarily) to the push-

button, and connect the pushbutton via a 10kΩ resistor to ground.

Then connect the 5 volts power supply to the other pin of the button.

All in all, this approach seems straightforward, but why do we need a

resistor again? The problem is that we expect the pushbutton to return

a default value (LOW) in case it isn’t pressed. But when the button isn’t

pressed, it would not be directly connected to ground and would flicker

because of static and interference. A little bit of current flows through

the resistor, and this helps prevent random noise from changing the

voltage that the input pin sees.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=74

WORKING WITH BUTTONS 75

Figure 3.8: A simple pushbutton circuit

When the button is pressed, there will still be 5 volts at the Arduino’s

digital pin, but when the button isn’t pressed, it will cleanly read the

connection to ground. We call this a pull-down resistor; a pull-up resistor

works exactly the other way around. That is, you have to connect the

Arduino’s signal pin to power through the pushbutton and connect the

other pin of the pushbutton to ground using a resistor.

Now that we’ve eliminated all this ugly unstable real-world behavior, we

can return to the stable and comforting world of software development.

The following program checks whether a pushbutton is pressed and

lights an LED accordingly:

Download BinaryDice/SimpleButton/SimpleButton.pde

const unsigned int BUTTON_PIN = 7;

const unsigned int LED_PIN = 13;

void setup() {

pinMode(LED_PIN, OUTPUT);

pinMode(BUTTON_PIN, INPUT);

}

void loop() {

const int BUTTON_STATE = digitalRead(BUTTON_PIN);

if (BUTTON_STATE == HIGH)

digitalWrite(LED_PIN, HIGH);

else

digitalWrite(LED_PIN, LOW);

}

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/BinaryDice/SimpleButton/SimpleButton.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=75

WORKING WITH BUTTONS 76

We connect the button to pin 7 and the LED to pin 13 and initialize the

pins accordingly in the setup() function. In loop(), we read the current

state of the pin connected to the button. If it is HIGH, we turn the LED

on. Otherwise, we turn it off.

Upload the program to the Arduino, and you’ll see that the LED is on

as long as you press the button. As soon as you release the button,

the LED turns off. This is pretty cool, because now we nearly have

everything we need to control our dice using our own button. But before

we proceed, we’ll slightly enhance our example and turn the button into

a real light switch.

To build a light switch, we start with the simplest possible solution.

Do not change the current circuit, and upload the following program to

your Arduino:

Download BinaryDice/UnreliableSwitch/UnreliableSwitch.pde

Line 1 const unsigned int BUTTON_PIN = 7;
- const unsigned int LED_PIN = 13;
-

- void setup() {
5 pinMode(LED_PIN, OUTPUT);
- pinMode(BUTTON_PIN, INPUT);
- }
-

- int led_state = LOW;
10

- void loop() {
- const int CURRENT_BUTTON_STATE = digitalRead(BUTTON_PIN);
-

- if (CURRENT_BUTTON_STATE == HIGH) {
15 led_state = (led_state == LOW) ? HIGH : LOW;

- digitalWrite(LED_PIN, led_state);
- }
- }

We begin with the usual pin constants, and in setup() we set the modes

of the pins we use. In line 9, we define a global variable named led_state

to store the current state of our LED. It will be LOW when the LED is

on and HIGH otherwise. In loop(), we check the button’s current state.

When we press the button, its state switches to HIGH, and we toggle the

content of led_state. That is, if led_state was HIGH, we set it to LOW, and

vice versa. At the end, we set the physical LED’s state to our current

software state accordingly.

Our solution is really simple, but unfortunately, it does not work. Play

around with it a bit, and you’ll quickly notice some annoying behavior.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/BinaryDice/UnreliableSwitch/UnreliableSwitch.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=76

WORKING WITH BUTTONS 77

If you press the button, for example, the LED sometimes will turn on

and then off immediately. Also, if you release it, the LED will often

remain in a more or less arbitrary state; that is, sometimes it will be on

and sometimes off.

The problem is that the Arduino executes the loop() method over and

over again. Although the Arduino’s CPU is comparatively slow, this

would happen very often—no matter if we currently press the button

or not. But if you press it and keep it pressed, its state will constantly

be HIGH, and you’d constantly toggle the LED’s state (because this hap-

pens so fast it seems like the LED’s constantly on). When you release

the button, the LED is in a more or less arbitrary state.

To improve the situation, we have to store not only the LED’s current

state but also the pushbutton’s previous state:

Download BinaryDice/MoreReliableSwitch/MoreReliableSwitch.pde

const unsigned int BUTTON_PIN = 7;

const unsigned int LED_PIN = 13;

void setup() {

pinMode(LED_PIN, OUTPUT);

pinMode(BUTTON_PIN, INPUT);

}

int old_button_state = LOW;

int led_state = LOW;

void loop() {

const int CURRENT_BUTTON_STATE = digitalRead(BUTTON_PIN);

if (CURRENT_BUTTON_STATE != old_button_state &&

CURRENT_BUTTON_STATE == HIGH)

{

led_state = (led_state == LOW) ? HIGH : LOW;

digitalWrite(LED_PIN, led_state);

}

old_button_state = CURRENT_BUTTON_STATE;

}

After initializing the button and LED pins, we declare two variables

now: old_button_state stores the previous state of our pushbutton, and

led_state stores the LED’s current state. Both can be either HIGH or LOW.

In the loop() function, we still have to read the current button state,

but now we not only check whether it is HIGH. We also check whether

it has changed since the last time we read it. Only when both conditions

are met do we toggle the LED’s state. So, we no longer turn the LED

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/BinaryDice/MoreReliableSwitch/MoreReliableSwitch.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=77

WORKING WITH BUTTONS 78

Button pressed Button released

5 V

0 V

Figure 3.9: Mechanical switches have to be debounced.

on and off over and over again as long as the button is pressed. At

the end of our program, we have to store the button’s current state in

old_button_state.

Upload our new version, and you’ll see that this solution works much

better than our old one. But you will still find some edge cases when

the button does not fully behave as expected. Problems mainly occur in

the moment you release the button.

The cause of these problems is that mechanical buttons bounce for a

few milliseconds when you press them. In Figure 3.9, you can see a

typical signal produced by a mechanical button. Right after you have

pressed the button, it doesn’t emit a clear signal. To overcome this

effect, you have to debounce the button. It’s usually sufficient to wait

a short period of time until the button’s signal stabilizes. Debouncing

makes sure that we react only once to a push of the button. In addition

to debouncing, we still have to store the current state of the LED in a

variable. Here’s how to do that:

Download BinaryDice/DebounceButton/DebounceButton.pde

Line 1 const unsigned int BUTTON_PIN = 7;
- const unsigned int LED_PIN = 13;
-

- void setup() {
5 pinMode(LED_PIN, OUTPUT);
- pinMode(BUTTON_PIN, INPUT);
- }
-

- int old_button_state = LOW;
10 int led_state = LOW;

-

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/BinaryDice/DebounceButton/DebounceButton.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=78

ADDING OUR OWN BUTTON 79

- void loop() {
- const int CURRENT_BUTTON_STATE = digitalRead(BUTTON_PIN);
- if (CURRENT_BUTTON_STATE != old_button_state &&

15 CURRENT_BUTTON_STATE == HIGH)
- {
- led_state = (led_state == LOW) ? HIGH : LOW;
- digitalWrite(LED_PIN, led_state);
- delay(50);

20 }
- old_button_state = CURRENT_BUTTON_STATE;
- }

This final version of our LED switch differs from the previous one in

only a single line: to debounce the button, we wait for 50 milliseconds

in line 19 before we enter the main loop again.

This is everything you need to know about pushbuttons for now. In the

next section, we’ll use two buttons to turn our binary dice into a real

game.

3.6 Adding Our Own Button

Up to now, we had to abuse the Arduino’s reset button to control the

dice. This solution is far from optimal, so we’ll add our own buttons. In

Figure 3.10, on page 81, you can see that we need to change our cur-

rent circuit only slightly. Actually, we don’t have to change the existing

parts at all; we only need to add some things. First we plug a button

into the breadboard and connect it to pin 7. Then we connect the but-

ton to the ground via a 10kΩ resistor and use a small piece of wire to

connect it to the 5 volts pin. That’s all the hardware we need. Here’s the

corresponding software:

Download BinaryDice/DiceWithButton/DiceWithButton.pde

const unsigned int LED_BIT0 = 12;

const unsigned int LED_BIT1 = 11;

const unsigned int LED_BIT2 = 10;

const unsigned int BUTTON_PIN = 7;

void setup() {

pinMode(LED_BIT0, OUTPUT);

pinMode(LED_BIT1, OUTPUT);

pinMode(LED_BIT2, OUTPUT);

pinMode(BUTTON_PIN, INPUT);

randomSeed(analogRead(A0));

}

int current_value = 0;

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/BinaryDice/DiceWithButton/DiceWithButton.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=79

BUILDING A DICE GAME 80

int old_value = 0;

void loop() {

current_value = digitalRead(BUTTON_PIN);

if (current_value != old_value && current_value == HIGH) {

output_result(random(1, 7));

delay(50);

}

old_value = current_value;

}

void output_result(const long result) {

digitalWrite(LED_BIT0, result & B001);

digitalWrite(LED_BIT1, result & B010);

digitalWrite(LED_BIT2, result & B100);

}

That’s a perfect merge of the original code and the code needed to con-

trol a debounced button. As usual, we initialize all pins we use: three

output pins for the LEDs and one input pin for the button. We also

initialize the random seed, and in the loop() function we wait for new

button presses. Whenever the button gets pressed, we roll the dice and

output the result using the LEDs. We’ve replaced the reset button with

our own!

Now that we know how easy it is to add a pushbutton, we’ll add another

one in the next section to turn our simple dice into a game.

3.7 Building a Dice Game

Turning our rudimentary dice into a full-blown game requires adding

another pushbutton. With the first one we can still roll the dice, and

with the second one we can program a guess. When we roll the dice

again and the current result equals our guess, the three LEDs on the

die will blink. Otherwise, they will remain dark.

To enter a guess, press the guess button the right number of times.

If you think the next result will be a 3, for example, press the guess

button three times and then press the start button.

To add another button to the circuit, do exactly the same thing as for

the first one. In Figure 3.11, on page 82, you can see that we have

added yet another button circuit to the breadboard. This time we’ve

connected it to pin 5.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=80

BUILDING A DICE GAME 81

Figure 3.10: Our binary dice with its own start button

Now we need some code to control the new button, and you might be

tempted to copy it from our last program. After all, we copied the hard-

ware design also, right? In the real world, some redundancy is totally

acceptable, because we actually need two physical buttons, even if they

are in principle the same. In the world of software, redundancy is a no-

go, so we won’t copy our debounce logic but use a library1 that was writ-

ten for this purpose. Download the library, and unpack its content into

~/Documents/Arduino/libraries (on a Mac) or My Documents\Arduino\libraries

(on a Windows box). Usually that’s all you have to do, but it never

1. http://www.arduino.cc/playground/Code/Bounce

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.arduino.cc/playground/Code/Bounce
http://books.pragprog.com/titles/msard/errata/add?pdf_page=81

BUILDING A DICE GAME 82

Figure 3.11: Our binary die now has a “guess” button.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=82

BUILDING A DICE GAME 83

hurts to read the installation instructions and documentation on the

web page.

Here’s the final version of our binary dice code:

Download BinaryDice/DiceGame/DiceGame.pde

Line 1 #include <Bounce.h>
-

- const unsigned int LED_BIT0 = 12;
- const unsigned int LED_BIT1 = 11;
5 const unsigned int LED_BIT2 = 10;
- const unsigned int START_BUTTON_PIN = 5;
- const unsigned int GUESS_BUTTON_PIN = 7;
- const unsigned int BAUD_RATE = 9600;
-

10 void setup() {
- pinMode(LED_BIT0, OUTPUT);
- pinMode(LED_BIT1, OUTPUT);
- pinMode(LED_BIT2, OUTPUT);
- pinMode(START_BUTTON_PIN, INPUT);

15 pinMode(GUESS_BUTTON_PIN, INPUT);
- randomSeed(analogRead(A0));
- Serial.begin(BAUD_RATE);
- }
-

20 const unsigned int DEBOUNCE_DELAY = 20;
- Bounce start_button(START_BUTTON_PIN, DEBOUNCE_DELAY);
- Bounce guess_button(GUESS_BUTTON_PIN, DEBOUNCE_DELAY);
- int guess = 0;
-

25 void loop() {
- handle_guess_button();
- handle_start_button();
- }
-

30 void handle_guess_button() {
- if (guess_button.update()) {
- if (guess_button.read() == HIGH) {
- guess = (guess % 6) + 1;
- output_result(guess);

35 Serial.print("Guess: ");
- Serial.println(guess);
- }
- }
- }

40

- void handle_start_button() {
- if (start_button.update()) {
- if (start_button.read() == HIGH) {
- const int result = random(1, 7);

45 output_result(result);

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/BinaryDice/DiceGame/DiceGame.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=83

BUILDING A DICE GAME 84

- Serial.print("Result: ");
- Serial.println(result);
- if (guess > 0) {
- if (result == guess) {

50 Serial.println("You win!");
- hooray();
- } else {
- Serial.println("You lose!");
- }

55 }
- delay(2000);
- guess = 0;
- }
- }

60 }
-

- void output_result(const long result) {
- digitalWrite(LED_BIT0, result & B001);
- digitalWrite(LED_BIT1, result & B010);

65 digitalWrite(LED_BIT2, result & B100);
- }
-

- void hooray() {
- for (int i = 0; i < 3; i++) {

70 output_result(7);
- delay(500);
- output_result(0);
- delay(500);
- }

75 }

Admittedly that is a lot of code, but we know most of it already, and the

new parts are fairly easy. In the first line, we include the Bounce library

we’ll use later to debounce our two buttons. Then we define constants

for all the pins we use, and in the setup() method, we initialize all our

pins and set the random seed. We also initialize the serial port, because

we’ll output some debug messages.

The Bounce library declares a class named Bounce, and you have to cre-

ate a Bounce object for every button you want to debounce. That’s what

happens in lines 21 and 22. The constructor of the Bounce class expects

the number of the pin the button is connected to and the debounce

delay in milliseconds. Finally, we declare and initialize a variable named

guess that stores our current guess.

Our loop() function has been reduced to two function calls. One is

responsible for dealing with guess button pushes, and the other one

handles pushes of the start button. In handle_guess_button(), we use the

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=84

BUILDING A DICE GAME 85

Figure 3.12: We have a winner!

Bounce class for the first time. To determine the current state of our

guess_button object, we have to call its update() method. Afterward, we

read its current status using the read() method.

If the button was pressed, its state is set to HIGH, and we increment

the guess variable. To make sure that the guess is always in the range

between 1 and 6, we use the modulus operator (%) in line 33. This

operator divides two values and returns the remainder. For 6, it returns

values between 0 and 5, because when you divide a number by 6, the

remainder is always between 0 and 5. Add 1 to the result, and you get

values between 1 and 6. Finally, we output the current guess using the

three LEDs, and we also print it to the serial port.

The handling of the start button in handle_start_button() works exactly

the same as the handling of the guess button. When the start button

was pressed, we calculate a new result and output it on the serial port.

Then we check whether the user has entered a guess (guess is greater

than zero in this case) and whether the user has guessed the right

result. In either case, we print a message to the serial port, and if the

user guessed right, we also call the hooray() method. hooray() lets all

three LEDs blink several times.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=85

WHAT IF IT DOESN’T WORK? 86

At the end of the method, we wait for two seconds until the game starts

again, and we set back the current guess to zero.

After you’ve uploaded the software to the Arduino, start the IDE’s serial

monitor. It will print the current value of the guess variable whenever

you press the guess button. Press the start button, and the new result

appears. In Figure 3.12, on the preceding page, you can see a typical

output of our binary dice.

In this chapter, you completed your first really complex Arduino project.

You needed a breadboard, LEDs, buttons, resistors, and wires, and you

wrote a nontrivial piece of software to make all the hardware come to

life.

In the next chapter, we’ll write an even more sophisticated program for

generating Morse code. You’ll also learn how to create your own Arduino

libraries that you can easily share with the rest of the world.

3.8 What If It Doesn’t Work?

A lot of things will probably go wrong when you work with breadboards

for the first time. The biggest problem usually is that you didn’t connect

parts correctly. It takes some time to find the right technique for plug-

ging LEDs, wires, resistors, and buttons into the breadboard. You have

to press firmly but not too hard—otherwise you’ll bend the connectors,

and they won’t fit. It’s usually easier to plug parts in after you’ve short-

ened the connectors. When cutting the connectors, wear safety glasses

to protect your eyes!

While fiddling around with the parts, don’t forget that some of them—

LEDs, for example—need a certain direction. Pushbuttons are candi-

dates for potential problems, too. Take a close look at the pushbuttons

on page 74 and make sure that you’ve mounted them in the right direc-

tion.

Even simple things such as ordinary wires can lead to problems, espe-

cially if they aren’t the right length. If a wire is too short and might

potentially slip out of its socket, replace it immediately. Wires are too

cheap to waste your valuable time with unnecessary and annoying

debugging sessions.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=86

EXERCISES 87

3.9 Exercises

• Binary dice are all very well when you’re playing Monopoly with

your geeky friends, but most people prefer more familiar dice. Try

turning binary dice into decimal dice with seven LEDs. Arrange

the LEDs like the eyes on regular dice.

• The 1kΩ resistors we have used to protect our LEDs in this chap-

ter are rather big. Read Section A.1, Resistors, on page 239, and

replace them with smaller ones. Can you see the difference in

brightness?

• LEDs can be used for more than displaying binary dice results.

Provided you have enough LEDs, you can easily build other things,

such as a binary clock.2

You already know enough about electronics and Arduino program-

ming to build your own binary clock. Try it or think about other

things you could display using a few LEDs.

• Using a button to roll the dice seems a bit awkward, doesn’t it?

Usually, you take dice into both hands and shake them. You can

easily simulate that with a tilt sensor.

Tilt sensors detect the tilting of an object and are perfect devices

for simulating the roll of a dice. In principle, they work like a push-

button, but you don’t press them—you shake them. Try to add one

to the binary dice by working your way through the tutorial on the

Arduino website.3

2. http://www.instructables.com/id/LED-Binary-Clock/

3. http://www.arduino.cc/en/Tutorial/TiltSensor

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.instructables.com/id/LED-Binary-Clock/
http://www.arduino.cc/en/Tutorial/TiltSensor
http://books.pragprog.com/titles/msard/errata/add?pdf_page=87

Chapter 4

Building a Morse Code Generator
Library

You now know enough about the Arduino development environment

and about blinking LEDs to start a bigger project. In this chapter, we’ll

develop a Morse code generator that reads text from the serial port and

outputs it as light signals using an LED.

By building this project, you’ll deepen your understanding of serial

communication between the Arduino and your computer. You’ll also

learn a lot about the typical Arduino development process: how to use

existing libraries and how to structure bigger projects into your own

libraries. At the end, you’ll be able to create a library that is ready for

publishing on the Internet.

4.1 What You Need

• An Arduino board such as the Uno, Duemilanove, or Diecimila

• A USB cable to connect the Arduino to your computer

• An LED

• A speaker or a buzzer (they are optional)

4.2 Learning the Basics of Morse Code

Morse code was invented to turn text into sounds.1 In principle, it

works like a character set encoding such as ASCII. But while ASCII

1. http://en.wikipedia.org/wiki/Morse_Code

Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/Morse_Code

BUILDING A MORSE CODE GENERATOR 89

encodes characters as numbers, in Morse code they’re sequences of

dots and dashes (also called dits and dahs). Dits are shorter in length

than dahs. An A is encoded as · – and – – · · is Z.

Morse code also specifies a timing scheme that defines the length of the

dits and dahs. It also specifies how long the pauses between symbols

and words have to be. The base unit of Morse code is the length of a dit,

and a dah is as long as three dits. You insert a pause of one dit between

two symbols, and you separate two letters by three dits. Insert a pause

of seven dits between two words.

To transmit a message encoded in Morse code, you need a way to emit

signals of different lengths. The classic approach is to use sounds, but

we will use an LED that is turned on and off for varying periods of time.

Sailors still transmit Morse code using blinking lights.

Let’s implement a Morse code generator!

4.3 Building a Morse Code Generator

The main part of our library will be a C++ class named Telegraph. In this

section, we’ll define its interface, but we will start with a new sketch

that looks as follows:

Download Telegraph/Telegraph.pde

void setup() {

}

void loop() {

}

This is the most minimalistic Arduino program possible. It does not do

anything except define all mandatory functions, even if they are empty.

We do this so we can compile our work in progress from time to time

and check whether there are any syntactical errors. Save the sketch as

Telegraph, and the IDE will create a folder named Telegraph and a file

named Telegraph.pde in it. All the files and directories we need for our

library will be stored in the Telegraph folder.

Now open a new tab, and when asked for a filename, enter telegraph.h.

Yes, we will create a good old C header file (to be precise, it will even be

a C++ header file). The listing in on the next page.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Telegraph/Telegraph.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=89

BUILDING A MORSE CODE GENERATOR 90

Download Telegraph/telegraph.h

#ifndef __TELEGRAPH_H__

#define __TELEGRAPH_H__

class Telegraph {

public:

Telegraph(const int output_pin, const int dit_length);

void send_message(const char* message);

private:

void dit();

void dah();

void output_code(const char* code);

void output_symbol(const int length);

int _output_pin;

int _dit_length;

int _dah_length;

};

#endif

Ah, obviously object-oriented programming is not only for the big CPUs

anymore! This is an interface description of a Telegraph class that you

could use in your next enterprise project (provided that you need to

transmit some information as Morse code, that is).

We start with the classic double-include prevention mechanism; that

is, the body of header file defines a preprocessor macro with the name

__TELEGRAPH_H__. We wrap the body (that contains this definition) in an

#ifndef, so that the body is only complied if the macro has not been

defined. That way, you can include the header as many times as you

want, and the body will only be compiled once.

The interface of the Telegraph class consists of a public part that users

of the class have access to and a private part only members of the class

can use. In the public part, you find two things: a constructor that

creates new Telegraph objects and a method named send_message() that

sends a message by emitting it as Morse code. In your applications, you

can use the class as follows:

Telegraph telegraph(13, 200);

telegraph.send_message("Hello, world!");

In the first line, we create a new Telegraph object that communicates on

pin 13 and emits dits that are 200 milliseconds long. Then we emit the

message “Hello, world!” as Morse code. This way, we are able to send

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Telegraph/telegraph.h
http://books.pragprog.com/titles/msard/errata/add?pdf_page=90

FLESHING OUT THE GENERATOR’S INTERFACE 91

whatever message we want, and we can change the pin and the length

of a dit easily.

Now that we have defined the interface, we will implement it in the next

section.

4.4 Fleshing Out the Generator’s Interface

Declaring interfaces is important, but it’s as important to implement

them. Create a new tab, enter the filename telegraph.cpp, and then

enter the following code:2

Download Telegraph/telegraph.cpp

#include <ctype.h>

#include <WProgram.h>

#include "telegraph.h"

char* LETTERS[] = {

".-", "-...", "-.-.", "-..", ".", // A-E

"..-.", "--.", "....", "..", ".---", // F-J

"-.-", ".-..", "--", "-.", "---", // K-O

".--.", "--.-", ".-.", "...", "-", // P-T

"..-", "...-", ".--", "-..-", "-.--", // U-Y

"--.." // Z

};

char* DIGITS[] = {

"-----", ".----", "..---", "...--", // 0-3

"....-", ".....", "-....", "--...", // 4-7

"---..", "----." // 8-9

};

Like most C++ programs, ours imports some libraries first. Because we

need functions such as toupper() later, we include ctype.h. and we have

to include telegraph.h to make our class declaration and its correspond-

ing function declarations available. But what is WProgram.h good for?

Until now we haven’t thought about where constants such as HIGH,

LOW, or OUTPUT came from. They are defined in several header files

that come with the Arduino IDE, and you can find them in the hard-

ware/cores/arduino directory of the IDE. Have a look at WProgram.h, and

2. Older versions of the Arduino IDE have an annoying bug that will prevent you from

creating a new file this way. The IDE claims that a file having the same name already

exists. See http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1251245246 for a workaround.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Telegraph/telegraph.cpp
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1251245246
http://books.pragprog.com/titles/msard/errata/add?pdf_page=91

OUTPUTTING MORSE CODE SYMBOLS 92

notice that it includes a file named wiring.h that contains all the con-

stants we have used so far and many more. It also declares many useful

macros and the Arduino’s most basic functions.

When you edit regular sketches, you do not have to worry about includ-

ing any standard header files, because the IDE does it automatically

behind the scenes. As soon as you start to create more complex projects

that contain “real” C++ code, you have to manage everything yourself.

You have to explicitly import all the libraries you need, even for basic

stuff such as the Arduino constants.

After importing all necessary header files, we define two string arrays

named LETTERS and DIGITS. They contain the Morse code for all letters

and digits, and we’ll use them later to translate regular text into Morse

code. Before we do that, we define the constructor that is responsible

for creating and intializing new Telegraph objects:

Download Telegraph/telegraph.cpp

Telegraph::Telegraph(const int output_pin, const int dit_length) {

_output_pin = output_pin;

_dit_length = dit_length;

_dah_length = dit_length * 3;

pinMode(_output_pin, OUTPUT);

}

The constructor expects two arguments: the number of the pin the

Morse code should be sent to and the length of a dit measured in mil-

liseconds. Then it stores these values in corresponding instance vari-

ables, calculates the correct length of a dah, and turns the communi-

cation pin into an output pin.

You’ve probably noticed that all private instance variables start with an

underscore. That is a convention that I like personally. It is not enforced

by C++ or the Arduino IDE.

4.5 Outputting Morse Code Symbols

After everything has been initialized, we can start to output Morse code

symbols. We use several small helper methods to make our code as

readable as possible:

Download Telegraph/telegraph.cpp

void Telegraph::output_code(const char* code) {

for (int i = 0; i < strlen(code); i++) {

if (code[i] == '.')

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Telegraph/telegraph.cpp
http://media.pragprog.com/titles/msard/code/Telegraph/telegraph.cpp
http://books.pragprog.com/titles/msard/errata/add?pdf_page=92

OUTPUTTING MORSE CODE SYMBOLS 93

dit();

else

dah();

}

}

void Telegraph::dit() {

Serial.print(".");

output_symbol(_dit_length);

}

void Telegraph::dah() {

Serial.print("-");

output_symbol(_dah_length);

}

void Telegraph::output_symbol(const int length) {

digitalWrite(_output_pin, HIGH);

delay(length);

digitalWrite(_output_pin, LOW);

}

The function output_code() takes a Morse code sequence consisting of

dots and dashes and turns it into calls to dit() and dah(). The dit() and

dah() methods then print a dot or a dash to the serial port and delegate

the rest of the work to output_symbol(), passing it the length of the Morse

code symbol to be emitted. output_symbol() sets the output pin to HIGH

for the length of the symbol, and then it sets it back to LOW. Everything

works exactly as described in the Morse code timing scheme, and only

the implementation of send_message() is missing:

Download Telegraph/telegraph.cpp

Line 1 void Telegraph::send_message(const char* message) {
- for (int i = 0; i < strlen(message); i++) {
- const char current_char = toupper(message[i]);
- if (isalpha(current_char)) {
5 output_code(LETTERS[current_char - 'A']);
- delay(_dah_length);
- } else if (isdigit(current_char)) {
- output_code(DIGITS[current_char - '0']);
- delay(_dah_length);

10 } else if (current_char == ' ') {
- Serial.print(" ");
- delay(_dit_length * 7);
- }
- }

15 Serial.println();
- }

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Telegraph/telegraph.cpp
http://books.pragprog.com/titles/msard/errata/add?pdf_page=93

INSTALLING AND USING THE TELEGRAPH CLASS 94

send_message() outputs a message character by character in a loop. In

line 3, we turn the current character into uppercase, because lower-

case characters are not defined in Morse code (that’s the reason why

you can’t implement a chat client using Morse code). Then we check

whether the current character is a letter using C’s isalpha() function. If

it is, we use it to determine its Morse code representation that is stored

in the LETTERS array. To do that, we use an old trick: in the ASCII table

all letters (and digits) appear in the right order, that is, A=65, B=66,

and so on. To transform the current character into an index for the LET-

TERS array, we have to subtract 65 (or ’A’) from its ASCII code. When we

have determined the correct Morse code, we pass it to output_symbol()

and delay the program for the length of a dah afterward.

The algorithm works exactly the same for outputting digits; we only

have to index the DIGITS array instead of the LETTERS array, and we have

to subtract the ASCII value of the character 0.

In line 10, we check whether we received a blank character. If yes,

we print a blank character to the serial port and wait for seven dits.

All other characters are ignored: we only process letters, digits, and

blanks. At the end of the method, we send a newline character to the

serial port to mark the end of the message.

4.6 Installing and Using the Telegraph Class

Our Telegraph class is complete, and we should now create some exam-

ple sketches that actually use it. This is important for two reasons: we

can test our library code, and for users of our class it’s good documen-

tation for how to use it.

The Arduino IDE looks for libraries in two places: in its global libraries

folder relative to its installation directory and in the user’s local sketch-

book directory. During development it’s best to use the local sketch-

book directory. You can find its location in the IDE’s preferences (see

Figure 4.1, on the next page). Create a new directory named libraries in

the sketchbook directory.

To make our Telegraph class available, create a Telegraph subfolder in

the libraries folder. Then copy telegraph.h and telegraph.cpp to that folder

(do not copy Telegraph.pde). Restart the IDE.

Let’s start with the mother of all programs: “Hello, world!” Create a new

sketch named HelloWorld, and enter the following code:

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=94

INSTALLING AND USING THE TELEGRAPH CLASS 95

Figure 4.1: Find the sketchbook location in the preferences.

Download Telegraph/examples/HelloWorld/HelloWorld.pde

#include "telegraph.h"

const unsigned int OUTPUT_PIN = 13;

const unsigned int DIT_LENGTH = 200;

Telegraph telegraph(OUTPUT_PIN, DIT_LENGTH);

void setup() {}

void loop() {

telegraph.send_message("Hello, world!");

delay(5000);

}

This sketch emits the string “Hello, world!” as Morse code every five sec-

onds. To achieve this, we include the definition of our Telegraph class,

and we define constants for the pin our LED is connected to and for

the length of our dits. Then we create a global Telegraph object and an

empty setup() function. In loop(), then we invoke send_message() on our

Telegraph instance every five seconds.

When you compile this sketch, the Arduino IDE automatically compiles

the telegraph library, too. So if you made any syntactical errors in the

library, you’ll be notified now. If you have to correct some errors, make

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Telegraph/examples/HelloWorld/HelloWorld.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=95

INSTALLING AND USING THE TELEGRAPH CLASS 96

sure you change your original source code files. After you’ve fixed the

errors, copy the files to the libraries folder again, and don’t forget to

restart the IDE.

Turning a static string into Morse code is nice, but wouldn’t it be great

if our program could work for arbitrary strings? So, let’s add a more

sophisticated example. This time, we’ll write code that reads messages

from the serial port and feeds them into a Telegraph instance. Create a

new sketch named MorseCodeGenerator, and enter the following code:

Download Telegraph/examples/MorseCodeGenerator/MorseCodeGenerator.pde

#include "telegraph.h"

const unsigned int OUTPUT_PIN = 13;

const unsigned int DIT_LENGTH = 200;

const unsigned int MAX_MESSAGE_LEN = 128;

const unsigned int BAUD_RATE = 9600;

const int LINE_FEED = 13;

char message_text[MAX_MESSAGE_LEN];

int index = 0;

Telegraph telegraph(OUTPUT_PIN, DIT_LENGTH);

void setup() {

Serial.begin(BAUD_RATE);

}

void loop() {

if (Serial.available() > 0) {

int current_char = Serial.read();

if (current_char == LINE_FEED || index == MAX_MESSAGE_LEN - 1) {

message_text[index] = 0;

index = 0;

telegraph.send_message(message_text);

} else {

message_text[index++] = current_char;

}

}

}

Again, we include the header file of the Telegraph class, and as usual we

define some constants: OUTPUT_PIN defines the pin our LED is connected

to, and DIT_LENGTH contains the length of a dit measured in milliseconds.

LINE_FEED is set to the ASCII code of the linefeed character. We need it to

determine the end of the message to be emitted as Morse code. Finally,

we set MAX_MESSAGE_LEN to the maximum length of the messages we

are able to send.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Telegraph/examples/MorseCodeGenerator/MorseCodeGenerator.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=96

FINAL TOUCHES 97

Next we define three global variables: message_text is a character buffer

that gets filled with the data we receive on the serial port. index keeps

track of our current position in the buffer, and telegraph is the Telegraph

object we’ll use to convert a message into “blinkenlights.”3

setup() initializes the serial port, and in loop() we check whether new

data has arrived, calling Serial.available(). We read the next byte if new

data is available, and we check whether it is a linefeed character or

whether it is the last byte that fits into our character buffer. In both

cases, we set the last byte of message_text to 0, because strings in

C/C++ are null-terminated. We also reset index so we can read the next

message, and finally we send the message using our telegraph. In all

other cases, we add the latest byte to the current message text and

move on.

You should compile and upload the program now. Open the serial mon-

itor, and choose “Carriage return” from the line endings drop-down

menu at the bottom of the window. With this option set, the serial mon-

itor will automatically append a newline character to every line it sends

to the Arduino. Enter a message such as your name, click the Send

button, and see how the Arduino turns it into light.

Because we’ve encapsulated the whole Morse code logic in the Telegraph

class, our main program is short and concise. Creating software for

embedded devices doesn’t mean we can’t benefit from the advantages

of object-oriented programming.

Still, we have some minor things to do to turn our project into a first-

class library. Read more about it in the next section.

4.7 Final Touches

One of the nice features of the Arduino IDE is its syntax coloring. Class

names, function names, variables, and so on, all have different colors

in the editor. This makes it much easier to read source code, and it’s

possible to add syntax coloring for libraries. You only have to add a file

named keywords.txt to your project:

Download Telegraph/keywords.txt

Syntax-coloring for the telegraph library

Telegraph KEYWORD1

send_message KEYWORD2

3. http://en.wikipedia.org/wiki/Blinkenlights

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Telegraph/keywords.txt
http://en.wikipedia.org/wiki/Blinkenlights
http://books.pragprog.com/titles/msard/errata/add?pdf_page=97

FINAL TOUCHES 98

Lines starting with a # character contain comments and will be ignored.

The remaining lines contain the name of one of the library’s members

and the member’s type. Separate them with a tab character. Classes

have the type KEYWORD1, while functions have the type KEYWORD2. For

constants, use LITERAL1.

To enable syntax coloring for the telegraph library, copy keywords.txt to

the libraries folder, and restart the IDE. Now the name of the Telegraph

class will be orange, and send_message() will be colored brown.

Before you finally publish your library, you should add a few more

things:

• Store all example sketches in a folder named examples, and copy

it to the libraries folder. Every example sketch should get its own

subdirectory within that folder.

• Choose a license for your project, and copy its terms into a file

named LICENSE.4 You might think this is a bit over the top for many

libraries, but it will give your potential audience confidence.

• Add installation instructions and documentation. Usually, users

expect to find documentation in a file named README, and they

will look for installation instructions in a file named INSTALL. You

should try to install your library on as many operating systems as

possible and provide installation instructions for all of them.

After you’ve done all this, your library folder should look like Figure 4.2,

on the following page.

Finally, create a ZIP archive containing all the files in your project. On

most operating systems, it’s sufficient to right-click the directory in the

Explorer, Finder, or whatever you are using and turn the directory into

a ZIP archive. On Linux systems and on a Mac, you can also use one of

the following command-line statements to create an archive:

maik> zip -r Telegraph Telegraph

maik> tar cfvz Telegraph.tar.gz Telegraph

The first command creates a file named Telegraph.zip, and the second

one creates Telegraph.tar.gz. Both formats are widespread, and it’s best

to offer them both for download.

4. At http://www.opensource.org/, you can find a lot of background information and many

standard licenses.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.opensource.org/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=98

WHAT IF IT DOESN’T WORK? 99

Figure 4.2: This is what a typical Arduino library needs.

Although you have to perform a lot of manual file operations, it’s still

easy to create an Arduino library. So, there’s no excuse: whenever you

think you’ve built something cool, make it publicly available.

Until now our projects have communicated with the outside world using

LEDs (output) and pushbuttons (input). In the next chapter, you’ll learn

how to work with more sophisticated input devices, such as ultrasonic

sensors. You’ll also learn how to visualize data that an Arduino sends

to programs running on your computer.

4.8 What If It Doesn’t Work?

The Arduino IDE has a strong opinion on naming files and directories,

and it was built for creating sketches, not libraries. So, you need to

perform a few manual file operations to get everything into the right

place. In Figure 4.2, you can see the final directory layout. If you have

more than one version of the Arduino IDE installed, make sure that

you’re using the right libraries folder.

Remember that you have to restart the IDE often. Whenever you change

one of the files belonging to your library, restart the IDE.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=99

EXERCISES 100

Figure 4.3: It’s easy to connect a speaker to an Arduino.

If syntax coloring doesn’t work, make sure your keywords file is actually

named keywords.txt. Double-check if you have separated all objects and

type specifiers by a tab character! Restart your IDE!

4.9 Exercises

• Morse code supports not only letters and digits. It also defines

symbols such as commas. Improve the Telegraph class so it under-

stands all characters of the Morse code.

• Blinking LEDs are great, but when we think of Morse code, we

usually think of beeping sounds, so replace the LED with a piezo

speaker, which are cheap and easy to use. Figure 4.3 shows how

you connect it to an Arduino. They have a ground pin and a sig-

nal pin, so connect the speaker’s ground to the Arduino’s ground,

and connect the signal pin to Arduino pin 13. Then replace the

output_symbol() method with the following code:

void Telegraph::output_symbol(const int length) {

const int frequency = 131;

tone(_output_pin, frequency, length);

}

This sends a square wave to the speaker, and it plays a tone having

a frequency of 131 Hertz (find the “Melody” example that comes

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=100

EXERCISES 101

with the Arduino IDE to learn more about playing notes with a

piezo speaker).

• Improve the library’s design to make it easier to support different

output devices. For example, you could pass some kind of Output-

Device object to the Telegraph constructor. Then derive a LedDevice

and a SpeakerDevice from OutputDevice. It could look as follows:

class OutputDevice {

public:

virtual void output_symbol(const int length);

};

class Led : public OutputDevice {

public:

void output_symbol(const int length) {

// ...

}

};

class Speaker : public OutputDevice {

public:

void output_symbol(const int length) {

// ...

}

};

You can then use these classes as follows:

Led led;

Speaker speaker;

OutputDevice* led_device = &led;

OutputDevice* speaker_device = &speaker;

led_device->output_symbol(200);

speaker_device->output_symbol(200);

The rest is up to you.

• Try to learn Morse code. Let someone else type some messages

into the serial terminal and try to recognize what he or she sent.

That’s not necessary for learning Arduino development, but it’s a

lot of fun!

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=101

Chapter 5

Sensing the World Around Us
Instead of communicating via mouse or keyboard as with regular com-

puters, you need to connect special sensors to the Arduino so that it

can sense changes around it. You can attach sensors that measure the

current temperature, the acceleration, or the distance to the nearest

object.

Sensors make up an important part of physical computing, and the

Arduino makes using various sensor types a breeze. In this chapter,

we will use both digital and analog sensors to capture some real-world

state, and all we need is a couple of wires and some small programs.

We will take a close look at two sensor types: an ultrasonic sensor

that measures distances and a temperature sensor that measures, well,

temperatures. With the ultrasonic sensor, we will build a digital meter-

ing rule that helps us measure distances remotely. Although ultrasonic

sensors deliver quite accurate results, we can still improve their preci-

sion with some easy tricks. Interestingly, the temperature sensor will

help us with this, and at the end of the chapter, we will have created a

fairly accurate digital metering rule. We will also build a nice graphical

application that visualizes the data we get from the sensors.

But the Arduino doesn’t only make using sensors easy. It also encour-

ages good design for both your circuits and your software. For example,

although we end up using two sensors, they are completely indepen-

dent. All the programs we’ll develop in this chapter will run without

changes on the final circuit.

Download from Wow! eBook <www.wowebook.com>

WHAT YOU NEED 103

!

"

#

$

Figure 5.1: All the parts you need in this chapter

5.1 What You Need

1. A Parallax PING))) sensor

2. A TMP36 temperature sensor from Analog Devices

3. A breadboard

4. Some wires

5. An Arduino board such as the Uno, Duemilanove, or Diecimila

6. A USB cable to connect the Arduino to your computer

7. An installation of the Processing programming language1

1. http://processing.org

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://processing.org
http://books.pragprog.com/titles/msard/errata/add?pdf_page=103

MEASURING DISTANCES WITH AN ULTRASONIC SENSOR 104

5.2 Measuring Distances with an Ultrasonic Sensor

Measuring distances automatically and continuously comes in handy

in many situations. Think of a robot that autonomously tries to find

its way or of an automatic burglar alarm that rings a bell or calls the

police whenever someone is too near to your house or to the Mona Lisa.

All this is possible with Arduino. But before you can create that burglar

alarm or robot, you need to understand some key concepts.

Many different types of sensors for measuring distances are available,

and the Arduino plays well with most of them. Some sensors use ultra-

sound, while others use infrared light or even laser. But in principle

all sensors work the same way: they emit a signal, wait for the echo to

return, and measure the time the whole process took. Because we know

how fast sound and light travel through the air, we can then convert the

measured time into a distance.

In our first project, we will build a device that measures the distance

to the nearest object and outputs it on the serial port. For this project,

we use the Parallax PING))) ultrasonic sensor,2 because it’s easy to use,

comes with excellent documentation, and has a nice feature set. It can

detect objects in a range between 2 centimeters and 3 meters, and we

use it directly with a breadboard, so we do not have to solder. It’s also a

perfect example of a sensor that provides information via variable-width

pulses (more on that in a few paragraphs). With the PING))) sensor, we

can easily build a sonar or a robot that automatically finds its way

through a maze without touching a wall.

As mentioned earlier, ultrasonic sensors usually do not return the dis-

tance to the nearest object. Instead, they return the time the sound

needed to travel to the object and back to the sensor. The PING))) is no

exception (see Figure 5.2, on the next page), and its innards are fairly

complex. Fortunately, they are hidden behind three simple pins: power,

ground, and signal.

This makes it easy to connect the sensor to the Arduino. First, connect

Arduino’s ground and 5V power supply to the corresponding PING)))

pins. Then connect the PING)))’s sensor pin to one of the Arduino’s dig-

ital IO pins (we’re using pin 7 for no particular reason). For a diagram

of our circuit, see Figure 5.3, on the following page, and for a photo see

Figure 5.5, on page 108.

2. http://www.parallax.com/StoreSearchResults/tabid/768/txtSearch/28015/List/0/SortField/4/ProductID/92/Default.aspx

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.parallax.com/StoreSearchResults/tabid/768/txtSearch/28015/List/0/SortField/4/ProductID/92/Default.aspx
http://books.pragprog.com/titles/msard/errata/add?pdf_page=104

MEASURING DISTANCES WITH AN ULTRASONIC SENSOR 105

Object

time

Figure 5.2: Basic working principle of the PING))) sensor

Figure 5.3: PING))) basic circuit

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=105

MEASURING DISTANCES WITH AN ULTRASONIC SENSOR 106

To bring the circuit to life, we need some code that communicates with

the PING))) sensor:

Download ultrasonic/simple/simple.pde

Line 1 const unsigned int PING_SENSOR_IO_PIN = 7;
- const unsigned int BAUD_RATE = 9600;
-

- void setup() {
5 Serial.begin(BAUD_RATE);
- }
-

- void loop() {
- pinMode(PING_SENSOR_IO_PIN, OUTPUT);

10 digitalWrite(PING_SENSOR_IO_PIN, LOW);
- delayMicroseconds(2);
-

- digitalWrite(PING_SENSOR_IO_PIN, HIGH);
- delayMicroseconds(5);

15 digitalWrite(PING_SENSOR_IO_PIN, LOW);
-

- pinMode(PING_SENSOR_IO_PIN, INPUT);
- const unsigned long duration = pulseIn(PING_SENSOR_IO_PIN, HIGH);
- if (duration == 0) {

20 Serial.println("Warning: We did not get a pulse from sensor.");
- } else {
- Serial.print("Distance to nearest object: ");
- Serial.print(microseconds_to_cm(duration));
- Serial.println(" cm");

25 }
-

- delay(100);
- }
-

30 unsigned long microseconds_to_cm(const unsigned long microseconds) {
- return microseconds / 29 / 2;
- }

First we define a constant for the IO pin the PING))) sensor is connected

to. If you want to connect your sensor to another digital IO pin, you

have to change the program’s first line. In the setup() method, we set

the serial port’s baud rate to 9600, because we’d like to see some sensor

data on the serial monitor.

The real action happens in loop() where we actually implement the

PING))) protocol. According to the data sheet,3 we can control the sensor

using pulses, and it returns results as variable-width pulses, too.

3. http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.5.pdf

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/ultrasonic/simple/simple.pde
http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.5.pdf
http://books.pragprog.com/titles/msard/errata/add?pdf_page=106

MEASURING DISTANCES WITH AN ULTRASONIC SENSOR 107

Figure 5.4: PING))) pulse diagram

In lines 9 to 11, we set the sensor’s signal pin to LOW for 2 microsec-

onds to bring it to a proper state. This will ensure clean HIGH pulses

that are needed in the next steps (in the world of electronics, you should

always be prepared for jitters in the power supply).

Finally, it’s time to tell the sensor to do some work. In lines 13 to 15,

we set the sensor’s signal pin to HIGH for 5 microseconds to start a

new measurement. Afterward, we set the pin to LOW again, because

the sensor will respond with a HIGH pulse of variable length on the

same pin.

With a digital pin, you have only a few options to transmit information.

You can set the pin to HIGH or LOW, and you can control how long

it remains in a particular state. For many purposes, this is absolutely

sufficient, and in our case it is, too. When the PING))) sensor sends out

its 40 kHz chirp, it sets the signal pin to HIGH and then sets it back

to LOW when it receives the echo. That is, the signal pin remains in a

HIGH state for exactly the time it takes the sound to travel to an object

and back to the sensor. Loosely speaking, we are using a digital pin

for measuring an analog signal. In Figure 5.4, you can see a diagram

showing typical activity on a digital pin connected to a PING))) sensor.

We could measure the duration the pin remains in HIGH state manu-

ally, but the pulseIn() method already does all the dirty work for us. So,

we use it in line 18 after we have set the signal pin into input mode

again. pulseIn() accepts three parameters:

• pin: Number of the pin to read the pulse from.

• type: Type of the pulse that should be read. It can be HIGH or

LOW.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=107

MEASURING DISTANCES WITH AN ULTRASONIC SENSOR 108

Figure 5.5: Photo of PING))) basic circuit

• timeout: Timeout measured in microseconds. If no pulse could

be detected within the timeout period, pulseIn() returns 0. This

parameter is optional and defaults to one second.

Note that in the whole process only one pin is used to communicate

with the PING))). Sooner or later, you will realize that IO pins are a

scarce resource on the Arduino, so it’s really a nice feature that the

PING))) uses only one digital pin. When you can choose between differ-

ent parts performing the same task, try to use as few pins as possible.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=108

MEASURING DISTANCES WITH AN ULTRASONIC SENSOR 109

We have only one thing left to do: convert the duration we have mea-

sured into a length. Sound travels at 343 meters per second, which

means it needs 29.155 microseconds per centimeter. So, we have to

divide the duration by 29 and then by 2, because the sound has to

travel the distance twice. It travels to the object and then back to the

PING))) sensor. The microseconds_to_cm() method performs the calcula-

tion.

According to the specification of the PING))) sensor, you have to wait

at least 200 microseconds between two measurements. For high-speed

measurements, we could calculate the length of a pause more accu-

rately by actually measuring the time the code takes. But in our case,

this is pointless, because all the statements that are executed dur-

ing two measurements in the loop() method take far more than 200

microseconds. And outputting data to the serial connection is fairly

expensive. Despite this, we have added a small delay of 100 microsec-

onds to slow down the output a bit.

You might wonder why we use the const keyword so often. The Arduino

language is based on C/C++, and in these languages it’s considered a

good practice to declare constant values as const (see Effective C++: 50

Specific Ways to Improve Your Programs and Designs [Mey97]). Not only

will using const make your program more concise and prevent logical

errors early, it will also help the compiler to decrease your program’s

size.

Although most Arduino programs are comparatively small, software

development for the Arduino is still software development and should

be done according to all the best practices we know. So, whenever you

define a constant value in your program, declare it as such (using const,

not using #define). This is true for other programming languages, too,

so we will use final in our Processing and Java programs a lot (you’ll

learn more about Processing in Section 5.5, Transferring Data Back to

Your Computer Using Processing, on page 119).

Now it’s time to play around with the sensor and get familiar with

its strengths and weaknesses. Compile the program, upload it to your

Arduino board, and open the serial monitor (don’t forget to set the baud

rate to 9600). You should see something like this:

Distance to nearest object: 42 cm

Distance to nearest object: 33 cm

Distance to nearest object: 27 cm

Distance to nearest object: 27 cm

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=109

INCREASING PRECISION USING FLOATING-POINT NUMBERS 110

Distance to nearest object: 29 cm

Distance to nearest object: 36 cm

In addition to the output in the terminal, you will see that the LED

on the PING))) sensor is turned on whenever the sensor starts a new

measurement.

Test the sensor’s capabilities by trying to detect big things or very small

things. Try to detect objects from different angles, and try to detect

objects that are below or above the sensor. You should also do some

experiments with objects that do not have a flat surface. Try to detect

stuffed animals, for example, and you will see that they are not detected

as well as solid objects (that’s probably the reason why bats don’t hunt

bears: they cannot see them).

With only three wires and a few lines of code, we have built a first

version of a digital metering rule. At the moment, it only outputs cen-

timeter distances in whole numbers, but we will increase its accuracy

tremendously in the next section by changing our software and adding

more hardware.

5.3 Increasing Precision Using Floating-Point Numbers

According to the specification, the PING))) sensor is accurate for objects

that are between 2 centimeters and 3 meters away. (By the way, the

reason for this is the length of the pulse that is generated. Its min-

imum length is 115 microseconds, and the maximum length is 18.5

milliseconds.) With our current approach, we do not fully benefit from

its precision because all calculations are performed using integer val-

ues. We can only measure distances with an accuracy of a centimeter.

To enter the millimeter range, we have to use floating-point numbers.

Normally it is a good idea to use integer operations, because compared

to regular computers the Arduino’s memory and CPU capacities are

severely limited and calculations containing floating-point numbers are

often expensive. But sometimes it’s useful to enjoy the luxury of highly

accurate floating-point numbers, and the Arduino supports them well.

We will use them to improve our project now:

Download ultrasonic/float/float.pde

Line 1 const unsigned int PING_SENSOR_IO_PIN = 7;
- const unsigned int BAUD_RATE = 9600;
- const float MICROSECONDS_PER_CM = 29.155;
- const float MOUNTING_GAP = 0.2;

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/ultrasonic/float/float.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=110

INCREASING PRECISION USING FLOATING-POINT NUMBERS 111

5 const float SENSOR_OFFSET = MOUNTING_GAP * MICROSECONDS_PER_CM * 2;
-

- void setup() {
- Serial.begin(BAUD_RATE);
- }

10

- void loop() {
- const unsigned long duration = measure_distance();
- if (duration == 0)
- Serial.println("Warning: We did not get a pulse from sensor.");

15 else

- output_distance(duration);
- }
-

- const float microseconds_to_cm(const unsigned long microseconds) {
20 const float net_distance = max(0, microseconds - SENSOR_OFFSET);

- return net_distance / MICROSECONDS_PER_CM / 2;
- }
-

- const unsigned long measure_distance() {
25 pinMode(PING_SENSOR_IO_PIN, OUTPUT);

- digitalWrite(PING_SENSOR_IO_PIN, LOW);
- delayMicroseconds(2);
-

- digitalWrite(PING_SENSOR_IO_PIN, HIGH);
30 delayMicroseconds(5);

- digitalWrite(PING_SENSOR_IO_PIN, LOW);
-

- pinMode(PING_SENSOR_IO_PIN, INPUT);
- return pulseIn(PING_SENSOR_IO_PIN, HIGH);

35 }
-

- void output_distance(const unsigned long duration) {
- Serial.print("Distance to nearest object: ");
- Serial.print(microseconds_to_cm(duration));

40 Serial.println(" cm");
- }

This program does not differ much from our first version. First, we use

the more accurate value 29.155 for the number of microseconds it takes

sound to travel 1 centimeter. In addition, the distance calculation now

takes a potential gap between the sensor and the case into account.

If you plug the sensor into a breadboard, for example, usually a small

gap between the sensor and the breadboard’s edge exists. This gap is

defined in line 5, and it will be used in the distance calculation later

on. The gap is measured in centimeters, and it gets multiplied by two,

because the sound travels out and back.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=111

INCREASING PRECISION USING FLOATING-POINT NUMBERS 112

The loop() method looks much cleaner now, because the program’s

main functionality has been moved to separate functions. The whole

sensor control logic lives in the measure_distance() method and out-

put_distance() takes care of outputting values to the serial port. The

big changes happened in the microseconds_to_cm() function. It returns

a float value now, and it subtracts the sensor gap from the measured

duration. To make sure we do not get negative values, we use the max()

function.

Compile and upload the program, and you should see something like

the following in your serial monitor window:

Distance to nearest object: 17.26 cm

Distance to nearest object: 17.93 cm

Distance to nearest object: 17.79 cm

Distance to nearest object: 18.17 cm

Distance to nearest object: 18.65 cm

Distance to nearest object: 18.85 cm

Distance to nearest object: 18.78 cm

This not only looks more accurate than our previous version, it actually

is. If you have worked with floating-point numbers in any programming

language before, you might ask yourself why the Arduino rounds them

automatically to two decimal digits. The secret lies in the print() method

of the Serial class. In recent versions of the Arduino platform it works for

all possible data types, and when it receives a float variable, it rounds it

to two decimal digits before it gets output. You can specify the number

of decimal digits. For example, Serial.println(3.141592, 4); prints 3.1416.

Only the output is affected by this; internally it is still a float variable

(by the way, on the Arduino float and double values are the same at the

moment).

So, what does it actually cost to use float variables? Their memory

consumption is 4 bytes—that is, they consume as much memory as

long variables. On the other hand, floating-point calculations are fairly

expensive and should be avoided in time-critical parts of your soft-

ware. The biggest costs are the additional library functions that have to

be linked to your program for float support. Serial.print(3.14) might look

harmless, but it increases your program’s size tremendously. Uncom-

ment line 39, and recompile the program to see the effect. With my

current setup, it needs 3,192 bytes without float support for Serial.print()

and 4,734 bytes otherwise. That’s a difference of 1,542 bytes!

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=112

INCREASING PRECISION USING A TEMPERATURE SENSOR 113

In some cases, you can still get the best of both worlds: float support

without paying the memory tax. You can save a lot of space by con-

verting the float values to integers before sending them over a serial

connection. To transfer values with a precision of two digits, multiply

them by 100, and do not forget to divide them by 100 on the receiving

side. We will use this trick (including rounding) later.

5.4 Increasing Precision Using a Temperature Sensor

Support for floating-point numbers is certainly an improvement, but

it mainly increases the precision of our program’s output. We could

have achieved a similar effect using some integer math tricks. But now

we will add an even better improvement that cannot be imitated using

software: a temperature sensor.

When I told you that sound travels through air at 343m/s, I wasn’t

totally accurate, because the speed of sound is not constant—among

other things it depends on the air’s temperature. If you do not take

temperature into account, the error can grow up to a quite significant

12 percent. We calculate the actual speed of sound C with a simple

formula:

C = 331.5 + (0.6 * t)

To use it, we only have to determine the current temperature t in Cel-

sius. We will use the TMP36 voltage output temperature sensor from

Analog Devices.4 It’s cheap, and it’s easy to use.

To connect the TMP36 to the Arduino, connect the Arduino’s ground

and power to the corresponding pins of the TMP36. Then connect the

sensor’s signal pin to the pin A0, that is, the analog pin number 0 (see

Figure 5.6, on the following page).

As you might have guessed from its vendor’s name, the TMP36 is an

analog device: it changes the voltage on its signal pin corresponding to

the current temperature. The higher the temperature, the higher the

voltage. For us it is an excellent opportunity to learn how to use the

Arduino’s analog IO pins. So, let’s see some code that uses the sensor:

Download temperature/sensortest/sensortest.pde

Line 1 const unsigned int TEMP_SENSOR_PIN = 0;
- const float SUPPLY_VOLTAGE = 5.0;

4. http://tinyurl.com/msard-analog

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/temperature/sensortest/sensortest.pde
http://tinyurl.com/msard-analog
http://books.pragprog.com/titles/msard/errata/add?pdf_page=113

INCREASING PRECISION USING A TEMPERATURE SENSOR 114

Figure 5.6: Connecting the temperature sensor to the Arduino

- const unsigned int BAUD_RATE = 9600;
-

5 void setup() {
- Serial.begin(BAUD_RATE);
- }
-

- void loop() {
10 Serial.print(get_temperature());

- Serial.println(" C");
- delay(1000);
- }
-

15 const float get_temperature() {
- const int sensor_voltage = analogRead(TEMP_SENSOR_PIN);
- const float voltage = sensor_voltage * SUPPLY_VOLTAGE / 1024;
- return (voltage * 1000 - 500) / 10;
- }

In the first two lines, we define constants for the analog pin the sensor

is connected to and for the Arduino’s supply voltage. Then we have a

pretty normal setup() method followed by a loop() method that outputs

the current temperature every second. The whole sensor logic has been

encapsulated in the get_temperature() method.

For the PING))) sensor, we only needed a digital pin that could be

HIGH or LOW. Analog pins are different and represent a voltage rang-

ing from 0V to the current power supply (usually 5V). We can read

Arduino’s analog pins using the analogRead() method that returns a

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=114

INCREASING PRECISION USING A TEMPERATURE SENSOR 115

value between 0 and 1023, because analog pins have a resolution of

ten bits (1024 = 210). We use it in line 16 to read the current voltage

supplied by the TMP36.

There’s one problem left, though: we have to turn the value returned

by analogRead() into an actual voltage value, so we must know the

Arduino’s current power supply. It usually is 5V, but there are Arduino

models (the Arduino Pro, for example) that use only 3.3V. You have to

adjust the constant SUPPLY_VOLTAGE accordingly.

Knowing the supply voltage, we can turn the analog pin’s output into

a voltage value by dividing it by 1024 and by multiplying it with the

supply voltage afterward. That’s exactly what we do in line 17.

We now have to convert the voltage the sensor delivers into degree Cel-

sius. In the sensor’s data sheet, we find the following formula:

T = ((sensor output in mV) - 500) / 10

500 millivolts have to be subtracted, because the sensor always outputs

a positive voltage. This way, we can represent negative temperatures,

too. The sensor’s resolution is 10 millivolts, so we have to divide by 10.

A voltage value of 750 millivolts corresponds to a temperature of (750 -

500) / 10 = 25◦C, for example. See it implemented in line 18.

Compile the program, upload it to the Arduino, and you’ll see something

like the following in your serial monitor:

10.06 C

26.64 C

28.62 C

28.50 C

28.50 C

29.00 C

29.00 C

28.50 C

29.00 C

As you can see, the sensor needs some time to calibrate, but its results

get stable fairly quickly. By the way, you’ll always need to insert a short

delay between two calls to analogRead(), because the Arduino’s internal

analog system needs some time (0.0001 seconds) between two readings.

We have used a delay of a whole second to make the output easier to

read and because we do not expect the temperature to change rapidly.

Otherwise, a delay of a single millisecond would be enough.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=115

INCREASING PRECISION USING A TEMPERATURE SENSOR 116

Figure 5.7: The TMP36 and the PING))) sensors working together

Now we have two separate circuits: one for measuring distances and

one for measuring temperatures. See them combined to a single circuit

in Figure 5.7, as well as in Figure 5.8, on page 120. Use the following

program to bring the circuit to life:

Download ultrasonic/PreciseSensor/PreciseSensor.pde

Line 1 const unsigned int TEMP_SENSOR_PIN = 0;
- const float SUPPLY_VOLTAGE = 5.0;
- const unsigned int PING_SENSOR_IO_PIN = 7;
- const float SENSOR_GAP = 0.2;
5 const unsigned int BAUD_RATE = 9600;
-

- float current_temperature = 0.0;

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/ultrasonic/PreciseSensor/PreciseSensor.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=116

INCREASING PRECISION USING A TEMPERATURE SENSOR 117

- unsigned long last_measurement = millis();
-

10 void setup() {
- Serial.begin(BAUD_RATE);
- }
-

- void loop() {
15 unsigned long current_millis = millis();

- if (abs(current_millis - last_measurement) >= 1000) {
- current_temperature = get_temperature();
- last_measurement = current_millis;
- }

20 Serial.print(scaled_value(current_temperature));
- Serial.print(",");
- const unsigned long duration = measure_distance();
- Serial.println(scaled_value(microseconds_to_cm(duration)));
- }

25

- long scaled_value(const float value) {
- float round_offset = value < 0 ? -0.5 : 0.5;
- return (long)(value * 100 + round_offset);
- }

30

- const float get_temperature() {
- const int sensor_voltage = analogRead(TEMP_SENSOR_PIN);
- const float voltage = sensor_voltage * SUPPLY_VOLTAGE / 1024;
- return (voltage * 1000 - 500) / 10;

35 }
-

- const float microseconds_per_cm() {
- return 1 / ((331.5 + (0.6 * current_temperature)) / 10000);
- }

40

- const float sensor_offset() {
- return SENSOR_GAP * microseconds_per_cm() * 2;
- }
-

45 const float microseconds_to_cm(const unsigned long microseconds) {
- const float net_distance = max(0, microseconds - sensor_offset());
- return net_distance / microseconds_per_cm() / 2;
- }
-

50 const unsigned long measure_distance() {
- pinMode(PING_SENSOR_IO_PIN, OUTPUT);
- digitalWrite(PING_SENSOR_IO_PIN, LOW);
- delayMicroseconds(2);
-

55 digitalWrite(PING_SENSOR_IO_PIN, HIGH);
- delayMicroseconds(5);
- digitalWrite(PING_SENSOR_IO_PIN, LOW);
-

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=117

INCREASING PRECISION USING A TEMPERATURE SENSOR 118

- pinMode(PING_SENSOR_IO_PIN, INPUT);
60 return pulseIn(PING_SENSOR_IO_PIN, HIGH);

- }

The code is nearly a perfect merge of the programs we used to get

the PING))) and the TMP36 sensors working. Only a few things were

changed:

• The constant MICROSECONDS_PER_CM has been replaced by the

microseconds_per_cm() function that determines the microseconds

sound needs to travel 1 centimeter dynamically depending on the

current temperature.

• Because the current temperature will usually not change often

or rapidly, we no longer measure it permanently but only once a

second. We use millis() in line 8 to determine the number of mil-

liseconds that have passed since the Arduino started. From lines

15 to 19, we check whether more than a second has passed since

the last measurement. If yes, we measure the current temperature

again.

• We no longer transfer the sensor data as floating-point numbers

on the serial port but use scaled integer values instead. This is

done by the scaled_value() function that rounds a float value to two

decimal digits and converts it into a long value by multiplying it

by 100. On the receiving side, you have to divide it by 100 again.

If you upload the program to your Arduino and play around with your

hand in front of the sensor, you’ll see an output similar to the following:

1940,2818

2914,3032

3045,34156

3005,2843

3045,2476

3085,2414

The output is a comma-separated list of values where the first value

represents the current temperature in degree Celsius, and the second

is the distance to the nearest object measured in centimeters. Both

values have to be divided by 100 to get the actual sensor data.

Our little project now has two sensors. One is connected to a digital pin,

while the other uses an analog one. In the next section, you’ll learn how

to transfer sensor data back to a PC and use it to create applications

based on the current state of the real world.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=118

TRANSFERRING DATA BACK TO YOUR COMPUTER USING PROCESSING 119

How to Encode Sensor Data

Encoding sensor data is a problem that has to be solved often
in Arduino projects, because all the nice data we collect usu-
ally has to be interpreted by applications running on regular
computers.

When defining a data format, you have to take several things
into account. For example, the format should not waste the
Arduino’s precious memory. In our case, we could have used
XML for encoding the sensor data, for example:

<sensor-data>
<temperature>30.05</temperature>
<distance>51.19</distance>

</sensor-data>

Obviously this is not a good choice, because now we are wast-
ing a multiple of the actual data’s memory for creating the file
format’s structure. In addition, the receiving application has to
use an XML parser to interpret the data.

But you shouldn’t go to the other extreme either. That is, you
should use binary formats only if it’s absolutely necessary or if
the receiving application expects binary data anyway.

All in all, the simplest data formats such as character-separated
values (CSV) are often the best choice.

5.5 Transferring Data Back to Your Computer Using Processing

All the programs in this chapter transfer sensor data back to your com-

puter using a serial port. But until now we’ve only watched the data

passing by in the IDE’s serial monitor and haven’t used it in our own

applications.

In this section, we will build an application that graphically visualizes

the sensor data. The program will implement a kind of inverted sonar:

it draws a small dot on the screen showing the distance to the nearest

object, while the position of the dot will move in a circle itself (see the

picture on page 130).

To implement the application, we’ll use the Processing programming

language, and in Figure 5.9, on page 121 you can see how we’ll organize

the project. The Processing code runs on our computer while all the

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=119

TRANSFERRING DATA BACK TO YOUR COMPUTER USING PROCESSING 120

Figure 5.8: Photo of final circuit

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=120

TRANSFERRING DATA BACK TO YOUR COMPUTER USING PROCESSING 121

Save the Climate Using Sonar Sensors

Researchers from Northwestern and University of Michigan
have created a sonar system that only uses a computer’s
microphone and speakers to detect whether the computer is
currently used or not.∗ If it’s not being used, the computer auto-
matically powers off its screen, saving the environment.

Instead of using a microphone and speakers, you can also use
a PING))) sensor. With the lessons you’ve learned in this chapter,
you can build such a system yourself with ease. Try it!

∗. http://blog.makezine.com/archive/2009/10/using_sonar_to_save_power.html

PC/Mac

Processing
Code

Serial Port

Figure 5.9: System architecture of our inverted Sonar project

PING))) sensor code still runs on the Arduino. Communication between

the Processing code and the Arduino happens via serial port.

Processing is an extension of the Java programming language, and its

focus is on computational art. With Processing, it’s very easy to cre-

ate multimedia applications: applications that produce sound and ani-

mated 2D or 3D graphics. It also has excellent support for user inter-

actions and is well documented (for example, see Processing: Creative

Coding and Computational Art [Gre07]).

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://blog.makezine.com/archive/2009/10/using_sonar_to_save_power.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=121

TRANSFERRING DATA BACK TO YOUR COMPUTER USING PROCESSING 122

Figure 5.10: The Processing IDE is the basis for the Arduino IDE.

It was originally built for design students who do not have a lot of

programming experience but who still wanted to use computers and

electronic devices to create interactive artwork. That’s the reason why

Processing is easy to learn and very beginner-friendly. But many peo-

ple also use it for serious and advanced tasks, especially for presenting

data in visually appealing ways.

You can download Processing for free,5 and it comes with a one-click

installer for all popular operating systems. Start it or take a look at Fig-

ure 5.10. Looks familiar, doesn’t it? That is not a coincidence, because

the Arduino IDE was derived from the Processing IDE. Instead of writ-

5. http://processing.org/download/

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://processing.org/download/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=122

REPRESENTING SENSOR DATA 123

ing a new programming environment from scratch, the Arduino team

decided to modify the Processing IDE. That’s the reason why both IDEs

look so similar and why Arduino sketches have the file extension .pde

(Processing Development Environment), for example.

Using Processing as the basis for the Arduino project provided a good

and well-tested IDE for free. Processing and the Arduino are a good

team for several other reasons:

• The Arduino simplifies embedded computing, and Processing sim-

plifies the creation of multimedia applications. So, you can easily

visualize sensor data in often spectacular ways.

• Processing is easy to learn, especially if you already know Java.

• Processing has excellent support for serial communication.

So, for many reasons, Processing is well worth a look, but it’s espe-

cially useful when working with the Arduino. That’s why we’ll use it for

several of the book’s examples.

5.6 Representing Sensor Data

We start with a Processing class that represents the current sensor

data we return from the Arduino via serial port. Open a new file in the

Processing IDE, and enter the following code:

Download ultrasonic/InvertedSonar/SensorData.pde

class SensorData {

private float temperature;

private float distance;

SensorData(float temperature, float distance) {

this.temperature = temperature;

this.distance = distance;

}

float getTemperature() {

return this.temperature;

}

float getDistance() {

return this.distance;

}

}

If you are familiar with Java or C++, the SensorData class will be per-

fectly clear to you. It encapsulates a temperature value and a distance

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/ultrasonic/InvertedSonar/SensorData.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=123

REPRESENTING SENSOR DATA 124

as floating-point numbers and provides access to the data via accessor

methods (getTemperature() and getDistance()). You can create new Sensor-

Data objects using the constructor, passing it the current temperature

and distance.

Processing is an object-oriented programming language and allows us

to define new classes using the class keyword. Classes have a name and

they contain data (often called attributes or properties) and functions

(often called methods). Our SensorData class contains two attributes

named temperature and distance. They are both of type float, and we

have declared them both private. Now only members of the SensorData

class are allowed to access them. This is considered good style, because

it prevents unwanted side effects and makes future changes much eas-

ier. A class should never expose its innards.

To set and get the values of our attributes, we have to use public meth-

ods, and our class has three of them: SensorData(), getTemperature(), and

getDistance(). (Java and C++ programmers should note that in Process-

ing everything is public if not specified otherwise!) A method that has

the same name as the class is called a constructor, and you can use it

for creating and initializing new objects of that particular class. Con-

structors do not have return values, but they may specify parameters.

Ours, for example, takes two arguments and uses them to initialize our

two attributes.

There’s a small problem, though: our method’s parameters have the

same names as our classes’ attributes. What would happen if we simply

assigned the method parameters to the attributes like this:

temperature = temperature;

distance = distance;

Right: we simply assigned every method parameter to itself, which is

effectively a no-operation. That’s why we use the this keyword. It refers

to the class itself, so we can distinguish between the method parame-

ters and the classes’ attributes. Alternatively, we could have used dif-

ferent names for the method parameters or the attributes, but I prefer

to use this.

After the constructor, we define the methods getTemperature and getDis-

tance. Their definitions are very similar; we declare the method’s return

type (float), the method’s name, and a list of parameters in parentheses.

In our case, the parameter list is empty. In the methods, we return the

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=124

BUILDING THE APPLICATION’S FOUNDATION 125

current value of the corresponding attributes using the return keyword.

return stops the method and returns its argument to the method’s caller.

Now we can create and initialize new SensorData objects:

SensorData sensorData = new SensorData(31.5, 11.76);

The previous statement creates a new SensorData object named sensor-

Data. It sets temperature to 31.5 and distance to 11.76. To read those

values, we use the corresponding “get” methods:

sensorData.getTemperature(); // -> 31.5

sensorData.getDistance(); // -> 11.76

Because getTemperature() and getDistance() are members of the Sensor-

Data class, you can only invoke them using an instance of the class.

Our instance is named sensorData, and to call the “get” methods we have

to use the instance name, followed by a dot, followed by the method

name.

Now that we can store sensor data, we’ll continue to build our inverted

sonar application in the next section.

5.7 Building the Application’s Foundation

In this section, we’ll create all the boilerplate code we need for our appli-

cation by importing some libraries and defining some global constants

and variables:

Download ultrasonic/InvertedSonar/InvertedSonar.pde

import processing.serial.*;

final int WIDTH = 1000;

final int HEIGHT = 1000;

final int xCenter = WIDTH / 2;

final int yCenter = HEIGHT / 2;

final int LINE_FEED = 10;

Serial arduinoPort;

SensorData sensorData;

int degree = 0;

int radius = 0;

To communicate with the Arduino via a serial port, we import Process-

ing’s support for serial communication in the first line. The import state-

ment imports all classes from the processing.serial package and makes

them available in our program.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/ultrasonic/InvertedSonar/InvertedSonar.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=125

IMPLEMENTING SERIAL COMMUNICATION IN PROCESSING 126

Our application will have a 1000x1000 pixel screen, so we define con-

stants for its width, height, and its center. We set the LINE_FEED constant

to the ASCII value of a linefeed character, because we need it later to

interpret the data sent by the Arduino.

Then we define a few global variables (yes, you Java programmers out

there: Processing allows you to define global variables!):

• arduinoPort: An instance of Processing’s Serial class. It’s from the

processing.serial package we have imported and encapsulates the

serial port communication with the Arduino.

• sensorData: The current sensor data that have been transferred

from the Arduino to our application. We use the SensorData class

we defined in Section 5.6, Representing Sensor Data, on page 123.

• degree: We will visualize the current distance to the nearest object

on a circle. This variable stores on which degree of the circle we

are right now. Values range from 0 to 359.

• radius: The current distance to the nearest object is interpreted as

a radius value.

5.8 Implementing Serial Communication in Processing

The following functions read data from the serial port the Arduino is

connected to, and they interpret the data the Arduino is sending:

Download ultrasonic/InvertedSonar/InvertedSonar.pde

Line 1 void setup() {
- size(WIDTH, HEIGHT);
- println(Serial.list());
- String arduinoPortName = Serial.list()[0];
5 arduinoPort = new Serial(this, arduinoPortName, 9600);
- arduinoPort.bufferUntil(LINE_FEED);
- }
-

- void serialEvent(Serial port) {
10 sensorData = getSensorData();

- if (sensorData != null) {
- println("Temperature: " + sensorData.getTemperature());
- println("Distance: " + sensorData.getDistance());
- radius = min(300, int(sensorData.getDistance() * 2));

15 }
- }
-

- SensorData getSensorData() {

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/ultrasonic/InvertedSonar/InvertedSonar.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=126

IMPLEMENTING SERIAL COMMUNICATION IN PROCESSING 127

- SensorData result = null;
20 if (arduinoPort.available() > 0) {

- final String arduinoOutput = arduinoPort.readStringUntil(LINE_FEED);
- result = parseArduinoOutput(arduinoOutput);
- }
- return result;

25 }
-

- SensorData parseArduinoOutput(final String arduinoOutput) {
- SensorData result = null;
- if (arduinoOutput != null) {

30 final int[] data = int(split(trim(arduinoOutput), ','));
- if (data.length == 2)
- result = new SensorData(data[0] / 100.0, data[1] / 100.0);
- }
- return result;

35 }

setup() is one of Processing’s standard functions and has the same

meaning as the Arduino’s setup() method. The Processing runtime envi-

ronment calls it only once at application startup time and initializes

the application. With the size() method, we create a new screen having

a certain width and height (by the way, you can find excellent reference

material for all Processing classes online6).

After initializing the screen, we prepare the serial port communication.

First we print a list of all serial devices that are currently connected to

the computer using Serial.list(). Then we set the name of the serial port

we are going to use to the first list entry. This might be the wrong port,

so either you hard-code the name of your system’s serial port into the

code or you have a look at the list of serial ports and choose the right

one!

In line 5, we create a new Serial object that is bound to our application

(that’s what this is for). We use the serial port name we have from the

list of all serial ports and set the baud rate to 9600. If you’d like to

communicate faster, you have to change both the baud rate here and

in the Arduino sketch.

Finally, we tell the Serial object that we want to be notified of new serial

data only when a linefeed has been detected. Whenever we find a line-

feed, we know that a whole line of data was transmitted by the Arduino.

For our application, we chose an asynchronous programming model;

that is, we do not poll for new data in a loop but get notified whenever

6. http://processing.org/reference/

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://processing.org/reference/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=127

VISUALIZING SENSOR DATA 128

there’s new data on the serial port (to be concise, we want to be notified

only if a new linefeed was found). This way, we can change our applica-

tion’s state in real time and can prevent disturbing delays between the

arrival of data and graphics updates on the screen.

When new data arrives, serialEvent() gets called automatically and is

passed the serial port the data was found on. We have only one port,

so we can ignore this parameter. We try to read the current sensor data

using getSensorData(), and if we find some, we print them to the console

for debugging purposes and set the radius to the measured distance.

To make the visualization more appealing, we multiply the distance by

two, and we cut values bigger than 300 centimeters.

getSensorData()’s implementation is fairly simple. First it checks to see

if data is available on the serial port in line 20. This might look redun-

dant, because this method gets called only if data is available, but if

we’d like to reuse it in a synchronous context, the check is necessary.

Then we read all data until we find a linefeed character and pass the

result to parseArduinoOutput().

Parsing the output is easy because of Processing’s split() method. We

use it in line 30 to split the line of text we get from the Arduino at

the comma (trim() removes trailing and leading whitespace characters).

It returns a two-element array containing the textual representation

of two integer values. These strings are turned into integers afterward

using int(). Please note that in our case int() takes an array containing

two strings and returns an array containing two int values.

Because it’s possible that we have an incomplete line of text from the

Arduino (the serial communication might start at an arbitrary byte

position), we’d better check whether we actually got two sensor val-

ues. If yes, we create a new SensorData object and initialize it with the

temperature and distance (after we have divided them by 100).

That’s all we need to read the sensor data asynchronously from the

Arduino. From now on, sensor data will be read whenever it’s available,

and the global sensorData and radius variables will be kept up-to-date

automatically.

5.9 Visualizing Sensor Data

Now that the serial communication between our computer and the

Arduino works, let’s visualize the distance to the nearest object:

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=128

VISUALIZING SENSOR DATA 129

Download ultrasonic/InvertedSonar/InvertedSonar.pde

Line 1 void init_screen() {
- background(255);
- stroke(0);
- strokeWeight(1);
5 int[] radius_values = { 300, 250, 200, 150, 100, 50 };
- for (int r = 0; r < radius_values.length; r++) {
- final int current_radius = radius_values[r] * 2;
- ellipse(xCenter, yCenter, current_radius, current_radius);
- }

10 strokeWeight(10);
- }
-

- void draw() {
- init_screen();

15 int x = (int)(radius * Math.cos(degree * Math.PI / 180));
- int y = (int)(radius * Math.sin(degree * Math.PI / 180));
- point(xCenter + x, yCenter + y);
- if (++degree == 360)
- degree = 0;

20 }

init_screen() clears the screen and sets its background color to white in

line 2. It sets the drawing color to black using stroke(0) and sets the

width of the stroke used for drawing shapes to 1 pixel. Then it draws

six concentric circles around the screen’s center. These circles will help

us to see how far the nearest object is away from the PING))) sensor.

Finally, it sets the stroke width to 10, so we can visualize the sensor

with a single point that is 10 pixels wide.

Processing calls the draw() method automatically at a certain frame

rate (default is 60 frames per second), and it is the equivalent of the

Arduino’s loop() method. In our case, we initialize the screen and cal-

culate coordinates lying on a circle. The circle’s radius depends on the

distance we have from the Arduino, so we have a point that moves on

a circle. Its distance to the circle’s center depends on the data we mea-

sure with the PING))) sensor.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/ultrasonic/InvertedSonar/InvertedSonar.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=129

VISUALIZING SENSOR DATA 130

Some Fun with Sensors

With an ultrasonic sensor, you can easily detect whether some-
one is nearby. This automatically brings a lot of useful applica-
tions to mind. For example, you could open a door automati-
cally as soon as someone is close enough.

Alternatively, you can use advanced technology for pure fun.
What about some Halloween gimmicks like a pumpkin that
shoots silly string whenever you cross an invisible line?∗ It could
be a nice gag for your next party, and you can build it using the
PING))) sensor.†

∗. http://www.instructables.com/id/Arduino-controlled-Silly-String-shooter/

†. http://arduinofun.com/blog/2009/11/01/silly-string-shooting-spider-contest-entry/

So, we’ve seen that there are two types of sensor: digital and analog. You

have also learned how to connect both types of sensors to the Arduino

and how to transfer their measurements to your computer. Working

with these two different IO types is the basis for all physical computing,

and nearly every project—no matter how complex—is a derivation of the

things you have learned in this chapter.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.instructables.com/id/Arduino-controlled-Silly-String-shooter/
http://arduinofun.com/blog/2009/11/01/silly-string-shooting-spider-contest-entry/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=130

WHAT IF IT DOESN’T WORK? 131

5.10 What If It Doesn’t Work?

See Section 3.8, What If It Doesn’t Work?, on page 86, and make sure

that you have connected all parts properly to the breadboard. Take spe-

cial care with the PING))) and the TMP36 sensors, because you haven’t

worked with them before. Make sure you have connected the right pins

to the right connectors of the sensors.

In case of any errors with the software—no matter if it’s Processing

or Arduino code—download the code from the book’s website and see

whether it works.

If you have problems with serial communication, double-check whether

you have used the right serial port and the right Arduino type. It might

be that you have connected your Arduino to another port. In this case,

you have to change the index 0 in the statement arduinoPort = new

Serial(this, Serial.list()[0], 9600); accordingly. Also check whether the baud

rate in the Processing code and serial monitor matches the baud rate

you have used in the Arduino code. Make sure that the serial port is not

blocked by another application like a serial monitor window you forgot

to close, for example.

5.11 Exercises

• Build an automatic burglar alarm that shows a stop sign whenever

someone is too close to your computer.7 Make the application as

smart as possible. For example, it should have a small activation

delay to prevent it from showing a stop sign immediately when it’s

started.

• The speed of sound not only depends on the temperature but also

on humidity and atmospheric pressure. Do some research to find

the right formula and the right sensors.8 Use your research results

to make our circuit for measuring distances even more precise.

• Use an alternative technology for measuring distances, for exam-

ple, an infrared sensor. Try to find an appropriate sensor, read its

data sheet, and build a basic circuit so you can print the distance

to the nearest object to the serial port.

7. You can find a stop sign here: http://en.wikipedia.org/wiki/File:Stop_sign_MUTCD.svg.
8. Try http://parallax.com.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/File:Stop_sign_MUTCD.svg
http://parallax.com
http://books.pragprog.com/titles/msard/errata/add?pdf_page=131

Chapter 6

Building a Motion-Sensing Game
Controller

It’s astonishing how quickly we get used to new technologies. A decade

ago, not many people would have imagined that we’d use devices some-

day to unobtrusively follow our movements. Today it’s absolutely nor-

mal for us to physically turn our smartphones when we want to change

from portrait to landscape view. Even small children intuitively know

how to use motion-sensing controllers for video game consoles such as

Nintendo’s Wii. You can build your own motion-sensing devices using

an Arduino, and in this chapter you’ll learn how.

We’ll work with one of the most widespread motion-sensing devices: the

accelerometer. Accelerometers detect movement in all directions—they

notice if you move them up, down, forward, backward, to the left, or to

the right. Many popular gadgets such as the iPhone and the Nintendo

Wii controllers contain accelerometers. That’s why accelerometers are

cheap.

Both fun and serious projects can benefit from accelerometers. When

working with your computer, you certainly think of projects such as

game controllers or other input control devices. But you can also use

them when exercising or to control a real-life marble maze. You can also

use them to measure acceleration more or less indirectly, such as in a

car.

You will learn how to interpret accelerometer data correctly and how to

get the most accurate results. Then you’ll use an accelerometer to build

your own motion-sensing game controller, and you’ll implement a game

that uses it.

Download from Wow! eBook <www.wowebook.com>

WHAT YOU NEED 133

!

"

#

$

%

Figure 6.1: All the parts you need in this chapter

6.1 What You Need

1. A half-size breadboard or—even better—an Arduino Prototyping

shield with a tiny breadboard

2. An ADXL335 accelerometer

3. A pushbutton

4. A 10kΩ resistor

5. Some wires

6. An Arduino board such as the Uno, Duemilanove, or Diecimila

7. A USB cable to connect the Arduino to your computer

8. A 6 pin 0.1" standard header

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=133

WIRING UP THE ACCELEROMETER 134

Figure 6.2: An ADXL335 sensor on a breakout board

6.2 Wiring Up the Accelerometer

There are many different accelerometers, differing mainly in the num-

ber of spacial axes they support (usually two or three). We use the

ADXL335 from Analog Devices—it’s easy to use and widely available.1

In this section, we’ll connect the ADXL335 to the Arduino and create

a small demo program showing the raw data the sensor delivers. At

that point, we will have a quick look at the sensor’s specification and

interpret the data.

In Figure 6.2, you see a breakout board containing an ADXL335 sensor

on the right. The sensor is the small black integrated circuit (IC), and

the rest is just a carrier to allow connections. On the top, you see a 6

pin 0.1" standard header. The sensor has six connectors labeled GND,

Z, Y, X, 3V, and TEST. To use the sensor on a breadboard, solder the

standard header to the connectors. This not only makes it easier to

attach the sensor to a breadboard but also stabilizes the sensor, so it

1. http://www.analog.com/en/sensors/inertial-sensors/adxl335/products/product.html

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.analog.com/en/sensors/inertial-sensors/adxl335/products/product.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=134

BRINGING YOUR ACCELEROMETER TO LIFE 135

does not move accidentally. You can see the result on the left side of

the photo (note that the breakout board on the left is not the same as

on the right, but it’s very similar). Don’t worry if you’ve never soldered

before. In Section A.2, Learning How to Solder, on page 241, you can

learn how to do it.

You can ignore the connector labeled TEST, and the meaning of the

remaining connectors should be obvious. To power the sensor, connect

GND to the Arduino’s ground pin and 3V to the Arduino’s 3.3 volts

power supply. X, Y, and Z will then deliver acceleration data for the x-,

y-, and z-axes.

Like the TMP36 temperature sensor we used in Section 5.4, Increasing

Precision Using a Temperature Sensor, on page 113, the ADXL335 is an

analog device: it delivers results as voltages that have to be converted

into acceleration values. So, the X, Y, and Z connectors have to be

connected to three analog pins on the Arduino. We connect Z to analog

pin 0, Y to analog pin 1, and X to analog pin 2 (see Figure 6.3, on the

following page, and double-check the pin labels on the breakout board

you’re using!).

Now that we’ve connected the ADXL335 to the Arduino, let’s use it.

6.3 Bringing Your Accelerometer to Life

A pragmatic strategy to get familiar with a new device is to hook it up

and see what data it delivers. The following program reads input values

for all three axes and outputs them to the serial port:

Download MotionSensor/SensorTest/SensorTest.pde

const unsigned int X_AXIS_PIN = 2;

const unsigned int Y_AXIS_PIN = 1;

const unsigned int Z_AXIS_PIN = 0;

const unsigned int BAUD_RATE = 9600;

void setup() {

Serial.begin(BAUD_RATE);

}

void loop() {

Serial.print(analogRead(X_AXIS_PIN));

Serial.print(" ");

Serial.print(analogRead(Y_AXIS_PIN));

Serial.print(" ");

Serial.println(analogRead(Z_AXIS_PIN));

delay(100);

}

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/SensorTest/SensorTest.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=135

BRINGING YOUR ACCELEROMETER TO LIFE 136

Figure 6.3: How to connect an ADXL335 sensor to an Arduino

Our test program is as simple as it can be. We define constants for the

three analog pins and initialize the serial port in the setup() function.

Note that we did not set the analog pins to INPUT explicitly, because

that’s the default anyway.

In the loop() function, we constantly output the values we read from

the analog pins to the serial port. Open the serial monitor, and move

the sensor around a bit—tilt it around the different axes. You should

see an output similar to the following:

344 331 390

364 276 352

388 286 287

398 314 286

376 332 289

370 336 301

379 338 281

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=136

FINDING AND POLISHING EDGE VALUES 137

These values represent the data we get for the x-, y-, and z-axes. When

you move the sensor only around the x-axis, for example, you can see

that the first value changes accordingly. In the next section, we’ll take

a closer look at these values.

6.4 Finding and Polishing Edge Values

The physical world often is far from being perfect. That’s especially true

for the data many sensors emit, and accelerometers are no exception.

They slightly vary in the minimum and maximum values they generate,

and they often jitter a bit. They might change their output values even

though you haven’t moved them, or they might not change their output

values correctly. In this section, we’ll determine the sensor’s minimum

and maximum values, and we’ll flatten the jitter.

Finding the edge values of the sensor is easy, but it cannot be eas-

ily automated. You have to constantly read the sensor’s output while

moving it. Here’s a program that does the job:

Download MotionSensor/SensorValues/SensorValues.pde

const unsigned int X_AXIS_PIN = 2;

const unsigned int Y_AXIS_PIN = 1;

const unsigned int Z_AXIS_PIN = 0;

const unsigned int BAUD_RATE = 9600;

int min_x, min_y, min_z;

int max_x, max_y, max_z;

void setup() {

Serial.begin(BAUD_RATE);

min_x = min_y = min_z = 1000;

max_x = max_y = max_z = -1000;

}

void loop() {

const int x = analogRead(X_AXIS_PIN);

const int y = analogRead(Y_AXIS_PIN);

const int z = analogRead(Z_AXIS_PIN);

min_x = min(x, min_x); max_x = max(x, max_x);

min_y = min(y, min_y); max_y = max(y, max_y);

min_z = min(z, min_z); max_z = max(z, max_z);

Serial.print("x(");

Serial.print(min_x);

Serial.print("/");

Serial.print(max_x);

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/SensorValues/SensorValues.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=137

FINDING AND POLISHING EDGE VALUES 138

Serial.print("), y(");

Serial.print(min_y);

Serial.print("/");

Serial.print(max_y);

Serial.print("), z(");

Serial.print(min_z);

Serial.print("/");

Serial.print(max_z);

Serial.println(")");

}

We declare variables for the minimum and maximum values of all three

axes, and we initialize them with numbers that are definitely out of the

sensor’s range (-1000 and 1000). In the loop() function, we permanently

measure the acceleration of all three axes and adjust the minimum and

maximum values accordingly.

Compile and upload the sketch, then move the breadboard with the

sensor in all directions, and then tilt it around all axes. Move it slowly,

move it fast, tilt it slowly, and tilt it fast. Use long wires, and be careful

when moving and rotating the breadboard so you do not accidentally

loosen a connection.

After a short while the minimum and maximum values will stabilize,

and you should get output like this:

x(247/649), y(253/647), z(278/658)

Write down these values, because we need them later, and you’ll prob-

ably need them when you do your own sensor experiments.

Now let’s see how to get rid of the jitter. In principle, it is simple. Instead

of returning the acceleration data immediately, we collect the last read-

ings and return their average. This way, small changes will be ironed

out. The code looks as follows:

Download MotionSensor/Buffering/Buffering.pde

Line 1 const unsigned int X_AXIS_PIN = 2;
- const unsigned int Y_AXIS_PIN = 1;
- const unsigned int Z_AXIS_PIN = 0;
- const unsigned int NUM_AXES = 3;
5 const unsigned int PINS[NUM_AXES] = {
- X_AXIS_PIN, Y_AXIS_PIN, Z_AXIS_PIN
- };
- const unsigned int BUFFER_SIZE = 16;
- const unsigned int BAUD_RATE = 9600;

10

- int buffer[NUM_AXES][BUFFER_SIZE];
- int buffer_pos[NUM_AXES] = { 0 };

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Buffering/Buffering.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=138

FINDING AND POLISHING EDGE VALUES 139

-

- void setup() {
15 Serial.begin(BAUD_RATE);

- }
-

- int get_axis(const int axis) {
- delay(1);

20 buffer[axis][buffer_pos[axis]] = analogRead(PINS[axis]);
- buffer_pos[axis] = (buffer_pos[axis] + 1) % BUFFER_SIZE;
-

- long sum = 0;
- for (int i = 0; i < BUFFER_SIZE; i++)

25 sum += buffer[axis][i];
- return round(sum / BUFFER_SIZE);
- }
-

- int get_x() { return get_axis(0); }
30 int get_y() { return get_axis(1); }

- int get_z() { return get_axis(2); }
-

- void loop() {
- Serial.print(get_x());

35 Serial.print(" ");
- Serial.print(get_y());
- Serial.print(" ");
- Serial.println(get_z());
- }

As usual, we define some constants for the pins we use first. This time,

we also define a constant named NUM_AXES that contains the amount of

axes we are measuring. We also have an array named PINS that contains

a list of the pins we use. This helps us keep our code more generic later.

In line 11, we declare buffers for all axes. They will be filled with the

sensor data we measure, so we can calculate average values when we

need them. We have to store our current position in each buffer, so in

line 12, we define an array of buffer positions.

setup() only initializes the serial port, and the real action takes place in

the get_axis() function. It starts with a small delay to give the Arduino

some time to switch between analog pins; otherwise, you might get bad

data. Then it reads the acceleration for the axis we have passed and

stores it at the current buffer position belonging to the axis. It increases

the buffer position and sets it back to zero when the end of the buffer

has been reached. Finally, we return the average value of the data we

have gathered so far for the current axis.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=139

BUILDING YOUR OWN GAME CONTROLLER 140

Figure 6.4: Game controller with accelerometer and pushbutton

That’s the whole trick. To see its effect, leave the sensor untouched on

your desk, and run the program with different buffer sizes. If you do not

touch the sensor, you would not expect the program’s output to change.

But if you set BUFFER_SIZE to 1, you will quickly see small changes. They

will disappear as soon as the buffer is big enough.

The acceleration data we measure now is sufficiently accurate, and we

can finally build a game controller that will not annoy users because of

unexpected movements.

6.5 Building Your Own Game Controller

To build a full-blown game controller, we only need to add a button to

our breadboard. In Figure 6.4, you can see how to do it (please, double-

check the pin labels on your breakout board!).

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=140

BUILDING YOUR OWN GAME CONTROLLER 141

Figure 6.5: An Arduino prototyping shield

That’s how it looks inside a typical modern game controller. We will

not build a fancy housing for the controller, but we still should think

about ergonomics for a moment. Our current breadboard solution is

rather fragile, and you cannot really wave around the board when it’s

connected to the Arduino. Sooner or later you will disconnect some

wires, and the controller will stop working.

To solve this problem, you could try to attach the breadboard to the

Arduino using some rubber bands. That works, but it does not look

very pretty, and it’s still hard to handle.

A much better solution is to use an Arduino Prototyping shield (see

Figure 6.5). It is a pluggable breadboard that lets you quickly build cir-

cuit prototypes. The breadboard is surrounded by the Arduino’s pins,

so you no longer need long wires. Shields are a great way to enhance

an Arduino’s capabilities, and you can get shields for many different

purposes such as adding Ethernet, sound, displays, and so on.2

Using the Proto Shield our game controller looks as in Figure 6.6, on

the next page. Neat, eh?

2. At http://shieldlist.org/, you find a comprehensive list of Arduino shields.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://shieldlist.org/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=141

BUILDING YOUR OWN GAME CONTROLLER 142

Figure 6.6: The complete game controller on a Proto shield

Now that the hardware is complete, we need a final version of the game

controller software. It supports the button we have added, and it per-

forms the anti-jittering we have created in Section 6.4, Finding and

Polishing Edge Values, on page 137:

Download MotionSensor/Controller/Controller.pde

#include <Bounce.h>

const unsigned int BUTTON_PIN = 7;

const unsigned int X_AXIS_PIN = 2;

const unsigned int Y_AXIS_PIN = 1;

const unsigned int Z_AXIS_PIN = 0;

const unsigned int NUM_AXES = 3;

const unsigned int PINS[NUM_AXES] = {

X_AXIS_PIN, Y_AXIS_PIN, Z_AXIS_PIN

};

const unsigned int BUFFER_SIZE = 16;

const unsigned int BAUD_RATE = 19200;

int buffer[NUM_AXES][BUFFER_SIZE];

int buffer_pos[NUM_AXES] = { 0 };

Bounce button(BUTTON_PIN, 20);

void setup() {

Serial.begin(BAUD_RATE);

pinMode(BUTTON_PIN, INPUT);

}

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Controller/Controller.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=142

BUILDING YOUR OWN GAME CONTROLLER 143

int get_axis(const int axis) {

delay(1);

buffer[axis][buffer_pos[axis]] = analogRead(PINS[axis]);

buffer_pos[axis] = (buffer_pos[axis] + 1) % BUFFER_SIZE;

long sum = 0;

for (int i = 0; i < BUFFER_SIZE; i++)

sum += buffer[axis][i];

return round(sum / BUFFER_SIZE);

}

int get_x() { return get_axis(0); }

int get_y() { return get_axis(1); }

int get_z() { return get_axis(2); }

void loop() {

Serial.print(get_x());

Serial.print(" ");

Serial.print(get_y());

Serial.print(" ");

Serial.print(get_z());

Serial.print(" ");

if (button.update())

Serial.println(button.read() == HIGH ? "1" : "0");

else

Serial.println("0");

}

As in Section 3.7, Building a Dice Game, on page 80, we use the Bounce

class to debounce the button. The rest of the code is pretty much stan-

dard, and the only thing worth mentioning is that we use a 19200 baud

rate to transfer the controller data sufficiently fast.

Compile and upload the code, open the serial terminal, and play around

with the controller. Move it, press the button sometimes, and it should

output something like the following:

324 365 396 0

325 364 397 0

325 364 397 1

325 364 397 0

325 365 397 0

325 365 397 1

326 364 397 0

A homemade game controller is nice, but wouldn’t it be even nicer if we

also had a game that supports it? That’s what we will build in the next

section.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=143

WRITING YOUR OWN GAME 144

6.6 Writing Your Own Game

To test our game controller, we will program a simple Breakout3 clone

in Processing. The game’s goal is to destroy all bricks in the upper half

of the screen with a ball. You can control the ball with the paddle at the

bottom of the screen, and you can tilt the controller around the x-axis

to move the paddle horizontally. It’ll look something like this:

Although this is not a book about game programming, it will not hurt

to take a look at the game’s innards, especially because game program-

ming with Processing is really pure fun! Download the code from the

book’s website4 and play the game before you dive into the code.

Because we will connect our game controller to the serial port, we have

to initialize it:

Download MotionSensor/Game/Game.pde

import processing.serial.*;

Serial arduinoPort;

3. http://en.wikipedia.org/wiki/Breakout_%28arcade_game%29

4. http://www.pragprog.com/titles/msard

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://en.wikipedia.org/wiki/Breakout_%28arcade_game%29
http://www.pragprog.com/titles/msard
http://books.pragprog.com/titles/msard/errata/add?pdf_page=144

WRITING YOUR OWN GAME 145

Then we define some constants that will help us to customize the game

easily:

Download MotionSensor/Game/Game.pde

final int COLUMNS = 7;

final int ROWS = 4;

final int BALL_RADIUS = 8;

final int BALL_DIAMETER = BALL_RADIUS * 2;

final int MAX_VELOCITY = 8;

final int PADDLE_WIDTH = 60;

final int PADDLE_HEIGHT = 15;

final int BRICK_WIDTH = 40;

final int BRICK_HEIGHT = 20;

final int MARGIN = 10;

final int WIDTH = COLUMNS * BRICK_WIDTH + 2 * MARGIN;

final int HEIGHT = 300;

final int X_AXIS_MIN = 252;

final int X_AXIS_MAX = 443;

final int LINE_FEED = 10;

final int BAUD_RATE = 19200;

Most of these values should be self-explanatory—they define the size

of the objects that appear on the screen. For example, PADDLE_WIDTH is

width of the paddle measured in pixels, and COLUMNS and ROWS set

the layout of the bricks. You should replace X_AXIS_MIN and X_AXIS_MAX

the minimum and maximum values you measured for your sensor in

Section 6.4, Finding and Polishing Edge Values, on page 137.

Next we choose how to represent the game’s objects:

Download MotionSensor/Game/Game.pde

int px, py;

int vx, vy;

int xpos = WIDTH / 2;

int[][] bricks = new int[COLUMNS][ROWS];

We store the balls’ current x and y coordinates in px and py. For its

current x and y velocity, we use vx and vy. We store the paddle’s x

position in xpos.

bricks is a two-dimensional array and contains the current state of the

bricks on the screen. If an array element is set to 1, the corresponding

brick is still on the screen. 0 means that it has been destroyed already.

Finally, we need to store the possible states of the game:

Download MotionSensor/Game/Game.pde

boolean buttonPressed = false;

boolean paused = true;

boolean done = true;

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=145

WRITING YOUR OWN GAME 146

Unsurprisingly, we set buttonPressed to true when the button on the con-

troller is pressed. Otherwise, it is false. paused tells you whether the

game is currently paused, and done is true when the current level is

done, that is, when all bricks have been destroyed.

Every Processing program needs a setup() function, and here is ours:

Download MotionSensor/Game/Game.pde

void setup() {

size(WIDTH, HEIGHT);

noCursor();

textFont(loadFont("Verdana-Bold-36.vlw"));

initGame();

println(Serial.list());

arduinoPort = new Serial(this, Serial.list()[0], BAUD_RATE);

arduinoPort.bufferUntil(LINE_FEED);

}

void initGame() {

initBricks();

initBall();

}

void initBricks() {

for (int x = 0; x < COLUMNS; x++)

for (int y = 0; y < ROWS; y++)

bricks[x][y] = 1;

}

void initBall() {

px = width / 2;

py = height / 2;

vx = int(random(-MAX_VELOCITY, MAX_VELOCITY));

vy = -2;

}

The setup() function initializes the screen, hides the mouse pointer with

noCursor(), and sets the font that we will use to output messages (create

the font using Processing’s Tools > Create Font menu). Then we call

initGame() to initialize the bricks array and the ball’s current position

and velocity. To make things more interesting, the velocity in x direction

is set to a random value. We set the velocity for the y direction to -2,

which makes the ball fall at a reasonable speed.

Now that everything is initialized, we can implement the game’s main

loop. Processing’s draw() method is a perfect place:5

5. http://processing.org/reference/ has excellent documentation for all Processing classes.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://processing.org/reference/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=146

WRITING YOUR OWN GAME 147

Download MotionSensor/Game/Game.pde

void draw() {

background(0);

stroke(255);

strokeWeight(3);

done = drawBricks();

if (done) {

paused = true;

printWinMessage();

}

if (paused)

printPauseMessage();

else

updateGame();

drawBall();

drawPaddle();

}

We clear the screen and paint it black using background(). Then we set

the stroke color to white and the stroke weight to three pixels. After

that we draw the remaining bricks. If no bricks are left, we pause the

game and print a “You Win!” message.

If the game is paused, we print a corresponding message, and if it’s not,

we update the game’s current state. Finally, we draw the ball and the

paddle at their current positions using the following functions:

Download MotionSensor/Game/Game.pde

boolean drawBricks() {

boolean allEmpty = true;

for (int x = 0; x < COLUMNS; x++) {

for (int y = 0; y < ROWS; y++) {

if (bricks[x][y] > 0) {

allEmpty = false;

fill(0, 0, 100 + y * 8);

rect(

MARGIN + x * BRICK_WIDTH,

MARGIN + y * BRICK_HEIGHT,

BRICK_WIDTH,

BRICK_HEIGHT

);

}

}

}

return allEmpty;

}

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=147

WRITING YOUR OWN GAME 148

void drawBall() {

strokeWeight(1);

fill(128, 0, 0);

ellipse(px, py, BALL_DIAMETER, BALL_DIAMETER);

}

void drawPaddle() {

int x = xpos - PADDLE_WIDTH / 2;

int y = height - (PADDLE_HEIGHT + MARGIN);

strokeWeight(1);

fill(128);

rect(x, y, PADDLE_WIDTH, PADDLE_HEIGHT);

}

As you can see, the ball is nothing but a circle, and the bricks and the

paddle are simple rectangles. To make them look more appealing, we

give them a nice border.

Printing the game’s messages is easy, too:

Download MotionSensor/Game/Game.pde

void printWinMessage() {

fill(255);

textSize(36);

textAlign(CENTER);

text("YOU WIN!", width / 2, height * 2 / 3);

}

void printPauseMessage() {

fill(128);

textSize(16);

textAlign(CENTER);

text("Press Button to Continue", width / 2, height * 5 / 6);

}

The update() function is very important, because it updates the game’s

state—it checks for collisions, moves the ball, and so on:

Download MotionSensor/Game/Game.pde

void updateGame() {

if (ballDropped()) {

initBall();

paused = true;

} else {

checkBrickCollision();

checkWallCollision();

checkPaddleCollision();

px += vx;

py += vy;

}

}

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=148

WRITING YOUR OWN GAME 149

When the player does not hit the ball with the paddle and it drops out

of the playfield, the game stops, and the user is allowed to continue

after pressing the button. In the final game, you’d decrease some kind

of a life counter and print a “Game Over” message when the counter

reaches zero.

If the ball is still in play, we check for various collisions. We check if the

ball has hit one or more bricks, if it has hit a wall, or if it has hit the

paddle. Then we calculate the ball’s new position. The collision checks

look complicated, but they are fairly simple and only compare the ball’s

coordinates with the coordinates of all the other objects on the screen:

Download MotionSensor/Game/Game.pde

boolean ballDropped() {

return py + vy > height - BALL_RADIUS;

}

boolean inXRange(final int row, final int v) {

return px + v > row * BRICK_WIDTH &&

px + v < (row + 1) * BRICK_WIDTH + BALL_DIAMETER;

}

boolean inYRange(final int col, final int v) {

return py + v > col * BRICK_HEIGHT &&

py + v < (col + 1) * BRICK_HEIGHT + BALL_DIAMETER;

}

void checkBrickCollision() {

for (int x = 0; x < COLUMNS; x++) {

for (int y = 0; y < ROWS; y++) {

if (bricks[x][y] > 0) {

if (inXRange(x, vx) && inYRange(y, vy)) {

bricks[x][y] = 0;

if (inXRange(x, 0)) // Hit top or bottom of brick.

vy = -vy;

if (inYRange(y, 0)) // Hit left or right side of brick.

vx = -vx;

}

}

}

}

}

void checkWallCollision() {

if (px + vx < BALL_RADIUS || px + vx > width - BALL_RADIUS)

vx = -vx;

if (py + vy < BALL_RADIUS || py + vy > height - BALL_RADIUS)

vy = -vy;

}

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=149

WRITING YOUR OWN GAME 150

More Fun with Motion-Sensing Technologies

Since motion-sensing technologies became popular and
cheap, people have used them to create some unbelievably
cool and funny projects. A hilarious example is the Brushduino.∗

A father built it to encourage his young children to brush their
teeth properly. Its main component—apart from an Arduino—
is a three-axis accelerometer. The Brushduino indicates which
section of the mouth to brush next using LEDs, and whenever
the child has successfully finished a section, it plays some music
from the Super Mario Brothers video game.

But you do not need an accelerometer to detect motion and
to create cool new electronic toys. An ordinary tilt sensor is suf-
ficient to build an interactive hacky-sack game, for example.†

This hacky-sack blinks and beeps whenever you kick it, and
after 30 successful kicks, it plays a song.

∗. http://camelpunch.blogspot.com/2010/02/blog-post.html

†. http://blog.makezine.com/archive/2010/03/arduino-powered_hacky-sack_game.html

void checkPaddleCollision() {

final int cx = xpos;

if (py + vy >= height - (PADDLE_HEIGHT + MARGIN + 6) &&

px >= cx - PADDLE_WIDTH / 2 &&

px <= cx + PADDLE_WIDTH / 2)

{

vy = -vy;

vx = int(

map(

px - cx,

-(PADDLE_WIDTH / 2), PADDLE_WIDTH / 2,

-MAX_VELOCITY,

MAX_VELOCITY

)

);

}

}

Note that the collision checks also change the velocity of the ball if

necessary.

Now that the ball is moving, it’d be only fair to move the paddle, too.

As said before, you control the paddle by tilting the game controller

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://camelpunch.blogspot.com/2010/02/blog-post.html
http://blog.makezine.com/archive/2010/03/arduino-powered_hacky-sack_game.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=150

WRITING YOUR OWN GAME 151

around the x-axis. Here’s the code that gets the controller data via the

serial port:

Download MotionSensor/Game/Game.pde

Line 1 void serialEvent(Serial port) {
- final String arduinoData = port.readStringUntil(LINE_FEED);
-

- if (arduinoData != null) {
5 final int[] data = int(split(trim(arduinoData), ' '));
- if (data.length == 4) {
- buttonPressed = (data[3] == 1);
- if (buttonPressed) {
- paused = !paused;

10 if (done) {
- done = false;
- initGame();
- }
- }

15

- if (!paused)
- xpos = int(map(data[0], X_AXIS_MIN, X_AXIS_MAX, 0, WIDTH));
- }
- }

20 }

Processing calls the serialEvent() function whenever new data is avail-

able on the serial port. The controller sends its data line by line. Each

line contains the current acceleration of the x-, y-, and z-axes and the

current state of the button. It separates all attributes by blanks. So, in

serialEvent(), we read the new line, split it at the blank characters, and

convert the resulting strings into int values. This all happens in line 5.

We check whether we actually got all four attributes, and then we see

whether the player has pushed the button on the game controller. If

yes, we toggle the pause state: if the game currently is in pause mode,

we continue the game; otherwise, we pause it. Also, we check whether

the game has been finished. If yes, we start a new game.

Finally, we read the current X acceleration in line 17 and map it to the

possible x positions of our paddle. That’s really all we have to do to

move the paddle using our own game controller. Also, it doesn’t matter

if you use the controller to control a game or a completely different type

of software. You only have to read four integer values from the serial

port when you need them.

In this section, you have learned much more about game program-

ming than about Arduino programming or hardware. But you should

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=151

MORE PROJECTS 152

Creating Games with the Arduino

You can use the Arduino to build more than your own cool
game controllers. You can also use it to build some cool games.
With the right extension shields, you can even turn an Arduino
into a powerful gaming console.∗ It’s pricey, but suddenly your
Arduino has a 320x200 pixel OLED touch screen, an analog
stick, two buttons, and even an vibration motor for force feed-
back effects.

While looking for a cheaper solution, someone built a Super
Mario Bros clone with minimal hardware requirements.† It’s a
perfect example of the unbelievable creativity that the Arduino
sets free.

∗. http://antipastohw.blogspot.com/2009/02/getting-started-with-gamepack-in-3.html

†. http://blog.makezine.com/archive/2010/03/super_mario_brothers_with_an_arduino.html

have also learned that it’s easy to integrate a well-designed electronics

project into your regular software projects. We carefully analyzed the

analog data returned by the accelerometer, and then we eliminated all

unwanted jitter. This is a technique you’ll use often in your electronics

projects, and we will use it again in the next chapter.

6.7 More Projects

If you keep your eyes open, you’ll quickly find many more applications

for accelerometers than you might imagine. Here’s a small collection of

both commercial and free products:

• Nike’s iPod Sport Kit supports you in your daily exercise, and it’s

based on an accelerometer, too. You can learn a lot from its inner

workings.6

• It’s a lot of fun to create a marble maze computer game and control

it using the game controller we build in this chapter. How much

more fun will it be to build a real marble maze?7

• In this chapter, we have measured only direct acceleration; that

is, we usually have the accelerometer in our hand and move it.

6. http://www.runnerplus.com/read/1-how_does_the_nike_ipod_sport_kit_accelerometer_work/

7. http://www.electronicsinfoline.com/New/Everything_Else/marble-maze-that-is-remote-controlled-using-an-accelerometer.html

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://antipastohw.blogspot.com/2009/02/getting-started-with-gamepack-in-3.html
http://blog.makezine.com/archive/2010/03/super_mario_brothers_with_an_arduino.html
http://www.runnerplus.com/read/1-how_does_the_nike_ipod_sport_kit_accelerometer_work/
http://www.electronicsinfoline.com/New/Everything_Else/marble-maze-that-is-remote-controlled-using-an-accelerometer.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=152

WHAT IF IT DOESN’T WORK? 153

But you can also build many interesting projects that measure

indirect acceleration, such as when you are driving a car.8

6.8 What If It Doesn’t Work?

All advice from Section 5.10, What If It Doesn’t Work?, on page 131 also

applies to the project in this section. Still, we have some special items

such as the protoshield. Make sure that it sits correctly on top of the

Arduino and that none of its connectors accidentally slipped past its

socket. Sometimes the headers are out of shape, so it might happen.

Check if you have soldered the pin header correctly to the breakout

board. Use a magnifying glass and study every single solder joint care-

fully. Did you use enough solder? Did you use too much and connect

two joints?

6.9 Exercises

• Create your own computer mouse using the ADXL335 accelerom-

eter. It should work in free air, and it should emit the current

acceleration around the x- and y-axes. It should also have a left

button and a right button. Write some Processing code (or per-

haps code in a programming language of your choice?) to control

a mouse pointer on the screen.

8. http://www.dimensionengineering.com/appnotes/Gmeter/Gmeter.htm

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.dimensionengineering.com/appnotes/Gmeter/Gmeter.htm
http://books.pragprog.com/titles/msard/errata/add?pdf_page=153

Chapter 7

Tinkering with the Wii Nunchuk
One of the most entertaining electronic activities is tinkering: taking an

existing product and turning it into something different or using it for

an unintended purpose. Sometimes you have to open the product and

void its warranty; other times you can safely make it part of your own

project.

In this chapter, you’ll learn how to hijack a Nintendo Nunchuk con-

troller. It’s a perfect candidate for tinkering: it comes with a three-axis

accelerometer, an analog joystick, and two buttons, and it is very cheap

(less than $20 at the time of this writing). Even better: because of its

good design and its easy-to-access connectors, you can integrate it into

your own projects surprisingly easily.

We’ll use an ordinary Nunchuk controller and transfer the data it emits

to our computer using an Arduino. You’ll learn how to wire it to the

Arduino; how to write software that reads the controller’s current state;

and how to move, rotate, and scale a 3D cube on the screen using your

Nunchuk. You don’t even need a Nintendo Wii to do any of this—you

only need a Nunchuk controller.

7.1 What You Need

• An Arduino board such as the Uno, Duemilanove, or Diecimila

• A USB cable to connect the Arduino to your computer

• A Nintendo Nunchuk controller

• Four wires

Download from Wow! eBook <www.wowebook.com>

WIRING A WII NUNCHUK 155

Analog Stick

C Button
Z Button

Connector

Figure 7.1: A Nintendo Nunchuk controller

7.2 Wiring a Wii Nunchuk

Wiring a Nunchuk to an Arduino really is a piece of cake. You don’t

have to open the Nunchuk or modify it in any way. You only have to

put four wires into its connector and then connect the wires to the

Arduino. Here’s the pinout of a Nunchuk plug:

It has six connectors, but only four of them are active: GND, 3.3 V,

Data, and Clock. Put a wire into each connector, and then connect the

wires to the Arduino. Connect the data wire to analog pin 4 and the

clock wire to analog pin 5. The GND wire has to be connected to the

Arduino’s ground pin and the 3.3 V wire belongs to the Arduino’s 3.3 V

pin.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=155

TALKING TO A NUNCHUK 156

Figure 7.2: How to connect a Nunchuk to an Arduino

That’s really all you have to do to connect a Nunchuk controller to an

Arduino. In the next section, you’ll see that the two wires connected to

analog pins 4 and 5 are all we need to interface with the controller.

7.3 Talking to a Nunchuk

No official documentation shows how a Nunchuk works internally or

how you can use it in a non-Wii environment. But some smart hackers

and makers on the Internet invested a lot of time to reverse-engineer

what’s happening inside the controller.1

All in all, it’s really simple, because the Nunchuk uses the Two-Wire

Interface (TWI), also known as I
2C (Inter-Integrated Circuit) protocol.2

It enables devices to communicate via a master/slave data bus using

only two wires. You transmit data on one wire (DATA), while the other

synchronizes the communication (CLOCK).

The Arduino IDE comes with a library named Wire that implements the

I
2C protocol. It expects the data line to be connected to analog pin 4

and the clock line to analog pin 5. We’ll use it shortly to communicate

with the Nunchuk, but before that, we’ll have a look at the commands

the controller understands.3

1. http://www.windmeadow.com/node/42

2. http://en.wikipedia.org/wiki/I2c

3. At http://todbot.com/blog/2010/09/25/softi2cmaster-add-i2c-to-any-arduino-pins/, you can

find a library that allows you to use any pair of pins for I
2C communication.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.windmeadow.com/node/42
http://en.wikipedia.org/wiki/I2c
http://todbot.com/blog/2010/09/25/softi2cmaster-add-i2c-to-any-arduino-pins/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=156

TALKING TO A NUNCHUK 157

Improve People’s Life with Tinkering

Because of its popularity, peripheral equipment for modern
game consoles often is unbelievably cheap. Also, it’s no longer
limited to classic controllers; you can buy things like snowboard
simulators or cameras. So, it comes as no surprise that creative
people have built many interesting projects using hardware
that was originally built for playing games.

An impressive and useful tinkering project is the Eyewriter.∗ It
uses the PlayStation Eye (a camera for Sony’s PlayStation 3) to
track the movement of human eyes.

A team of hackers built it to enable their paralyzed friend to
draw graffiti using his eyes. Because of a disease, this friend, an
artist, is almost completely physically paralyzed and can only
move his eyes. With the Eyewriter, he is able to create amazing
artwork again.

It’s not an Arduino project but definitely worth a look.

∗. http://www.eyewriter.org/

To be honest, the Nunchuk understands only a single command: “Give

me all your data.” Whenever it receives this command, it returns six

bytes that have the following meaning (see the data structure in Fig-

ure 7.3, on the following page):

• Byte 1 contains the analog stick’s x-axis value, and in byte 2 you’ll

find the stick’s y-axis value. Both are 8-bit numbers and range

from about 29 to 225.

• Acceleration values for the x-, y-, and z-axes are three 10-bit num-

bers. Bytes 3, 4, and 5 contain their eight most significant bits.

You can find the missing two bits for each of them in byte 6.

• Byte 6 has to be interpreted bit-wise. Bit 0 (the least significant

bit) contains the status of the Z-button. It’s 0 if the button was

pressed; otherwise, it is 1. Bit 1 contains the C-button’s status.

The remaining six bits contain the missing least significant bits of

the acceleration values. Bits 2 and 3 belong to the X axis, bits 4

and 5 belong to Y, and bits 6 and 7 belong to Z.

Now that we know how to interpret the data we get from the Nunchuk,

we can start to build a Nunchuk class to control it.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.eyewriter.org/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=157

TALKING TO A NUNCHUK 158

7 6 5 4 3 2 1 0

Joystick x position

Joystick y position

X acceleration bits 9..2

Y acceleration bits 9..2

Z acceleration bits 9..2

Bit

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6 Z accel.
bits 1..0

Y accel.
bits 1..0

X accel.
bits 1..0 status

ZC
status

Figure 7.3: The Nunchuk always returns 6 bytes of data.

Scientific Applications Using Wii Equipment

Because of the Wii’s accuracy and cheap price, many sci-
entists use Wii equipment for other things than gaming. Some
hydrologists use it for measuring evaporation on a body of
water.∗ Usually, you’d need equipment costing more than $500
to do that.

Some doctors at the University of Melbourne had a closer look
at the Wii Balance Board, because they were looking for a
cheap device to help stroke victims recover.† They’ve published
a scientific paper verifying that the board’s data is clinically
comparable to that of a lab-grade “force platform” for a tiny
fraction of the costs.

∗. http://www.wired.com/wiredscience/2009/12/wiimote-science/

†. http://www.newscientist.com/article/mg20527435.300-wii-board-helps-physios-strike-a-balance-after-strokes.html

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.wired.com/wiredscience/2009/12/wiimote-science/
http://www.newscientist.com/article/mg20527435.300-wii-board-helps-physios-strike-a-balance-after-strokes.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=158

BUILDING A NUNCHUK CLASS 159

7.4 Building a Nunchuk Class

The interface of our Nunchuk class (and the main part of its implemen-

tation) looks as follows:

Download MotionSensor/NunchukDemo/nunchuk.h

Line 1 #ifndef __NUNCHUK_H__
- #define __NUNCHUK_H__
-

- #define NUNCHUK_BUFFER_SIZE 6
5

- class Nunchuk {
- public:
- void initialize();
- bool update();

10

- int joystick_x() const { return _buffer[0]; }
- int joystick_y() const { return _buffer[1]; }
-

- int x_acceleration() const {
15 return ((int)(_buffer[2]) << 2) | ((_buffer[5] >> 2) & 0x03);

- }
-

- int y_acceleration() const {
- return ((int)(_buffer[3]) << 2) | ((_buffer[5] >> 4) & 0x03);

20 }
-

- int z_acceleration() const {
- return ((int)(_buffer[4]) << 2) | ((_buffer[5] >> 6) & 0x03);
- }

25

- bool z_button() const { return !(_buffer[5] & 0x01); }
- bool c_button() const { return !(_buffer[5] & 0x02); }
-

- private:
30 void request_data();

- char decode_byte(const char);
-

- unsigned char _buffer[NUNCHUK_BUFFER_SIZE];
- };

35

- #endif

This small C++ class is all you need to use a Nunchuk controller with

your Arduino. It starts with a double-include prevention mechanism: it

checks whether a preprocessor macro named __NUNCHUK_H__ has been

defined already using #ifndef. If it hasn’t been defined, we define it and

continue with the declaration of the Nunchuk class. Otherwise, the pre-

processor skips the declaration, so you can safely include this header

file more than once in your application.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/NunchukDemo/nunchuk.h
http://books.pragprog.com/titles/msard/errata/add?pdf_page=159

BUILDING A NUNCHUK CLASS 160

In line 4, we create a constant for the size of the array we need to store

the data the Nunchuk returns. We define this array in line 33, and in

this case, we define the constant using the preprocessor instead of the

const keyword, because array constants must be known at compile time

in C++.

Then the actual declaration of the Nunchuk class begins. To initiate the

communication channel between Arduino and Nunchuk, you have to

invoke the initialize() method once. Then you call update() whenever you

want the Nunchuk to send new data. You’ll see the implementation of

these two methods shortly.

We have public methods for getting all attributes the Nunchuk returns:

the x and y positions of the analog stick, the button states, and the

acceleration values of the x-, y-, and z-axes. All these methods operate

on the raw data you can find in the buffer in line 33. Their implemen-

tation is mostly trivial and requires only a single line of code. Only the

assembly of the 10-bit acceleration values needs some tricky bit opera-

tions (see Section B.2, Bit Operations, on page 249).

At the end of the class declaration you find two private helper methods

we need to implement: initialize() and update():

Download MotionSensor/NunchukDemo/nunchuk.cpp

Line 1 #include <WProgram.h>
- #include <Wire.h>
- #include "nunchuk.h"
-

5 #define NUNCHUK_DEVICE_ID 0x52
-

- void Nunchuk::initialize() {
- Wire.begin();
- Wire.beginTransmission(NUNCHUK_DEVICE_ID);

10 Wire.send(0x40);
- Wire.send(0x00);
- Wire.endTransmission();
- update();
- }

15

- bool Nunchuk::update() {
- delay(1);
- Wire.requestFrom(NUNCHUK_DEVICE_ID, NUNCHUK_BUFFER_SIZE);
- int byte_counter = 0;

20 while (Wire.available() && byte_counter < NUNCHUK_BUFFER_SIZE)
- _buffer[byte_counter++] = decode_byte(Wire.receive());
- request_data();
- return byte_counter == NUNCHUK_BUFFER_SIZE;
- }

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/NunchukDemo/nunchuk.cpp
http://books.pragprog.com/titles/msard/errata/add?pdf_page=160

BUILDING A NUNCHUK CLASS 161

Arduino Nunchuk

6 data bytes

Handshake (0x40, 0x00)

Request new data (0x00)

6 data bytes
} repeat

Figure 7.4: Message flow between Arduino and Nunchuk

25

- void Nunchuk::request_data() {
- Wire.beginTransmission(NUNCHUK_DEVICE_ID);
- Wire.send(0x00);
- Wire.endTransmission();

30 }
-

- char Nunchuk::decode_byte(const char b) {
- return (b ^ 0x17) + 0x17;
- }

After including all libraries we need, we define the NUNCHUK_DEVICE_ID

constant. I
2C is a master/slave protocol; in our case, the Arduino will

be the master, and the Nunchuk will be the slave. The Nunchuk regis-

ters itself at the data bus using a certain ID (0x52), so we can address

it whenever we need something.

In initialize(), we establish the connection between the Arduino and the

Nunchuk by sending a handshake. In line 8, we call Wire’s begin()

method, so the Arduino joins the I
2C bus as a master (if you pass

begin() an ID, it joins the bus as a slave having this ID). Then we begin

a new transmission to the device identified by NUNCHUCK_DEVICE_ID: our

Nunchuk.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=161

USING OUR NUNCHUK CLASS 162

We send two bytes (0x40 and 0x00) to the Nunchuk, and then we end

the transmission. This is the whole handshake procedure, and now

we can ask the Nunchuk for its current status by calling update(). In

Figure 7.4, on the preceding page, we see the message flow between an

Arduino and a Nunchuk.

update() first pauses for a millisecond to let things settle a bit. Then

we request six bytes from the Nunchuk, calling Wire.requestFrom(). This

does not actually return the bytes, but we have to read them in a loop

and fill our buffer. Wire.available() returns the number of bytes that are

available on the data bus, and Wire.receive() returns the current byte.

We cannot use the bytes we get from the Nunchuk directly, because the

controller obfuscates them a bit. “Decrypting” them is easy as you can

see in decode_byte().

Finally, we call request_data() to tell the Nunchuk to prepare new data.

It transmits a single zero byte to the Nunchuk, which means “prepare

the next six bytes.”

Before we actually use our Nunchuk class in the next section, take a look

at the documentation of the Wire library. In the Arduino IDE’s menu,

choose Help > Reference, and click the Libraries link.

7.5 Using Our Nunchuk Class

Let’s use the Nunchuk class to see what data the controller actually

returns:

Download MotionSensor/NunchukDemo/NunchukDemo.pde

#include <Wire.h>

#include "nunchuk.h"

const unsigned int BAUD_RATE = 19200;

Nunchuk nunchuk;

void setup() {

Serial.begin(BAUD_RATE);

nunchuk.initialize();

}

void loop() {

if (nunchuk.update()) {

Serial.print(nunchuk.joystick_x());

Serial.print(" ");

Serial.print(nunchuk.joystick_y());

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/NunchukDemo/NunchukDemo.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=162

ROTATING A COLORFUL CUBE 163

Serial.print(" ");

Serial.print(nunchuk.x_acceleration());

Serial.print(" ");

Serial.print(nunchuk.y_acceleration());

Serial.print(" ");

Serial.print(nunchuk.z_acceleration());

Serial.print(" ");

Serial.print(nunchuk.z_button());

Serial.print(" ");

Serial.println(nunchuk.c_button());

}

}

No big surprises here: we define a global Nunchuk object and initial-

ize it in the setup() function. In loop(), we call update() to request the

controller’s current status and output all attributes to the serial port.

Compile and upload the program, and then open the serial monitor and

play around with the Nunchuk. Move the stick, move the controller, and

press the buttons, and you should see something like this:

46 109 428 394 651 1 1

49 132 414 380 656 1 0

46 161 415 390 651 1 0

46 184 429 377 648 1 0

53 199 404 337 654 1 0

53 201 406 359 643 1 0

You have successfully connected a Nunchuk controller to your Arduino.

It really isn’t rocket science, and in the next section you’ll learn how to

control objects on the screen using the Nunchuk.

7.6 Rotating a Colorful Cube

The Nunchuk was primarily designed for controlling video games by

turning physical movements in the real world into virtual movements

on a computer screen. So, in this section, we’ll do exactly that and

manipulate a 3D cube on the screen with a Nunchuk (see a screenshot

in Figure 7.5, on the next page).

Before we start to draw the cube and use the controller, we have to talk

about an aspect we have ignored until now: jitter. Like the game con-

troller we built in Chapter 6, Building a Motion-Sensing Game Controller,

on page 132, the Nunchuk acceleration data has to be stabilized. We

use the same technique as in Section 6.4, Finding and Polishing Edge

Values, on page 137, but this time we’ll implement it in our Processing

code instead of on the Arduino:

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=163

ROTATING A COLORFUL CUBE 164

Figure 7.5: Controlling a Rotating Cube with a Nunchuk

Download MotionSensor/Cube/SensorDataBuffer.pde

Line 1 class SensorDataBuffer {
- private int _maxSamples;
- private int _bufferIndex;
- private int[] _xBuffer;
5 private int[] _yBuffer;
- private int[] _zBuffer;
-

- public SensorDataBuffer(final int maxSamples) {
- _maxSamples = maxSamples;

10 _bufferIndex = 0;
- _xBuffer = new int[_maxSamples];
- _yBuffer = new int[_maxSamples];
- _zBuffer = new int[_maxSamples];
- }

15

- public void addData(final int x, final int y, final int z) {
- if (_bufferIndex >= _maxSamples)
- _bufferIndex = 0;
-

20 _xBuffer[_bufferIndex] = x;
- _yBuffer[_bufferIndex] = y;
- _zBuffer[_bufferIndex] = z;
- _bufferIndex++;
- }

25

- public int getX() {
- return getAverageValue(_xBuffer);
- }
-

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Cube/SensorDataBuffer.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=164

ROTATING A COLORFUL CUBE 165

30 public int getY() {
- return getAverageValue(_yBuffer);
- }
-

- public int getZ() {
35 return getAverageValue(_zBuffer);

- }
-

- private int getAverageValue(final int[] buffer) {
- int sum = 0;

40 for (int i = 0; i < _maxSamples; i++)
- sum += buffer[i];
- return (int)(sum / _maxSamples);
- }
- }

SensorDataBuffer encapsulates three buffers for the acceleration data of

the x-, y-, and z-axes. It also stores a buffer index that contains the

current position in the three buffers. The constructor beginning in line

8 expects the maximum number of samples (the buffer size) and initial-

izes the buffers and the index.

The addData() method takes new values for all three space axes and

appends them to their corresponding buffers. If the buffer runs full,

the oldest buffer entries will be dropped. With getX(), getY(), and getZ(),

you can request the current average acceleration value for each axis.

All three methods delegate their work to the getAverageValue() method.

So, now let’s start and work toward drawing a 3D cube. First we ini-

tialize all things related to the serial communication with the Arduino

controlling the Nunchuk:

Download MotionSensor/Cube/Cube.pde

import processing.serial.*;

final int LINE_FEED = 10;

final int MAX_SAMPLES = 16;

Serial arduinoPort;

SensorDataBuffer sensorData = new SensorDataBuffer(MAX_SAMPLES);

As usual, we import the libraries for serial communication and initialize

a global Serial object, and this time we also create a SensorDataBuffer

object.

Now we need some constants for the screen dimensions, the Nunchuk

data ranges, and for our 3D calculations:

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Cube/Cube.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=165

ROTATING A COLORFUL CUBE 166

Download MotionSensor/Cube/Cube.pde

final int WIDTH = 500;

final int HEIGHT = 500;

final int BAUD_RATE = 19200;

final int X_AXIS_MIN = 300;

final int X_AXIS_MAX = 700;

final int Y_AXIS_MIN = 300;

final int Y_AXIS_MAX = 700;

final int Z_AXIS_MIN = 300;

final int Z_AXIS_MAX = 700;

final int MIN_SCALE = 5;

final int MAX_SCALE = 128;

final float MX = 2.0 / (X_AXIS_MAX - X_AXIS_MIN);

final float MY = 2.0 / (Y_AXIS_MAX - Y_AXIS_MIN);

final float MZ = 2.0 / (Z_AXIS_MAX - Z_AXIS_MIN);

final float BX = 1.0 - MX * X_AXIS_MAX;

final float BY = 1.0 - MY * Y_AXIS_MAX;

final float BZ = 1.0 - MZ * Z_AXIS_MAX;

X_AXIS_MIN and X_AXIS_MAX define the minimum and maximum acceler-

ation values returned by the Nunchuk for the x-axis. The same is true

for Y_AXIS_MIN, and so on. We’ll need the remaining constants (MX, BX,

and so on) to turn acceleration values into angles later, so don’t worry

too much about them.

Next we need some variables to store the cube’s current state: its posi-

tion, the rotation angle for the different axes, and its current scaling:

Download MotionSensor/Cube/Cube.pde

int xpos = WIDTH / 2;

int ypos = HEIGHT / 2;

int scale = 90;

float xrotate = 0.0;

float yrotate = 0.0;

float zrotate = 0.0;

In the setup() method, we initialize the screen and the serial port:

Download MotionSensor/Cube/Cube.pde

Line 1 void setup() {
2 size(WIDTH, HEIGHT, P3D);
3 noStroke();
4 colorMode(RGB, 1);
5 background(0);
6 println(Serial.list());
7 arduinoPort = new Serial(this, Serial.list()[0], BAUD_RATE);
8 arduinoPort.bufferUntil(LINE_FEED);
9 }

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Cube/Cube.pde
http://media.pragprog.com/titles/msard/code/MotionSensor/Cube/Cube.pde
http://media.pragprog.com/titles/msard/code/MotionSensor/Cube/Cube.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=166

ROTATING A COLORFUL CUBE 167

The only thing worth mentioning is the call to colorMode() in line 4. It

determines that we specify colors as RGB values in the range from 0 to

1. This helps us make the cube very colorful (the 3D drawing portion of

this code was derived from one of Processing’s standard examples).

You can draw the cube with Processing as follows:

Download MotionSensor/Cube/Cube.pde

Line 1 void draw() {
- background(0);
- pushMatrix();
-

5 translate(xpos, ypos, -30);
- rotateX(yrotate);
- rotateY(xrotate);
- rotateZ(zrotate);
- scale(scale);

10

- beginShape(QUADS);
- fill(0, 1, 1); vertex(-1, 1, 1);
- fill(1, 1, 1); vertex(1, 1, 1);
- fill(1, 0, 1); vertex(1, -1, 1);

15 fill(0, 0, 1); vertex(-1, -1, 1);
-

- fill(1, 1, 1); vertex(1, 1, 1);
- fill(1, 1, 0); vertex(1, 1, -1);
- fill(1, 0, 0); vertex(1, -1, -1);

20 fill(1, 0, 1); vertex(1, -1, 1);
-

- fill(1, 1, 0); vertex(1, 1, -1);
- fill(0, 1, 0); vertex(-1, 1, -1);
- fill(0, 0, 0); vertex(-1, -1, -1);

25 fill(1, 0, 0); vertex(1, -1, -1);
-

- fill(0, 1, 0); vertex(-1, 1, -1);
- fill(0, 1, 1); vertex(-1, 1, 1);
- fill(0, 0, 1); vertex(-1, -1, 1);

30 fill(0, 0, 0); vertex(-1, -1, -1);
-

- fill(0, 1, 0); vertex(-1, 1, -1);
- fill(1, 1, 0); vertex(1, 1, -1);
- fill(1, 1, 1); vertex(1, 1, 1);

35 fill(0, 1, 1); vertex(-1, 1, 1);
-

- fill(0, 0, 0); vertex(-1, -1, -1);
- fill(1, 0, 0); vertex(1, -1, -1);
- fill(1, 0, 1); vertex(1, -1, 1);

40 fill(0, 0, 1); vertex(-1, -1, 1);
- endShape();
-

- popMatrix();
- }

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Cube/Cube.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=167

ROTATING A COLORFUL CUBE 168

draw() defines and fills the six surfaces of the cube using fill() and ver-

tex(). We define the vertices using base coordinates because we’re scal-

ing the cube to a reasonable size in line 9 anyway. Moving and rotating

the cube happens in lines 5 to 8.

Because Processing’s draw() method resets all matrix manipulations

performed by translate() and the rotate methods, we use pushMatrix()

and popMatrix() to store and restore them.

Finally, we have to take the Nunchuk data and turn it into suitable

arguments for our vector manipulation functions:

Download MotionSensor/Cube/Cube.pde

Line 1 void serialEvent(Serial port) {
- final String arduinoData = port.readStringUntil(LINE_FEED);
-

- if (arduinoData != null) {
5 final int[] data = int(split(trim(arduinoData), ' '));
- if (data.length == 7) {
- xpos = int(map(data[0], 0x1e, 0xe1, 0, WIDTH));
- ypos = int(map(data[1], 0x1d, 0xdf, HEIGHT, 0));
-

10 if (data[5] == 1) scale++;
- if (data[6] == 1) scale--;
- if (scale < MIN_SCALE) scale = MIN_SCALE;
- if (scale > MAX_SCALE) scale = MAX_SCALE;
-

15 sensorData.addData(data[2], data[3], data[4]);
-

- final float gx = MX * sensorData.getX() + BX;
- final float gy = MY * sensorData.getY() + BY;
- final float gz = MZ * sensorData.getZ() + BZ;

20

- xrotate = atan2(gx, sqrt(gy * gy + gz * gz));
- yrotate = atan2(gy, sqrt(gx * gx + gz * gz));
- zrotate = atan2(sqrt(gx * gx + gy * gy), gz);
- }

25 }
- }

Reading, splitting, and converting the data we read from the serial port

is business as usual. The interesting part starts in line 7 where we map

the analog stick’s x position to a new x coordinate for our cube. In the

following line, we do the same for the y coordinate.

We handle the state of the Nunchuk buttons in lines 10 to 13. If you

press the Z-button, the cube will grow. Press the C-button to shrink it.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/MotionSensor/Cube/Cube.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=168

WHAT IF IT DOESN’T WORK? 169

The rest of the serialEvent() method turns the controller’s acceleration

values into angles. I won’t explain the underlying math in detail—it’s

rather complicated and pretty much unrelated to our main topic.

Start the program and play around with the cube. Isn’t it great how

easy it is? We only needed four wires and a small piece of software,

and now we can use the superb but cheap Nunchuk hardware for our

own projects, both software and hardware. We could use it to control a

robot; some people even use it to make music.4

The next time you buy a new piece of hardware, try to imagine how

to use it in a different context. Often it’s easier than you think. Oh,

and whenever you create a class such as our Nunchuk class, consider

turning your code into a library and making it available on the Internet

(see Chapter 4, Building a Morse Code Generator Library, on page 88 to

learn how to create your own libraries).

7.7 What If It Doesn’t Work?

From a maker’s perspective, this project is an easy one. Still, things can

go wrong, especially with the wiring. Make sure you have connected the

right pins on the Arduino and on the Nunchuk. Also check that the

wires tightly fit into the Nunchuk’s and the Arduino’s sockets. When in

doubt, use wire with a larger diameter.

7.8 Exercises

• Rewrite the game we implemented in Section 6.6, Writing Your

Own Game, on page 144, so it supports the Nunchuk controller. It

should support both the analog stick and the accelerometer. Per-

haps you can switch between them using the Nunchuk buttons?

• Tinkering with Nintendo’s WiiMotion is a bit more complicated.5

But it’s a nice and cheap way to sharpen your tinkering skills.

4. http://www.youtube.com/watch?v=J4GPS83Rm6M

5. http://randomhacksofboredom.blogspot.com/2009/07/motion-plus-and-nunchuck-together-on.html

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.youtube.com/watch?v=J4GPS83Rm6M
http://randomhacksofboredom.blogspot.com/2009/07/motion-plus-and-nunchuck-together-on.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=169

Chapter 8

Networking with Arduino
With a stand-alone Arduino, you can create countless fun and useful

projects. But as soon as you turn the Arduino into a networking device,

you open up a whole new world of possibilities.

You now have access to all information on the Internet, so you could

turn your Arduino into a nice geeky weather station simply by reading

data from a weather service. You can also turn the Arduino into a web

server that provides sensor data for other devices or computers on your

network.

We will build an emailing burglar alarm in this chapter. It detects

motion in your living room, and the Arduino will send you an email

whenever it detects movement during your absence. Because this is a

somewhat advanced project, we’ll first work on some smaller projects

to learn all techniques and skills needed.

We’ll start with a “naked” Arduino that doesn’t have any network capa-

bilities. You can still attach it to the Internet, as long as you connect it

to a PC.

For our second project, we’ll improve the situation dramatically with

an Ethernet shield. Now your Arduino becomes a full-blown network

device that can directly access IP services such as a DAYTIME service.

This will turn your Arduino into a very accurate clock.

Once we are able to access IP services, we’ll then learn how to send

emails directly from an Arduino with an Ethernet shield. For our bur-

glar alarm, we then only need to know how to detect motion. We’ll use a

passive infrared sensor (PIR) for this purpose, so in this chapter, you’ll

Download from Wow! eBook <www.wowebook.com>

WHAT YOU NEED 171

!

"
#

$

%

Figure 8.1: All the parts you need in this chapter

learn not only various networking technologies but also how to use PIR

sensors.

Finally, we’ll combine all the things we learned and build the emailing

burglar alarm. You’ll feel much safer as soon as it’s running.

8.1 What You Need

1. An Ethernet shield for the Arduino

2. An TMP36 temperature sensor

3. A PIR infrared motion sensor

4. A breadboard

5. Some wires

6. An Arduino board such as the Uno, Duemilanove, or Diecimila

7. A USB cable to connect the Arduino to your computer

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=171

USING YOUR PC TO TRANSFER SENSOR DATA TO THE INTERNET 172

Internet PC
Serial

Connection

Figure 8.2: Connect your Arduino to the Internet using your PC.

8.2 Using Your PC to Transfer Sensor Data to the Internet

Remember when you connected your PC to the Internet, oh, around

fifteen years ago? It all started with a 38,400 baud modem, Netscape

Navigator 3, and one of those AOL floppy disks or CD-ROMs you got in

the mail. Today you probably have broadband access via cable, satel-

lite, or DSL, and it’s probably available everywhere in your house via

WiFi. So, we’ll start by using your existing connection to connect your

Arduino to the Internet.

In Figure 8.2, you can see a typical setup for connecting an Arduino to

the Internet. A program runs on your PC and communicates with the

Arduino using the serial port. Whenever the application needs Internet

access, the program on the PC deals with it. Using this architecture,

you can tweet1 interesting sensor data.

We’ll build a system that tweets a message as soon as the temperature

in your working room or office exceeds a certain threshold, that is, 32

degrees Celsius (90 degrees Fahrenheit). Build the temperature sen-

sor example from Section 5.4, Increasing Precision Using a Temperature

Sensor, on page 113 again (try to do it without looking at Figure 5.6,

on page 114), and upload the following sketch to your Arduino:

Download Ethernet/TwitterTemperature/TwitterTemperature.pde

Line 1 #define CELSIUS
-

- const unsigned int TEMP_SENSOR_PIN = 0;
- const unsigned int BAUD_RATE = 9600;
5 const float SUPPLY_VOLTAGE = 5.0;

1. http://twitter.com

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Ethernet/TwitterTemperature/TwitterTemperature.pde
http://twitter.com
http://books.pragprog.com/titles/msard/errata/add?pdf_page=172

USING YOUR PC TO TRANSFER SENSOR DATA TO THE INTERNET 173

-

- void setup() {
- Serial.begin(BAUD_RATE);
- }

10

- void loop() {
- const int sensor_voltage = analogRead(TEMP_SENSOR_PIN);
- const float voltage = sensor_voltage * SUPPLY_VOLTAGE / 1024;
- const float celsius = (voltage * 1000 - 500) / 10;

15 #ifdef CELSIUS
- Serial.print(celsius);
- Serial.println(" C");
- #else

- Serial.print(9.0 / 5.0 * celsius + 32.0);
20 Serial.println(" F");

- #endif

- delay(5000);
- }

This is nearly the same sketch we have used before. Keep in mind that

you have to set SUPPLY_VOLTAGE to 3.3 in line 5, if you’re using an Arduino

that runs with 3.3V instead of 5V.

We support both Celsius and Fahrenheit values now, and you can con-

trol which unit should be used with a preprocessor constant. If you set

the constant CELSIUS in the first line, the application outputs the tem-

perature in degree Celsius. If you remove the first line or turn it into a

comment line, Fahrenheit will be used.

To change the application’s behavior, we use the #ifdef preprocessor

directive. It checks whether a certain preprocessor constant has been

set, and then it compiles code conditionally. In our case, it will compile

the Celsius-to-Fahrenheit formula in line 19 only if the constant CELSIUS

has not been set.

Upload the sketch, and it will output the current temperature to the

serial port every five seconds. Its output looks as follows:

27.15 C

26.66 C

27.15 C

What we need now is a program running on your PC that reads this

output and tweets a message as soon as the temperature is greater

than 32 degrees Celsius (90 degrees Fahrenheit). We could use any

programming language that is capable of reading from a serial port and

that supports Twitter, but because we have used Processing in all other

examples, we’ll use it for this project as well.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=173

REGISTERING AN APPLICATION WITH TWITTER 174

Web Services for Publishing Sensor Data

With the advent of cheap open source hardware and sensors,
web services for publishing sensor data have become popu-
lar over the past few years. Such services allow you to publish,
read, and analyze sensor data. People from all over the world
publish data from their weather stations, environmental sensors,
and so on, and make it available for free on the Internet.

The most popular services are Pachube∗ and Sensorpedia.† In
principle, they all work the same: you register an account, and
you get back an API key. Then you can use this key to authenti-
cate against the service and upload sensor data.

∗. http://pachube.com

†. http://sensorpedia.com/

8.3 Registering an Application with Twitter

Before we start coding, we have to register our application at the Twitter

website to get an OAuth access token.2 OAuth is an authentication

scheme that allows applications to use other applications’ resources.

In our case, we’ll grant our very own application the right to update our

Twitter feed without using our Twitter username and password.

For a long time, Twitter supported HTTP Basic Authentication.3 Auto-

matic services only needed a username and password to request or

update Twitter feeds. But as of August 2010, Twitter has removed sup-

port for Basic Authentication and now uses OAuth.

To get the OAuth access token, register your new application in the

developer section of the Twitter website.4 After you’ve logged in, click

the “Register an app” link, and fill out the form you see in Figure 8.3,

on the next page. Make sure you set the application type to Client and

the default access type to Read & Write. You can set the application

name to an arbitrary string, and it will appear on your Twitter chan-

nel whenever you use the application to tweet messages. If you set it

to RescueMeFromWork, for example, your tweets will be published via

RescueMeFromWork.

2. http://en.wikipedia.org/wiki/Oauth

3. http://en.wikipedia.org/wiki/Basic_authentication

4. http://dev.twitter.com

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://pachube.com
http://sensorpedia.com/
http://en.wikipedia.org/wiki/Oauth
http://en.wikipedia.org/wiki/Basic_authentication
http://dev.twitter.com
http://books.pragprog.com/titles/msard/errata/add?pdf_page=174

TWEETING MESSAGES WITH PROCESSING 175

Figure 8.3: Register your new Twitter client app first.

After you’ve registered your new application successfully, go to the

application’s settings page to see your consumer key and consumer

secret (see Figure 8.4, on the following page). You need them together

with your OAuth token and your OAuth token secret to allow your

application to modify your Twitter status. To see the OAuth token and

secret, follow the My Access Token link.

Copy the consumer key, the consumer secret, the access token, and

the access token secret. You’ll need them in the next section when we

tweet messages using Processing.

8.4 Tweeting Messages with Processing

Processing doesn’t have Twitter support, but in Processing programs,

we have direct access to Java libraries, and you can find several good

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=175

TWEETING MESSAGES WITH PROCESSING 176

Figure 8.4: Consumer credentials are on the settings page.

Twitter libraries for Java. One of them is twitter4j.5 We’ll use it because

it’s very mature and has excellent OAuth support.

Download it from its website,6 and unpack it to a temporary folder.

Depending on the version you’ve downloaded, you’ll find a file named

twitter4j-core-x.y.z.jar or twitter4j-core-x.y.z-SNAPSHOT.jar in the folder. Open

the Processing IDE, create a new sketch, and then drag and drop the

.jar file to the IDE (the .jar file will automatically be copied to a local

folder named code). That’s all you have to do to give your application

access to the twitter4j library.

5. http://twitter4j.org/

6. http://twitter4j.org/en/index.html#download

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://twitter4j.org/
http://twitter4j.org/en/index.html#download
http://books.pragprog.com/titles/msard/errata/add?pdf_page=176

TWEETING MESSAGES WITH PROCESSING 177

We proceed with some boilerplate code:

Download Ethernet/TweetTemperature/TweetTemperature.pde

import processing.serial.*;

final float MAX_WORKING_TEMP = 32.0;

final int LINE_FEED = 10;

final int BAUD_RATE = 9600;

final String CONSUMER_KEY = "<YOUR CONSUMER KEY>";

final String CONSUMER_SECRET = "<YOUR CONSUMER SECRET>";

final String ACCESS_TOKEN = "<YOUR ACCESS TOKEN>";

final String ACCESS_TOKEN_SECRET = "<YOUR ACCESS TOKEN SECRET>";

Serial arduinoPort;

void setup() {

println(Serial.list());

arduinoPort = new Serial(this, Serial.list()[0], BAUD_RATE);

arduinoPort.bufferUntil(LINE_FEED);

}

void draw() {}

As usual, we import the serial libraries for communicating with the

Arduino, and then we define some constants we’ll need later. Most of

them contain the credentials we need to access the Twitter service. With

MAX_WORKING_TEMP, you can define at which temperature the applica-

tion starts to tweet. This can be a degree Celsius or Fahrenheit value.

In the setup() method, we print out a list of all serial devices available,

and we initialize our serialPort variable with the first one we find, hoping

that it’s the Arduino. You could loop through the list automatically and

search for something that looks like an Arduino port name, but that’d

be fragile, too. We don’t need any graphical output for our application,

so the draw() method remains empty.

Now let’s implement the actual business logic of our “Take me to the

beach” alarm:

Download Ethernet/TweetTemperature/TweetTemperature.pde

void serialEvent(Serial port) {

final String arduinoData = port.readStringUntil(LINE_FEED);

if (arduinoData != null) {

final String[] data = split(trim(arduinoData), ' ');

if (data.length == 2 &&

(data[1].equals("C") || data[1].equals("F")))

{

float temperature = float(data[0]);

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Ethernet/TweetTemperature/TweetTemperature.pde
http://media.pragprog.com/titles/msard/code/Ethernet/TweetTemperature/TweetTemperature.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=177

TWEETING MESSAGES WITH PROCESSING 178

println(temperature);

int sleepTime = 5 * 60 * 1000;

if (temperature > MAX_WORKING_TEMP) {

tweetAlarm();

sleepTime = 120 * 60 * 1000;

}

try {

Thread.sleep(sleepTime);

}

catch(InterruptedException ignoreMe) {}

}

}

}

void tweetAlarm() {

TwitterFactory factory = new TwitterFactory();

Twitter twitter = factory.getInstance();

twitter.setOAuthConsumer(CONSUMER_KEY, CONSUMER_SECRET);

AccessToken accessToken = new AccessToken(

ACCESS_TOKEN,

ACCESS_TOKEN_SECRET

);

twitter.setOAuthAccessToken(accessToken);

try {

Status status = twitter.updateStatus(

"Someone, please, take me to the beach!"

);

println(

"Successfully updated status to '" + status.getText() + "'."

);

}

catch (TwitterException e) {

e.printStackTrace();

}

}

In Section 5.8, Implementing Serial Communication in Processing, on

page 126, you learned how to implement serial communication in Pro-

cessing. Whenever new data arrives on the serial port, the runtime envi-

ronment calls the serialEvent() method. There we try to read a line of text,

and then we check whether it contains a decimal number followed by

a blank and a C or F character. This makes sure we’ve read an actual

temperature data set and not some digital garbage.

If we got a syntactically correct temperature data set, we convert it into

a float object and check to see if it’s greater than MAX_WORKING_TEMP

(no one should be forced to work at temperatures that high!). If yes, we

call tweetAlarm() and tweet a message to encourage some followers to

rescue us. Then we wait for two hours until our next check. Otherwise,

we wait five minutes and check the temperature again.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=178

NETWORKING USING AN ETHERNET SHIELD 179

Figure 8.5: I hope someone sees your cry for help.

tweetAlarm() updates our Twitter channel and is simple. In good old

Java tradition, we create a new Twitter instance using a TwitterFactory

and set our consumer credentials by calling setOAuthConsumer(). Then

we set the OAuth credentials calling setOAuthAccessToken(). Finally, we

invoke updateStatus(). If everything went fine, we print a success mes-

sage to the console. If anything goes wrong, updateStatus() will raise an

exception, and we print its stack trace for debugging purposes.

That’s all the code we need, so connect your Arduino to your PC and

run it! In Figure 8.5, you can see what happens on Twitter when the

temperature in my working room is greater than 32 degrees Celsius (for

your first tests you might have to change 32.0 to a smaller value. If you

don’t have to change it, why aren’t you at the beach?).

Using a full-blown PC as an Internet relay for your Arduino is conve-

nient, but it’s also overkill for most applications. In the next section,

you’ll learn how to turn an Arduino into a real networking device.

8.5 Communicating Over Networks Using an Ethernet Shield

In the previous section, you learned how to build network applications

with an Arduino by using your PC’s network connection. This approach

works nicely, but it also has a few disadvantages. The biggest problem is

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=179

NETWORKING USING AN ETHERNET SHIELD 180

Tweeting Arduinos

One of the most popular hardware kits available is the Botani-
call.∗ It checks whether your plants need water, and if they do,
it sends a reminder message via http://twitter.com/. As soon as
you water it, it dutifully sends a “Thank You” message. Although
the official version of the Botanicall is a specialized piece of
hardware, you can build it using an Arduino.†

Botanicalls certainly make your life a bit easier. Whether the
Twitwee Clock‡ improves your life is a matter of taste. This mod-
ified cuckoo clock looks for Twitter updates using a wireless
Internet connection. Whenever it finds a programmable search
term, it displays the corresponding tweets on a display and also
pops out a cuckoo making some noise. You’d better ask your
family up front before you build this project and install it in your
living room.

∗. http://www.botanicalls.com/

†. http://www.botanicalls.com/archived_kits/twitter/

‡. http://www.haroonbaig.com/projects/TwitweeClock/

that you need a complete PC, while for many applications the Arduino’s

hardware capabilities would be sufficient. In this section, you’ll learn

how to solve this problem with an Ethernet shield.

You can’t connect a naked Arduino to a network. Not only are its hard-

ware capabilities too limited, it also doesn’t have an Ethernet port. That

means you can’t plug an Ethernet cable into it, and to overcome this

limitation, you have to use an Ethernet shield. Such shields come with

an Ethernet chip and Ethernet connectors and turn your Arduino into

a networking device immediately. You only have to plug it in.

You can choose from several products; they all are good and serve their

purpose well.7 For prototyping I prefer the “official” shield,8 because it

comes with sockets for all pins (it’s on the left side in Figure 8.6, on the

next page). Also at the time of this writing the Arduino team announced

the Arduino Ethernet, an Arduino board that comes with an Ethernet

port and does not need a separate shield.

7. See http://www.ladyada.net/make/eshield/, for example.
8. http://www.arduino.cc/en/Main/ArduinoEthernetShield

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://twitter.com/
http://www.botanicalls.com/
http://www.botanicalls.com/archived_kits/twitter/
http://www.haroonbaig.com/projects/TwitweeClock/
http://www.ladyada.net/make/eshield/
http://www.arduino.cc/en/Main/ArduinoEthernetShield
http://books.pragprog.com/titles/msard/errata/add?pdf_page=180

NETWORKING USING AN ETHERNET SHIELD 181

Figure 8.6: Two Ethernet shields for the Arduino

Hardware is only one aspect of turning an Arduino into a network

device. We also need some software for network communication. The

Arduino IDE comes with a convenient Ethernet library that contains a

few classes related to networking. We will use it now to access a DAY-

TIME service on the Internet.

A DAYTIME service9 returns the current date and time as an ASCII

string. DAYTIME servers listen on either TCP or UDP port 13. You

can find many DAYTIME services on the Internet; one of them runs

at time.nist.gov. Before we use the service programmatically with an

Arduino, see how it works using the telnet command:

maik> telnet time.nist.gov 13

Trying 192.43.244.18...

Connected to time.nist.gov.

Escape character is '^]'.

55480 10-10-11 13:25:35 28 0 0 138.5 UTC(NIST) *
Connection closed by foreign host.

9. http://en.wikipedia.org/wiki/DAYTIME

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/DAYTIME
http://books.pragprog.com/titles/msard/errata/add?pdf_page=181

NETWORKING USING AN ETHERNET SHIELD 182

As soon as the telnet command connects to the DAYTIME server, it

sends back the current time and date.10 Then the service closes the

connection immediately.

Here’s an implementation of exactly the same behavior for an Arduino

with an Ethernet shield:

Download Ethernet/TimeServer/TimeServer.pde

Line 1 #include <SPI.h>
- #include <Ethernet.h>
-

- const unsigned int DAYTIME_PORT = 13;
5 const unsigned int BAUD_RATE = 9600;
-

- byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
- byte my_ip[] = { 192, 168, 2, 120 };
- byte time_server[] = { 192, 43, 244, 18 }; // time.nist.gov

10

- Client client(time_server, DAYTIME_PORT);
-

- void setup() {
- Ethernet.begin(mac, my_ip);

15 Serial.begin(BAUD_RATE);
- }
-

- void loop() {
- delay(1000);

20 Serial.print("Connecting...");
-

- if (!client.connect()) {
- Serial.println("connection failed.");
- } else {

25 Serial.println("connected.");
- delay(1000);
-

- while (client.available()) {
- char c = client.read();

30 Serial.print(c);
- }
-

- Serial.println("Disconnecting.");
- client.stop();

35 }
- }

10. See http://www.nist.gov/physlab/div847/grp40/its.cfm for a detailed description of the date

string’s format.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Ethernet/TimeServer/TimeServer.pde
http://www.nist.gov/physlab/div847/grp40/its.cfm
http://books.pragprog.com/titles/msard/errata/add?pdf_page=182

NETWORKING USING AN ETHERNET SHIELD 183

First, we include the Ethernet library and define a constant for the

DAYTIME service port (we also have to include the SPI library, because

the Ethernet library depends on it). Then we define three byte arrays:

• mac contains the MAC address we are going to use for the Eth-

ernet shield. A MAC address is a 48-bit number that uniquely

identifies a network device.11 Usually, the manufacturer sets this

identifier, but for the Ethernet shield, we have to set it ourselves;

we use an arbitrary number.

Important note: the MAC address has to be unique on your net-

work. If you connect more than one Arduino, make sure they all

have different MAC addresses!

• Whenever you connect your PC to the Internet, it probably gets

a new IP address via the Dynamic Host Configuration Protocol

(DHCP).12 For most Arduino applications, a DHCP implementation

is comparatively costly, so you usually assign an IP address man-

ually. In most cases, this will be a local address in the 192.168.x.y

range; we store this address in the my_ip array.

• To turn domain names such as time.nist.gov into an IP address,

you need access to the Domain Name System (DNS). The Arduino’s

standard library doesn’t support DNS, so we have to find out the

IP address ourselves. We assign it to time_server. The telnet com-

mand already turned the DAYTIME service domain name into an

IP address for us. Alternatively, you can use one of the following

commands to determine a domain name’s IP address:

maik> host time.nist.gov

time.nist.gov has address 192.43.244.18

maik> dig +short time.nist.gov

192.43.244.18

maik> resolveip time.nist.gov

IP address of time.nist.gov is 192.43.244.18

maik> ping -c 1 time.nist.gov

PING time.nist.gov (192.43.244.18): 56 data bytes

64 bytes from 192.43.244.18: icmp_seq=0 ttl=48 time=173.598 ms

--- time.nist.gov ping statistics ---

1 packets transmitted, 1 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 173.598/173.598/173.598/0.000 ms

11. http://en.wikipedia.org/wiki/Mac_address

12. http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/Mac_address
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
http://books.pragprog.com/titles/msard/errata/add?pdf_page=183

NETWORKING USING AN ETHERNET SHIELD 184

In line 11, we create a new Client object. This class is part of the Eth-

ernet library and allows us to create network clients that connect to a

certain IP address and port.

Now we have to initialize the Ethernet shield itself; we do this in line

14 in the setup() function. We have to invoke Ethernet.begin(), passing it

our MAC and IP addresses. Then we initialize the serial port so that we

can output some debug messages. At this point, we’ve initialized all the

components we need, so we can finally connect to the DAYTIME server

and read its output.

Please note that you can also pass the IP address of your network gate-

way and your subnet mask to Ethernet.begin(). This is necessary if you

do not connect the Arduino directly to the Internet but use a router or

a cable modem instead. In this case, you can pass the gateway address

as follows:

// ...

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

byte my_ip[] = { 192, 168, 2, 120 };

byte time_server[] = { 192, 43, 244, 18 }; // time.nist.gov

// Insert IP address of your cable or DSL router below:

byte gateway[] = { 192, 168, 13, 254 };

Client client(time_server, DAYTIME_PORT);

void setup() {

Ethernet.begin(mac, my_ip, gateway);

Serial.begin(BAUD_RATE);

}

// ...

The loop() function of our sketch starts with a short delay, allowing all

components to initialize properly. This is necessary because the Ether-

net shield is an autonomous device that is capable of working in parallel

to the Arduino. In line 22, we try to connect to the DAYTIME service. If

the connection cannot be established, we print an error message. Oth-

erwise, we wait for half a second to give the service some preparation

time, and then we read and print its output character by character.

Note that the client’s interface is similar to the interface of the Serial

class. With available(), we can check whether some bytes are still avail-

able, and read() returns the next byte. At the end, we call stop() to

disconnect from the service and then we start again.

Compile and upload the program to the Arduino. Then open the serial

monitor, and you should see something like this:

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=184

NETWORKING USING AN ETHERNET SHIELD 185

More Fun with Networking Arduinos

Wearables and e-textiles are getting more and more popu-
lar, and they’re still a good way to impress your colleagues
and friends. Different types of interactive T-shirts are available
in every well-assorted geek shop. Some of them show the cur-
rent WiFi strength, while others come with a full-blown equalizer
that analyzes ambient noise.

With an Arduino Lilypad,∗ a Bluetooth dongle, and an Android
phone, you can build a T-shirt that displays the current number
of unread emails in your inbox.†

Not only can you show the number of unread email messages
on your T-shirt, you can also show your current mood using a
pointer device on your desk—at least as long as you announce
it in an IRC channel that you monitor with an Arduino.‡

Although not built with Arduinos, the Luminet project§ is very
impressive. It is a network of interconnected intelligent LED pix-
els, and the Luminet team used it to build a really cool interac-
tive jacket.

∗. http://arduino.cc/en/Main/ArduinoBoardLilyPad

†. http://blog.makezine.com/archive/2010/03/email-counting_t-shirt.html

‡. http://blog.makezine.com/archive/2010/01/arduino_powered_mood_meter.html

§. http://luminet.cc

Connecting...connected.

55480 10-10-11 13:32:23 28 0 0 579.9 UTC(NIST) *
Disconnecting.

Connecting...connected.

55480 10-10-11 13:32:26 28 0 0 34.5 UTC(NIST) *
Disconnecting.

We’re done! Our Arduino is directly connected to the Internet, and it

even does something useful: we’ve turned it into a very accurate clock.

All in all, networking with an Arduino doesn’t differ much from net-

working with a PC, if you use the Ethernet shield. In the next section,

you’ll learn how to send emails with an Arduino.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://arduino.cc/en/Main/ArduinoBoardLilyPad
http://blog.makezine.com/archive/2010/03/email-counting_t-shirt.html
http://blog.makezine.com/archive/2010/01/arduino_powered_mood_meter.html
http://luminet.cc
http://books.pragprog.com/titles/msard/errata/add?pdf_page=185

EMAILING FROM THE COMMAND LINE 186

Useful Networking Libraries

The Ethernet library that comes with the Arduino IDE is fairly lim-
ited and not very convenient. For example, it doesn’t support
DNS or DHCP. So for advanced projects, you should have a look
at the Arduino Ethernet library.∗

If you want to turn your Arduino into a web server, you should
take a look at the Webduino library.† It has some great features,
and it is quite mature.

But be warned: all these libraries consume quite a lot of mem-
ory, so there’s not much left for your application code. Also,
they are rather fragile, because they often rely upon the innards
of the official Ethernet library that change from time to time. So,
it might well be that they do not work with the latest Arduino
IDE.

∗. http://gkaindl.com/software/arduino-ethernet

†. http://code.google.com/p/webduino/

8.6 Emailing from the Command Line

Now that we know how to access network services, we’ll continue to

build a more advanced project: an automatic burglar alarm. In case

someone is moving in our living room, we want to get an email, so we

have to learn how to send emails from an Arduino.

Although email is an important service, only a few people know how it

actually works behind the scenes. To send emails from an Arduino, we

could choose the easy path and use a PC as an email relay as we did in

Section 8.4, Tweeting Messages with Processing, on page 175 to tweet

messages. As real hackers, we’ll follow a more sophisticated path and

implement a subset of the Simple Mail Transfer Protocol (SMTP).13

SMTP is a typical Internet protocol. It uses only text, and it is mainly

line-based; that is, you exchange information line by line. A typical

email consists of only a few attributes: a sender, a receiver, a subject,

and a message body. To transmit an email, you have to send a request

to an SMTP server. The request has to adhere to the SMTP specification.

13. http://en.wikipedia.org/wiki/Smtp

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://gkaindl.com/software/arduino-ethernet
http://code.google.com/p/webduino/
http://en.wikipedia.org/wiki/Smtp
http://books.pragprog.com/titles/msard/errata/add?pdf_page=186

EMAILING FROM THE COMMAND LINE 187

Before we send an email using an Arduino and an Ethernet shield,

you should learn how to send an email from a command line using

the telnet command. To do so, you have to find out the address of an

SMTP server you can use first. The following instructions assume you’re

using a Google Mail account (http://gmail.com). If you use a different

email provider, you have to adjust the domain names accordingly. In

any case, don’t abuse their service! When in doubt, read their usage

terms!

Open a terminal, and enter the following:

maik> nslookup

> set type=mx

> gmail.com

Server: 192.168.2.1

Address: 192.168.2.1#53

Non-authoritative answer:

gmail.com mail exchanger = 5 gmail-smtp-in.l.google.com.

gmail.com mail exchanger = 10 alt1.gmail-smtp-in.l.google.com.

gmail.com mail exchanger = 20 alt2.gmail-smtp-in.

> exit

This command returns a list of all the Google Mail exchange servers

(MX) available on your network. Take the first server name, and open

a connection to the SMTP standard port 25 (replace the server name

gmail-smtp-in.l.google.com and all email addresses accordingly):

⇐ maik> telnet gmail-smtp-in.l.google.com 25

⇒ Trying 74.125.77.27...

Connected to gmail-smtp-in.l.google.com.

Escape character is '^]'.

220 mx.google.com ESMTP q43si10820020eeh.100
⇐ HELO

⇒ 250 mx.google.com at your service
⇐ MAIL FROM: <arduino@example.com>

⇒ 250 2.1.0 OK q43si10820020eeh.100
⇐ RCPT TO: <info@example.com>

⇒ 250 2.1.5 OK q43si10820020eeh.100
⇐ DATA

⇒ 354 Go ahead q43si10820020eeh.100
⇐ from: arduino@example.com

⇐ to: info@example.com

⇐ subject: This is a test

⇐

⇐ Really, this is a test!

⇐ .

⇒ 250 2.0.0 OK 1286819789 q43si10820020eeh.100
⇐ QUIT

⇒ 221 2.0.0 closing connection q43si10820020eeh.100

Connection closed by foreign host.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://gmail.com
http://books.pragprog.com/titles/msard/errata/add?pdf_page=187

EMAILING DIRECTLY FROM AN ARDUINO 188

Although it is way more complex, this session is similar to our DAYTIME

example. We only send more complex commands (by the way, you do

not have to write the commands in uppercase). First we send the HELO

command (the spelling is correct) to establish a session with the SMTP

server. Then we tell the server that we’d like to send an email using

MAIL FROM:. The email address we provide with this command will be

used by the server in case our email bounces back. Note that the server

sends back a response line for every request. These responses always

start with a three-digit status code.

The RCPT TO: command sets the recipient’s email address. If you’d like

to send an email to more than one recipient, you have to repeat the

command for each of them.

With the DATA command, we tell the server that we now start to transmit

the email’s attributes. Email attributes are mainly a list of key/value

pairs where key and value are delimited by a colon. So in the first three

lines, we set the attributes “from,” “to,” and “subject,” and they all have

the meaning you’d expect when sending an email.

You separate the email’s body from the attributes using a blank line. To

mark the end of the email body, send a line containing a single period.

Send the QUIT command to end the session with the SMTP server.

You should find a new email in your inbox. If not, try another MX server

first. Still things can go wrong, and although simple in theory, SMTP

can be a complex beast in practice. Often SMTP servers return helpful

error messages that might help you to quickly solve your problem.

Don’t proceed until you have successfully sent an email from the com-

mand line, because it is the basis for the next section where you’ll learn

how to send emails with an Arduino.

8.7 Emailing Directly from an Arduino

To send an email from the Arduino, we will basically implement the

telnet session from the previous section line by line. Instead of simply

hardwiring the email’s attributes into the networking code, we will cre-

ate a more advanced design.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=188

EMAILING DIRECTLY FROM AN ARDUINO 189

We start with an Email class:

Download Ethernet/Email/email.h

#ifndef __EMAIL__H_

#define __EMAIL__H_

class Email {

String _from, _to, _subject, _body;

public:

Email(

const String& from,

const String& to,

const String& subject,

const String& body

) : _from(from), _to(to), _subject(subject), _body(body) {}

const String& getFrom() const { return _from; }

const String& getTo() const { return _to; }

const String& getSubject() const { return _subject; }

const String& getBody() const { return _body; }

};

#endif

This class encapsulates an email’s four most important attributes—

the email addresses of the sender and the recipient, a subject, and a

message body. We store all attributes as String objects.

Wait a minute...a String class? Yes! Since version 19, the Arduino IDE

comes with a full-blown string class.14 It does not have as many fea-

tures as the C++ or Java string classes, but it’s still way better than

messing around with char pointers. You’ll see how to use it in a few

paragraphs.

The rest of our Email class is pretty straightforward. In the constructor,

we initialize all instance variables, and we have methods for getting

every single attribute. We now need an SmtpService class for sending

Email objects:

Download Ethernet/Email/smtp_service.h

Line 1 #ifndef __SMTP_SERVICE__H_
- #define __SMTP_SERVICE__H_
-

- #include "email.h"

14. http://arduino.cc/en/Reference/StringObject

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Ethernet/Email/email.h
http://media.pragprog.com/titles/msard/code/Ethernet/Email/smtp_service.h
http://arduino.cc/en/Reference/StringObject
http://books.pragprog.com/titles/msard/errata/add?pdf_page=189

EMAILING DIRECTLY FROM AN ARDUINO 190

5

- class SmtpService {
- byte* _smtp_server;
- unsigned int _port;
-

10 void read_response(Client& client) {
- delay(4000);
- while (client.available()) {
- const char c = client.read();
- Serial.print(c);

15 }
- }
-

- void send_line(Client& client, String line) {
- const unsigned int MAX_LINE = 256;

20 char buffer[MAX_LINE];
- line.toCharArray(buffer, MAX_LINE);
- Serial.println(buffer);
- client.println(buffer);
- read_response(client);

25 }
-

- public:
-

- SmtpService(
30 byte* smtp_server,

- const unsigned int port) : _smtp_server(smtp_server),
- _port(port) {}
-

- void send_email(const Email& email) {
35 Client client(_smtp_server, _port);

- Serial.print("Connecting...");
-

- if (!client.connect()) {
- Serial.println("connection failed.");

40 } else {
- Serial.println("connected.");
- read_response(client);
- send_line(client, String("helo"));
- send_line(

45 client,
- String("mail from: <") + email.getFrom() + String(">")
-);
- send_line(
- client,

50 String("rcpt to: <") + email.getTo() + String(">")
-);
- send_line(client, String("data"));
- send_line(client, String("from: ") + email.getFrom());
- send_line(client, String("to: ") + email.getTo());

55 send_line(client, String("subject: ") + email.getSubject());

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=190

EMAILING DIRECTLY FROM AN ARDUINO 191

- send_line(client, String(""));
- send_line(client, email.getBody());
- send_line(client, String("."));
- send_line(client, String("quit"));

60 client.println("Disconnecting.");
- client.stop();
- }
- }
- };

65

- #endif

Admittedly, this is a lot of code, but it’s very simple. First, the SmtpSer-

vice class encapsulates the SMTP server’s IP address and its port.

To communicate with an SMTP server, we have to read its responses,

and we do that using the private read_response() method starting on

line 10. It waits for four seconds (SMTP servers usually are very busy,

because they have to send a lot of spam), and then it reads all the data

sent back by the server and outputs it to the serial port for debugging

purposes.

Before we can process responses, we have to send requests. send_line()

beginning in line 18 sends a single command to an SMTP server. You

have to pass the connection to the server as a Client instance, and the

line you’d like to send has to be a String object.

To send the data stored in a String object, we need to access the char-

acter data it refers to. At the moment of this writing, the Arduino refer-

ence documentation tells you to simply use toCharArray() or getBytes() to

retrieve this information. Unfortunately, the documentation is wrong.

That is, these two methods do not return a pointer. Instead, they expect

you to provide a sufficiently large char array and its size. That’s why we

copy line’s content to buffer before we output it to the serial and Ether-

net port. After we’ve sent the data, we read the server’s response and

print it to the serial port.

In the public interface, you do not find any surprises. The construc-

tor expects the SMTP server’s IP address and its port. The send_email()

method is the largest piece of code in our class, but it’s also one of the

simplest. It mimics exactly our telnet session, and the only thing worth

mentioning is the string handling: we use the Arduino’s new String class,

and to use its concatenation operator (+), we turn every string into a

String object.

Let’s use our classes now to actually send an email:

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=191

DETECTING MOTION USING A PASSIVE INFRARED SENSOR 192

Download Ethernet/Email/Email.pde

Line 1 #include <SPI.h>
- #include <Ethernet.h>
- #include "smtp_service.h"
-

5 const unsigned int SMTP_PORT = 25;
- const unsigned int BAUD_RATE = 9600;
-

- byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
- byte my_ip[] = { 192, 168, 2, 120 };

10

- // Insert IP of your SMTP server below!
- byte smtp_server[] = { 0, 0, 0, 0 };
-

- SmtpService smtp_service(smtp_server, SMTP_PORT);
15

- void setup() {
- Ethernet.begin(mac, my_ip);
- Serial.begin(BAUD_RATE);
- delay(1000);

20 Email email(
- "arduino@example.com",
- "info@example.net",
- "Yet another subject",
- "Yet another body"

25);
- smtp_service.send_email(email);
- }
-

- void loop() {}

No surprises here. We define constants, the MAC address, and so on,

then create an SmtpService instance. In the setup() function, we initialize

the serial port and the Ethernet shield, then wait for a second to let

things settle down a bit. On line 20, we create a new Email object and

call its send_email() method.

Now we know how to send emails with an Arduino, but to build our

burglar alarm, we still have to learn how to detect motion.

8.8 Detecting Motion Using a Passive Infrared Sensor

Detecting motion is a useful technique, and you probably already know

devices that turn on the light in your garden or at your door whenever

someone is near enough. Most of them use passive infrared sensors

(PIR)15 for motion detection.

15. http://en.wikipedia.org/wiki/Passive_infrared_sensor

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Ethernet/Email/Email.pde
http://en.wikipedia.org/wiki/Passive_infrared_sensor
http://books.pragprog.com/titles/msard/errata/add?pdf_page=192

DETECTING MOTION USING A PASSIVE INFRARED SENSOR 193

Figure 8.7: Top and bottom of a passive infrared sensor

Nearly every object emits infrared light, and a PIR sensor (see one in

Figure 8.7) measures exactly this portion of light. Detecting motion is

comparatively easy if you are already able to receive the infrared radia-

tion emitted by objects in the sensor’s field of view. If the sensor receives

the infrared light emitted by a wall, for example, and suddenly a human

being or an animal moves in front of the wall, the infrared light signal

will change.

Off-the-shelf sensors hide these details, so you can use a single digital

pin to check whether someone is moving in the sensor’s field of view.

The Parallax PIR sensor16 is a good example of such a device, and we’ll

use it as the basis of our burglar alarm.

The PIR sensor has three pins: power, ground, and signal. Connect

power to the Arduino’s 5V supply, ground to one of the Arduino’s GND

pins, and signal to digital pin 2 (see a circuit diagram in Figure 8.8,

on the following page). The sensor also has a jumper that you can use

for changing its behavior. For our project, it has to be in position H;

that is, the jumper has to cover the pin next to the H (Lady Ada has an

excellent tutorial on PIR sensors).17

Then enter the following code in the Arduino IDE:

16. http://www.parallax.com/Store/Sensors/ObjectDetection/tabid/176/ProductID/83/List/0/Default.aspx

17. http://www.ladyada.net/learn/sensors/pir.html

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.parallax.com/Store/Sensors/ObjectDetection/tabid/176/ProductID/83/List/0/Default.aspx
http://www.ladyada.net/learn/sensors/pir.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=193

DETECTING MOTION USING A PASSIVE INFRARED SENSOR 194

Figure 8.8: A minimalistic PIR sensor circuit

Download Ethernet/MotionDetector/MotionDetector.pde

Line 1 const unsigned int PIR_INPUT_PIN = 2;
- const unsigned int BAUD_RATE = 9600;
-

- class PassiveInfraredSensor {
5 int _input_pin;
-

- public:
-

- PassiveInfraredSensor(const int input_pin) {
10 _input_pin = input_pin;

- pinMode(_input_pin, INPUT);
- }
-

- const bool motion_detected() const {
15 return digitalRead(_input_pin) == HIGH;

- }
- };
-

- PassiveInfraredSensor pir(PIR_INPUT_PIN);
20

- void setup() {
- Serial.begin(BAUD_RATE);
- }
-

25 void loop() {
- if (pir.motion_detected()) {
- Serial.println("Motion detected");
- } else {
- Serial.println("No motion detected");

30 }
- delay(200);
- }

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Ethernet/MotionDetector/MotionDetector.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=194

DETECTING MOTION USING A PASSIVE INFRARED SENSOR 195

Figure 8.9: Typical output of a PIR sensor

With the constant PIR_INPUT_PIN, you can define the digital pin you’ve

connected your PIR sensor to. In line 4, we begin the definition of a

class named PassiveInfraredSensor that encapsulates all things related to

PIR sensors.

We define a member variable named _input_pin that stores the number

of the digital pin we’ve connected our sensor to. Then we define a con-

structor that expects the pin number as an argument and assigns it to

our member variable.

The only method we need to define is motion_detected(). It returns true

if it has currently detected a motion and false otherwise. So, it has to

check only whether the current state of the sensor’s digital pin is HIGH

or LOW.

Compile the sketch, upload it to your Arduino, and you should see an

output similar to Figure 8.9 when you start to wave with your hand in

front of the sensor.

Now we’ve built the two main components of our burglar alarm, and

the only thing left to do is to bring them both together. We’ll do that in

the next section.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=195

BRINGING IT ALL TOGETHER 196

Figure 8.10: An emailing burglar alarm

8.9 Bringing It All Together

With our PassiveInfraredSensor and SmtpService classes, it’s a piece of cake

to build an emailing burglar alarm. Connect the PIR sensor to the Eth-

ernet shield, as shown in Figure 8.10, and upload the following code to

your Arduino:

Download Ethernet/BurglarAlarm/burglar_alarm.h

Line 1 #ifndef __BURGLAR_ALARM_H__
- #define __BURGLAR_ALARM_H__
-

- #include "pir_sensor.h"
5 #include "smtp_service.h"
-

- class BurglarAlarm {
- PassiveInfraredSensor _pir_sensor;
- SmtpService _smtp_service;

10

- void send_alarm() {
- Email email(
- "arduino@example.com",
- "info@example.net",

15 "Intruder Alert!",
- "Someone's moving in your living room!"
-);
- _smtp_service.send_email(email);
- }

20

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Ethernet/BurglarAlarm/burglar_alarm.h
http://books.pragprog.com/titles/msard/errata/add?pdf_page=196

BRINGING IT ALL TOGETHER 197

- public:
-

- BurglarAlarm(
- const PassiveInfraredSensor& pir_sensor,

25 const SmtpService& smtp_service) :
- _pir_sensor(pir_sensor),
- _smtp_service(smtp_service)
- {
- }

30

- void check() {
- Serial.println("Checking");
- if (_pir_sensor.motion_detected()) {
- Serial.println("Intruder detected!");

35 send_alarm();
- }
- }
- };
-

40 #endif

This defines a class named BurglarAlarm that aggregates all the code

we’ve written so far. It encapsulates a SmtpService instance and a Pas-

siveInfraredSensor object. Its most complex method is send_alarm() that

sends a predefined email.

The rest of the BurglarAlarm class is pretty straightforward. Beginning

in line 23, we define the constructor that initializes all private mem-

bers. The check() method checks whether the PIR sensor has detected

a movement. If it did, we send an email.

Let’s use the BurglarAlarm class:

Download Ethernet/BurglarAlarm/BurglarAlarm.pde

#include <SPI.h>

#include <Ethernet.h>

#include "burglar_alarm.h"

const unsigned int PIR_INPUT_PIN = 2;

const unsigned int SMTP_PORT = 25;

const unsigned int BAUD_RATE = 9600;

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

byte my_ip[] = { 192, 168, 2, 120 };

// Insert IP of your SMTP server below!

byte smtp_server[] = { 0, 0, 0, 0 };

PassiveInfraredSensor pir_sensor(PIR_INPUT_PIN);

SmtpService smtp_service(smtp_server, SMTP_PORT);

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Ethernet/BurglarAlarm/BurglarAlarm.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=197

BRINGING IT ALL TOGETHER 198

Figure 8.11: The burglar alarm’s output

BurglarAlarm burglar_alarm(pir_sensor, smtp_service);

void setup() {

Ethernet.begin(mac, my_ip);

Serial.begin(BAUD_RATE);

delay(20 * 1000);

}

void loop() {

burglar_alarm.check();

delay(3000);

}

First we define all the libraries we need, and we define constants for

the PIR sensor pin and our MAC address. Then we define SmtpService

and PassiveInfraredSensor objects and use them to define a BurglarAlarm

instance.

In the setup() method, we define the serial port and the Ethernet shield.

I’ve also added a delay of twenty seconds, which gives you enough time

to leave the room before the alarm begins to work.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=198

WHAT IF IT DOESN’T WORK? 199

The loop() function is simple, too. It delegates all the work to the Burglar-

Alarm’s check() method. In Figure 8.11, on the previous page, you can

see what happens when the burglar alarm detects an intruder.

Did you notice how easy object-oriented programming on an embedded

device can be? We’ve cleanly hidden the complexity of both email and

the PIR sensor in two small classes. To build the burglar alarm, we then

only had to write some glue code.

One word regarding privacy: do not abuse the project in this chapter to

observe other people without their knowledge. Not only is it unethical,

but in many countries it even is illegal!

In this chapter, you learned different ways of connecting the Arduino

to the Internet. Some of them need an additional PC, while others need

an Ethernet shield, but they all open the door to a whole new range of

embedded computing applications.

Networking is one of those techniques that may have a direct impact

on the outside world. In the next chapter, you’ll learn about another

technique that has similar effects; you’ll learn how to control devices

remotely.

8.10 What If It Doesn’t Work?

Networks are complex and complicated beasts, and many things can

go wrong when trying the examples in this chapter. The most common

problems are the following:

• You have chosen the wrong serial port in the Processing applica-

tion. By default, the application uses the first serial port it can

find. It might be that you have connected your Arduino to another

port. In this case, you have to change the index 0 in the statement

arduinoPort = new Serial(this, Serial.list()[0], BAUD_RATE); accordingly.

• You forgot to plug the Ethernet cable into the Ethernet shield.

• Your network router has a MAC whitelist that allows only cer-

tain MAC addresses to access the network. Make sure that the

MAC address you use in your sketches is whitelisted. Check your

router’s documentation.

• You have used the same MAC address twice on your network.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=199

WHAT IF IT DOESN’T WORK? 200

Alternative Networking Technologies

Ethernet is one of the most popular and most powerful net-
working technologies. Using an Ethernet shield, you can easily
connect your Arduino to the Internet both as a client and as a
server.

Depending on your project’s needs, it’s sometimes better to use
a wireless connection. With a WiFi shield∗ you can easily turn
your Arduino into a wireless networking device.

But often you don’t need the full power of Ethernet, especially if
you only need short-range communication in a personal area
network. You can choose from a variety of options, but Blue-
tooth and ZigBee† are probably the most popular. Excellent
solutions for both of them are available for the Arduino.

Finally, you can even participate in cellular networks with your
Arduino. Plug in a GSM shield‡ and your SIM card, and you are
ready to go.

∗. WiShield (http://www.asynclabs.com/) and WiFly
(http://www.sparkfun.com/commerce/product_info.php?products_id=9954) are good
products.
†. http://en.wikipedia.org/wiki/Zigbee

‡. http://www.hwkitchen.com/products/gsm-playground/

• You’ve used an IP address that is not allowed in your network

or that is used already by another device. Double-check your IP

address.

• You’ve used the wrong credentials for accessing a service such as

Twitter. Make sure you use the right OAuth tokens.

• Twitter does not allow duplicate tweets. So, whenever your appli-

cation fails to tweet a message, make sure you haven’t tweeted it

recently.

• Networks have become very reliable over the last decades, but

sometimes they are still a bit fragile. So, it might well be that con-

nections fail or that you run into timeouts. Increase the delays in

your sketches accordingly.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.asynclabs.com/
http://www.sparkfun.com/commerce/product_info.php?products_id=9954
http://en.wikipedia.org/wiki/Zigbee
http://www.hwkitchen.com/products/gsm-playground/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=200

EXERCISES 201

8.11 Exercises

• Search the Web for other Ethernet shield projects, and build at

least one of them. For example, you can find chat clients for the

Arduino.18

• Build a project similar to the burglar alarm, but use another type

of sensor. There’s tons of inspiration out there on the Web.19

• Add the current time stamp to the burglar alarm’s email. Get the

timestamp from a DAYTIME service.

18. http://rapplogic.blogspot.com/2009/11/chatduino-aim-client-for-arduinowiznet.html

19. http://www.tigoe.net/pcomp/code/category/arduinowiring/873

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://rapplogic.blogspot.com/2009/11/chatduino-aim-client-for-arduinowiznet.html
http://www.tigoe.net/pcomp/code/category/arduinowiring/873
http://books.pragprog.com/titles/msard/errata/add?pdf_page=201

Chapter 9

Creating Your Own Universal
Remote Control

Remote controls add a lot of convenience to our lives, but they aren’t

without annoyances. Sometimes remotes don’t have a certain function

that you’d like to have, such as a sleep timer. Plus, remote controls

seem to reproduce at the same rate as rabbits. They quickly occupy

your whole coffee table, and you have to feed them with expensive bat-

teries that you don’t have at home when you need them during a Sun-

day evening football game. Universal remote controls reduce the pain a

bit, but even the most expensive products aren’t perfect.

Although we use remote controls every day, few of us understand how

they work. In this chapter, you’ll find out how remote controls work

from the inside out, and then you’ll build your own universal remote

control that’s better than a store-bought one because you can fully

customize it to your needs. You can easily add all your favorite func-

tions, and you can also add functions other remotes don’t offer. If a

commercial product doesn’t support a certain vendor, you’re usually

stuck. With your own remote, you can easily add new protocols your-

self. It’s even possible not only to support infrared but to add more

transmission technologies such as Bluetooth or WiFi.

You’ll get started by learning the basics of infrared light signals, and

you’ll quickly build your first project using an infrared sensor to grab

control codes from any remote you have on hand. Once you grab the

control codes, you can emit them using an infrared LED, and you’ll

start to build your own universal remote control.

Download from Wow! eBook <www.wowebook.com>

WHAT YOU NEED 203

IR-Controllable

Device

Figure 9.1: Architecture of the infrared proxy

Then we’ll even take the idea of a remote control a step further. Once we

have a universal remote, we’ll control the Arduino itself using the serial

port or an Ethernet connection. This way, you can control the Arduino

using a web browser, so you can control your TV set or DVD recorder

using the Internet (see Figure 9.1).

9.1 What You Need

1. An Ethernet shield for the Arduino.

2. A breadboard.

3. An infrared receiver, preferably the PNA4602.

4. A 100Ω resistor.

5. An infrared LED.

6. Some wires.

7. One or more infrared remote controls. They can be from your TV

set, DVD player, or your Mac. To follow the chapter’s examples, it’d

be best to have a Mac and an Apple Remote, but it’s not necessary.

If you’re not using an Apple Remote, be sure to adjust the protocol

name, bit length, and control codes in the examples accordingly.

If you’re using a remote control belonging to a Sony TV set, for

example, set the protocol name to SONY (you’ll learn more about

this in Section 9.3, Grabbing Remote Control Codes, on page 205).

8. An Arduino board such as the Uno, Duemilanove, or Diecimila.

9. A USB cable to connect the Arduino to your computer.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=203

UNDERSTANDING INFRARED REMOTE CONTROLS 204

!

" # $

%

&

'

Figure 9.2: All the parts you need in this chapter

9.2 Understanding Infrared Remote Controls

To control a device such as a TV set wirelessly, you need a sender and

a receiver. The receiver usually is built into the device to be controlled,

and the sender is part of a separate remote control. Although you can

choose from a variety of technologies such as Bluetooth or WiFi, most

modern remote controls still use infrared light for communication.

Using infrared light for transmitting signals has several advantages.

It is invisible to human beings, so it doesn’t bother you. Also, you can

generate it cheaply with infrared LEDs that can be integrated easily into

electronic circuits. So, for many purposes such as controlling devices

in a typical household, it’s an excellent choice.

But it also has some drawbacks. It doesn’t work through walls or doors,

and the distance between the remote control and the operated device is

fairly limited. Even more importantly, the infrared signal is subject to

interference with other light sources.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=204

GRABBING REMOTE CONTROL CODES 205

To reduce possible distortions caused by other light sources to a min-

imum, the infrared signal has to be modulated. That means you turn

the LED on and off at a certain frequency, usually somewhere between

36KHz and 40KHz.

That’s one of the problems that makes it a bit complicated to build

a robust infrared remote control. The biggest problem is that vendors

have invented countless incompatible protocols. They all use different

frequencies, and they all interpret data differently. Some interpret “light

on” as a 1 bit, while others treat it as 0, and they all define their own

commands that have different lengths. So, to work successfully with

different remote control protocols, we need to know how to obtain all

these properties for a specific remote control.

To get this information, we’ll take a pragmatic approach. In the next two

sections, you’ll learn how to read infrared signals from a commercial-

grade remote control, and you’ll also learn how to reproduce them.

9.3 Grabbing Remote Control Codes

Because remote controls from different vendors rarely use the same

protocol or even the same commands, before we start sending remote

control codes ourselves, we should know what we have to send to

achieve a certain result. We have to get as much information as possible

about the remote control we’d like to emulate.

We have two alternatives for obtaining remote control codes for a spe-

cific device: we could use a remote control database on the Internet

such as the Linux Infrared Remote Control project,1 or we could use an

infrared receiver to read them directly from our device’s remote. We will

choose the latter approach, because we can learn a lot from it.

Infrared receivers (see Figure 9.3, on the following page) are fairly com-

plex on the inside, but they are easy to use. They automatically observe

the infrared light spectrum at a certain frequency (usually between

36KHz and 40KHz), and they report their observations using a single

pin. So, when you’re using such a receiver, you don’t have to deal with

all the complicated transmission details. You can focus on reading and

interpreting the incoming signals.

1. http://www.lirc.org/

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.lirc.org/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=205

GRABBING REMOTE CONTROL CODES 206

Figure 9.3: A PNA4602 infrared sensor

Figure 9.4: Connecting an IR receiver to the Arduino is easy.

In Figure 9.4, you can see how to connect a PNA4602 receiver to an

Arduino. It’s cheap, it’s easy to use, and it works at a frequency of

38KHz, so it detects signals from a broad range of devices. Connect its

ground connector to one of the Arduino’s GND pins, the power supply

to the Arduino’s 5V pin, and the signal pin to digital pin 11.

You might be tempted to write a sketch that reads and outputs all

incoming data on pin 11, and I won’t stop you. Call digitalRead() in the

loop() method and output the results to the serial port. Point your TV

set’s remote to the receiver and see what happens.

You’ll probably have a hard time understanding the data you see. The

problem is that decoding the incoming data isn’t easy. Even if the

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=206

GRABBING REMOTE CONTROL CODES 207

receiver has already processed the data, it still has to be transformed

and interpreted according to some complicated rules. Also, Arduino’s

digitalRead() method isn’t always accurate enough to deal with all types

of incoming signals. You have to directly access the micro-controller to

get the best results.

Fortunately, we don’t have to do this ourselves, because the IRremote

library2 hides the nasty details. It supports the most popular infrared

protocols, and can both receive and send data. After you’ve down-

loaded and extracted the ZIP file,3 copy the directory IRremote to either

~/Documents/Arduino/libraries (on a Mac) or My Documents\Arduino\libraries

(on a Windows box). Then restart your IDE.

With the following sketch, you can then decode incoming infrared sig-

nals, if the IRremote library supports their encoding:

Download RemoteControl/InfraredDumper/InfraredDumper.pde

Line 1 #include <IRremote.h>
-

- const unsigned int IR_RECEIVER_PIN = 11;
- const unsigned int BAUD_RATE = 9600;
5

- IRrecv ir_receiver(IR_RECEIVER_PIN);
- decode_results results;
-

- void setup() {
10 Serial.begin(BAUD_RATE);

- ir_receiver.enableIRIn();
- }
-

- void dump(const decode_results* results) {
15 const int protocol = results->decode_type;

- Serial.print("Protocol: ");
- if (protocol == UNKNOWN) {
- Serial.println("not recognized.");
- } else {

20 if (protocol == NEC) {
- Serial.println("NEC");
- } else if (protocol == SONY) {
- Serial.println("SONY");
- } else if (protocol == RC5) {

25 Serial.println("RC5");
- } else if (protocol == RC6) {
- Serial.println("RC6");
- }

2. http://www.arcfn.com/2009/08/multi-protocol-infrared-remote-library.html

3. http://arcfn.com/files/IRremote.zip

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/RemoteControl/InfraredDumper/InfraredDumper.pde
http://www.arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
http://arcfn.com/files/IRremote.zip
http://books.pragprog.com/titles/msard/errata/add?pdf_page=207

GRABBING REMOTE CONTROL CODES 208

- Serial.print("Value: ");
30 Serial.print(results->value, HEX);

- Serial.print(" (");
- Serial.print(results->bits, DEC);
- Serial.println(" bits)");
- }

35 }
-

- void loop() {
- if (ir_receiver.decode(&results)) {
- dump(&results);

40 ir_receiver.resume();
- }
- }

First we define an IRrecv object named ir_receiver that reads from pin 11.

We also define a decode_result object that we’ll use to store the attributes

of incoming infrared signals. In setup(), we initialize the serial port, and

we initialize the infrared receiver by calling enableIRIn().

Then we define a method named dump() that nicely formats and out-

puts the content of a decode_result object to the serial port. decode_result

is one of the core data types of the IRremote library. It encapsulates

data such as the protocol type, the length of a command code, and the

command code itself. In line 15, we read the protocol type that has been

used to encode the incoming signal. Whenever we receive a new signal,

we output all these attributes to the serial port.

The loop() method is simple. We call decode() to check whether we’ve

received a new signal. If yes, we call dump() to output it to the serial

port, and then we call resume() to wait for the next signal.

Compile and upload the sketch to your Arduino, then start the serial

monitor, and point a remote control at the receiver. Push some of the

remote’s buttons, and see what happens. In Figure 9.5, on the following

page, you can see, for example, what happens when you point an Apple

Remote to the receiver and press menu, up, down, previous, next, and

play (if you see the code 0xffffffff from time to time, you’ve pressed one

of the Apple Remote’s keys for too long, because it is the “repeat code”

that indicates that the last command should be repeated).

After you have grabbed a remote’s control codes, you can use them to

build your own remote. You’ll learn how to do that in the next section.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=208

BUILDING YOUR OWN APPLE REMOTE 209

Figure 9.5: Capturing the IR codes of an Apple Remote

9.4 Building Your Own Apple Remote

Now that you know the protocol and the codes of the commands the

Apple Remote sends to a Mac, you can build your own Apple Remote.

You only need an infrared LED that doesn’t differ much from the LEDs

we’ve used before. The only difference is that it emits “invisible” light. In

Figure 9.6, on the next page, you can see how to connect it to pin 3 of

an Arduino (the library we’re using in this section expects the infrared

LED to be connected to pin 3). Note that you can’t use an LED without a

resistor (see Section A.1, Current, Voltage, and Resistance, on page 237

to learn more about it).

We could try to generate the infrared signals ourselves, but that’d be

tedious and error-prone. It’s better to use the existing implementation

in the IRremote library. We’ll use it to create our own AppleRemote class

that encapsulates all the gory protocol details. The class looks like this:

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=209

BUILDING YOUR OWN APPLE REMOTE 210

Figure 9.6: Connecting an IR LED to the Arduino

Download RemoteControl/AppleRemote/AppleRemote.pde

#include <IRremote.h>

class AppleRemote {

enum {

CMD_LEN = 32,

UP = 0x77E15061,

DOWN = 0x77E13061,

PLAY = 0x77E1A05E,

PREV = 0x77E1905E,

NEXT = 0x77E1605E,

MENU = 0x77E1C05E

};

IRsend mac;

void send_command(const long command) {

mac.sendNEC(command, CMD_LEN);

}

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/RemoteControl/AppleRemote/AppleRemote.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=210

BUILDING YOUR OWN APPLE REMOTE 211

public:

void menu() { send_command(MENU); }

void play() { send_command(PLAY); }

void prev() { send_command(PREV); }

void next() { send_command(NEXT); }

void up() { send_command(UP); }

void down() { send_command(DOWN); }

};

The code starts with an enumeration that contains all the constants

we need: the length of each control code and the control codes them-

selves. Then we define an IRsend object named mac that we’ll use to

send commands using the send_command() method. send_command()

uses IRsend’s sendNEC() method because the Apple Remote uses the NEC

protocol.

After we’ve established the basis, we can implement all commands with

a single function call, so implementing menu(), play(), and so on, is a

piece of cake.

Using the AppleRemote class is easy, too. In the following sketch, we

use it to control a Mac from the Arduino’s serial monitor:

Download RemoteControl/AppleRemote/AppleRemote.pde

AppleRemote apple_remote;

const unsigned int BAUD_RATE = 9600;

void setup() {

Serial.begin(BAUD_RATE);

}

void loop() {

if (Serial.available()) {

const char command = Serial.read();

switch(command) {

case 'm':

apple_remote.menu();

break;

case 'u':

apple_remote.up();

break;

case 'd':

apple_remote.down();

break;

case 'l':

apple_remote.prev();

break;

case 'r':

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/RemoteControl/AppleRemote/AppleRemote.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=211

CONTROLLING DEVICES REMOTELY WITH YOUR BROWSER 212

apple_remote.next();

break;

case 'p':

apple_remote.play();

break;

default:

break;

}

}

}

We define a global AppleRemote object named apple_remote, and in the

setup() function we initialize the serial port. In loop(), we wait for new

data on the serial port, and whenever a new byte arrives, we check

whether it’s one of the characters m, u, d, l, r, or p. Depending on the

character we received, we send the control code for menu, up, down,

previous, next, or play accordingly.

Compile and upload the sketch, and you can control a Mac using any

serial monitor, which is quite cool already. The interface is still a bit

awkward for less geeky people, so in the next section, you’ll learn how

to create a more user-friendly interface.

9.5 Controlling Devices Remotely with Your Browser

We’ve already created a lot of projects that you can control using a

serial monitor. For programmers, that’s a nice and convenient inter-

face, but as soon as you want to present your projects to your non-

technical friends or to your spouse, you’d better have something more

user-friendly and colorful.

The Seriality4 plug-in makes that possible. It adds support for serial

port communication to your web browser’s JavaScript engine.

At the moment, the plug-in is available only for Firefox, Safari, and

Chrome on Mac OS X, but a Windows port is under development. Seri-

ality is available as a disk image, so you can download it5 and install it

as usual.

After you’ve installed Seriality, you can turn your web browser into

an Apple Remote simulator using the following mixture of HTML and

JavaScript code:

4. http://www.zambetti.com/projects/seriality/

5. http://code.google.com/p/seriality/downloads/list

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.zambetti.com/projects/seriality/
http://code.google.com/p/seriality/downloads/list
http://books.pragprog.com/titles/msard/errata/add?pdf_page=212

CONTROLLING DEVICES REMOTELY WITH YOUR BROWSER 213

Download RemoteControl/AppleRemoteUI/ui.html

Line 1 <html>

- <title>Apple Remote Emulator</title>
- <head>

- <script type="text/javascript">

5 var serial;
-

- function setup() {
- serial = (document.getElementById("seriality")).Seriality();
- alert(serial.ports.join("\n"));

10 serial.begin(serial.ports[0], 9600);
- }
- </script>

- </head>

-

15 <body onload="setup();">

- <object type="application/Seriality"

- id="seriality"

- width="0"

- height="0">

20 </object>

- <h2>Apple Remote Emulator</h2>
- <form>

- <button type="button" onclick="serial.write('m');">

- Menu
25 </button>

-

- <button type="button" onclick="serial.write('u');">

- Up
- </button>

30

- <button type="button" onclick="serial.write('d');">

- Down
- </button>

-

35 <button type="button" onclick="serial.write('l');">

- Previous
- </button>

-

- <button type="button" onclick="serial.write('n');">

40 Next
- </button>

-

- <button type="button" onclick="serial.write('p');">

- Play
45 </button>

-

- </form>

- </body>

- </html>

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/RemoteControl/AppleRemoteUI/ui.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=213

BUILDING AN INFRARED PROXY 214

This is a very simple HTML page, and we’ll focus on the JavaScript

parts. In lines 4 to 12, we define two things: a global variable named

serial and a function named setup(). setup() initializes serial and assigns

a Seriality object to it. We embed a Seriality object into the web page using

the <object> tag. Its ID is “seriality,” so we can access it using getEle-

mentById().

As soon as we have a reference to the object, we call JavaScript’s alert()

function and output all serial ports we have found. You have to look up

the index of the serial port your Arduino is connected to and use it in

the following call to the begin() method. For simplicity, we always pass

it the first serial device we can find and a baud rate of 9,600. Using the

first serial device is only a guess, and you might have to adjust it. You

already know that pattern from our Processing examples.

We invoke setup() in the onload event handler of the <body> element.

Then we can access the Seriality object in the onclick handlers of our six

<button> elements.

Upload the sketch from Section 9.4, Building Your Own Apple Remote,

on page 209 to your Arduino, and point your browser to the HTML

page. After you have clicked the OK button of the alert box showing all

serial ports, you should see a web page like Figure 9.7, on the following

page. Click any button to perform the corresponding action. That’s an

interface even your Grandma could use, isn’t it?

Please note that you cannot access the Arduino hardware directly using

Seriality. You can only access the serial port, so all the things you’d like

to happen on your Arduino have to be accessible via serial communica-

tion. But that’s a common pattern anyway, so Seriality is really a useful

tool that can greatly improve your project’s user interface.

You still need to connect the Arduino to your computer’s serial port to

control it with a web browser. In the next section, you’ll learn how to

overcome this and control an Arduino without a serial connection.

9.6 Building an Infrared Proxy

All our previous remote control approaches have one major drawback:

they all depend on a serial connection to a PC. In this section, you’ll

learn how to replace this connection with an Ethernet connection, so

you no longer need a PC but only Internet access. You will directly plug

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=214

BUILDING AN INFRARED PROXY 215

Figure 9.7: The Apple Remote emulator in action

your Ethernet cable into an Ethernet shield connected to the Arduino

(see Figure 9.8, on the next page), so it is available on your network.

This doesn’t necessarily mean that you have to use your PC’s web

browser to access the Arduino. You could also use the browser on your

PlayStation Portable, on your iPhone, or on your Nintendo DS. Yes, you

can now control your TV set using your game consoles or your smart-

phone. Oh, and you could replace the Ethernet shield with a WiFi shield

so you don’t have to connect your Arduino physically to your network

router.

Before we dive into the code, we should do a little planning ahead and

make clear what we’d like to achieve. We’ll build an infrared proxy—

a device that receives commands via Ethernet and turns them into

infrared signals (see Figure 9.1, on page 203). To make it easy to inte-

grate the device into a network, we’ll make it accessible via HTTP. This

way, we can control it using a regular web browser.

We’ll only implement a very small portion of the HTTP standard on the

Arduino—we’ll only support a certain URL scheme. The URLs we will

support look as follows:

http://«arduino-ip»/«protocol-name»/«command-length»/«command-code»

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=215

BUILDING AN INFRARED PROXY 216

Figure 9.8: An Ethernet-controllable remote control

We’ll replace «arduino-ip» with the IP address of the Arduino’s Ethernet

shield. The element «protocol-name» can be one of the supported proto-

cols (“NEC,” “SONY,” “RC5,” or “RC6”). «command-length» specifies the

length of the command code in bits, and «command-code» contains the

command code itself as a decimal number.

Let’s assume we’d like to send the code for the menu key on an Apple

Remote, and our Arduino has the IP address 192.168.2.42. Then we’d

have to point our web browser to the following URL:

http://192.168.2.42/NEC/32/2011283550

In this case, the protocol name is NEC, the length of the command

code is 32 bits, and the command code is 2011283550 (the decimal

representation of the hexadecimal number 0x77E1C05E).

We’ve already used the Arduino as a web client in Chapter 8, Network-

ing with Arduino, on page 170, but now we need to turn it into a web

server. The server waits for new HTTP requests like the one shown pre-

viously, parses the URL, and emits the corresponding infrared signal.

We’ll hide all these details in a class named InfraredProxy, and to keep

things as easy and as concise as possible, we’ll make use of both the

Ethernet and the IRremote library. The InfraredProxy class is still one of

the book’s most sophisticated examples of Arduino code. Here it is:

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://192.168.2.42/NEC/32/2011283550
http://books.pragprog.com/titles/msard/errata/add?pdf_page=216

BUILDING AN INFRARED PROXY 217

Download RemoteControl/InfraredProxy/InfraredProxy.pde

Line 1 #include <SPI.h>
- #include <Ethernet.h>
- #include <IRremote.h>
-

5 class InfraredProxy {
- IRsend _infrared_sender;
-

- void read_line(Client& client, char* buffer, const int buffer_length) {
- int buffer_pos = 0;

10 while (client.available() && (buffer_pos < buffer_length - 1)) {
- const char c = client.read();
- if (c == '\n')
- break;
- if (c != '\r')

15 buffer[buffer_pos++] = c;
- }
- buffer[buffer_pos] = '\0';
- }
-

20 bool send_ir_data(const char* protocol, const int bits, const long value) {
- bool result = true;
- if (!strcasecmp(protocol, "NEC"))
- _infrared_sender.sendNEC(value, bits);
- else if (!strcasecmp(protocol, "SONY"))

25 _infrared_sender.sendSony(value, bits);
- else if (!strcasecmp(protocol, "RC5"))
- _infrared_sender.sendRC5(value, bits);
- else if (!strcasecmp(protocol, "RC6"))
- _infrared_sender.sendRC6(value, bits);

30 else

- result = false;
- return result;
- }
-

35 bool handle_command(char* line) {
- strsep(&line, " ");
- char* path = strsep(&line, " ");
-

- char* args[3];
40 for (char** ap = args; (*ap = strsep(&path, "/")) != NULL;)

- if (**ap != '\0')
- if (++ap >= &args[3])
- break;
- const int bits = atoi(args[1]);

45 const long value = atol(args[2]);
- return send_ir_data(args[0], bits, value);
- }
-

- public:

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/RemoteControl/InfraredProxy/InfraredProxy.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=217

BUILDING AN INFRARED PROXY 218

50

- void receive_from_server(Server server) {
- const int MAX_LINE = 256;
- char line[MAX_LINE];
- Client client = server.available();

55 if (client) {
- while (client.connected()) {
- if (client.available()) {
- read_line(client, line, MAX_LINE);
- Serial.println(line);

60 if (line[0] == 'G' && line[1] == 'E' && line[2] == 'T')
- handle_command(line);
- if (!strcmp(line, "")) {
- client.println("HTTP/1.1 200 OK\n");
- break;

65 }
- }
- }
- delay(1);
- client.stop();

70 }
- }
- };

After including all libraries needed, we declare the InfraredProxy class. We

define a member variable named _infrared_sender that stores an IRsend

object we need to emit infrared control codes.

In line 8, we define a read_line() method that reads one line of data

sent by a client. A line ends either with a newline character (\n) or

with a carriage return character followed by a newline character (\r\n).

read_line() expects the Ethernet Client object to read data from, a char-

acter buffer to store the data in (buffer), and the maximum length of

the character buffer (buffer_length). The method ignores all newline and

carriage return characters, and it sets the line’s last character to \0, so

the buffer to be filled will always be a null-terminated string.

The next method (send_ir_data()) starts in line 20 and emits an infrared

command specified by a protocol type (protocol), the length of the code

measured in bits (bits), and the code value to be sent (value). Depending

on the name of the protocol, the method delegates all the real work to

our IRsend instance.

handle_command() implements one of the most difficult aspects of our

InfraredProxy: it parses the URL addressed by the HTTP request. To

understand what this method does, we have to understand how HTTP

requests work. If you wander up to your web browser’s address bar and

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=218

BUILDING AN INFRARED PROXY 219

enter a URL like http://192.168.2.42/NEC/32/2011283550, your browser will

send an HTTP request that looks like this:

GET /NEC/32/2011283550 HTTP/1.1

host: 192.168.2.42

The first line is a GET request, and handle_command() expects a string

containing such a request. It extracts all information encoded in the

path (/NEC/32/2011283550) and uses it to emit an infrared signal. Parsing

the information is a bit tricky, but using C’s strsep() function, it’s not

too difficult. strsep() separates strings delimited by certain characters.

It expects a string containing several separated strings and a string

containing all delimiters. strsep() replaces the first occurrence of any

character in the delimiter string with a \0 character. It returns a pointer

to the original string. Before that, it replaces the pointer to the string

we wanted to split with a pointer pointing to the first string.

We use strsep() in two different contexts. In the first case, we extract

the path from the GET command: we strip off the string “GET” and

the string “HTTP/1.1.” Both are separated from the path by a blank

character. All this happens in lines 36 and 37. If you were to pass

the URL http://192.168.2.42/NEC/32/2011283550 to handle_command(), for

example, path would contain /NEC/32/2011283550.

At this stage, we have a string consisting of three strings separated by a

slash character (/). It’s time to use strsep() again, and if you understand

what happens in lines 40 to 43, then you can call yourself familiar

with both C and the strsep() function. In the end, the array args con-

tains all three path elements. We can pass the protocol name directly

to send_ir_data(), but we have to turn the bit length and the value of

the code into int and long values before. For the conversion, we use the

atoi() and atol() functions.

Now we have defined all helper methods we need, and we only have

to implement the public interface of the InfraredProxy class. It contains

only one method named receive_from_server(). This method finally imple-

ments the core logic of our InfraredProxy class. It expects an instance of

the Server class that is defined in the Ethernet library. It waits for a

client to connect using Server’s available() method in line 54. Whenever

the server is connected to a client, it checks whether the client has new

data using Client’s available() method in line 57.

receive_from_server() reads the data sent by the client line by line call-

ing read_line(). It prints each line to the serial port for debugging pur-

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://192.168.2.42/NEC/32/2011283550
http://192.168.2.42/NEC/32/2011283550
http://books.pragprog.com/titles/msard/errata/add?pdf_page=219

BUILDING AN INFRARED PROXY 220

poses, and for every line it checks whether it begins with “GET.” If yes, it

calls handle_command(); otherwise, it checks whether the line is empty,

because all HTTP messages are terminated by an empty line. In this

case, receive_from_server() sends back an “OK” response, waits for a mil-

lisecond to give the client some time to process the response, and then

disconnects from the client calling stop().

Admittedly that was a lot of code, but the effort was well worth it. Using

the InfraredProxy is really simple now:

Download RemoteControl/InfraredProxy/InfraredProxy.pde

const unsigned int PROXY_PORT = 80;

const unsigned int BAUD_RATE = 9600;

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

byte ip[] = { 192, 168, 2, 42 };

Server server(PROXY_PORT);

InfraredProxy ir_proxy;

void setup() {

Serial.begin(BAUD_RATE);

Ethernet.begin(mac, ip);

server.begin();

}

void loop() {

ir_proxy.receive_from_server(server);

}

As usual, we define the MAC and IP addresses we’d like to use. Then

we define a Server object, passing it the port it should listen to, 80 (the

standard HTTP port). Also, we initialize a new InfraredProxy object.

In the setup() method, we initialize the serial port for debug purposes.

We also initialize the Ethernet shield, and we call Server’s begin() method

to start our server’s listener. In loop(), we only call the InfraredProxy’s

receive_from_server() method, passing it our Server instance.

Let’s finally test the code! Attach the Ethernet shield to your Arduino,

and attach the infrared LED circuit to the shield. Configure the MAC

and IP addresses, compile it, and upload it to your Arduino. Point your

web browser to http://192.168.2.42/NEC/32/2011283550 (adjust the URL to

your local settings!), and see what happens to your Mac or whatever

device you want to control (in Figure 9.9, on the following page, you

can see a typical output of the infrared proxy on the serial monitor).

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/RemoteControl/InfraredProxy/InfraredProxy.pde
http://192.168.2.42/NEC/32/2011283550
http://books.pragprog.com/titles/msard/errata/add?pdf_page=220

WHAT IF IT DOESN’T WORK? 221

Figure 9.9: Accessing the infrared proxy with Firefox

Although we’ve used only a minimum amount of hardware (a cheap and

simple infrared LED), this chapter’s projects are very useful and fairly

sophisticated, at least from a software development point of view. We

can now not only control any device that understands infrared signals,

but we can do it using a computer’s serial port or even a web browser.

Also, you no longer need to connect the Arduino to your computer’s

USB port. The Infrared proxy, for example, only needs the USB port to

get some power. Plug an AC adapter into your Arduino, and you can get

rid of your USB cable.

For the first time, we’ve controlled real-world devices using an Arduino.

We’ll continue to do so in the next chapter, where you’ll learn how to

control motors.

9.7 What If It Doesn’t Work?

In this chapter, we mainly used LEDs and an Ethernet shield, so all the

advice from Chapter 3, Building Binary Dice, on page 63 and Chapter 8,

Networking with Arduino, on page 170 also apply to this chapter.

In addition, you have to be careful about more things. For example,

the distance between an infrared LED and its receiver is important.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=221

EXERCISES 222

Control Everything

All the projects in this chapter are based on devices you can
control already using an infrared remote control. But you can
also add an infrared receiver to existing devices or build com-
pletely new gadgets that come with an infrared receiver.

In principle, you could control your refrigerator or your
microwave oven with a remote control. But have you ever
thought about a remote-controlled lawn mower?∗ I bet not.

∗. http://www.instructables.com/id/Arduino-RC-Lawnmower/

To be on the safe side, you should position the LED near the receiver.

It should also be placed right in front of the receiver, and you should

make sure that there’s not too much ambient light that might disturb

the infrared signal.

For debugging purposes, it’s useful to replace invisible infrared LED

with a regular LED from time to time. This way, you can see whether

your circuit works in principle.

If you’re trying to control a Mac, you should unpair any other remote

controls in the security area of the Mac’s system preferences menu.

Finally, you might be using a device that uses a protocol that is not

supported by the IRremote library. In this case, you have to add it. This

can be tricky, but IRremote is open source, so at least it’s possible.

9.8 Exercises

• Build an emulator for a remote control you find in your household.

Make its commands available via serial port and via Ethernet.

• Instead of controlling the Arduino via a serial monitor or web

browser, control it using a Nintendo Nunchuk. For example, you

could move the analog stick up and down to control your TV set’s

volume, and you could move it left or right to change the channels.

• Design a real universal remote control based on an Arduino. Look

for a touch screen, a button pad, an SD card shield, and a Blue-

tooth module. I bet you didn’t think you could build a device like

this—but you know everything you need to do it now.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.instructables.com/id/Arduino-RC-Lawnmower/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=222

Chapter 10

Controlling Motors with Arduino
So far, we’ve created projects that have had an impact on the real world.

We’ve made LEDs shine, and we’ve controlled devices using infrared

light. In this chapter, we’ll create an even more intense experience: we’ll

control motors that will actually move things. We won’t go so far as to

build a full-blown autonomous robot, but we’ll create a small device

that does something useful and funny.

First, though, you’ll learn a bit about the basics of different motor types

and their pros and cons. Today you can choose from a variety of motor

types for your projects, and this chapter starts with a brief description

of their differences.

We’ll concentrate on servo motors, because you can use them for a wide

range of projects and they’re cheap and easy to use. You’ll learn to use

the Arduino servo library and to control a servo using the serial port.

Based on these first steps, we’ll then build a more sophisticated project.

It’s a blaming device that uses nearly the same hardware as the first

project in the chapter but more elaborate software. You’ll probably find

many applications for it in your office!

10.1 What You Need

1. A servo motor such as the Hitec HS-322HD

2. Some wires

3. A TMP36 temperature sensor (it’s optional, and you need it only

for the exercises)

4. An Arduino board such as the Uno, Duemilanove, or Diecimila

5. A USB cable to connect the Arduino to your computer

Download from Wow! eBook <www.wowebook.com>

INTRODUCING MOTORS 224

!

"

#

Figure 10.1: All the parts you need in this chapter

10.2 Introducing Motors

Depending on your project’s needs, you can choose from a variety of

motors today. For hobby electronics, you’ll usually use DC motors,

servo motors, or stepper motors (in Figure 10.2, on the next page, you

see a few different types of motors; no DC motor is shown). They mainly

differ in speed, precision of control, power consumption, reliability, and

price.

DC motors are fast and efficient, so you can use them in drill machines,

electric bicycles, or remote-control cars. You can control DC motors

easily, because they have only two connectors. Connect one to a power

supply and the other to ground, and the motor starts to spin. Swap

the connections, and the motor will spin the other way around. Add

more voltage, and the motor spins faster; decrease voltage, and it spins

slower.

DC motors aren’t a good choice if you need precise control. In such

cases, it’s better to use a stepper motor, which allows for precise con-

trol in a range of 360 degrees. Although you might not have noticed

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=224

FIRST STEPS WITH A SERVO MOTOR 225

Figure 10.2: Motor types from left to right: standard servo, continuous

rotation servo, stepper

it, you’re surrounded by stepper motors. You hear them when your

printer, scanner, or disk drive is at work. Controlling stepper motors

isn’t rocket science, but it is a bit more complicated than controlling

DC motors and servos.

Servo motors are the most popular among hobbyists, because they are a

good compromise between DC motors and steppers. They’re affordable,

reliable, and easy to control. You can move standard servos only in a

range of 180 degrees, but that’s sufficient for many applications. With

continuous rotation servos, you can increase the range to 360 degrees,

but you lose the ease of control.

In the next section, you’ll learn how easy it is to control standard servo

motors with an Arduino.

10.3 First Steps with a Servo Motor

The Arduino IDE comes with a library for controlling servo motors that

we’ll use for our first experiments. In Figure 10.3, on the following page,

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=225

FIRST STEPS WITH A SERVO MOTOR 226

Figure 10.3: Basic circuit for a 5V servo motor

you can see a basic circuit for connecting an Arduino to a servo motor.

Connect the ground wire to one of the Arduino’s GND pins, connect

power to the Arduino’s 5V pin, and connect the control line to pin 9.

Please note that this works only for a 5V servo! Many cheap servos use

9V, and in this case, you need an external power supply, and you can

no longer connect the servo to the Arduino’s 5V pin. If you have a 9V

servo, attach an external power supply such as an AC-to-DC adapter

or a DC power supply to your Arduino’s power jack. Then connect the

servo to the Vin pin.1 You should also check the specification of your

Arduino board. For example, you should not use an Arduino BT2 to

control motors, because it can only cope with a maximum of 5.5V.

Figure 10.4, on the next page shows how to connect your servo motor

to your Arduino using wires. You can also use pin headers, but wires

give you more flexibility.

Controlling servo motors is convenient, because you can set the motor’s

shaft to an angle between 0 and 180. With the following sketch, you

can send a degree value via the serial port and move the servo motor

accordingly:

1. http://www.arduino.cc/playground/Learning/WhatAdapter

2. http://arduino.cc/en/Main/ArduinoBoardBluetooth

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.arduino.cc/playground/Learning/WhatAdapter
http://arduino.cc/en/Main/ArduinoBoardBluetooth
http://books.pragprog.com/titles/msard/errata/add?pdf_page=226

FIRST STEPS WITH A SERVO MOTOR 227

Figure 10.4: Plug three wires into the servo’s connector to attach it to

the Arduino.

Download Motors/SerialServo/SerialServo.pde

Line 1 #include <Servo.h>
-

- const unsigned int MOTOR_PIN = 9;
- const unsigned int MOTOR_DELAY = 15;
5 const unsigned int SERIAL_DELAY = 5;
- const unsigned int BAUD_RATE = 9600;
-

- Servo servo;
-

10 void setup() {
- Serial.begin(BAUD_RATE);
- servo.attach(MOTOR_PIN);
- delay(MOTOR_DELAY);
- servo.write(1);

15 delay(MOTOR_DELAY);
- }
-

- void loop() {
- const int MAX_ANGLE = 3;

20

- char degrees[MAX_ANGLE + 1];
-

- if (Serial.available()) {
- int i = 0;

25 while (Serial.available() && i < MAX_ANGLE) {
- const char c = Serial.read();
- if (c != -1 && c != '\n')
- degrees[i++] = c;

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Motors/SerialServo/SerialServo.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=227

BUILDING A BLAMINATR 228

- delay(SERIAL_DELAY);
30 }

- degrees[i] = 0;
- Serial.print(degrees);
- Serial.println(" degrees.");
- servo.write(atoi(degrees));

35 delay(MOTOR_DELAY);
- }
- }

We include the Servo library, and in line 8, we define a new Servo object.

In the setup() function, we initialize the serial port, and we attach() the

Servo object to the pin we have defined in MOTOR_PIN. After that, we wait

for 15 milliseconds so the servo motor has enough time to process our

command. Then we call write() to move back the servo to 1 degree. We

could also move it back to 0 degrees, but some of the servos I have

worked with make some annoying noise in this position.

The main purpose of the loop() function is to read new degree values

from the serial port. These values are in a range from 0 to 180, and we

read them as ASCII values. So, we need a string that can contain up

to four characters (remember, strings are null-terminated in C). That’s

why we declare the degrees string with a length of four in line 21.

Then we wait for new data to arrive at the serial port and read it char-

acter by character until no more data is available or until we have read

enough. We terminate the string with a zero byte and print the value

we’ve read to the serial port. Finally, we convert the string into an inte-

ger value using atoi() and pass it to the write() method of the Servo object

in line 34. Then we wait again for the servo to do its job.

Compile and upload the sketch, and then open the serial monitor. After

the servo motor has initialized, send some degree values such as 45,

180, or 10. See how the motor moves to the angle you have specified.

To see the effect a bit better, turn a wire or a piece of paper into an

arrow, and attach it to the motor’s gear.

It’s easy to control a servo via the serial port, and the circuit we’ve built

can be the basis for many useful and fun projects. In the next section,

we’ll use it to build an automatic blaming device.

10.4 Building a Blaminatr

Finger-pointing isn’t nice, but it can be perversely satisfying. In this

section, we’ll build a device that I call Blaminatr. Instead of blaming

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=228

BUILDING A BLAMINATR 229

Arduino Arts

You can use the Arduino not just for gadgets or fun projects
but also in artistic ways. Especially in the new-media art area
you will find many amazing projects built with the Arduino. One
of them is Anthros,∗ a responsive environment that observes a
small area using a webcam. The area contains some “tenta-
cles,” and whenever a person crosses the area, the tentacles
move into the person’s direction. Servos move the tentacles,
and an Arduino controls the servos.

For all people interested in new-media art, Alicia Gibb’s the-
sis “New Media Art, Design, and the Arduino Microcontroller: A
Malleable Tool”† is a must-read.

∗. http://www.richgilbank.ca/anthros

†. http://aliciagibb.com/thesis/

someone directly, you can tell the Blaminatr to do so. In Figure 10.5,

on the following page, you can see the device in action. Tell it to blame

me, and it moves an arrow, so it points to “Maik.”

Blaminatrs are perfect office toys that you can use in many situa-

tions. For software developers, it can be a good idea to attach one to

your continuous integration (CI) system. Continuous integration sys-

tems such as CruiseControl.rb3 or Luntbuild4 help you continuously

check whether your software is in good shape.

Whenever a developer checks in changes, the CI automatically compiles

the software and runs all tests. Then it publishes the results via email

or as an RSS feed. You can easily write a small piece of software that

subscribes to such a feed. Whenever someone breaks the build, you’ll

find a notification in the feed, and you can use the Blaminatr to point

to the name of the developer who has committed the latest changes.5

In the previous section, you learned all about servo motors you need

to build the Blaminatr. Now we only need some creativity to build the

device’s display, and we need more elaborate software. We start with

3. http://cruisecontrolrb.thoughtworks.com/

4. http://luntbuild.javaforge.com/

5. At http://urbanhonking.com/ideasfordozens/2010/05/19/the_github_stoplight/, you can see an

alternative project. It uses a traffic light to indicate your project’s current status.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.richgilbank.ca/anthros
http://aliciagibb.com/thesis/
http://cruisecontrolrb.thoughtworks.com/
http://luntbuild.javaforge.com/
http://urbanhonking.com/ideasfordozens/2010/05/19/the_github_stoplight/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=229

BUILDING A BLAMINATR 230

Figure 10.5: The Blaminatr: blaming has never been easier.

a class named Team that represents the members of our team; that is,

the potential “blamees”:

Download Motors/Blaminatr/Blaminatr.pde

Line 1 const unsigned int MAX_MEMBERS = 10;
-

- class Team {
- char** _members;
5 int _num_members;
- int _positions[MAX_MEMBERS];
-

- public:
-

10 Team(char** members) {
- _members = members;
-

- _num_members = 0;
- char** member = _members;

15 while (*member++)
- _num_members++;
-

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Motors/Blaminatr/Blaminatr.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=230

BUILDING A BLAMINATR 231

- const int share = 180 / _num_members;
- int pos = share / 2;

20 for (int i = 0; i < _num_members; i++) {
- _positions[i] = pos;
- pos += share;
- }
- }

25

- int get_position(const char* name) const {
- int position = 0;
- for (int i = 0; i < _num_members; i++) {
- if (!strcmp(_members[i], name)) {

30 position = _positions[i];
- break;
- }
- }
- return position;

35 }
- };

The code defines several member variables: _members contains a list

of up to ten team member names, _num_members contains the actual

number of people on the team, and we store the position (angle) of the

team member’s name on the Blaminatr display in _positions.

The constructor expects an array of strings that contains the team

members’ names and that is terminated by a NULL pointer. We store a

reference to the list, and then we calculate the number of team mem-

bers. We iterate over the array until we find a NULL pointer. All this

happens in lines 13 to 16.

Then we calculate the position of each team member’s name on the

Blaminatr’s display. Every team member gets their fair share on the

180-degree display, and the Blaminatr will point to the share’s center,

so we divide the share by 2. We store the positions in the _positions array

that corresponds to the _members array. That means the first entry of

_positions contains the position of the first team member, and so on.

With the get_position() method, we get back the position belonging to a

certain name. We walk through the _members array and check whether

we have found the right member using the strcmp() function. As soon as

we’ve found it, we return the corresponding entry of the _positions array.

If we couldn’t find a team member with the name we are looking for, we

return 0.

Implementing a Blaminatr class is easy now:

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=231

BUILDING A BLAMINATR 232

Download Motors/Blaminatr/Blaminatr.pde

#include <Servo.h>

const unsigned int MOTOR_PIN = 9;

const unsigned int MOTOR_DELAY = 15;

class Blaminatr {

Team _team;

Servo _servo;

public:

Blaminatr(const Team& team) : _team(team) {}

void attach(const int sensor_pin) {

_servo.attach(sensor_pin);

delay(MOTOR_DELAY);

}

void blame(const char* name) {

_servo.write(_team.get_position(name));

delay(MOTOR_DELAY);

}

};

A Blaminatr object aggregates a Team object and a Servo object. The con-

structor initializes the Team instance while we can initialize the Servo

instance by calling the attach() method.

The most interesting method is blame(). It expects the name of the team

member to blame, calculates his position, and moves the servo accord-

ingly. Let’s put it all together now:

Download Motors/Blaminatr/Blaminatr.pde

Line 1 const unsigned int MAX_NAME = 30;
- const unsigned int BAUD_RATE = 9600;
- const unsigned int SERIAL_DELAY = 5;
-

5 char* members[] = { "nobody", "Bob", "Alice", "Maik", NULL };
- Team team(members);
- Blaminatr blaminatr(team);
-

- void setup() {
10 Serial.begin(BAUD_RATE);

- blaminatr.attach(MOTOR_PIN);
- blaminatr.blame("nobody");
- }
-

15 void loop() {
- char name[MAX_NAME + 1];

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/Motors/Blaminatr/Blaminatr.pde
http://media.pragprog.com/titles/msard/code/Motors/Blaminatr/Blaminatr.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=232

WHAT IF IT DOESN’T WORK? 233

- if (Serial.available()) {
- int i = 0;
- while (Serial.available() && i < MAX_NAME) {

20 const char c = Serial.read();
- if (c != -1 && c != '\n')
- name[i++] = c;
- delay(SERIAL_DELAY);
- }

25 name[i] = 0;
- Serial.print(name);
- Serial.println(" is to blame.");
- blaminatr.blame(name);
- }

30 }

We define a list of member names that is terminated by a NULL pointer.

The list’s first entry is “nobody,” so we don’t have to deal with the rare

edge case when nobody is to blame. Then we use members to initialize

a new Team object and pass this object to the Blaminatr’s constructor.

In the setup() function, we initialize the serial port and attach the Blami-

natr’s servo motor to the pin we defined in MOTOR_PIN. Also, we initialize

the Blaminatr by blaming “nobody.”

The loop() function is nearly the same as in Section 10.3, First Steps

with a Servo Motor, on page 225. The only difference is that we do not

control a servo directly but call blame() in line 28.

That’s it! You can now start to draw your own display and create your

own arrow. Attach them directly to the motor or—even better—put

everything into a nice box. Compile and upload the software and start

to blame.

Of course, you can use motors for more serious projects. For example,

you can use them to build robots running on wheels or similar devices.

But you cannot attach too many motors to a “naked” Arduino, because

it is not meant for driving bigger loads. So if you have a project in mind

that needs a significant number of motors, you should consider buying

a motor shield6 or use a special shield such as the Roboduino.7

10.5 What If It Doesn’t Work?

Working with motors is surprisingly easy, but still a lot of things can

go wrong. The biggest problem is that motors consume a lot of power,

6. You can find them at http://adafruit.com or http://makershed.com.
7. http://store.curiousinventor.com/roboduino.html

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://adafruit.com
http://makershed.com
http://store.curiousinventor.com/roboduino.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=233

EXERCISES 234

More Motors Projects

Motors are fascinating. Search the ’net and you’ll find numer-
ous projects combining the Arduino with them. A fun project
is the Arduino Hypnodisk.∗ It uses a servo motor to rotate a
hypno disc—a rotating disk with a spiral printed on it that has an
hypnotic effect. An infrared rangefinder changes the motor’s
speed, so the closer you get to the disc, the faster it spins.

A useful and exciting project is the USB hourglass.† It uses an
Arduino and a servo motor to turn a sand timer, and it observes
the falling sand using an optical sensor. Whenever all the sand
has fallen through, the device turns the timer automatically.

That’s all nice, but the device’s main purpose is to generate
true random numbers. Falling sand is a perfect basis for gener-
ating true randomness (see the sidebar on page 73), and the
USB hourglass uses the signals from its optical sensor to generate
random numbers, sending them to the serial port.

∗. http://www.flickr.com/photos/kevino/4583084700/in/pool-make

†. http://home.comcast.net/~hourglass/

so you cannot simply attach every motor to an Arduino. Also, you can-

not easily drive more than one motor, especially not with the small

amount of power you get from a USB port. If your motor does not run

as expected, check its specification, and attach an AC or DC adapter to

your Arduino if necessary.

You also shouldn’t attach too much weight to your motor. Moving an

arrow made of paper is no problem, but you might run into problems

if you attach bigger and heavier things. Also, be careful not to put any

obstacles into the motor’s way. The motor’s shaft always needs to move

freely.

Some motors have to be adjusted from time to time, and usually you

have to do that with a very small screw driver. Refer to the motor’s

specification for detailed instructions.

10.6 Exercises

• Add an Ethernet shield to the Blaminatr so you can blame peo-

ple via Internet and not only via the serial port. Pointing your

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.flickr.com/photos/kevino/4583084700/in/pool-make
http://home.comcast.net/~hourglass/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=234

EXERCISES 235

Figure 10.6: A motorized thermometer

web browser to an address such as http://192.168.1.42/blame/Maik

should blame me, for example.

• Create a thermometer based on a TMP36 temperature sensor and

a servo motor. Its display could look like Figure 10.6; that is, you

have to move an arrow that points to the current temperature.

• Use an IR receiver to control the Blaminatr. For example, you

could use the channel key of your TV set’s remote control to pro-

ceed the Blaminatr from one name to the other.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://192.168.1.42/blame/Maik
http://books.pragprog.com/titles/msard/errata/add?pdf_page=235

Part III

Appendixes

Download from Wow! eBook <www.wowebook.com>

Appendix A

Basics of Electronics
We didn’t need a lot of theory or background to create our first Arduino

projects. But it’s a good idea to learn a bit about electricity and about

soldering if you want to build bigger and more sophisticated projects.

In this appendix, you’ll learn the basics of electricity, and you’ll learn

about Ohm’s law, which is probably the most important law in electron-

ics. Also, you’ll learn more about resistors, and you’ll see that soldering

isn’t as difficult as it might seem.

A.1 Current, Voltage, and Resistance

To build your first projects with the Arduino, you didn’t need to know

much about electricity. But at some point, you’ll need to understand

what current, voltage, and resistance is all about. For example, you

already know that you always have to put a resistor in front of an LED,

but you might not know exactly why, and you might not know how to

calculate the resistor’s size for a given LED. Let’s remedy that.

An electrical circuit resembles a water circuit in many respects. In Fig-

ure A.1, on the following page, you can see a water circuit on the left

and an electrical circuit on the right. Isn’t it fascinating how similar

they are and that you can even find a connection between them when

you use a water-driven dynamo that acts as a power supply? Let’s take

a closer look at their most important attributes.

While water flows in a water circuit, electrons flow in an electrical cir-

cuit. Voltage is electricity’s equivalent of water pressure and is mea-

sured in volts (V). Voltage is the initial cause for a current, and the

higher the voltage, the faster the current flows.

Download from Wow! eBook <www.wowebook.com>

CURRENT, VOLTAGE, AND RESISTANCE 238

Current

Pipe

Water
Pump

Water
Mill

+

-

Current (I)

Power
Supply
Voltage
(V)

Resistance (R)

Wire

Dynamo

Figure A.1: Water circuits and electrical circuits are similar.

In electronics, current is the amount of electricity flowing through an

electric line. It is the equivalent of the actual flow of water in a water

circuit. While we measure the water flow in liters per minute, we mea-

sure current in ampere. One ampere means that approximately 6.24 ×

1018 electrons are flowing per second.

Every component in a circuit—be it water or electricity—resists some

amount of current. In a water circuit, it’s the pipes the water is flowing

through or perhaps a water mill. In an electrical circuit, it is the wire

or a light bulb. Resistance is an important physical phenomenon that

is closely related to current and voltage. We measure it in Ohms, and

its official symbol is Ω.

The German physicist Georg Ohm found out that current depends on

voltage and resistance. He postulated the following form we call Ohm’s

law today:1

• I (current) = V (voltage) / R (resistance)

This is equivalent to the following:

• R (resistance) = V (voltage) / I (current)

• V (voltage) = R (resistance) × I (current)

So, for two given values, you can calculate the third one. Ohm’s law is

the only formula you’ll absolutely have to learn when learning electron-

1. We use I as the current’s letter for historical reasons. In the past, it stood for induc-

tance.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=238

CURRENT, VOLTAGE, AND RESISTANCE 239

ics. When working with LEDs, for example, it helps you calculate the

size of the resistor you need.

If you look at a LED’s data sheet, you’ll usually find two values: a for-

ward voltage and a current rating. The forward voltage usually is some-

where between 1.8V and 3.6V, and the maximum current often is 20

mA (milliamperes). Let’s say we have an LED with a maximum of 2.5

volts and a safe current of 20 mA. We also assume that we have a power

supply delivering 5 volts (as the Arduino does, for example). What’s the

right size of the resistor we need to put in front of the LED?

We have to make sure that the resistor takes 5 – 2.5 = 2.5 volts from the

circuit, so only 2.5 volts are left for the LED. This value is called voltage

drop. Also, we want a maximum of 20 mA to flow through the LED.

This implies that a maximum of 20 mA (0.02 A) should flow through

our resistor also.

Now that we know that 2.5 V and 0.02 A should pass the LED, we can

use Ohm’s law to calculate the resistance R:

R = V / I

In our case, we have the following:

R = 2.5V / 0.02A = 125Ω

This means we need a 125Ω resistor for our LED. If you do not have a

125Ω resistor, use a bigger one such as 150Ω or 220Ω. It will still protect

the LED and only slightly decrease its brightness. That’s because we’d

decrease the current even more:

I = 2.5V / 150Ω = 17mA

I = 2.5V / 220Ω = 11mA

Resistors

You’ll hardly ever find an electronics project that doesn’t need resistors.

So, you’ll need them often and should get familiar with them a bit more.

Usually you’ll use carbon or metal resistors. Metal resistors are more

precise and don’t create so much noise, but carbon resistors are a bit

cheaper. In simple circuits, it usually doesn’t matter which type you

use.

The most important attribute of a resistor is its resistance value that is

measured in Ohm. Only a few vendors actually print this value on the

resistor, because resistors are small parts, and it’s hard to read text

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=239

CURRENT, VOLTAGE, AND RESISTANCE 240

Color Code Zeros

 Black 0 -

 Brown 1 0

 Red 2 00

 Orange 3 000

 Yellow 4 0000

 Green 5 00000

 Blue 6 000000

 Violet 7 0000000

 Gray 8 00000000

 White 9 000000000

Figure A.2: Resistor values are encoded using colors.

that is so small it fits on them. So, they use a trick and encode the

value using colored stripes.

Usually you find four or five stripes on a resistor (at least on through-

hole parts; SMD resistors don’t have them). One of them is separated

from the others by a gap (see Figure A.3, on the next page). The separate

stripe is on the right side of the resistor, and it tells you about the

resistor’s accuracy. Gold stands for an accuracy of ±5 percent, silver

for ±10 percent, and no stripe means ±20 percent. Using the remaining

stripes, you can calculate the resistor value.

You read the stripes from left to right, and every color stands for a digit

(see Figure A.2). The rightmost stripe—that is the third or fourth one—

stands for an amount of zeros to be added to the preceding digits. In

Figure A.3, on the next page, you can see three examples:

• On the first resistor we find four stripes: brown (1), green (5),

brown (1 zero), silver (±10%). That means we have a resistor value

of 150Ω.

• The second resistor has four stripes again: yellow (4), violet (7),

orange (3 zeros), gold (± 5%). So, this resistor has a value of

47000Ω = 47k Ω.

• The third resistor has five stripes: brown (1), red (2), red (2), green

(5 zeros), silver (±10%), so the value is 12,200,000Ω = 12.2MΩ.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=240

LEARNING HOW TO SOLDER 241

150Ω

± 10%

47kΩ

± 5%

12.2MΩ

± 10%

Gapbrown
green

brown silver

yellow
violet

orange gold

brown
red

red silver
green

Figure A.3: Colored stripes tell you about resistor values.

In the beginning, the color coding seems to be complicated, but you’ll

get used to it quickly. Also, you can find countless tools for determining

resistor values on the Internet.2

For the book’s projects, this is all the theory of electricity you need to

know. To learn more about electronics, have a look at Make: Electronics

[Pla10] or at http://lcamtuf.coredump.cx/electronics/.

A.2 Learning How to Solder

You can build nearly all of the book’s projects by plugging parts into

a breadboard or directly into the Arduino board. But sooner or later

you’ll have to learn how to solder if you want to become an expert in

electronics. That’s mainly because you’ll learn the most by building

projects, and even the simplest kits require some sort of soldering.

A lot of people think that soldering is difficult or requires expensive

equipment, so they never try to do it. The truth is that it’s cheap and

2. http://harkopen.com/tutorials/using-wolfram-alpha-electric-circuits

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://lcamtuf.coredump.cx/electronics/
http://harkopen.com/tutorials/using-wolfram-alpha-electric-circuits
http://books.pragprog.com/titles/msard/errata/add?pdf_page=241

LEARNING HOW TO SOLDER 242

pretty easy. It requires some practice, but after only a few solder joints

you’ll see that it’s not rocket science.

In this book, we have one project that requires you to solder a pin

header to an ADXL335 breakout board. We need it for building the

motion-sensing game controller in Chapter 6, Building a Motion-Sensing

Game Controller, on page 132. In this section, you’ll learn how to do it,

and you’ll need the following equipment (shown in Figure A.4):

• A 25–30 watt soldering iron with a tip (preferably 1/16") and a

soldering stand.

• Standard 60/40 solder (rosin-core) spool for electronics work. It

should have a 0.031" diameter.

• A sponge.

Before you start to solder, prepare your work area. Make sure that you

can easily access all your tools and that you have something to protect

your work area from drops of solder. Wearing safety glasses is always

a good idea! Even seemingly simple and harmless activities such as

cutting wires, for example, can be very dangerous!

Bring all parts into the right position: attach the pin header to the

breakout board, and make sure you cannot accidentally move it while

soldering.

Figure A.4: You need these tools for soldering.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=242

LEARNING HOW TO SOLDER 243

Figure A.5: You have to attach the pin header to the breakout board.

People get very creative when it comes to locking parts into a certain

position. But you have to be careful—don’t use flammable materials to

bring parts together. You should not use parts that distribute heat very

well either, especially if they are in touch with other parts. Duct tape

might work in some cases, but be careful with it, too.

Try to find a piece of wood or something similar that has the right

height: the height of the pin headers. Then you can put the breakout

board on top of it and attach the pin headers. If you’re planning to sol-

der more often and build some electronics projects, you should always

look for these little tools that make your life easier.

In Figure A.5, you can see how I have prepared all parts with a helping

hand, a useful tool for locking parts into a position. They usually come

with a magnifying glass, and they are cheap. If you plan to solder often,

you should get one (see Figure A.6, on the next page).

After you’ve prepared everything, it’s time to heat up the soldering iron.

The main purpose of soldering is to join metallic surfaces. In our case,

we’d like to join the surface of the pin header with the metal in the

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=243

LEARNING HOW TO SOLDER 244

Figure A.6: A “helping hand” really deserves its name.

breakout board. To achieve this, we’ll heat up the metallic parts and

then connect them using molten solder.

This process depends on a certain temperature, and the wrong temper-

ature is one of the most common soldering problems. If the tempera-

ture is too low, your solder joints might become fragile, and you also

might have to touch the parts for too long, so you can damage them. An

extremely high temperature can damage your parts right away. Experts

can debate for hours and days about “the right temperature,” but 600

to 650 F (315 to 350 C) is a good compromise.

Wet the sponge (it shouldn’t be too wet), and clean the tip by wiping

it over the sponge a few times. Then tin the tip by putting a small

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=244

LEARNING HOW TO SOLDER 245

amount of solder back onto the tip. This helps protect the tip, and it

also improves the heat transfer to components:

Soldering is mainly about heat distribution, and now it’s time to heat

the joint. Make sure the tip of the soldering iron touches the part (pin

header) and the pad of the breakout board at the same time:

Keep it there for about a second, and then feed a small amount of solder

between the tip and the pin:

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=245

LEARNING HOW TO SOLDER 246

As soon as the solder starts to flow, you’re safer, because the solder

distributes heat automatically. Feed some more solder (not too much!)

until you have a nice, shiny solder joint. The whole process shouldn’t

take more than two to three seconds. When you’re done, remove the

iron tip quickly, and give the joint a few seconds to cool down.

Repeat this for all six pin headers, and the result should look like this:,

Test it by building the motion-sensing game controller, and play a video

game to relax a bit.

Congratulations! You have just finished your first soldering job!

This tutorial is only a starting point for your new shiny soldering career.

At least you know by now that soldering isn’t too difficult. You can now

try to build some beginner’s kits. All electronics stores offer them, and

they usually come with soldering instructions, too. You can also find

excellent tutorials and even videos on the Internet to build your skills.3

3. http://store.curiousinventor.com/guides/How_to_Solder

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://store.curiousinventor.com/guides/How_to_Solder
http://books.pragprog.com/titles/msard/errata/add?pdf_page=246

Appendix B

Advanced Arduino Programming
In reality, the Arduino programming language is nothing but C++, but it

has some restrictions, and it uses a special tool suite. In this appendix,

you’ll learn what the restrictions are. Also, you’ll find a short section

showing how bit operators work, because you need them often when

working with sensors and other devices.

B.1 The Arduino Programming Language

The first sketches you’ll write for an Arduino might seem to be written in

a special “Arduino Language,” but they aren’t. To program the Arduino,

you usually use plain old C/C++ and have to cross-compile your source

code into machine code suitable for the Arduino’s microcontroller.

These microcontrollers are all part of the AVR family produced by a

company named Atmel. To make software development for AVR micro-

controllers as easy as possible, Atmel has developed a whole tool chain

based on the GNU compiler tools. All tools work like the originals, but

they have been optimized for generating code for the AVR microcon-

trollers.

For nearly all GNU development tools such as gcc, ld, or as, there’s

an AVR variant: avr-gcc, avr-ld, and so on. You can find them in the

hardware/tools/bin directory of the Arduino IDE.

The IDE is mainly a graphical wrapper that helps you avoid using the

command-line tools directly. Whenever you compile or upload a pro-

gram using the IDE, it delegates all work to the AVR tools. As a seri-

ous software developer, you should turn on a more verbose output, so

you can see all command-line tool invocations. Edit preferences.txt as

Download from Wow! eBook <www.wowebook.com>

THE ARDUINO PROGRAMMING LANGUAGE 248

described in Section 2.3, Changing Preferences, on page 48, and set

both build.verbose and upload.verbose to true. Then load our blinking

LED sketch and compile it. The output in the message panel should

look similar to Figure 2.3, on page 50.

The command invocations look a bit weird at first, because of the names

of the many temporary files that are created. You should still be able

to identify all compile and link steps that are necessary to build even

a simple sketch like our blinking LED example. That’s the most impor-

tant thing that the Arduino team did: they hid all these nasty details

well behind the IDE, so even people with no software development expe-

rience are able to program the Arduino. For programmers, it’s a good

idea to work in verbose mode, because the best way to learn about all

the AVR tools is to see them in action.

Upload the program to the Arduino now to see avrdude in action. This

tool is responsible for loading code into the Arduino and can be used

for programming many other devices, too. Interestingly, the AVR tools

make it even possible to use the Arduino IDE for non-Arduino projects

such as the Meggy Jr.1

“But wait!” you say, “I’m a C++ programmer, and I’m missing a main()

function!” And you’re right: that’s another difference between Arduino

programming and regular old C++ code. When programming for the

Arduino, you don’t define main() yourself, because it is already defined

in the libraries provided by the Arduino developers. As you might have

guessed, it calls setup() first and then runs the loop() function in a loop.

There are further restrictions when programming C++ on AVR micro-

controllers:2

• You cannot use the Standard Template Library (STL), because it’s

way too big for the small AVR microcontrollers.

• Exception handling is not supported. That’s why you see the -fno-

exceptions switch often when the avr-gcc compiler is invoked.

• Dynamic memory management using new() and delete() is cur-

rently not supported.

In addition to all that, you should keep an eye on performance. For

example, C++ automatically creates a lot of functions (copy construc-

1. http://www.evilmadscientist.com/article.php/meggyjr

2. http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_cplusplus

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://www.evilmadscientist.com/article.php/meggyjr
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_cplusplus
http://books.pragprog.com/titles/msard/errata/add?pdf_page=248

BIT OPERATIONS 249

tors, assignment operators, and so on) in the background that are

rarely needed on the Arduino. Even with these restrictions, the Arduino

supports a powerful subset of the C++ programming language. So,

there’s no excuse for sloppy coding!

B.2 Bit Operations

In embedded computing, you often have to manipulate bits. For exam-

ple, you sometimes have to read single bits to get some sensor data. In

other cases, you have to set bits to turn a device into a certain status

or make it perform some action.

For bit manipulation, you need only a few operations. The simplest is

the not operation that inverses a bit. It turns a 0 into a 1, and vice

versa. Most programming languages implement the not operation with

a !-operator:

int x = 42; // In binary this is 101010

int y = !x; // y == 010101

In addition, you’ll find three binary operations named AND, OR, and

XOR (eXclusive OR). Most programming languages call the correspond-

ing operators &, |, and ^, and their definitions are as follows:

a b a AND b a OR b a XOR b

a & b a | b a ^ b

0 0 0 0 0

1 0 0 1 1

0 1 0 1 1

1 1 1 1 0

With these operators, it’s possible to mask bits in a number. For exam-

ple, you can extract certain bits. If you’re interested only in the lower

two bits of a number, you can do it as follows:

int x = 42; // In binary this is 101010

int y = x & 0x03; // y == 2 == B10

You can also set or clear one or more bits in a number using the OR

operation. The following code sets the fifth bit in x no matter if this bit

is 0 or 1.

int x = 42; // In binary this is 101010

int y = x | 0x10; // y == 58 == B111010

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=249

BIT OPERATIONS 250

The bit shift operators << and >> let you move bits to a certain position

before you work with them. The first one moves bits to the left, and the

second moves them to the right:

int x = 42; // In binary this is 101010

int y = x << 1; // y == 84 == B1010100

int z = x >> 2; // z == 10 == B1010

Shifting operations might seem intuitive, but you have to be careful

when shifting signed values.3 Although they look similar, binary opera-

tors are not the same as boolean operators. Boolean operators such as

&& and || do not operate on the bit level. They implement the rules of

boolean algebra.4

3. http://en.wikipedia.org/wiki/Arithmetic_shift

4. http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/Arithmetic_shift
http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29
http://books.pragprog.com/titles/msard/errata/add?pdf_page=250

Appendix C

Advanced Serial Programming
In nearly all the book’s projects, we’ve used the Arduino’s serial port.

Sometimes we only emitted debug messages to monitor the current

state of our sketches, but often we needed it to actually output infor-

mation or to send commands. And the fact is, we’ve used the Serial class

without explaining how serial communication actually works. We catch

that up in this appendix.

To communicate with an Arduino, we used the Processing programming

language, and we used JavaScript. But many developers prefer other

languages, and in this appendix, you’ll also learn how to use C/C++,

Java, Ruby, Python, and Perl to talk to an Arduino.

C.1 Learning More About Serial Communication

In Chapter 2, Inside the Arduino, on page 46, you saw that you only

need three wires for serial communication: a common ground, a line for

transmitting data (TX), and one for receiving data (RX) (see the diagram

on page 51).

Data is transmitted as electrical pulses, so both communication part-

ners need a reference for the voltage level, and that’s what the common

ground is for. The transmission line is used to send data to the recipient

and has to be connected to the recipient’s receiving line. This enables

full-duplex communication where both partners can send and receive

data simultaneously (wouldn’t it be great if people could also commu-

nicate full-duplex?).

We now know how to connect two devices, but we still have to transmit

some data. Therefore, both communication partners have to agree on

Download from Wow! eBook <www.wowebook.com>

LEARNING MORE ABOUT SERIAL COMMUNICATION 252

0 1 00000 111 1

Start Bit

Parity

Stop Bit

Data

Figure C.1: Serial communication on the bit level

a protocol, and in Figure C.1, you can see what a typical serial com-

munication looks like. The different states of a bit are represented by

different voltage levels. Usually, a 0 bit is represented by 0 volts, while 5

volts stands for a 1 bit (some protocols use -12V and 12V, respectively).

The following parameters control a serial communication:

• A start bit indicates the beginning of a data word and is used to

synchronize transmitter and receiver. It is always 0.

• A stop bit tells us when the last data bit has been sent and sep-

arates two consecutive data words. Depending on the particular

protocol agreement, there can be more than one stop bit, but that

happens rarely.

• Information is transferred as binary data bits; that is, if you’d like

to transmit the letter M for example, you have to turn it into a

number first. Several character set encodings are available, but

when working with the Arduino, the ASCII encoding fits best. In

ASCII, an uppercase M is encoded as the decimal number 77,

which is 01001101 in binary. This is the bit sequence that even-

tually gets transmitted.

• The parity bit indicates whether the number of 1s in the data has

been odd or even. This is a simple error checking algorithm that is

rarely used and that stems from a time when network connections

have been less reliable than they are today.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=252

SERIAL COMMUNICATION USING VARIOUS PROGRAMMING LANGUAGES 253

Parity control can be “none” (no parity bit is sent), “odd” (the parity

bit is set if the amount of 1s in the data bits is odd; otherwise, it

is 0), or “even” (the parity bit is set if the amount of 1s in the data

bits is even; otherwise, it is 0). We chose odd parity for our data,

and because there are 4 bits set to 1 in 01001101, the parity bit

is 0.

• The baud rate defines the transmission speed and is measured in

transmission steps per second. When working with the Arduino,

typical baud rates are 9600, 14400, 19200, or even 115200. Note

that the baud rate does not define how much data is actually

transferred per second, because you have to take the control bits

into account. If your connection settings are 1 start bit, 1 stop bit,

no parity, and 8 bits per byte, then you have to transfer 1 + 1 + 8 =

10 bits to transfer a single byte. With a baud rate set to 9600, you

can then theoretically send 9600 / 10 = 960 bytes per second—at

least if every bit gets transferred in exactly one transmission step.

C.2 Serial Communication Using Various Programming

Languages

In this book, we’ve already used different programming languages to

access an Arduino connected to your computer’s serial port. In Chap-

ter 6, Building a Motion-Sensing Game Controller, on page 132, we used

Processing, and in Chapter 9, Creating Your Own Universal Remote Con-

trol, on page 202, we used JavaScript.

When working with the Arduino, you often have to program serial ports.

So in this section, you’ll learn how to do that in various programming

languages. For demonstration purposes, we’ll use the same Arduino

sketch for all of them:

Download SerialProgramming/AnalogReader/AnalogReader.pde

const unsigned int BAUD_RATE = 9600;

const unsigned int SERIAL_DELAY = 5;

const unsigned int NUM_PINS = 6;

void setup() {

Serial.begin(BAUD_RATE);

}

void loop() {

const int MAX_PIN_NAME = 3;

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/SerialProgramming/AnalogReader/AnalogReader.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=253

SERIAL COMMUNICATION USING VARIOUS PROGRAMMING LANGUAGES 254

char pin_name[MAX_PIN_NAME + 1];

if (Serial.available()) {

int i = 0;

while (Serial.available() && i < MAX_PIN_NAME) {

const char c = Serial.read();

if (c != -1 && c != '\n')

pin_name[i++] = c;

delay(SERIAL_DELAY);

}

pin_name[i] = 0;

if (strlen(pin_name) > 1 &&

(pin_name[0] == 'a' || pin_name[0] == 'A'))

{

const int pin = atoi(&pin_name[1]);

if (pin < NUM_PINS) {

Serial.print(pin_name);

Serial.print(": ");

Serial.println(analogRead(pin));

} else {

Serial.print("Unknown pin: ");

Serial.println(pin);

}

} else {

Serial.print("Unknown pin name: ");

Serial.println(pin_name);

}

}

}

This program waits for the name of an analog pin (a0, a1, ... a5) and

returns its current value. So, all our clients have to send data to the

Arduino (the name of the pin), and they have to receive the result (in

Figure C.2, on the next page, you can see it working with the IDE’s

serial monitor).

All clients will look similar: they expect the name of the serial port to

connect to as a command-line argument. They will constantly send the

string “a0” to the Arduino to get back the current value of analog pin 0.

Then they print the result to the console. They all use a constant baud

rate of 9600, and they all wait for two seconds after opening the serial

port, because many Arduinos reboot upon opening a serial connection.

To learn more about serial communication in general, take a look at

Section C.1, Learning More About Serial Communication, on page 251.

For some of the clients, you need to install additional libraries. In some

cases, you have to do that as an admin user on your machine. I won’t

mention that explicitly in the following sections. Also, you should make

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=254

SERIAL COMMUNICATION USING VARIOUS PROGRAMMING LANGUAGES 255

Figure C.2: Our test sketch returns the current values of analog pins.

sure you do not have any serial monitor windows open when running

one of the examples in the following sections.

C/C++

Although you program the Arduino in C++, you don’t need to write

clients talking to the Arduino in C++ or C. Still, you can, and it’s easy,

if you use Tod E. Kurt’s excellent arduino_serial.c1 as a basis.

The original program implements a complete command-line tool offer-

ing a lot of useful options. For our purpose, that’s not necessary, so I’ve

extracted its four major functions into a C header file:

Download SerialProgramming/c/arduino-serial.h

#ifndef __ARDUINO_SERIAL__

#define __ARDUINO_SERIAL__

#include <fcntl.h>

#include <sys/ioctl.h>

#include <termios.h>

1. http://todbot.com/blog/2006/12/06/arduino-serial-c-code-to-talk-to-arduino/

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/SerialProgramming/c/arduino-serial.h
http://todbot.com/blog/2006/12/06/arduino-serial-c-code-to-talk-to-arduino/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=255

SERIAL COMMUNICATION USING VARIOUS PROGRAMMING LANGUAGES 256

#include <stdint.h>

#include <string.h>

int serialport_init(const char* serialport, int baud);

int serialport_writebyte(int fd, uint8_t b);

int serialport_write(int fd, const char* str);

int serialport_read_until(int fd, char* buf, char until);

#endif

Their meaning is as follows:

• serialport_init() opens a serial port connection. It expects the name

of the serial port to be opened and the baud rate to be used. It

returns a file descriptor if everything went fine, and it returns -1

otherwise.

• With serialport_writebyte(), you can send a single byte to an Arduino

connected to your computer’s serial port. Simply pass it the file

descriptor returned by serialport_init() and the byte to be written. It

returns -1 if an error occurred. Otherwise, it returns 0.

• serialport_write() writes an entire string to the serial port. It expects

a file descriptor and the string to be written. It returns -1 if an

error occurred. Otherwise, it returns 0.

• Use serialport_read_until() to read data from a serial port. Pass it

a file descriptor and a buffer to be filled with the data read. The

method also expects a delimiter character. serial_port_read_until()

reads data until it finds that character and it always returns 0.

Just for the sake of completeness, we’ll have a look at the implementa-

tion of our four functions:

Download SerialProgramming/c/arduino-serial.c

#include "arduino-serial.h"

int serialport_writebyte(int fd, uint8_t b) {

int n = write(fd, &b, 1);

return (n != 1) ? -1 : 0;

}

int serialport_write(int fd, const char* str) {

int len = strlen(str);

int n = write(fd, str, len);

return (n != len) ? -1 : 0;

}

int serialport_read_until(int fd, char* buf, char until) {

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/SerialProgramming/c/arduino-serial.c
http://books.pragprog.com/titles/msard/errata/add?pdf_page=256

SERIAL COMMUNICATION USING VARIOUS PROGRAMMING LANGUAGES 257

char b[1];

int i = 0;

do {

int n = read(fd, b, 1);

if (n == -1)

return -1;

if (n == 0) {

usleep(10 * 1000);

continue;

}

buf[i++] = b[0];

} while (b[0] != until);

buf[i] = 0;

return 0;

}

int serialport_init(const char* serialport, int baud) {

int fd = open(serialport, O_RDWR | O_NOCTTY | O_NDELAY);

if (fd == -1) {

perror("init_serialport: Unable to open port");

return -1;

}

struct termios toptions;

if (tcgetattr(fd, &toptions) < 0) {

perror("init_serialport: Couldn't get term attributes");

return -1;

}

speed_t brate = baud;

switch(baud) {

case 4800: brate = B4800; break;

case 9600: brate = B9600; break;

case 19200: brate = B19200; break;

case 38400: brate = B38400; break;

case 57600: brate = B57600; break;

case 115200: brate = B115200; break;

}

cfsetispeed(&toptions, brate);

toptions.c_cflag &= ~PARENB;

toptions.c_cflag &= ~CSTOPB;

toptions.c_cflag &= ~CSIZE;

toptions.c_cflag |= CS8;

toptions.c_cflag &= ~CRTSCTS;

toptions.c_cflag |= CREAD | CLOCAL;

toptions.c_iflag &= ~(IXON | IXOFF | IXANY);

toptions.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);

toptions.c_oflag &= ~OPOST;

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=257

SERIAL COMMUNICATION USING VARIOUS PROGRAMMING LANGUAGES 258

toptions.c_cc[VMIN] = 0;

toptions.c_cc[VTIME] = 20;

if (tcsetattr(fd, TCSANOW, &toptions) < 0) {

perror("init_serialport: Couldn't set term attributes");

return -1;

}

return fd;

}

If you’re familiar with Unix file handling, everything will make perfect

sense to you. If not, well, then you still have the code to access an

Arduino connected to your computer’s serial port. Here’s how to use

the code for communicating with our analog reader sketch (note that

the following code will run on your PC and not on your Arduino):

Download SerialProgramming/c/analog_reader.c

Line 1 #include <stdio.h>
- #include <unistd.h>
- #include "arduino-serial.h"
-

5 #define MAX_LINE 256
-

- int main(int argc, char* argv[]) {
- if (argc == 1) {
- printf("You have to pass the name of a serial port.\n");

10 return -1;
- }
-

- int baudrate = B9600;
- int arduino = serialport_init(argv[1], baudrate);

15 if (arduino == -1) {
- printf("Could not open serial port %s.\n", argv[1]);
- return -1;
- }
- sleep(2);

20

- char line[MAX_LINE];
- while (1) {
- int rc = serialport_write(arduino, "a0\n");
- if (rc == -1) {

25 printf("Could not write to serial port.\n");
- } else {
- serialport_read_until(arduino, line, '\n');
- printf("%s", line);
- }

30 }
- return 0;
- }

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/SerialProgramming/c/analog_reader.c
http://books.pragprog.com/titles/msard/errata/add?pdf_page=258

SERIAL COMMUNICATION USING VARIOUS PROGRAMMING LANGUAGES 259

First we import all the libraries we need, and we define a constant for

the maximum length of the lines we are going to read from the Arduino.

Then we define a main() function.

After we’ve made sure that the name of a serial port was passed on the

command line, we initialize a serial port in line 14. Then we sleep for

two seconds to give the Arduino some time to get ready. After that, we

start a loop where we constantly send the string “a0” to the Arduino in

line 23. We check the result of serialport_write(), and if it was successful,

we read the result sent by the Arduino in line 27. Let’s compile our little

program:

maik> gcc arduino-serial.c analog_reader.c -o analog_reader

Determine what serial port your Arduino is connected to (mine is con-

nected to /dev/tty.usbmodemfa141), and run the program like this:

maik> ./analog_reader /dev/tty.usbmodemfa141

a0: 495

a0: 376

a0: 368

^C

Everything works as expected, and accessing a serial port using C isn’t

that difficult. To embed this code into a C++ program, you should wrap

it in a class named SerialPort or something similar.

Java

The Java platform standardizes a lot, and it also defines how to access

a serial port in the Java Communications API.2 But the API is only a

specification that still has to be implemented. A good implementation

is the RXTX project.3

Download the most current release, and follow the installation instruc-

tions for your platform. Make sure that RXTXcomm.jar is on your class

path. Then enter the following code in your favorite IDE or text editor:

Download SerialProgramming/java/AnalogReaderTest.java

import java.io.InputStream;

import java.io.OutputStream;

import gnu.io.CommPortIdentifier;

import gnu.io.SerialPort;

class AnalogReader {

2. http://java.sun.com/products/javacomm/

3. http://rxtx.qbang.org/

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/SerialProgramming/java/AnalogReaderTest.java
http://java.sun.com/products/javacomm/
http://rxtx.qbang.org/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=259

SERIAL COMMUNICATION USING VARIOUS PROGRAMMING LANGUAGES 260

private InputStream _input;

private OutputStream _output;

public AnalogReader(

final String portName,

final int baudRate) throws Exception

{

final int timeout = 1000;

final String appName = "analog reader client";

CommPortIdentifier portId =

CommPortIdentifier.getPortIdentifier(portName);

SerialPort port = (SerialPort)portId.open(

appName,

timeout

);

_input = port.getInputStream();

_output = port.getOutputStream();

port.setSerialPortParams(

baudRate,

SerialPort.DATABITS_8,

SerialPort.STOPBITS_1,

SerialPort.PARITY_NONE

);

}

public void run() throws Exception {

byte[] buffer = new byte[255];

Thread.sleep(2000);

while (true) {

_output.write("a0\n".getBytes());

Thread.sleep(100);

if (_input.available() > 0) {

_input.read(buffer);

System.out.print(new String(buffer));

}

}

}

}

public class AnalogReaderTest {

public static void main(String[] args) throws Exception {

if (args.length != 1) {

System.out.println(

"You have to pass the name of a serial port."

);

System.exit(1);

}

AnalogReader analogReader = new AnalogReader(args[0], 9600);

analogReader.run();

}

}

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=260

SERIAL COMMUNICATION USING VARIOUS PROGRAMMING LANGUAGES 261

This file defines two classes named AnalogReader and AnalogReaderTest.

AnalogReader actually encapsulates access to the Arduino. It stores an

InputStream object in _input to receive data, and it stores an OutputStream

object in _output to send data to the Arduino.

The constructor initializes the serial port connection and assigns its

input and output streams to our member variables. To obtain a serial

port connection, we have to get a CommPortIdentifier object first. From

this object, we can then create a SerialPort object. This object gives us

access to the underlying streams, and it also allows us to set the port’s

parameters, such as the baud rate.

We implement the protocol for our Arduino sketch in the run() method.

There we wait for two seconds, and then we start a loop. In the loop,

we send the string “a0” to the serial port using OutputStream’s write()

method. Before we send the string, we turn it into a byte array calling

getBytes(). To give the Arduino some time to create a result, we wait for

another 100 milliseconds. Afterward, we check if a result is available

and read it by invoking InputStream’s read() method.

AnalogReaderTest is only a small driver class that implements a main()

method, creates an AnalogReader object, and calls run() on it. Here’s

how to compile and use the program:

maik> javac AnalogReaderTest.java

maik> java AnalogReaderTest /dev/tty.usbmodemfa141

Experimental: JNI_OnLoad called.

Stable Library

===

Native lib Version = RXTX-2.1-7

Java lib Version = RXTX-2.1-7

a0: 496

a0: 433

a0: 328

a0: 328

^C

After some debug output from the libraries we are using, the Analo-

gReaderTest does exactly what it’s intended to do: it permanently prints

the values of the analog pin 0. Accessing a serial port in Java is a piece

of cake if you use the right libraries.

Ruby

Even dynamic languages such as Ruby give you instant access to your

computer’s serial port and to an Arduino if you connect it to it. But

before that, you need to install the serialport gem:

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=261

SERIAL COMMUNICATION USING VARIOUS PROGRAMMING LANGUAGES 262

maik> gem install serialport

Using it, you can connect to the Arduino in just 30 lines of code.

Download SerialProgramming/ruby/analog_reader.rb

Line 1 require 'rubygems'
- require 'serialport'
-

- if ARGV.size != 1
5 puts "You have to pass the name of a serial port."
- exit 1
- end

-

- port_name = ARGV[0]
10 baud_rate = 9600

- data_bits = 8
- stop_bits = 1
- parity = SerialPort::NONE
-

15 arduino = SerialPort.new(
- port_name,
- baud_rate,
- data_bits,
- stop_bits,

20 parity
-)
-

- sleep 2
- while true

25 arduino.write "a0"
- line = arduino.gets.chomp
- puts line
- end

We create a new SerialPort object in line 15, passing it all the usual

parameters. After we sleep for two seconds, we start a loop and call

write() on the SerialPort object. To get the result back from the Arduino,

we call gets() and then we print the result to the console. Here you can

see the program in action:

maik> ruby analog_reader.rb /dev/tty.usbserial-A60061a3

a0: 496

a0: 456

a0: 382

^Canalog_reader.rb:21:in `gets': Interrupt

from analog_reader.rb:21

Using Ruby for accessing an Arduino is a good choice, because you can

fully concentrate on your application. All the ugly real-world details you

have to deal with in other programming languages are well hidden.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/SerialProgramming/ruby/analog_reader.rb
http://books.pragprog.com/titles/msard/errata/add?pdf_page=262

SERIAL COMMUNICATION USING VARIOUS PROGRAMMING LANGUAGES 263

Python

Python is another dynamic programming language that you can use to

quickly create Arduino clients. For programming a serial port, down-

load and install the pyserial library first.4 There is a special installer for

Windows, but usually it’s sufficient to install it like this:

maik> python setup.py install

After you’ve installed pyserial, you can use it to create a client for our

analog reader sketch:

Download SerialProgramming/python/analog_reader.py

Line 1 import sys
- import time
- import serial
-

5 if len(sys.argv) != 2:
- print "You have to pass the name of a serial port."
- sys.exit(1)
-

- serial_port = sys.argv[1]
10 arduino = serial.Serial(

- serial_port,
- 9600,
- serial.EIGHTBITS,
- serial.PARITY_NONE,

15 serial.STOPBITS_ONE)
- time.sleep(2)
-

- while 1:
- arduino.write('a0')

20 line = arduino.readline().rstrip()
- print line

We make sure that we have the name of a serial port on the command

line. Then we create a new Serial object in line 10, passing it all the

parameters we’d like to use for serial communication.

After sleeping for two seconds, we start an infinite loop. In the loop, we

send the string “a0” to the serial port calling write(). We read the result

returned by the Arduino using the readline() method and output the

result to the console. Here’s what a typical session looks like:

maik> python analog_reader.py /dev/tty.usbserial-A60061a3

a0: 497

a0: 458

a0: 383

^C

4. http://sourceforge.net/projects/pyserial/files/

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/SerialProgramming/python/analog_reader.py
http://sourceforge.net/projects/pyserial/files/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=263

SERIAL COMMUNICATION USING VARIOUS PROGRAMMING LANGUAGES 264

Isn’t that code beautiful? With about 20 lines of Python code, you get

full control over your Arduino sketch. So, Python is another excellent

choice for writing Arduino clients.

Perl

Perl is still one of the most widely used dynamic programming lan-

guages, and it has good support for serial communication. Some distri-

butions come with libraries for programming the serial port, but usually

you have to install a module first.

Windows users should have a look at Win32::SerialPort.5 For the rest,

Device::SerialPort is a good choice. You can install it as follows:

maik> perl -MCPAN -e 'install Device::SerialPort'

Then use it like this:

Download SerialProgramming/perl/analog_reader.pl

Line 1 use strict;
- use warnings;
- use Device::SerialPort;
-

5 if ($#ARGV != 0) {
- die "You have to pass the name of a serial port.";
- }
-

- my $serial_port = $ARGV[0];
10 my $arduino = Device::SerialPort->new($serial_port);

- $arduino->baudrate(9600);
- $arduino->databits(8);
- $arduino->parity("none");
- $arduino->stopbits(1);

15 $arduino->read_const_time(1);
- $arduino->read_char_time(1);
-

- sleep(2);
- while (1) {

20 $arduino->write("a0\n");
- my ($count, $line) = $arduino->read(255);
- print $line;
- }

We check whether the name of a serial port was passed on the com-

mand line. Then we create a new Device::SerialPort instance in line 10.

We configure all serial port parameters, and in line 15, we set a timeout

5. http://search.cpan.org/dist/Win32-SerialPort/

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/msard/code/SerialProgramming/perl/analog_reader.pl
http://search.cpan.org/dist/Win32-SerialPort/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=264

SERIAL COMMUNICATION USING VARIOUS PROGRAMMING LANGUAGES 265

value for read() calls. If we did not set it, read() would return imme-

diately, giving the Arduino no time to respond. read_char_time() sets a

timeout for the waiting period between two characters.

Then we sleep for two seconds and start an infinite loop. Here we send

the string “a0” to the serial port and read Arduino’s response using the

read() method. read() expects a maximum number of bytes to be read,

and it returns the actual number of bytes read and the data it received.

Finally, we output the result to the console. A typical program run looks

as follows:

maik> perl analog_reader.pl /dev/tty.usbserial-A60061a3

a0: 496

a0: 366

a0: 320

^C

That’s it! It takes only about twenty lines of Perl code to create a client

for the analog reader Arduino sketch. So, Perl is a good choice for pro-

gramming Arduino clients, too.

Report erratum

this copy is (P1.0 printing, Janurary, 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/msard/errata/add?pdf_page=265

Appendix D

Bibliography

[But09] Paul Butcher. Debug It!: Find, Repair, and Prevent Bugs in

Your Code. The Pragmatic Programmers, LLC, Raleigh, NC,

and Dallas, TX, 2009.

[Gre07] Ira Greenberg. Processing: Creative Coding and Computa-

tional Art. Apress, Berkeley, CA, USA, 2007.

[KR98] Brian W. Kernighan and Dennis Ritchie. The C Programming

Language. Prentice Hall PTR, Englewood Cliffs, NJ, second

edition, 1998.

[Mey97] Scott Meyers. Effective C++: 50 Specific Ways to Improve Your

Programs and Designs. Addison Wesley Longman, Reading,

MA, second edition, 1997.

[Pin06] Chris Pine. Learn to Program. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2006.

[Pla10] Charles Platt. Make: Electronics. O’Reilly Media, Inc.,

Sebastopol, CA, 2010.

[Str00] Bjarne Stroustrup. The C++ Programming Language. Addi-

son Wesley Longman, Reading, MA, 2000.

Download from Wow! eBook <www.wowebook.com>

Index
Symbols
! operator, 249

<< operator, 250

>> operator, 250

& operator, 72, 249

% operator, 85

^ operator, 249

| operator, 249

3V3 pin, 27

5V pin, 27

A
AC adapter, 27

see also power supply

acceleration, indirect, 153

accelerometers

connecting, 134–140

ideas for, 132, 152

mouse exercise, 153

access tokens, OAuth, 174

Adafruit, 18

adding files, 47

analog versus digital signals, 29

analog pins

connecting sensors to, 113

constants, 72

digital I/O pins, 30

illustration, 25f

input, 28

voltage and, 114

analogRead() method, 114

AnalogReader class, 261

AnalogReaderTest class, 261

AND operator, 249

Anthros, 229

Apple remote, see remote control

project

AppleRemote class, 209

archives, 98

Arduino

about, 13, 23, 24

configuring, 38

identifying types, 38

schematic, 24

versions, 16

Arduino Ethernet, 180

Arduino Hypnodisk, 234

Arduino IDE

error messages, 44

file management, 47

functions, 33

installation, 31

preferences, 48

Processing IDE and, 123

toolbar, 34

Arduino LilyPad, 24, 53, 185

Arduino Mega2560, 31

Arduino Nano, 31

Arduino Projects packs, 18

Arduino Prototyping shield, 141

Arduino Starter Pack, 19

Arduino Uno, 16

arduino_serial.c, 255

arduinoPort variable, 126

arrays, value, 37

art projects, 229

ATmega168, 30

ATmega2560, 31

ATmega328, 30

Atmel, 30, 247

authentication, Twitter, 174

available() function, 52

AVR microcontrollers, see

microcontrollers

avrdude tool, 248

B
background(), 147

Download from Wow! eBook <www.wowebook.com>

BATTERY PACKS DECODING INFRARED SIGNALS

battery packs, connecting, 28

baud rate, 60, 131, 253

BEDAZZLER, 59

begin() function, 52

BIN, 54

binary clock exercise, 87

binary dice project, 63–87

further exercises, 87

version 1, 69–74

version 2 (with start button), 74–80

version 3 (with guess button), 80–86

binary literals, 72

binary numbering systems, 55

binary operators, 249

bit operations, 249

bit shift operators, 250

bits, masking and moving, 249

blame() method, 232

Blaminatr project, 229–234

blinking LED project, 35–44

Bluetooth, 200

boards

components of, 25f, 25–31

configuring, 38

errors uploading to, 44

identifying, 38

types of, 24, 38

Boarduino, 25

boolean values, 36

Botanicall, 180

Bounce class, 84, 143

Bounce library, 83

Bounce object, 84

breadboards

connecting accelerometer, 134

connecting LEDs to, 66

ground and, 70

troubleshooting, 86

types, 65

brick game, 144–152

Nunchuk exercise, 169

Brushduino, 150

buffer, serial receive, 58

bugs error messages, 44

build.verbose setting, 48, 248

burglar alarm project, 170–200

email, 186–192

exercise, 131

motion detector, connecting,

192–195

BurglarAlarm class, 197

buttons, see pushbuttons

BYTE, 54

byte maximum, 39

byte variables, 36

C
C++, 51, 92, 109, 247, 255–259

cable modem connections, 184

carriage return option, 97

cellular networks, 200

char variables, 36

circuits, see electrical circuits

classes, Processing, 124

clocks

binary, 87

cuckoo, 180

clones, 25

clothes, see textiles

color codes for resistor values, 240

color, drawing, 129, 167

coloring, syntax, 97, 100

CommPortIdentifier object, 261

communication, serial, see serial

communication

compiler tools, 51, 247

compiling, 34, 39

configuring, 38

const keyword, 36, 109

constant values, defining, 109

constructors, 124

converting analog and digital signals,

29

converting output formats, 54

cross-compiling, 51, 247

cube project, LED, 72

cube rotation project, 163–169

cuckoo clock, 180

current, 238, 239

cursor, hiding, 146

D
dah() method, 93

data transfer, 58

data types, 36

DAYTIME services, 181

DC motors, 224

debouncing, 78, 83, 143

DEC, 54

decimals, specifying number of digits,

112

decoding infrared signals, 207

268
Download from Wow! eBook <www.wowebook.com>

DEGREE VARIABLE GUESS BUTTON

degree variable, 126

delay() method, 38

delayMicroseconds() method, 106

delete(), 248

dice project, 63–87

further exercises, 87

version 1, 69–74

version 2 (with start button), 74–80

version 3 (with guess button), 80–86

dice reader, 72

Diecimila, 16

Digi-Key, 19

digital versus analog signals, 29

digital I/O pins

analog output, 30

illustration, 25f

serial communication with, 59

voltage, 35

digitalWrite() method, 38, 41

distance sensors

project, 102–131

types, 104

dit() method, 93

domain names, 183

double, 37

draw() method, 129, 147, 168

drivers, installing, 31, 32

Duemilanove, 16

dynamic memory management, 248

E
edge values, 137

electrical circuits, 237

see also resistors; voltage

electronics, basic theory of, 237–241

see also resistors; voltage

email

direct, 189–192

from command line, 186–188

T-shirt, 185

Email class, 189

encoding sensor data, 119

end() function, 59

error messages, 44

Ethernet connections, 180–185

Blaminatr project, 235

exercises, 201

remote control project, 215

troubleshooting, 199

examples folder, 48, 98

exception handling, 248

eXclusive OR operator, 249

exercises

binary clock, 87

blinking LEDs, 44

computer mouse, 153

controlling status LED, 61

dice, 87

Morse code, 100

motor control, 235

networking, 201

Nintendo Nunchuk, 169

remote control, 222

resistor brightness, 87

tilt sensor, 87

ultrasonic sensor, 131

see also projects

Eyewriter, 157

F
file management, 47

fill(), 168

flickering LEDs while uploading, 39

Flickr, 17

floating-point numbers, 37, 110–113,

118

fonts, setting, 146

format specifier, 54

forward voltage, 239

Freeduino, 25

function definition scheme, 36

G
game, see brick game

game controller, motion sensing,

132–153

adding pushbutton, 140–143

brick game, 144–152

connecting accelerometer, 134–140

gaming console project, 152

gateway addresses, 184

get_axis() function, 139

getDistance() method, 124

getSensorData(), 128

getTemperature() method, 124

Gibb, Alicia, 229

global variables, 126

Gnd pins, 28, 70

GNU C++ compiler tools, 51, 247

ground pins, 28, 70

GSM shield, 200

guess button, adding, 80–86

269
Download from Wow! eBook <www.wowebook.com>

HACKY SACK TOY LIBRARIES

H
hacky sack toy, 150

handle() command, 219

handle_guess button, 85

handle_start button, 85

header files, 92

helping hand, 243

HEX, 54

hexadecimal numbering systems, 55

Hoefer, Steve, 72

hooray method, 85

hourglass, USB, 234

HTTP access, 215–221

Hypnodisk, 234

I
I2C(Inter-Integrated Circuit), 156

IDE, see Arduino IDE

index variable, 97

indirect acceleration, 153

infrared LEDs, 209, 222

infrared receivers, 205, 235

see also remote control project

infrared remote control, see remote

control project

infrared sensors

burglar alarm project, 192–200

distance measuring, 131

proxy, 215–221

InfraredProxy class, 216

init_screen(), 129

initialization value for random number

generation, 73

initializing

Ethernet shield, 184

random number generator, 72, 73

serial port, 52, 261

_input, 261

input pins, see analog pins; digital I/O

pins

InputStream object, 261

installation instructions, 98

installing Arduino IDE, 31

Integrated Development Environment,

see Arduino IDE

Inter-Integrated Circuit (I2C), 156

Internet connections

Blaminatr project, 235

Ethernet shield, 180–185

PC relay, 172–179

remote control project, 215

inverted sonar project, see distance

sensor project

IP addresses, 183, 200

iPod Sport Kit, 152

IR receiver, see infrared receivers

IRemote library, 207, 209, 222

isalpha() function, 94

J
Java, 259–261

Java Communications API, 259

JavaScript, 212

jitter, 137, 138, 163

K
keywords.txt file, 97, 100

Kurt, Tod E., 255

L
lawn-mower project, 222

LEDs

BEDAZZLER, 59

blinking project, 35–44

calculating resistor size, 239

connecting, 41, 43, 66

controlling status LED project, 52,

61

cube project, 72

fashion projects, 53, 185

flickering while uploading, 39

infrared, 209, 222

SMD LEDs, 41

libraries

debouncing, 83

directory, 48, 94

Ethernet, 181

examples folder, 98

IRemote, 207, 209, 222

output exercise, 101

random seed, 73

serial programming and, 254, 263,

264

Servo, 228

SoftwareSerial, 59

SPI, 183

STL (Standard Template Library),

248

syntax color, 97

troubleshooting, 99

Twitter, 176

270
Download from Wow! eBook <www.wowebook.com>

LIBRARIES DIRECTORY NUNCHUCK CLASS

Wire, 156, 162

libraries directory, 48

licenses, 98

light switch, pushbutton, 76

LilyPad, 24, 53, 185

Linux

installation, 32

serial port configuration, 39

serial terminals, 56

Linux Infrared Remote Control project,

205

long values, 37

loop() function, 52

setup() loop, 38

Luminet project, 185

M
MAC addresses, 183, 199

Mac OS X

installation, 32

remote control, 222

serial port configuration, 39

serial terminals, 56

main() function, 248

Makershed, 18

marble maze, 152

masking bits, 249

MAX_MESSAGE_LEN constant, 96

maze, marble, 152

measure_distance() method, 112

Mega2560, 59

Meggy Jr., 248

memory

data types and, 36

dynamic memory management, 248

encoded sensor data, 119

floating-point numbers and, 110,

112

message_text variable, 97

microcontrollers

about, 30

code, 51, 247

identifying, 38

illustration, 25f

microseconds_to_cm() method, 109, 112,

118

modulus operator, 85

Morse code, 89

Morse code generator, 88–101

motion detectors, see burglar alarm

project; game controller, motion

sensing

motion-sensing game controller, see

game controller, motion sensing

motion_detected() method, 195

motor control project, 223–234

Blaminatr, 229–234

connecting servo motor, 226–228

exercises, 235

troubleshooting, 234

motors

power supply, 226, 234

shields, 233

troubleshooting, 234

types, 224

see also motor control project

mouse exercise, 153

Mouser, 19

N
naming sketches, 47

networking project, 170–200

Ethernet, 180–185

exercises, 201

PC Internet relay, 170–179

troubleshooting, 199

wireless, 200

New Media Art, 229

new(), 248

Nike iPod Sport Kit, 152

Nintendo Wii Balance Board, 158

Nintendo Wii Nunchuk project,

154–169

connecting, 155–163

exercises, 169, 222

Nunchuck class, 160–163

rotating cube, 163–169

troubleshooting, 169

Nintendo Wii, scientific uses, 158

Nintendo WiiMotion, 169

noCursor(), 146

not operator, 249

numbering systems, 55

numbers, floating-point, 110–113, 118

numbers, random, 72, 73, 234

Nunchuck, see Nintendo Nunchuk

project

Nunchuck class, 160–163

271
Download from Wow! eBook <www.wowebook.com>

OAUTH PROTOTYPING SHIELD

O
OAuth, 174, 176, 200

OCT, 54

octal numbering systems, 55

Ohm’s law, 238

Ohm, Georg, 238

OR operator, 249

output

devices exercise, 101

edge values, 137

floating-point numbers and, 112

fonts, 146

format specifier, 54

Morse code, 93

parsing, 128

verbose, 48, 247

_output, 261

output pins, see analog pins; digital

I/O pins

output_code(), 93

output_distance() method, 112

output_result() function, 72

output_symbol(), 93

OutputStream object, 261

P
Pachube, 174

Paperduino, 25

Parallax PING))) ultrasonic sensor, see

ultrasonic sensors

Parallax PIR sensor, see PIR sensors

parity bit, 252

parity control, 252

parseArduinoOutput(), 128

parts list, 18–21

passive infrared sensors, see PIR

sensors

PC relay, 172–179

Perl, 264

physical computing, 23

piezo speakers, 100

Pin 13, internal resistor, 42, 68

PING))) ultrasonic sensor, see

ultrasonic sensors

pinMode() method, 38

pins, see analog pins; digital I/O pins

PIR sensors

burglar alarm project, 192–200

connecting, 193

principles, 193

plant water alarm, 180

PlayStation Eye, 157

PNA4602 receiver, 206

see also remote control project

popMatrix(), 168

power jack, 25f

power selection jumper, 27

power supply

analog pin voltage and, 115

motors and, 226, 234

pins, 25f, 27

sharing with devices, 27

USB port, 26

preferences, 48

print() function, 53

println() function, 53

Processing

brick game, 144–152

conventions, 124

development of, 121

drawing cube with, 167

IDE, 123

rotating cube project, 163–169

sensor visualizer project, 121–131

serial communication, 125

Twitter support, 176

programming languages, 16

C++, 51, 92, 109, 247, 255–259

Java, 259–261

Perl, 264

Python, 263

Ruby, 261–262

serial communications, 253–265

see also Processing

programming, serial, 251–265

programs, see sketches

project management, 47

projects

binary dice, 63–87

blinking LED, 35–44

controlling status LED, 52, 61

distance sensor, 102–131

game controller, motion sensing,

132–153

Morse code generator, 88–101

motor controlling, 223–234

networking, 170–200

Nintendo Nunchuk, 154–169

remote control, 202–222

rotating cube, 163–169

Prototyping shield, 141

272
Download from Wow! eBook <www.wowebook.com>

PSEUDORANDOM NUMBER GENERATOR SERIAL PORT

pseudorandom number generator, 72,

73

publishing services, sensor data, 174

pull-down resistors, 75

pull-up resistors, 75

pulseln() method, 107

pushbuttons

adding to binary dice project, 74–86

adding to game controller, 140–143

connecting, 74, 79

debouncing, 78, 143

pushMatrix(), 168

Putty, 55

PWR_SEL switch, 27

pyserial library, 263

Python, 263

R
RadioShack, 19

radius variable, 126

random number generators, 72, 73,

234

random seed, 73

random() function, 72, 73

randomSeed() function, 73

read() function, 52

remote control codes, 205

remote control project, 202–222

browser control, 212–221

building remote, 209–212

exercises, 222

infrared principles, 204

infrared proxy, 215–221

interface, 212–214

obtaining codes, 205

troubleshooting, 221

reset button, 25f, 30

resistance, 238, 240

resistors

calculating size of, 239

exercise, 87

internal (Pin 13), 42, 68

need for, 68, 74

pull-down, 75

pull-up, 75

pushbuttons and, 74

resistance values of, 240

types of, 239

resources

online, 17

parts, 18–21

return keyword, 125

RGB values, 167

Roboduino, 233

router connections, 184

Ruby, 261–262

RX LED, 39

RXTX project, 259

S
sampling and sampling rate, 29

saving, 34, 47

scaled values, 118

schematic, Arduino, 24

screen command, 56

screens, clearing, 129

Seeduino, 25

send_message() method, 90, 94

SensorData class, 124, 126

Sensorpedia, 174

sensors

accelerometers, 134–140

connecting, 28, 104, 113, 134

distance, 102–131

encoding sensor data, 119

floating-point numbers, 110–113,

118

infrared, 131

publishing services, 174

temperature, 113–131, 172–179, 235

tilt, 87, 150

troubleshooting, 131

tweeting data, 172–185

ultrasonic, 102–131

visualizer, 119–131

serial communication

through digital pins, 59

disabling, 59

principles of, 51, 251

Processing, 125

programming languages, 253–265

troubleshooting, 60, 131

Serial Monitor button, 35

serial monitor, LED control project, 52,

61

serial port

configuring, 38

errors, 44

initializing, 52, 261

multiple, 59

Perl programming, 264

Processing communication, 127

273
Download from Wow! eBook <www.wowebook.com>

SERIAL PROGRAMMING TROUBLESHOOTING

Seriality plug-in for JavaScript, 212

see also serial programming

serial programming, advanced,

251–265

serial receive buffer, 58

serial terminals, 55

serialEvent() function, 151

Seriality plug-in, 212

serialport functions, 256

SerialPort object, 261, 262

Servo library, 228

servo motors, 225–228

setup() function, 36, 38

in Processing, 127

shields

GSM, 200

motor, 233

Prototyping, 141

troubleshooting, 153

WiFi, 200

see also Ethernet connections

shifting operations, 249

Simple Mail Transfer Protocol, see

SMTP (Simple Mail Transfer

Protocol)

sketchbook directory, 94

sketches

examples folder, 48

file management, 47

storing example, 98

SMD LEDs, 41

SMTP (Simple Mail Transfer Protocol),

186

SmtpService class, 189

SoftwareSerial library, 59

soldering

basics, 241–246

equipment, 242

parts for, 21

temperatures, 244

troubleshooting, 153

sonar project, see distance sensor

project

spark-fun, 19

speakers, see piezo speakers

speed of sound, 113, 131

SPI library, 183

split method, 128

Standard Template Library (STL), 248

start bit, 252

start button, adding, 74–86

starter packs, 18

status LED project, 52, 61

stepper motors, 225

STL (Standard Template Library), 248

stop bit, 252

String class, 189

strings syntax, 37

strsep() function, 219

Super Mario Bros clone, 152

surface mounted devices (SMD) LEDs,

41

synchronizing data transfer, 58

syntax coloring, 97, 100

syntax errors, 44

T
Tabs menu, 47

Telegraph class, 89, 94

telegraph variable, 97

telnet command, 181

temperature sensors

distance sensor project, 113–131

motorized, 235

tweeting alarm, 172–179

voltage and, 113

textiles, 24, 53, 185

thermometer project, 235

tilt sensor

binary dice exercise, 87

hacky sack toy, 150

timestamp exercise, 201

tinning, 245

TMP36 voltage output temperature

sensor, see temperature sensors

toolbar functions, 34

toothbrush project, 150

trim method, 128

troubleshooting

board errors, 44

breadboard connections, 86

Ethernet connections, 199

LED connections, 43

libraries, 99

motors, 234

networking project, 199

Nunchuk project, 169

remote control project, 221

sensor connections, 131

serial communication, 60, 131

serial port errors, 44

shields, 153

274
Download from Wow! eBook <www.wowebook.com>

TWEETALARM() ZIGBEE

soldering, 153

syntax coloring, 100

tweetAlarm(), 179

Twitter

libraries, 176

registering applications, 174

troubleshooting, 200

tweeting sensor data, 172–185

twitter4j() method, 176

Twitwee Clock, 180

Two-Wire Interface (TWI), 156

TX LED, 39

U
UART (Universal Asynchronous

Receiver/Transmitter), 59

ultrasonic sensors

connecting, 104

distance sensor project, 102–131

ideas for, 130

principles of, 104

Universal Asynchronous

Receiver/Transmitter (UART), 59

universal remote control, see remote

control project

unsigned int variable, 37

unsigned long values, 37

upload.verbose setting, 48, 248

uploading, 35, 39

USB connector, 26

USB hourglass, 234

V
value arrays, 37

values, data, 36

values, edge, 137

values, RGB, 167

verbose output setting, 48, 247

Verify button, 34, 39

versions, 16

vertex(), 168

Vin pin, 28

visualizer, sensor, 119–131

void value type, 37

voltage

analog pins and, 114

defined, 237

digital pin states and, 35

drop, 239

forward, 239

Ohm’s law, 238

power supply, 27

serial communication and, 252

see also resistors

W
weapons, 59

web publishing services, 174

WiFi shield, 200

wii Nunchuck, see Nintendo Nunchuk

project

Windows

installation, 31

serial port configuration, 39

serial terminals, 55

Wire library, 156, 162

wireless networking, 200

WProgram.h, 91

X
XOR operator, 249

Z
ZigBee, 200

275
Download from Wow! eBook <www.wowebook.com>

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of

your game. The following are in print as of December 2010; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 248

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails 2009 9781934356166 792

Beginning Mac Programming: Develop with

Objective-C and Cocoa

2010 9781934356517 300

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Cocoa Programming: A Quick-Start Guide for

Developers

2010 9781934356302 450

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on

Mac OS X

2009 9781934356326 256

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your

Code

2009 9781934356289 232

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Domain-Driven Design Using Naked Objects 2009 9781934356449 375

Driving Technical Change: Why People on Your

Team Don’t Act on Good Ideas, and How to

Convince Them They Should

2010 9781934356609 200

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

ExpressionEngine 2: A Quick-Start Guide 2010 9781934356524 250

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Continued on next page

Download from Wow! eBook <www.wowebook.com>

pragprog.com

Title Year ISBN Pages

Google Maps API: Adding Where to Your

Applications

2006 PDF-Only 83

Grails: A Quick-Start Guide 2009 9781934356463 200

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2010 9781934356562 320

Interface Oriented Design 2006 9780976694052 240

iPad Programming: A Quick-Start Guide for

iPhone Developers

2010 9781934356579 248

iPhone SDK Development 2009 9781934356258 576

Land the Tech Job You Love 2009 9781934356265 280

Language Implementation Patterns: Create Your

Own Domain-Specific and General Programming

Languages

2009 9781934356456 350

Learn to Program 2009 9781934356364 240

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Metaprogramming Ruby: Program Like the Ruby

Pros

2010 9781934356470 240

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Guide to Git 2010 9781934356722 168

Pragmatic Guide to JavaScript 2010 9781934356678 150

Pragmatic Guide to Subversion 2010 9781934356616 150

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Continued on next page

Download from Wow! eBook <www.wowebook.com>

Title Year ISBN Pages

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 944

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails for .NET Developers 2008 9781934356203 300

Rails for PHP Developers 2008 9781934356043 432

Rails Recipes 2006 9780977616602 350

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Seven Languages in Seven Weeks: A Pragmatic

Guide to Learning Programming Languages

2010 9781934356593 300

Ship It! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

2010 9781934356555 352

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

Test-Drive ASP.NET MVC 2010 9781934356531 296

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Agile Samurai: How Agile Masters Deliver

Great Software

2010 9781934356586 280

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 232

The RSpec Book: Behaviour-Driven Development

with RSpec, Cucumber, and Friends

2010 9781934356371 448

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Web Design for Developers: A Programmer’s

Guide to Design Tools and Techniques

2009 9781934356135 300

Download from Wow! eBook <www.wowebook.com>

Debugging & Better SQL

Debug It!
Debug It! will equip you with the tools, techniques,

and approaches to help you tackle any bug with

confidence. These secrets of professional debugging

illuminate every stage of the bug life cycle, from

constructing software that makes debugging easy;

through bug detection, reproduction, and

diagnosis; to rolling out your eventual fix. Learn

better debugging whether you’re writing Java or

assembly language, targeting servers or embedded

micro-controllers, or using agile or traditional

approaches.

Debug It! Find, Repair, and Prevent Bugs in Your

Code

Paul Butcher

(232 pages) ISBN: 978-1-9343562-8-9. $34.95

http://pragprog.com/titles/pbdp

SQL Antipatterns
If you’re programming applications that store data,

then chances are you’re using SQL, either directly

or through a mapping layer. But most of the SQL

that gets used is inefficient, hard to maintain, and

sometimes just plain wrong. This book shows you

all the common mistakes, and then leads you

through the best fixes. What’s more, it shows you

what’s behind these fixes, so you’ll learn a lot about

relational databases along the way.

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

Bill Karwin

(300 pages) ISBN: 978-19343565-5-5. $34.95

http://pragprog.com/titles/bksqla

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/pbdp
http://pragprog.com/titles/bksqla

Agile Techniques

The Agile Samurai
Faced with a software project of epic proportions?

Tired of over-committing and under-delivering?

Enter the dojo of the agile samurai, where agile

expert Jonathan Rasmusson shows you how to

kick-start, execute, and deliver your agile projects.

You’ll see how agile software delivery really works

and how to help your team get agile fast, while

having fun along the way.

The Agile Samurai: How Agile Masters Deliver

Great Software

Jonathan Rasmusson

(275 pages) ISBN: 9781934356586. $34.95

http://pragprog.com/titles/jtrap

Driving Technical Change
Your co-workers’ resistance to new technologies

can be baffling. Learn to read users’ "patterns of

resistance"—and then dismantle their objections.

Every developer must master the art of

evangelizing. With these techniques and strategies,

you’ll help your organization adopt your

solutions—without selling your soul to

organizational politics.

Driving Technical Change: Why People On Your

Team Don’t Act On Good Ideas, and How to

Convince Them They Should

Terrence Ryan

(200 pages) ISBN: 978-1934356-60-9. $32.95

http://pragprog.com/titles/trevan

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/jtrap
http://pragprog.com/titles/trevan

More On Languages

Seven Languages in Seven Weeks
In this book you’ll get a hands-on tour of Clojure,

Haskell, Io, Prolog, Scala, Erlang, and Ruby.

Whether or not your favorite language is on that

list, you’ll broaden your perspective of

programming by examining these languages

side-by-side. You’ll learn something new from each,

and best of all, you’ll learn how to learn a language

quickly.

Seven Languages in Seven Weeks: A Pragmatic

Guide to Learning Programming Languages

Bruce A. Tate

(300 pages) ISBN: 978-1934356-59-3. $34.95

http://pragprog.com/titles/btlang

Language Implementation Patterns
Learn to build configuration file readers, data

readers, model-driven code generators,

source-to-source translators, source analyzers, and

interpreters. You don’t need a background in

computer science—ANTLR creator Terence Parr

demystifies language implementation by breaking it

down into the most common design patterns.

Pattern by pattern, you’ll learn the key skills you

need to implement your own computer languages.

Language Implementation Patterns: Create Your

Own Domain-Specific and General Programming

Languages

Terence Parr

(350 pages) ISBN: 978-1934356-45-6. $34.95

http://pragprog.com/titles/tpdsl

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/btlang
http://pragprog.com/titles/tpdsl

Apple iOS & Mac

Beginning Mac Programming
Aimed at beginning developers without prior

programming experience. Takes you through

concrete, working examples, giving you the core

concepts and principles of development in context

so you will be ready to build the applications you’ve

been imagining. It introduces you to Objective-C

and the Cocoa framework in clear,

easy-to-understand lessons, and demonstrates how

you can use them together to write for the Mac, as

well as the iPhone and iPod.

Beginning Mac Programming: Develop with

Objective-C and Cocoa

Tim Isted

(300 pages) ISBN: 978-1934356-51-7. $34.95

http://pragprog.com/titles/tibmac

iPad Programming
It’s not an iPhone and it’s not a laptop: the iPad is a

groundbreaking new device. You need to create true

iPad apps to take advantage of all that is possible

with the iPad. If you’re an experienced iPhone

developer, iPad Programming will show you how to

write these outstanding new apps while completely

fitting your users’ expectation for this device.

iPad Programming: A Quick-Start Guide for

iPhone Developers

Daniel H Steinberg and Eric T Freeman

(250 pages) ISBN: 978-19343565-7-9. $34.95

http://pragprog.com/titles/sfipad

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/tibmac
http://pragprog.com/titles/sfipad

Ruby & Rails

Programming Ruby 1.9 (The Pickaxe for 1.9)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language.

• Up-to-date and expanded for Ruby version 1.9

• Complete documentation of all the built-in

classes, modules, and methods • Complete

descriptions of all standard libraries • Learn more

about Ruby’s web tools, unit testing, and

programming philosophy

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

Dave Thomas with Chad Fowler and Andy Hunt

(992 pages) ISBN: 978-1-9343560-8-1. $49.95

http://pragprog.com/titles/ruby3

Agile Web Development with Rails
Rails just keeps on changing. Rails 3 and Ruby 1.9

bring hundreds of improvements, including new

APIs and substantial performance enhancements.

The fourth edition of this award-winning classic

has been reorganized and refocused so it’s more

useful than ever before for developers new to Ruby

and Rails. This book isn’t just a rework, it’s a

complete refactoring.

Agile Web Development with Rails: Fourth

Edition

Sam Ruby, Dave Thomas, and David Heinemeier

Hansson, et al.

(500 pages) ISBN: 978-1-93435-654-8. $43.95

http://pragprog.com/titles/rails4

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby3
http://pragprog.com/titles/rails4

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home Page for Arduino: A Quick-Start Guide

http://pragprog.com/titles/msard

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/msard.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/msard
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/msard
www.pragprog.com/catalog

	Contents
	Acknowledgments
	Preface
	Who Should Read This Book
	What's in This Book
	Arduino Uno and the Arduino Platform
	Code Examples and Conventions
	Online Resources

	The Parts You Need
	Starter Packs
	Complete Parts List

	Getting Started with Arduino
	Welcome to the Arduino
	What You Need
	What Exactly Is an Arduino?
	Exploring the Arduino Board
	Installing the Arduino IDE
	Meeting the Arduino IDE
	Compiling and Uploading Programs
	Working with LEDs
	What If It Doesn't Work?
	Exercises

	Inside the Arduino
	What You Need
	Managing Projects and Sketches
	Changing Preferences
	Using Serial Ports
	What If It Doesn't Work?
	Exercises

	Eight Arduino Projects
	Building Binary Dice
	What You Need
	Working with Breadboards
	Using an LED on a Breadboard
	First Version of a Binary Die
	Working with Buttons
	Adding Our Own Button
	Building a Dice Game
	What If It Doesn't Work?
	Exercises

	Building a Morse Code Generator Library
	What You Need
	Learning the Basics of Morse Code
	Building a Morse Code Generator
	Fleshing Out the Generator's Interface
	Outputting Morse Code Symbols
	Installing and Using the Telegraph Class
	Final Touches
	What If It Doesn't Work?
	Exercises

	Sensing the World Around Us
	What You Need
	Measuring Distances with an Ultrasonic Sensor
	Increasing Precision Using Floating-Point Numbers
	Increasing Precision Using a Temperature Sensor
	Transferring Data Back to Your Computer Using Processing
	Representing Sensor Data
	Building the Application's Foundation
	Implementing Serial Communication in Processing
	Visualizing Sensor Data
	What If It Doesn't Work?
	Exercises

	Building a Motion-Sensing Game Controller
	What You Need
	Wiring Up the Accelerometer
	Bringing Your Accelerometer to Life
	Finding and Polishing Edge Values
	Building Your Own Game Controller
	Writing Your Own Game
	More Projects
	What If It Doesn't Work?
	Exercises

	Tinkering with the Wii Nunchuk
	What You Need
	Wiring a Wii Nunchuk
	Talking to a Nunchuk
	Building a Nunchuk Class
	Using Our Nunchuk Class
	Rotating a Colorful Cube
	What If It Doesn't Work?
	Exercises

	Networking with Arduino
	What You Need
	Using Your PC to Transfer Sensor Data to the Internet
	Registering an Application with Twitter
	Tweeting Messages with Processing
	Networking Using an Ethernet Shield
	Emailing from the Command Line
	Emailing Directly from an Arduino
	Detecting Motion Using a Passive Infrared Sensor
	Bringing It All Together
	What If It Doesn't Work?
	Exercises

	Creating Your Own Universal Remote Control
	What You Need
	Understanding Infrared Remote Controls
	Grabbing Remote Control Codes
	Building Your Own Apple Remote
	Controlling Devices Remotely with Your Browser
	Building an Infrared Proxy
	What If It Doesn't Work?
	Exercises

	Controlling Motors with Arduino
	What You Need
	Introducing Motors
	First Steps with a Servo Motor
	Building a Blaminatr
	What If It Doesn't Work?
	Exercises

	Appendixes
	Basics of Electronics
	Current, Voltage, and Resistance
	Learning How to Solder

	Advanced Arduino Programming
	The Arduino Programming Language
	Bit Operations

	Advanced Serial Programming
	Learning More About Serial Communication
	Serial Communication Using Various Programming Languages

	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

