

Programming Arduino™ Next Steps

About the Author
Dr. Simon Monk (Preston, UK) has a degree in cybernetics and computer science and a PhD in software en-
gineering. Dr. Monk spent several years as an academic before he returned to industry, co-founding the mobile
software company Momote Ltd. He has been an active electronics hobbyist since his early teens and is a full-
time writer on hobby electronics and open source hardware. Dr. Monk is the author of numerous electronics
books, specializing in open source hardware platforms, especially Arduino and Raspberry Pi. He is also co-au-
thor with Paul Scherz of Practical Electronics for Inventors, Third Edition.

You can follow Simon on Twitter, where he is @simonmonk2.

Programming Arduino™ Next Steps
Going Further with Sketches

Simon Monk

New York Chicago San Francisco Athens
London Madrid Mexico City Milan

New Delhi Singapore Sydney Toronto

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a database or retrieval system, without the prior writ-
ten permission of publisher, with the exception that the program listings may be entered, stored, and executed
in a computer system, but they may not be reproduced for publication.
ISBN: 978-0-07-183026-3
MHID: 0-07-183026-X
e-book conversion by Cenveo® Publisher Services
Version 1.0
The material in this e-book also appears in the print version of this title: ISBN: 978-0-07-183025-6, MHID:
0-07-183025-1
McGraw-Hill Education e-books are available at special quantity discounts to use as premiums and sales pro-
motions, or for use in corporate training programs. To contact a representative, please visit the Contact Us
pages at www.mhprofessional.com.
Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, be-
cause of the possibility of human or mechanical error by our sources, McGraw-Hill Education, or others,
McGraw-Hill Education does not guarantee the accuracy, adequacy, or completeness of any information and
is not responsible for any errors or omissions or the results obtained from the use of such information.
TERMS OF USE
This is a copyrighted work and McGraw-Hill Education (“McGraw-Hill”) and its licensors reserve all rights
in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of
1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, pub-
lish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for
your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use
the work may be terminated if you fail to comply with these terms.
THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF
OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION
THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND
EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained
in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither
McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or
omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education
has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, con-
sequential or similar damages that result from the use of or inability to use the work, even if any of them has
been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

http://www.mhprofessional.com

CONTENTS AT A GLANCE
1 Programming Arduino
2 Under the Hood
3 Interrupts and Timers
4 Making Arduino Faster
5 Low Power Arduino
6 Memory
7 Using I2C
8 Interfacing with 1-Wire Devices
9 Interfacing with SPI Devices

10 Serial UART Programming
11 USB Programming
12 Network Programming
13 Digital Signal Processing
14 Managing with One Process
15 Writing Libraries
A Parts

Index

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch05.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch08.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch09.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch10.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch11.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch14.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\appendix.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\index.html

CONTENTS
Acknowledgments
Introduction

1 Programming Arduino
What Is Arduino?
Installation and the IDE

Installing the IDE
Blink

A Tour of Arduino
Power Supply
Power Connections
Analog Inputs
Digital Connections

Arduino Boards
Uno and Similar
Big Arduino Boards
Small Arduino Boards
LilyPad and LilyPad USB Boards
Unofficial Arduinos

Programming Language
Modifying the Blink Sketch
Variables
If
Loops
Functions
Digital Inputs
Digital Outputs
The Serial Monitor
Arrays and Strings
Analog Inputs
Analog Outputs
Using Libraries
Arduino Data Types
Arduino Commands
Summary

2 Under the Hood
A Brief History of Arduino
Anatomy of an Arduino
AVR Processors

ATmega328
ATmega32u4
ATmega2560
AT91SAM3X8E

Arduino and Wiring
From Sketch to Arduino
AVR Studio
Installing a Bootloader

Burning a Bootloader with AVR Studio and a Programmer
Burning a Bootloader with the Arduino IDE and a Second Arduino

Summary
3 Interrupts and Timers

Hardware Interrupts
Interrupt Pins
Interrupt Modes
Enabling Internal Pull-Up
Interrupt Service Routines

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\acknowledgments.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\introduction.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-8
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-9
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-10
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-11
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-12
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-13
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-14
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-15
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-16
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-17
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-18
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-19
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-20
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-21
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-22
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-23
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-24
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-25
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-26
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-27
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-28
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-29
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-30
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#c1-31
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-8
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-9
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-10
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-11
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-12
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-13
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html#c2-14
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html#c3-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html#c3-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html#c3-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html#c3-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html#c3-5

Volatile Variables
ISR Summary

Enabling and Disabling Interrupts
Timer Interrupts
Summary

4 Making Arduino Faster
How Fast Is an Arduino?
Comparing Arduino Boards
Speeding Up Arithmetic

Do You Really Need to Use a Float?
Lookup vs. Calculate
Fast I/O

Basic Code Optimization
Bytes and Bits
ATmega328 Ports
Very Fast Digital Output
Fast Digital Input

Speeding Up Analog Inputs
Summary

5 Low Power Arduino
Power Consumption of Arduino Boards
Current and Batteries
Reducing the Clock Speed
Turning Things Off
Sleeping

Narcoleptic
Waking on External Interrupts

Use Digital Outputs to Control Power
Summary

6 Memory
Arduino Memory
Minimizing RAM Usage

Use the Right Data Structures
Be Careful with Recursion
Store String Constants in Flash Memory
Common Misconceptions
Measure Free Memory

Minimizing Flash Usage
Use Constants
Remove Unwanted Trace
Bypass the Bootloader

Static vs. Dynamic Memory Allocation
Strings

C char Arrays
The Arduino String Object Library

Using EEPROM
EEPROM Example
Using the avr/eeprom.h Library
EEPROM Limitations

Using Flash

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html#c3-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html#c3-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html#c3-8
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html#c3-9
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html#c3-10
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#c4-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#c4-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#c4-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#c4-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#c4-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#c4-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#c4-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#c4-8
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#c4-9
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#c4-10
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#c4-11
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#c4-12
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#c4-13
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch05.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch05.html#c5-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch05.html#c5-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch05.html#c5-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch05.html#c5-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch05.html#c5-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch05.html#c5-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch05.html#c5-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch05.html#c5-8
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch05.html#c5-9
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-8
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-9
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-10
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-11
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-12
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-13
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-14
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-15
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-16
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-17
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-18
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-19
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-20

Using SD Card Storage
Summary

7 Using I2C
I2C Hardware
The I2C Protocol
The Wire Library

Initializing I2C
Master Sending Data
Master Receiving Data

I2C Examples
TEA5767 FM Radio
Arduino-to-Arduino Communication
LED Backpack Boards
DS1307 Real-Time Clock

Summary
8 Interfacing with 1-Wire Devices

1-Wire Hardware
The 1-Wire Protocol
The OneWire Library

Initializing 1-Wire
Scanning the Bus

Using the DS18B20
Summary

9 Interfacing with SPI Devices
Bit Manipulation

Binary and Hex
Masking Bits
Shifting Bits

SPI Hardware
The SPI Protocol
The SPI Library
SPI Example
Summary

10 Serial UART Programming
Serial Hardware
Serial Protocol
The Serial Commands
The SoftwareSerial Library
Serial Examples

Computer to Arduino over USB
Arduino to Arduino
GPS Module

Summary
11 USB Programming

Keyboard and Mouse Emulation
Keyboard Emulation
Keyboard Emulation Example
Mouse Emulation
Mouse Emulation Example

USB Host Programming

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-21
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html#c6-22
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html#c7-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html#c7-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html#c7-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html#c7-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html#c7-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html#c7-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html#c7-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html#c7-8
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html#c7-9
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html#c7-10
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html#c7-11
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html#c7-12
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch08.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch08.html#c8-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch08.html#c8-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch08.html#c8-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch08.html#c8-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch08.html#c8-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch08.html#c8-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch08.html#c8-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch09.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch09.html#c9-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch09.html#c9-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch09.html#c9-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch09.html#c9-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch09.html#c9-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch09.html#c9-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch09.html#c9-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch09.html#c9-8
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch09.html#c9-9
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch10.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch10.html#c10-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch10.html#c10-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch10.html#c10-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch10.html#c10-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch10.html#c10-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch10.html#c10-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch10.html#c10-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch10.html#c10-8
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch10.html#c10-9
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch11.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch11.html#c11-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch11.html#c11-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch11.html#c11-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch11.html#c11-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch11.html#c11-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch11.html#c11-6

USB Host Shield and Library
USB Host on the Arduino Due

Summary
12 Network Programming

Networking Hardware
Ethernet Shield
Arduino Ethernet/EtherTen
Arduino and WiFi

The Ethernet Library
Making a Connection
Setting Up a Web Server
Making Requests

Ethernet Examples
Physical Web Server
Using a JSON Web Service

The WiFi Library
Making a Connection
WiFi Specific Functions

WiFi Example
Summary

13 Digital Signal Processing
Introducing Digital Signal Processing
Averaging Readings
An Introduction to Filtering
Creating a Simple Low-Pass Filter
Arduino Uno DSP
Arduino Due DSP
Filter Code Generation
The Fourier Transform

Spectrum Analyzer Example
Frequency Measurement Example

Summary
14 Managing with One Process

Making the Transition from Big Programming
Why You Don’t Need Threads
Setup and Loop

Sense Then Act
Pause Without Blocking

The Timer Library
Summary

15 Writing Libraries
When to Make a Library
Using Classes and Methods
Library Example (TEA5767 Radio)

Define the API
Write the Header File
Write the Implementation File
Write the Keywords File
Make the Examples Folder

Testing the Library

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch11.html#c11-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch11.html#c11-8
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch11.html#c11-9
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-8
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-9
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-10
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-11
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-12
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-13
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-14
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-15
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html#c12-16
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html#c13-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html#c13-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html#c13-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html#c13-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html#c13-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html#c13-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html#c13-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html#c13-8
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html#c13-9
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html#c13-10
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html#c13-11
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch14.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch14.html#c14-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch14.html#c14-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch14.html#c14-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch14.html#c14-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch14.html#c14-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch14.html#c14-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch14.html#c14-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html#c15-1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html#c15-2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html#c15-3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html#c15-4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html#c15-5
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html#c15-6
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html#c15-7
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html#c15-8
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html#c15-9

Releasing the Library
Summary

A Parts
Arduino Boards
Shields
Components and Modules
Suppliers

Index

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html#c15-10
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html#c15-11
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\appendix.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\appendix.html#app1
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\appendix.html#app2
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\appendix.html#app3
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\appendix.html#app4
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\index.html

ACKNOWLEDGMENTS
Many thanks to all those at McGraw-Hill Education who have done such a great job in producing this book.
In particular, thanks to my editor Roger Stewart and to Vastavikta Sharma, Jody McKenzie, LeeAnn Pickrell,
and Claire Splan.

I would also like to thank Adafruit, SparkFun, and CPC for supplying many of the modules and components
used in the preparation of this book.

And last but not least, thanks once again to Linda, for her patience and generosity in giving me space to do
this.

INTRODUCTION
Arduino has become the standard microcontroller used by makers, artists, and educators due to its ease of
use, low cost, and plethora of interface boards (shields). Plug-in shields can be attached to the basic board, ex-
tending the Arduino into the Internet, robotic, and home automation realms.

Simple Arduino projects are easy to make. As soon as you start to stray into territory not covered by the
introductory texts, however, you’ll find that things can rapidly become confusing and frustrating as complex-
ity—the enemy of all programmers—rears its ugly head.

This book is designed as a companion and sequel to the very successful book Programming Arduino: Get-
ting Started with Sketches. Although this book includes a brief recap of basic Arduino Programming, it leads
the reader through the more advanced aspects of Arduino programming. Specifically, this book will help you
with:

• Working effectively with minimal memory
• Doing more than one thing at a time, without the luxury of multithreading
• Packaging your code in libraries for others to use
• Using hardware and timer interrupts
• Maximizing performance
• Minimizing power consumption
• Interfacing with different types of serial busses (I2C, 1-Wire, SPI, and serial)
• USB programming
• Network programming
• Digital Signal Processing (DSP)

Downloads
The book includes some 75 example sketches, which are all open source and available on the author’s website
at www.simonmonk.org. Follow the link to the pages for this book where you will be able to download the
code as well as an up-to-date list of errata for the book.

What Will I Need?
This book is primarily about software. So, for most of the examples, all you really need is an Arduino and an
LED or multimeter. Having said that, if you do have other Arduino shields, these will come in handy. You will
also need an Ethernet or Wi-Fi shield for Chapter 12. Throughout the book, several different types of module
are used to illustrate different interfaces.

Although the book is mostly concerned with the Arduino Uno (the most commonly used Arduino board), it
also covers some of the special features of other Arduino boards like the Leonardo and Arduino Due for USB
programming and Digital Signal Processing.

The Appendix at the end of this book lists possible suppliers for these parts.

Using This Book
Each of the chapters deals with a specific topic relating to Arduino programming. Apart from Chapter 1, which
is a recap and overview of Arduino basics, the remaining chapters can be accessed pretty much in any order
you like.

If you are an experienced developer in other areas, then you might like to read Chapter 14 first to put Ar-
duino programming into context.

Following is a description of each chapter:
1. “Programming Arduino” This chapter contains a summary of Arduino programming. It is a primer

for those needing to get up to speed quickly with basic Arduino.
2. “Under the Hood” In this chapter, we take a peek under the hood at how the Arduino software

works and where it came from.
3. “Interrupts and Timers” Novices often steer clear of using interrupts. They shouldn’t, however, as

they can be handy on occasion and are not difficult to code for. Although there are some pitfalls, this
chapter tells you what you need to aware of.

4. “Making Arduino Faster” Arduinos have low-speed, low-power processors and sometimes you
need to squeeze every ounce of juice out of them. For example, the built-in digitalWrite function is
safe and easy to use, but is not very efficient, especially when setting multiple outputs at the same
time. In this chapter, you look at ways to exceed this performance and learn about other techniques for
writing time-efficient sketches.

http://www.simonmonk.org
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch12.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch14.html

5. “Low Power Arduino” When you want to run your Arduino on batteries or sol-
ar, then you need to look at minimizing power consumption. In addition to optim-
izing the hardware design, you can also set up the code to reduce the Arduino’s
energy use.

6. “Memory” In this chapter, we look at minimizing memory usage and the bene-
fits and dangers associated with using memory dynamically within your sketches.

7. “Using I2C” The Arduino’s I2C interface can greatly simplify talking to mod-
ules and components, reducing the number of interface pins you need to use. This
chapter describes how I2C works and how to use it.

8. “Interfacing with 1-Wire Devices” This chapter focuses on 1-wire bus devices
such as Dallas Semiconductor’s range of temperature sensors, which are ex-
tremely popular for use with the Arduino. You learn how the bus works and how
to use it.

9. “Interfacing with SPI Devices” Yet another interface standard used with the Ar-
duino is SPI. This chapter explores how it works and how to use it.

10. “Serial UART Programming” Serial communications, either through USB or
the Arduino’s Rx and Tx pins, provide a great way to exchange data between peri-
pherals and other Arduinos. In this chapter, you learn how to use serial.

11. “USB Programming” This chapter looks at various aspects of using the Arduino
with USB. You’ll learn about the keyboard and mouse emulation features
provided by the Arduino Leonardo and also the reverse process of allowing a USB
keyboard or mouse to be connected to a suitably equipped Arduino.

12. “Network Programming” The Arduino is a common component in the Internet
of Things. In this chapter, you’ll learn how to program the Arduino for the Inter-
net. Topics include Wi-Fi and Ethernet shields as well as using web services and
the Arduino as a mini web server.

13. “Digital Signal Processing” The Arduino is capable of fairly rudimentary signal
processing. This chapter discusses a variety of techniques, from filtering a signal
from an analog input using software rather than external electronics to calculating
the relative magnitude of various frequencies in a signal using the Fast Fourier
Transform.

14. “Managing with One Process” Programmers coming to Arduino from a back-
ground of programming large systems often signal the lack of multithreading and
concurrency in Arduino as some kind of deficiency. In this chapter, I try to set the
record straight and show how to embrace the single-thread model of embedded
systems.

15. “Writing Libraries” Sooner or later, you will make something really good that
you think other people could use. This is the time to wrap up the code in a library
and release it to the world. This chapter shows you how.

Resources
This book is supported by accompanying pages on the author’s website
(www.simonmonk.org). Follow the link for this book, and you will find all the source code,
as well as other resources such as errata.

http://www.simonmonk.org

1
Programming Arduino

This chapter summarizes the basics of Arduino. If you are completely new to Arduino, then you might find
it useful to also read Programming Arduino: Getting Started with Sketches (McGraw-Hill Professional, 2012).

What Is Arduino?
The term Arduino is used to describe both the physical Arduino board (of which the most popular type is the
Arduino Uno) and the Arduino system as a whole. The system also includes the software you need to run on
your computer (to program the board) and the peripheral shields that you can plug into an Arduino board.

To use an Arduino, you also need a “proper” computer. This can be a Mac, Windows PC, Linux PC, or even
something as humble as a Raspberry Pi. The main reason that you need the computer is so you can download
programs onto the Arduino board. Once installed on the Arduino, these programs can then run independently.

Figure 1-1 shows an Arduino Uno.

Figure 1-1 An Arduino Uno
The Arduino can also communicate with your computer over USB. While the computer is connected, you

can send messages in both directions. Figure 1-2 shows the relationship between the Arduino and your com-
puter.

Figure 1-2 The Arduino and your computer
An Arduino is unlike a conventional computer in that it has hardly any memory, no op-

erating system, and no keyboard mouse or screen interface. Its purpose is to control things
by interfacing with sensors and actuators. So, for instance, you might attach a sensor to
measure the temperature and a relay to control the power to a heater.

Figure 1-3 shows some of the things that you can attach to an Arduino board. There are
no doubt many more types of devices that you can connect to an Arduino board.

Figure 1-3 Interfacing with an Arduino
Here is a short selection of some of the amazing projects that have been built using an

Arduino:
• Bubblino—an Arduino linked to a bubble machine that blows bubbles when you

tweet it!
• 3D LED cubes
• Geiger counters
• Musical instruments
• Remote sensors
• Robots

Installation and the IDE
The software that you use to program the Arduino is called the Arduino Integrated Devel-
opment Environment (IDE). If you are a software developer and accustomed to using com-
plex IDEs like Eclipse or Visual Studio, you’ll find the Arduino IDE very simple—and
possibly find yourself wishing for repository integration, command completion, and the
like. If you are relatively new to programming, you will love the Arduino’s simplicity and
ease of use.
Installing the IDE

The first step is to download the software for your type of computer from the official Ar-
duino website: http://arduino.cc/en/Main/Software.

Once you’ve downloaded the software, then you can find detailed installation instruc-
tions for each platform here: http://arduino.cc/en/Guide/HomePage.

One of the nice things about the Arduino is that all you need to get started is an Ar-
duino, a computer, and a USB lead to connect the two. The Arduino can even be powered
over the USB connection to the computer.
Blink
To prove that the Arduino is working, we are going to program it to flash an LED that is
labeled L on the Arduino board and hence is known as the “L” LED.

Start by launching the Arduino IDE on your computer. Then, from the File menu, (Fig-
ure 1-4) select Examples | 01 Basics | Blink.

Figure 1-4 The Arduino IDE loading Blink
In an attempt to make programming the Arduino sound less daunting to nonprogram-

mers, programs on the Arduino are referred to as sketches. Before you can send the Blink
sketch to your Arduino, you need to tell the Arduino IDE what type of Arduino you’re us-
ing. The most common type is the Arduino Uno, and in this chapter, I assume that is what
you have. So from the Tools | Board menu, select Arduino Uno (Figure 1-5).

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Guide/HomePage

Figure 1-5 Selecting the board type
As well as selecting the board type, you also need to select the port it is connected to.

In Windows this is easy, as it is usually COM4 and will probably be the only port in the
list (see Figure 1-6). On a Mac or Linux computer, however, there will generally be more
serial devices listed. The Arduino IDE shows the most recently connected devices first, so
your Arduino board should be at the top of the list.

Figure 1-6 Selecting the serial port
To actually upload the sketch onto the Arduino board, click the Upload button on the

toolbar. This is the second button on the toolbar, which is highlighted in Figure 1-7.

Figure 1-7 Uploading the Blink sketch
Once, you click the Upload button, a few things should happen. First, a progress bar

will appear as the Arduino IDE compiles the sketch (meaning it converts the sketch into
a suitable form for uploading). Then, the LEDs on the Arduino labeled Rx and Tx should
flicker for a while. Finally, the LED labeled L should start to blink. The Arduino IDE will
also display a message like “Binary sketch size: 1,084 bytes (of a 32,256 byte maximum).”
This means the sketch has used about 1kB of the 32kB of the flash memory available for
programs on the Arduino.

Before you start programming, let’s have a look at the hardware that your programs, or
sketches, will have to work within and have available for their use.

A Tour of Arduino
Figure 1-8 shows the anatomy of an Arduino Board. Starting at the top, next to the USB
socket in the top-left corner, is the Reset switch. Clicking this sends a logic pulse to the mi-
crocontroller’s Reset pin, clearing the microcontroller’s memory so it can start its program
fresh. Note that any program stored on the device is retained because it is kept in nonvolat-
ile flash memory—that is, memory that remembers even when the device is not powered
on.

Figure 1-8 Anatomy of an Arduino board
Power Supply
The Arduino can either be powered through either the USB connection or the DC power
socket below it. When powering the Arduino from a DC adaptor or batteries, anything
between 7.5 and 12V DC can be supplied through the power socket. The Arduino itself
only uses about 50mA. So a small PP3 9V battery (200mAh) will power it for around 40
hours.

When the Arduino is powered on, the power LED on the right of the Uno (on the left
of the Leonardo) is lit.
Power Connections
Next, let’s look at the connectors at the bottom of Figure 1-8. Apart from the first connec-
tion, you can read the connection names next to the connectors.

The first unlabeled connection is reserved for later use. The next pin, IOREF, indicates
the voltage at which the Arduino operates. Both the Uno and Leonardo operate at 5V, so
this pin will always be set at 5V, but you will not use it for anything described in this book.
Its purpose is to allow shields attached to 3V Arduinos like the Arduino Due to detect the
voltage at which the Arduino operates.

The next connect is Reset. This connection does the same thing as pressing the Reset
switch on the Arduino. Rather like rebooting a PC, it resets the microcontroller to begin
its program from the start. The Reset connector allows you to reset the microcontroller by
momentarily setting this pin low (connecting it to GND). It is fairly unlikely that you’ll
need to do this, but it’s quite nice to know that the connector is there.

The remaining pins provide different voltages (3.3, 5, GND, and 9), as labeled. GND,
or ground, just means zero volts. It is the reference voltage to which all other voltages on
the board are relative.

The two GND connections are identical; having more than one GND pin to connect
things to is useful. In fact, there is another GND socket at the top of the board.
Analog Inputs
The next section of connections is labeled Analog In 0 to 5. These six pins can be used
to measure the voltage connected to them so the value can be used in a sketch. Although
labeled as analog inputs, these connections can also be used as digital inputs or outputs. By
default, however, they are analog inputs.
Digital Connections
Now let’s switch to the top connector, starting on the right side (Figure 1-8). We have pins
labeled Digital 0 to 13. These can be used as either inputs or outputs. When using them as
outputs, you can control them from a sketch. If you turn them on from your sketch, they
will be at 5V, and if you turn them off, they will be at 0V. As with the supply connectors,
you have to be careful not to exceed their maximum current capabilities.

These connections can supply 40mA at 5V—more than enough power to light a stand-
ard LED, but not enough to drive an electric motor directly.

Arduino Boards
The Arduino Uno (Figure 1-1) is the current incarnation of the original Arduino board. It
is the most common Arduino board and is generally what people mean when they say they
are using an Arduino.

The other types of Arduino board all satisfy special requirements, like the need for
more I/O (input/output) connections, faster performance, or a smaller board, or to be
stitched into clothing, connect to Android phones, or integrate easily with wireless and so
on.

No matter how different the hardware, each board is programmed from the Arduino
IDE, with only minor variations in the software features they can use. Once you have
learned how to use one Arduino Board, you have pretty much learned how to use all of
them.

Let’s look at the current range of official Arduino boards. There are other Arduinos
than the ones discussed here, but they tend not to be that popular. For a full list of boards,
check out the official Arduino website (www.arduino.cc).
Uno and Similar
The Uno R3 is the latest of a series of “standard” boards that include the plain Uno, Duem-
ilanove, Diecimila, and NG. These boards all use the ATmega168 or ATmega328 micro-
processors, which are pretty much the same, apart from differing amounts of memory.

The other current Arduino, with the same size and connections as the Uno R3, is the
Arduino Leonardo (Figure 1-9). As you can see, the board is much more sparsely populated
than the Uno. This is because it uses a different processor. The Leonardo uses the ATmega-
32u4, which is similar to the ATmega328 but includes a built-in USB interface, removing
the need for the extra components that you find on the Uno. Moreover, the Leonardo has
slightly more memory, more analog inputs, and other benefits. It is also less expensive than
the Uno. In many respects, it is also a better design than the Uno.

http://www.arduino.cc

Figure 1-9 The Arduino Leonardo
If this is the case, then you might be wondering why the Leonardo is not the most pop-

ular Arduino board, rather than the Uno. The reason is that the improvements offered by
the Leonardo come at the cost of making it slightly incompatible with the Uno and its pre-
decessors. Some expansion shields (especially old designs) will not work on the Leonardo.
In time, these differences will become less of a problem. At that point, it will be interesting
to see if the Leonardo and its successors become the more popular boards.

The Arduino Ethernet is a relatively new addition to the Arduino stable. It combines
basic Uno features with an Ethernet interface, allowing you to connect it to a network,
without having to add an Ethernet shield.
Big Arduino Boards
Sometimes an Uno or Leonardo just doesn’t have enough I/O pins for the application that
you intend to use it for. The choice then arises of either using hardware expansion for the
Uno or switching to a bigger board.
TIP If you are coming to Arduino for the first time, do not buy one of these larger

boards. It is tempting because they are bigger and faster, but they have shield compat-
ibility problems and you will be much better off with a “standard” Uno.
The super-sized Arduinos have the same sockets as an Uno, but then they add a double

row of extra I/O pins on the end and a longer length of pins along the side (Figure 1-10).

Figure 1-10 The Arduino Due
Traditionally, the “bigger” board would be an Arduino Mega 2560. These boards, in

common with all the larger Arduino boards, have more of every kind of memory. The
Mega 2560 and Mega ADK both use processors with similar power to the Arduino Uno.
However, the Arduino Due is an altogether more powerful beast. This power comes in the
form of a 84 MHz processor (compared with the Uno’s 16 MHz) but at the cost of further
compatibility problems. The biggest of these is that the Due operates at 3.3V rather than
the 5Vs of most previous Arduinos. Not surprisingly, this means that many Arduino shields
are incompatible with it.

For the most demanding projects, however, this board has many advantages.
• Lots of memory for programming and data
• Hardware music output capabilities (hardware digital to analog converters)
• Four serial ports
• Two USB ports
• USB host and OTG interfaces
• USB keyboard and mouse emulation

Small Arduino Boards
Just as the Uno is too small for some projects, it can also be too big for others. Although
Arduino boards are low cost, it gets expensive if you start leaving one embedded in every
project you make. There are a range of smaller and “pro” Arduino boards, designed either
to be physically smaller than a regular Uno or to keep costs down by omitting features not
required in most projects.

Figure 1-11 shows an Arduino Mini. These boards do not have a USB interface; rather,
you need a separate adaptor module to program them. As well as the Mini, there are also
Nanos and Micros, both of which have built-in USB but cost more.

Figure 1-11 An Arduino Mini and Programmer
LilyPad and LilyPad USB Boards
One of the most interesting Arduino styles is the LilyPad (Figure 1-12) and the newer
LilyPad USB. These boards are designed to be stitched into clothing using conductive
threads and a range of similar LilyPad modules—for LEDs, switches, accelerometers, and
so on. The older LilyPad boards require a separate USB interface, the same one required
for the Arduino Mini. However, these boards are gradually being replaced by the Arduino
LilyPad USB, which has a built-in USB connector.

Figure 1-12 An Arduino LilyPad
Unofficial Arduinos

As well as the “official” boards just described, there are also many unofficial copies and
variations on the Arduino hardware, given its open source status. Straight Arduino clones
are easy to come by on eBay and other low-cost outlets and are simply copies of the Ar-
duino designs. They are only really of interest because of their price. There are also some
interesting Arduino-based designs that offer extra features.

Two examples of these kind of boards that are worth looking at are
• EtherTen Arduino Ethernet-type board (www.freetronics.com/products/etherten)
• Leostick A slim-line Leonardo-type board with built-in USB plug

(www.freetronics.com/collections/arduino/products/leostick)
Now that you have a bit more information about the hardware side of an Arduino, we

can turn to programming it.

Programming Language
A common misconception about Arduinos is that they have their own programming lan-
guage. Actually, they are programmed in the language simply called C. This language has
been around since the early days of computing. What Arduino does provide is a nice easy-
to-use set of commands written in C that you can use in your programs.

Purists may wish to point out that Arduino uses C++, the object-oriented extension to
C. Although, strictly speaking, this is true, having only 1 or 2kB of memory available gen-
erally means that the kinds of habits encouraged by object-oriented programming are not
normally a good idea with Arduino, so aside from a few specialized areas, you are effect-
ively programming in C.

Let’s start by modifying the Blink sketch.

Modifying the Blink Sketch
It may be that your Arduino was already blinking when you first plugged it in. That is be-
cause the Arduino is often shipped with the Blink sketch installed.

If this is the case, then you might like to prove to yourself that you have actually done
something by changing the blink rate. Let’s look at the Blink sketch to see how to change
it to make the LED blink faster.

The first part of the sketch is just a comment telling you what the sketch is supposed
to do. A comment is not actual program code. Part of the preparation for the code being
uploaded is for all such “comments” to be stripped out. Anything between /* and */ is ig-
nored by the computer, but should be readable by humans.

Then, there are two individual line comments, just like the block comments, except
they start with //. These comments tell you what is happening. In this case, the comment
helpfully tells you that pin 13 is the pin we are going to flash. We have chosen that pin
because on an Arduino Uno it is connected to the built-in “L” LED.

The next part of the sketch is the setup function. Every Arduino sketch must have a
setup function, and this function runs every time the Arduino is reset, either because (as
the comment says) the Reset button is pressed or the Arduino is powered up.

http://www.freetronics.com/products/etherten
http://www.freetronics.com/collections/arduino/products/leostick

The structure of this text is a little confusing if you are new to programming. A function
is a section of code that has been given a name (in this case, the name is setup). For now,
just use the previous text as a template and know that you must start your sketch with the
first line void setup() { and then enter the commands that you want to issue, each on a line
ending with a semicolon (;). The end of the function is marked with a } symbol.

In this case, the only command Arduino will issue is the pinMode(led, OUTPUT)
command that, not unsurprisingly, sets that pin to be an output.

Next comes the juicy part of the sketch, the loop function.
Like the setup function, every Arduino sketch has to have a loop function. Unlike

setup, which only runs once after a reset, the loop function runs continuously. That is, as
soon as all its instructions have been run, it starts again.

In the loop function, you turn on the LED by issuing the digitalWrite(led, HIGH) in-
struction. You then set the sketch to pause for a second by using the command delay(1000).
The value 1000 is for 1000 milliseconds or 1 second. You then turn the LED back on again
and delay for another second before the whole process starts over.

To modify this sketch to make the LED blink faster, change both occurrences of 1000
to be 200. These changes are both in the loop function, so your function should now look
like this:

If you try and save the sketch before uploading it, the Arduino IDE reminds you that it
is a “read-only” example sketch, but it will offer you the option to save it as a copy, which
you can then modify to your heart’s content.

You do not have to do this; you can just upload the sketch unsaved. But if you do decide
to save this or any other sketch, you will find that it then appears in the File | Sketchbook
menu on the Arduino IDE.

So, either way, click the Upload button again, and when the uploading is complete, the
Arduino resets itself and the LED should start to blink much faster.

Variables
Variables give a name to a number. Actually, they can be a lot more powerful than this, but
for now, we’ll use them for this purpose.

When defining a variable in C, you have to specify the type of variable. For example,
if you want your variables to be whole numbers, you would use int (short for integer). To
define a variable called delayPeriod with a value of 200, you need to write:

Notice that because delayPeriod is a name, there cannot be any spaces between words.
The convention is to start variables with a lowercase letter and begin each new word with
an uppercase letter. Programmers often call this bumpy case or camel case.

Let’s fit this into the blink sketch, so that instead of “hard-coding” the value 200 for the
length of delay, we use a variable instead:

At each place in the sketch where we used to refer to 200, we now refer to delayPeriod.
Now, if you want to make the sketch blink faster, you can just change the value of

delayPeriod in one place.

If
Normally, your lines of program are executed in order one after the other, with no excep-
tions. But what if you don’t want to do that? What if you only want to execute part of a
sketch if some condition is true?

A good example of that might be to only do something when a button, attached to the
Arduino, is pressed. The code might look like this:

In this case, the condition (after the if) is that the value read from pin 5 has a value of
LOW. The double equals symbol == is used for comparing two values. It is easy to con-

fuse it with a single equals sign that assigns a value to a variable. An if statement says, if
this condition is true, then the commands inside the curly braces are executed. In this case,
the action is to set digital output to 9, HIGH.

If the condition is not true, then the Arduino just continues on with the next thing. In
this case, that is the loop function, which runs again.

Loops
As well as conditionally performing some of the actions, you also need your sketch to be
able to repeat actions over and over again. You get this for free of course by putting com-
mands into the sketch’s loop function. That is, after all, what happens with the Blink ex-
ample.

Sometimes, however, you’ll need to be more specific about the number of times that
you want to repeat something. You can accomplish this with the for command, which al-
lows you to use a counter variable. For example, let’s write a sketch that blinks the LED
ten times. Later, you’ll see why this approach might be considered less than ideal under
some circumstances, but for now, it will do just fine.

NOTE As this is the first full sketch, it’s named in a comment at the top of the file. All
the sketches named in this way can be downloaded from the author’s website at
www.simonmonk.org.
To install all the sketches into your Arduino environment, unzip the file containing the
sketches into your Arduino directory, which you’ll find in your Documents folder. The
Arduino IDE automatically creates this folder for you the first time it is run.
The for command defines a variable called i and gives it an initial value of 0. After the

; the text i < 10 appears. This is the condition for staying in the loop. In other words, while
i is less than 10, keep doing the things inside the curly brackets.

The last part of the for command is i++. This is C shorthand for “i = i + 1” which, not
surprisingly, adds 1 to the value of i. One is added to the value of i each time around the
loop. This is what ensures that you can escape from the loop, because if you keep adding 1
to i, eventually it will be greater than 10.

http://www.simonmonk.org

Functions
Functions are a way to group a set of programming commands into a useful chunk. This
helps to divide your sketch into manageable chunks, making it easier to use.

For example, let’s write a sketch that makes the Arduino blink rapidly 10 times when
it first starts and then blink steadily once each second thereafter.

Read through the following listing, and then I’ll explain what is going on.

The setup function now contains a line that says flash(10, 100);. This means flash 10 times
with a delayPeriod of 100 milliseconds. The flash command is not a built-in Arduino
command; you are going to create this quite useful function yourself.

The definition of the function is at the end of the sketch. The first line of the function
definition is

This tells the Arduino that you are defining your own function called flash and that it takes
two parameters, both of which are ints. The first is n, which is the number of times to flash
the LED, and the second is delayPeriod, which is the delay to use between turning the
LED on or off.

These two parameter variables can only be used inside the function. So, n is used in the
for command to determine how many times to repeat the loop, and delayPeriod is used
inside the delay commands.

The sketch’s loop function also uses the previous flash function, but with a longer
delayPeriod, and it only makes the LED flash once. Because it is inside loop, it will just
keep flashing anyway.

Digital Inputs
To get the most out of this section, you need to find a short length of wire or even a metal
paperclip that has been straightened.

Load the following sketch and run it:

Use your wire or paperclip to connect the GND pin to digital pin 7, as shown in Figure
1-13. You can do this with your Arduino plugged in, but only after you have uploaded the
sketch. The reason is that if on some previous sketch pin 7 had been set to an output, then
connecting it to the GND would damage the pin. Since the sketch sets pin 7 to be an input,
this is safe.

Figure 1-13 Using a digital input
This is what should happen: when the paperclip is connected, the LED will flash

quickly, and when it is not connected, it will flash slowly.
Let’s dissect the sketch and see how it works.
First, we have a new variable called switchPin. This variable is assigned to pin 7. So

the paperclip is acting like a switch. In the setup function, we specify that this pin will be
an input using the pinMode command. The second argument to pinMode is not simply
INPUT but actually INPUT_PULLUP. This tells the Arduino that, by default, the input is
to be HIGH, unless it is pulled LOW by connecting it to GND (with the paperclip).

In the loop function, we use the digitalRead command to test the value at the input
pin. If it is LOW (the paperclip is in place), then it calls a function called flash with a para-
meter of 100 (the delayPeriod). This makes the LED blink fast.

If, on the other hand, the input is HIGH, then the commands in the else part of the if
statement are run. This calls the same flash function but with a much longer delay, making
the LED blink slowly.

The flash function is a simplified version of the flash function that you used in the pre-
vious sketch, and it just blinks once with the period specified.

Sometimes you will connect digital outputs from a module that does not act as a switch,
but actually produces an output that is either HIGH or LOW. In this case, you can use
INPUT rather than INPUT_PULLUP in the pinMode function.

Digital Outputs
There is not really much new to say about digital outputs from a programming point of
view, as you have already used them with the built-in LED on pin 13.

The essence of a digital output is that in your setup function you define them as being
an output using this command:

When you want to set the output HIGH or LOW, you use the digitalWrite command:

The Serial Monitor
Because your Arduino is connected to your computer by USB, you can send messages
between the two using a feature of the Arduino IDE called the Serial Monitor.

To illustrate, let’s modify the sketch 01_03 so that, instead of changing the LED blink
rate when digital input 7 is LOW, it sends a message.

Load this sketch:

Now open the Serial Monitor on the Arduino IDE by clicking the icon that looks like
a magnifying glass on the toolbar. You should immediately start to see some messages ap-
pear, once each second (Figure 1-14).

Figure 1-14 The Serial Monitor
Disconnect one end of the paperclip, and you should see the message change.
Because you are no longer using the built-in LED, you do not need the ledPin variable

any more. Instead, you need to use the Serial.begin command to start serial communica-
tions. The parameter is the baud rate. In Chapter 13, you will find out much more about
serial communications.

To write messages to the Serial Monitor, all you need to do is use the Serial.println
command.

In this example, the Arduino is sending messages to the Serial Monitor.

Arrays and Strings
Arrays are a way of containing a list of values. The variables you have met so far have only
contained a single value, usually an int. By contrast, an array contains a list of values, and
you can access any one of those values by its position in the list.

C, in common with most programming languages, begins its index positions at 0 rather
than 1. This means that the first element is actually element zero.

You have already met one kind of array in the last section when you learned about the
Serial Monitor. Messages like "Paperclip NOT connected" are called character arrays
because they are essentially collections of characters.

For example, let’s teach Arduino to talk gibberish over the Serial Monitor.
The following sketch has an array of character arrays and will pick one at random and

display it on the Serial Monitor after a random amount of time. This sketch has the added
advantage of showing you how to produce random numbers with an Arduino.

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html

Each of the messages, or strings as collections of characters are often called, has a data
type of char*. The * is a pointer to something. We’ll get to the advanced topic of pointers
in Chapter 6. The [] on the end of the variable declaration indicates that the variable is an
array of char* rather than just a single char* on its own.

Inside the loop function, the value delayPeriod is assigned a random value between
2000 and 7999 (the second argument to “random” is exclusive). A pause of this length is
then set using the delay function.

The messageIndex variable is also assigned a random value using random, but this
time random is only given one parameter, in which case a random number between 0 and
3 is generated as the index for the message to be displayed.

Finally, the message at that position is sent to the Serial Monitor. Try out the sketch,
remembering to open the Serial Monitor.

Analog Inputs
The Arduino pins labeled A0 to A5 can measure the voltage applied to them. The voltage
must be between 0 and 5V. The built-in Arduino function that does this is analogRead, and
it returns a value between 0 and 1023: 0 at 0V and 1023 at 5V. So to convert that number
into a value between 0 and 5, you have to divide 1023/5 = 204.6.

To measure voltage, int is not the ideal data type as it only represents whole numbers
and it would be good to see the fractional voltage, for which you need to use the float data
type.

Load this sketch onto your Arduino and then attach the paperclip between A0 and 3.3V
(Figure 1-15).

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html

Figure 1-15 Connecting 3.3V to A0

Open the Serial Monitor, and a stream of numbers should appear (Figure 1-16). These
should be close to 3.3.

Figure 1-16 Voltage readings
CAUTION Do not connect any of the supply voltages together (5V, 3.3V, or GND).

Creating such a short circuit would probably damage your Arduino and could even
damage your computer.
If you now keep one end of the paperclip in A0 but move the other end of the paperclip

to 5V, the readings will change to around 5V. Moving the same end to GND gives you a
reading of 0V.

Analog Outputs
The Arduino Uno does not produce true analog outputs (for that you need an Arduino
Due), but it does have a number of outputs that are capable of producing a pulse-width
modulation (PWM) output. This approximates to an analog output by controlling the length
of a stream of pulses, as you can see in Figure 1-17.

Figure 1-17 Pulse-width modulation
The longer the pulse is high, the higher the average voltage of the signal. Since there

are about 600 pulses per second and most things that you would connect to a PWM output
are quite slow to react, the effect is of the voltage changing.

On an Arduino Uno, the pins marked with a little ~ (pins 3, 5, 6, 9, 10, and 11) can be
used as analog outputs.

If you have a voltmeter, set it to its 0..20V DC range and attach the positive lead to
digital pin 6 and the negative lead to GND (Figure 1-18). Then load the following sketch:

Figure 1-18 Measuring the output voltage

Open the Serial Monitor and type a number between 0 and 255 into the text entry field
at the top of the screen next to the Send button. Then press Send and you should see the
voltage change on your multimeter. Sending a value of 0 should give a voltage of around
0. A value of 127 should be about halfway between 0 and 5V (2.5V) and a value of 255
should give a value near 5V.

In this sketch, the loop function starts with an if statement. The condition for the if is
Serial.available(). This means if a message is waiting from the Serial Monitor, the com-
mands inside the curly braces will run. In this case, the Serial.parseInt command converts
the message that you typed into the Serial Monitor into an int, which is then used as the
argument to analogWrite to set the PWM output.

Using Libraries
Because Arduino boards have a quite limited amount of memory, you’ll find it worthwhile
to only include code that will actually be used in what ends up on the board. One way to
achieve this is by using libraries. In Arduino, and for that matter in C in general, a library
is a collection of useful functions.

So, for example, the Arduino IDE includes a library for using an LCD display. This
uses about 1.5kB of program memory. There is no point in this library being included un-
less you are using it, so such libraries are “included” when needed.

You accomplish this using the #include directive at the beginning of your sketch. You
can add an include statement for any libraries that the Arduino IDE has installed using the
Sketch | Import Library… menu option.

The Arduino IDE comes with a large selection of “official” libraries, including:
• EEPROM For storing data in EEPROM memory
• Ethernet For network programming
• Firmata The serial communications standard for Arduino to computer
• LiquidCrystal For alphanumeric LCD displays
• SD For reading and writing SD flash memory cards
• Servo For controlling servo motors
• SPI The Arduino to peripheral communication bus
• Software Serial For serial communication using nonserial pins
• Stepper For controlling stepper motors
• WiFi For WiFi network access
• Wire For I2C communication with peripherals
Some libraries are specific to a type of Arduino board:
• Keyboard USB keyboard emulation (Leonardo, Due, and Micro)
• Mouse USB mouse emulation (Leonardo, Due, and Micro)
• Audio Audio playing utilities (Due only)
• Scheduler For managing multiple execution threads (Due only)
• USBHost USB peripherals (Due only)
Finally, there are a huge number of libraries that other Arduino users have written that

can be downloaded from the Internet. Some of the more popular ones are
• OneWire For reading data from Dallas Semiconductor’s range of digital devices

using the 1-wire bus interface
• Xbee For Wireless serial communication
• GFX A graphics library for many different types of display from Adafruit
• Capacitive Sensing For proximity detection
• FFT Frequency analysis library
New libraries appear all the time and you may find them on the official Arduino site

(http://arduino.cc/en/Reference/Libraries) or you may find them with an Internet search.

http://arduino.cc/en/Reference/Libraries

If you want to use one of these last categories of libraries, then you need to install it
by downloading the library and then saving it to the Libraries folder within your Arduino
folder (in your Documents folder). Note that if there is no Libraries folder, you will need
to create it the first time that you add a library.

For the Arduino IDE to become aware of a library that you have installed, you need to
exit and restart the IDE.

Arduino Data Types
A variable of type int in Arduino C uses 2 bytes of data. Unless a sketch becomes very
memory hungry, then ints tend to be used for almost everything, even for Boolean values
and small integers that could easily be represented in a single byte value.

Table 1-1 contains a full list of the data types available.

Table 1-1 Data Types in Arduino C

Arduino Commands
A large number of commands are available in the Arduino library, and a selection of the
most commonly used commands is listed, along with examples, in Table 1-2.

Table 1-2 Arduino Library Functions
For a full reference to all the Arduino commands, see the official Arduino documenta-

tion at http://arduino.cc.

Summary
By necessity, this chapter has been a very condensed introduction to the world of Arduino.
If you require more information about the basics, then there are many online resources, in-
cluding free Arduino tutorials at http://www.learn.adafruit.com.

In the next chapter, we will dig under the surface of Arduino and see just how it works
and what is going on inside the nice, easy-to-use Arduino environment.

http://arduino.cc
http://www.learn.adafruit.com

2
Under the Hood

The nice thing about the Arduino is that a lot of the time, you really do not need to know what goes on behind
the scenes when you upload a sketch. However, as you get more into Arduino and want to push the envelope
of what it can do, you need to find out a bit more about what’s going on behind the scenes.

A Brief History of Arduino
The first Arduino board was developed back in 2005 in Italy at the Interaction Design Institute at Ivrea near
Turin. The intention was to design a low-cost and easy-to-use tool for design students to build interactive sys-
tems. The software behind Arduino, which is so much a part of Arduino’s success, is a fork of an open source
framework called Wiring. Wiring was also created by a student at the Institute.

The Arduino fork of Wiring is still very close to Wiring, and the Arduino IDE is written in Wiring’s big
brother that runs on PCs, Macs, and so on, and is called Processing. Processing is well worth a look if you have
a project where your Arduino needs to talk to a PC over USB or Bluetooth.

The Arduino hardware has evolved over the years, but the current Arduino Uno and Leonardo boards retain
the same basic shape and sockets as the original.

Anatomy of an Arduino
Figure 2-1 shows the anatomy of an Arduino Uno. The Leonardo is similar but has the USB interface integrated
into the main microcontroller chip. The Due is also similar, but the processor is powered by 3.3V, not 5V.

Figure 2-1 The anatomy of an Arduino Uno
In many ways, the Arduino is really little more than a microcontroller chip with some supporting compon-

ents. In fact, it is perfectly possible to build an Arduino on breadboard using the processor chip and a few extra
components or to create a PCB for a design that started out using an Arduino as a prototype. The Arduino
boards make things easy, but ultimately any Arduino design can be converted into something that just uses the
microcontroller chip and the few components that it really needs. For example, if the design is only for pro-
gramming purposes, you may not need a USB interface, as you could program the chip on an Arduino and then
transplant the programmed chip into an IC socket on a PCB or to breadboard.

Later, we’ll look at how Arduinos can be programmed directly using the ICSP (In Circuit Serial Program-
ming) interface.

AVR Processors
The Arduino family of boards all use microcontrollers made by Atmel. They all have similar hardware design
principals and, with the exception of the microcontroller used in the Due (SAM3X8E ARM Cortex-M3 CPU),
they have similar designs.
ATmega328

The ATmega328 is the microcontroller used in the Arduino Uno and its predecessor the
Duemilanove. In fact, the ATmega168 that was used in the first Arduino boards is basically
an ATmega328 but with half of each type of memory.

Figure 2-2 shows the internals of an ATmega328, taken from its datasheet. The full
datasheet is available from www.atmel.com/Images/doc8161.pdf and is worth browsing
through to learn more about the inner workings of this device.

Figure 2-2 The ATmega328

http://www.atmel.com/Images/doc8161.pdf

The central processing unit (CPU) is where all the action takes place. The CPU reads
instructions (compiled sketch code) from the flash memory one instruction at a time. This
process is different from a conventional computer where programs are stored on disk and
loaded into random access memory (RAM) before they can be run. Variables that you
use in your programs are stored separately in the static RAM (SRAM). Unlike the flash
memory containing the program code, the RAM is volatile and loses its contents when you
turn off the power.

To allow the nonvolatile storage of data that remains even after the device is powered
off, a third type of memory called Electrically Erasable Programmable Read Only Memory
(EEPROM) is used.

Another area of interest is the Watchdog Timer and Power Supervision unit. These give
the microcontroller the capability to do a number of things that are normally hidden by
the simplified Arduino layer, including clever tricks like putting the chip to sleep and then
setting a timer to wake it up periodically. This trick can be very useful in low current ap-
plications, and you can read more on this in Chapter 5.

The remainder of the block diagram is concerned with the analog-to-digital conversion,
the input/output ports, and the three types of serial interfaces supported by the chip: UART
- Serial, SPI, and TWI (I2C).
ATmega32u4
The ATmega32u4 is used in the Arduino Leonardo and also in the LilyPad USB and the
Arduinos Micro and Nano. This processor is similar to the ATmega328, but it is a more
modern chip with a few enhancements over the ATmega328:

• A built-in USB interface, so there’s no need for extra USB hardware.
• More of the pins are PWM capable.
• There are two serial ports.
• Dedicated pins for I2C (these pins are shared with the analog pins on the Arduino).
• There is 0.5kB more SRAM.
The version used in the Leonardo is in a surface-mount package, which means it is

soldered directly to the Arduino board, whereas the ATmega328 is in a DIL package fitted
into an IC socket for the Arduino Uno.
ATmega2560
The ATmega2560 is used in the Arduino Mega 2560 and the Arduino Mega ADK. It is
no faster than the other ATmega chips, but it does have far more of every type of memory
(256k flash, 8k SRAM, and 4k of EEPROM) and many more I/O pins.
AT91SAM3X8E
This is the chip at the heart of the Arduino Due. It is much faster than the ATmega chips
I have discussed so far, being clocked at 84 MHz, rather than the normal 16 MHz of the
ATmegas. It has 512k of flash and 96KB of SRAM. The microcontroller does not have any
EEPROM. Instead, to save persistent data, you need to provide your own additional hard-
ware, either in the form of an SD card holder and SD card or flash or EEPROM storage
ICs. The chip itself has many advanced features including two analog outputs that make it
ideal for sound generation.

Arduino and Wiring
The Wiring library gives Arduino its easy-to-use functions for controlling the hardware
pins; however, the main structural part of the language is all provided by C.

Until recently, if you looked in your Arduino installation directory, you could still find
a file called WProgram.h (Wiring Program). This file has now been replaced by a similar
file called Arduino.h that indicates the gradual drift of the Arduino fork away from the
original Wiring Project.

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch05.html

If you go to your Arduino installation folder, you’ll find a folder called “hardware,”
and within that, a folder called “arduino,” and within that, a folder called “cores.” Note
that if you are using a Mac, then you can only get to this folder by right-clicking on your
Arduino application, selecting View Package Contents from the menu, and then navigating
to the Resources/Java/ folder.

Inside the cores folder is another folder called “arduino,” and, in there, you will find a
whole load of C header files with the file extension .h and C++ implementation files with
the extension .cpp (Figure 2-3).

Figure 2-3 Inside the cores folder
If you open Arduino.h in an editor, you’ll discover that it consists of many #include

statements. These pull in definitions from other header files within the cores/arduino
folder, so they are included during compilation (converting the sketch into a form suitable
for installing into the microcontroller’s flash memory).

You’ll also find constant definitions like this:

You can think of these as being a bit like variables, so the name HIGH is given the value 1.
The value is specified as 0x1 rather than just 1 because the values are all specified in hexa-
decimal (number base 16). These are not actually variable definitions; they are called C
precompiler directives, which means that while your sketch is being turned into something
that can be installed into the flash memory on the microcontroller, any instances of the
words HIGH, LOW, and so on, are automatically converted into the appropriate number.
This has an advantage over using variables in that no memory has to be reserved for their
use.

Because these constants are numbers, you could write something like this in your
sketch to set pin 5 to be an OUTPUT, but it is better to use the name in case the Arduino

developers ever decide to change the constant’s value. Using a name also makes the code
easier to read.

Also, within arduino.h, you’ll find lots of function “signatures” like this:

These warn the compiler about functions whose actual implementations are to be found
elsewhere. Take the first one as an example. It specifies the function pinMode as taking
two arguments (that you know to be pin number and mode) that are specified as having a
type of uint8_t. The void command means the function will not return a value when it is
called.

You might be wondering why these parameters’ type is specified as uint8_t rather than
int. Normally when defining which pin to use, you specify an int. In actual fact, int is a
universal type when writing sketches. It means users do not need to worry about a large
number of possible types that they might have to use. But in Arduino C, an int is actually a
16-bit signed number that can represent a number between –32,768 and 32,767. However,
when specifying a pin to use, having negative pin numbers doesn’t make sense and you are
very unlikely to ever get a 32,767-pin Arduino.

The type uint_8 is a much more precise convention for defining types because an int
in C can be anything between 16 and 64 bits, depending on the C implementation. The way
to read “uint_8” is that the u is for unsigned, then you have int, and, finally, after the _ you
have the number of bits. So uint_8 is an unsigned 8-bit integer that can represent a number
between 0 and 255.

You can use these well-defined types within your sketches, and, indeed, some people
do. You have to remember, however, that this makes your code a little less accessible to
those who aren’t as experienced in Arduino programming.

The reason that using a regular signed 16-bit int works, rather than, say, a unit_8, is
that the compiler automatically performs the conversion for you. Using int variables for
pin numbers actually wastes memory. However, you have to balance this against the sim-
plicity and readability of the code. Generally, in programming it’s better to favor easy-to-
read code over minimizing memory usage, unless you know you are doing something com-
plex that is going to push the microcontroller’s limits.

It’s a bit like having a truck in which you want to deliver some goods to someone. If
you have a load of stuff to deliver, then you need to think carefully about how to pack the
load so it all fits. If you know that you are only going to use one little corner of the avail-
able space, then spending a lot of time minimizing the space it takes is simply unnecessary.

Also within the arduino folder, you’ll find a file called main.cpp. Open this file; you’ll
find it pretty interesting.

If you have done any C, C++, or Java programming before, you are familiar with the
concept of a main function. This function runs automatically when the program is run.
Main is the starting point for the whole program. This is also true of Arduino programs, but
it is hidden from the sketch writer, who is instead told to implement two functions—setup
and loop—within their sketch.

If you look carefully at main.cpp, ignoring the first few lines for now, you can see that
it actually calls setup() and then has a for loop with no conditions, with the loop function
called inside the loop.

The command for(;;) is simply an ugly way of writing while (true). Notice that in ad-
dition to running the loop function, there is also an if command inside the for that checks
for serial messages and services them if they arise.

Returning to the top of main.cpp, you can see that the first line is an include command
that pulls in all the definitions in the header file arduino.h that I mentioned previously.

Next, you see the start of the definition of the main function, which begins by invoking
an init() function. If you look, you can find what this does in the file wiring.c; it in turn
calls a function sei, which enables interrupts.

These lines

are another example of a C preprocessor directive. This code is a bit like an if command
that you might use in your sketch, but the decision in the if is not made when the sketch is
actually running on the Arduino. The #if is evaluated as the sketch is being compiled. This
directive is a great way to switch chunks in and out of the build, depending on whether
they are needed for a particular type of board. In this case, if the Arduino supports USB,
then include the code for attaching the USB (initialize it); otherwise, there is no point in
even compiling the code to do that.

From Sketch to Arduino
Now that you have a basic understanding of where all the magic code comes from when
you write a simple Arduino sketch, let’s look at exactly how that code gets into the flash
memory of an Arduino board’s microcontroller when you click the Upload button in the
Arduino IDE.

Figure 2-4 shows what happens when you click the Upload button.

Figure 2-4 The Arduino toolchain
Arduino sketches are held in a text file with the .ino extension, in a folder of the same

name but without the extension.
What actually happens is that the Arduino IDE controls a number of utility programs

that do all the actual work. First, a part of the Arduino IDE that (for want of a better name),
I have named the Arduino IDE preprocessor assembles the files provided as part of the
sketch. Note that normally only one file is in the sketch folder; however, you can place
other files in the folder if you wish, but you need to use a separate editor to create them.

If you have other files in the folder, they will be included in this build process. C and
C++ files are compiled separately. A line to include arduino.h is added to the top of the
main sketch file.

As there are many different types of Arduino boards that use different microcontroller
chips that have different pin names, the Arduino IDE must use the right pin definitions for
the board. If you look in the hard-ware/arduino/variants folder, you’ll find a folder for each
type of Arduino board, and inside each folder, you’ll see a file called pins_arduino.h. This
file contains constants for the pin names for that platform.

When everything has been combined, the next step is to invoke the GCC compiler. This
compiler is an open source C++ compiler that is bundled as part of the Arduino distribu-
tion. It takes the sketch, header, and C implementation source code files and converts them
into something that can be run on an Arduino. It does this in a number of steps:

1. The preprocessor interprets all the #if and #define commands and determines
what actually goes into the build.

2. Next, the code is compiled and linked into a single executable file for the type of
processor used by the board.

3. After the compiler has finished its work, another piece of open source software
called avrdude actually sends the executable code, saved as a hexadecimal repres-
entation of the binary, to the board over the USB serial interface.

We are now in the Arduino’s realm. The Arduino has a small resident program installed
on every microcontroller that is included with its board. This program is called a bootload-
er. The bootloader actually runs very briefly every time an Arduino is reset. This is why

when serial communication starts to an Arduino Uno, the hardware serial link forces a re-
set to give the bootloader chance to check for any incoming sketches.

If there is a sketch, then the Arduino effectively programs itself by unpacking the hexa-
decimal representation of the program into binary. It then stores the sketch in the flash
memory. The next time that the Arduino restarts, after the usual bootloader check for a new
sketch, the program that was stored in flash is automatically run.

You might wonder why the host computer cannot program the microcontroller directly
rather than taking this convoluted path. The reason is that programming a microcontroller
requires special hardware that uses a different interface to the Arduino board (ever
wondered what the little six-pin header was for?). By using a bootloader that can listen on
a serial port, you can program the Arduino though USB without having to use special pro-
gramming hardware.

However, if you do have such a programmer, such as the AVRISPv2, AVRDragon, or
the USBtinyISP, then you can program the Arduino directly through such a programmer,
bypassing the bootloader entirely. In fact, as you shall see later in this chapter, you can also
use a second Arduino as a programmer.

AVR Studio
Certain hard-bitten electronic engineers can be a bit snotty about Arduino. They might tell
you that it doesn’t have any technical advantages over using the tools provided by Atmel
for programming the whole family of AVR microcontrollers. While technically true, this
misses the point of Arduino, which is to demystify the whole process of using a microcon-
troller and to wrestle it from the control of such experts. This does mean that some of the
things us Arduino aficionados do could be considered a bit amateurish, but I say so what!

AVR Studio is the manufacturer’s proprietary software for programming the microcon-
trollers used in Arduinos. You can use it to program the Arduino itself, rather than using
the Arduino IDE. If you do, however, you will have to accept the following:

• A Windows-only environment
• Using a hardware programmer rather than USB
• A more complex environment
Perhaps this is the point at which you might want to consider why you might want to

do this. Here are some good reasons:
• You want to get rid of the bootloader (it uses 500 bytes on a Uno) because either

you are short of flash memory or you want a quicker start after reset.
• You want to target other microcontrollers than those used in standard Arduinos,

such as the less expensive and smaller ATtiny family.
• You just want to learn something new.
The Arduino boards all come with a six-pin header that can be used to program the Ar-

duino directly using AVR Studio. In fact, some boards come with two six-pin headers: one
for the main processor and one for the USB interface, so be careful to connect to the right
one.

Figure 2-5 shows AVR Studio 4 in action.

Figure 2-5 AVR Studio
It is beyond the scope of this book to teach AVR Studio. However, as you can see from

Figure 2-5, the Blink sketch does not get any longer, but it certainly looks more complic-
ated! It will also compile into a tiny amount of flash memory compared with its Arduino
counterpart.

Figure 2-6 shows an Arduino connected to an AVR Dragon programmer. This pro-
grammer is particularly powerful and flexible, and it allows you to debug and single-step
through programs actually running on the ATmega chip.

Figure 2-6 An Arduino connected to an AVR Dragon programmer
In Chapter 4, we look at the kind of direct port manipulation that is going on in Figure

2-5 as a way to improve I/O performance without having to abandon the Arduino IDE.

Installing a Bootloader
You might want to install the Arduino bootloader onto an Arduino board for several reas-
ons. You may have damaged the removable ATmega328 on an Arduino Uno and be repla-
cing the chip with a new ATmega328 (bought without the bootloader). Alternatively, you
may be moving an Arduino prototype off-board, by taking the ATmega328 off the Arduino
board and fitting it to a custom board of your own design.

Whatever the reason, you can add a bootloader to a blank ATmega328, either by using
one of the programmers mentioned in the previous section or by using one Arduino to pro-
gram a second.
Burning a Bootloader with AVR Studio and a Programmer
The Arduino installation folder contains bootloader hex files that can be flashed onto an
ATmega328 using AVR Studio. You will find these files in the hardware/arduino/bootload-
ers folder. There, you will find hex files for all sorts of different hardware. If want to install
a bootloader for an Uno, use the optiboot_atmega328.hex file in the optiboot folder (Fig-
ure 2-7).

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html

Figure 2-7 Burning an Uno bootloader in AVR Studio 4
First, a word of warning. If you are going to try this, then be aware that there is a chance

you will “brick” your processor chip. These chips have what are called “fuses” that can
be set and sometimes cannot be reset. They are designed this way for proprietary reasons,
when you want to prevent reprogramming for commercial reasons. Check carefully that
the fuses are set correctly for the Arduino board you are programming before you take the
plunge, and accept that you may incur a loss. The Arduino forum at www.arduino.cc/for-
um includes many threads on this topic, along with “gotchas” to avoid.

To burn the bootloader using AVR Studio and an AVR Dragon, connect the program-
mer to the Arduino ISP header pins (see Figure 2-6 earlier in the chapter). Note that an
Arduino Uno actually has two sets of ISP header pins; the other sets are for flashing the
USB interface.

From the Tools menu, select the Program AVR option and then connect to the ATmega-
328 on the Arduino. Then in the Flash section, browse to the correct hex file and then click
Program.
Burning a Bootloader with the Arduino IDE and a Second Arduino
Flashing one Arduino with a new bootloader from another Arduino is remarkably easy. It
is certainly easier and less risky than using AVR Studio. The Arduino IDE includes an op-
tion to do this. Here’s all you need to get started:

• Two Arduino Unos
• Six male-to-male jumper leads (or solid core wire)

http://www.arduino.cc/forum
http://www.arduino.cc/forum

• One short length of solid core wire
• A 10µF 10V (100µF will also work) capacitor
You first need to make the connections listed in Table 2-1.

Table 2-1 Arduino to Arduino Programming Connections
You also need to attach a 10µF capacitor between Reset and GND on the target Arduino

(the one being programmed). The capacitor will have a longer positive lead, which should
go to Reset.

Figure 2-8 shows the connected Arduinos. The Arduino on the right of Figure 2-8 is the
one doing the programming. Notice how solid-core wire is used for the connection between
pin 10 on the programming Arduino and Reset on the target Arduino. This is so that both
the wire and the positive lead of the capacitor will fit in the Reset socket.

Figure 2-8 Arduino to Arduino Flashing
Note that the Arduino doing the programming powers the Arduino being programmed,

so only the programming Arduino needs to be connected to your computer by USB.
The Arduino that is going to do the programming needs to have a sketch installed on

it. You will find this under File | Examples. The sketch is called ArduinoISP and is in the
top section of the Examples.

Select the board type and port in the usual way and upload the ArduinoISP sketch onto
the Arduino doing the programming. Now from the Tools menu, select the Programmer
submenu and select the Arduino as ISP option.

Finally, select the Burn Bootloader option from the Tools menu. The process takes a
minute or two, during which the Rx and Tx LEDs should flicker on the programming Ar-
duino and the “L” LED flicker on the target Arduino.

When the process finishes, that’s it—the microcontroller on the target Arduino has a
new bootloader installed.

Summary
In this chapter, we looked more closely at what exactly the Arduino is and how it works.
In particular, I showed you what is hidden by the Arduino environment.

In the next chapter, we look at using interrupts and at how to make the Arduino respond
to external timer-triggered events using interrupts.

3
Interrupts and Timers

Interrupts allow microcontrollers to respond to events without having to poll continually to see if anything
has changed. In addition to associating interrupts with certain pins you can also use timer-generated interrupts.

Hardware Interrupts
As an example of how to use interrupts, let’s revisit digital inputs. The most common way to detect when
something has happened at an input (say a switch has been pressed) is to use some code like this:

This code means we continually check inputPin and the moment it reads LOW, we do whatever is specified
at the //do something comment. This process works well, but what if you have a lot of other things to do inside
the loop, too? These other things take time, so you could potentially miss a very quick button press because the
processor is busy doing something else. In actual fact, with a switch, missing the button press is unlikely as it
remains pressed for what in microcontroller terms is a long time.

But what about shorter pulses from a sensor, which may only be active for a few millionths of a second?
For these cases, you can use interrupts to receive such events, setting a function to run whenever these events
happen, irrespective of whatever else the microcontroller might be doing. Thus, these are called hardware in-
terrupts.

On the Arduino Uno, you can only use two pins as hardware interrupts, which is one reason they are used
sparingly. The Leonardo has four interrupt-capable pins; bigger boards like the Mega2560 have many more;
and, on the Due, you can attach all the pins to interrupts.

The following shows how hardware interrupts work. To try this example, you need some breadboard, a
tactile push switch, a 1 kΩ resistor, and some jumper wires.

Figure 3-1 shows the arrangement. The resistor pulls the interrupt pin (D2) HIGH until the button on the
switch is pressed, at which point D2 is grounded and goes LOW.

Figure 3-1 Interrupt test circuit
Load the following sketch onto your Arduino:

As well as setting the LED pin to be an output, the setup function also contains a line
that associates a function with an interrupt. So whenever the interrupt occurs, the function
is run. Let’s look at this line closely because its arguments are a little confusing:

The first argument 0 is the interrupt number. It would make far more sense if this were
a regular Arduino pin number, but it isn’t. On an Arduino Uno, interrupt 0 is pin D2 and
interrupt 1 is D3. The situation is made even more confusing because on other types of Ar-
duino, these pins are not the same, and on the Arduino Due, you just specify the pin name.
When using an Arduino Due, all the pins can be used as interrupts.

I’ll come back to this later, but for now let’s move on to the second argument. This ar-
gument stuffhappened is the name of the function to be called when an interrupt occurs.
You can see the function defined later in the sketch. Such functions have a special name;
they are called Interrupt Service Routines, or ISRs for short. They cannot have any para-
meters and should not return anything. This makes sense: Although you can generally call
them from other parts of your sketch, no line of code will have called the ISR, so there is
no way for them to be given any parameters or to return a value.

The final attachInterrupt parameter is a constant, in this case, FALLING. This means
the interrupt only results in the ISR being called if D2 goes from HIGH to LOW (in other
words, it “falls”), which is what happens when the button is pressed: D2 goes from HIGH
to LOW.

You’ll notice there is no code in the loop function. Normally, the loop function would
contain code that would be executed until the interrupt occurred. The ISR itself simply
turns the “L” LED on.

When you try the experiment, after the Arduino has reset, the “L” LED should go out.
Then as soon as you press the button, the “L” LED should immediately light up and stay
lit.

Now change the final argument of attachInterrupt to RISING and upload the mod-
ified sketch. The LED should still remain unlit after the Arduino has finished restarting
because the interrupt may be HIGH, but it has always been HIGH; it hasn’t, at any point,
gone LOW to then “rise” to HIGH.

When you press and hold the button, the LED should stay unlit until you release it.
Releasing it triggers the interrupt because D2, which was LOW while the button was
pressed, only rises to HIGH when you release it.

If this doesn’t seem to work, then the switch is probably bouncing. There isn’t a perfect
jump from open to closed; rather, the switch will actually turn on and off a few times before
settling into the on position. Try it several times, pressing the switch firmly, and you should
be able to get a close without a bounce.

The other way to test this is to hold the switch while you press the Reset button on the
Arduino. Then when you are ready, release the test button and the “L” LED will light.
Interrupt Pins
Returning to the thorny issue of how interrupts are named, Table 3-1 shows how the most
common Arduino boards map interrupt numbers to physical Arduino pins.

Table 3-1 Interrupt Pins of Different Arduino Boards

The pin swap for the first two interrupts on the Uno and Leonardo is an easy trap to fall
into. The Due approach of using the Arduino pin name instead of the interrupt number is a
much more logical way of doing things.
Interrupt Modes
The RISING and FALLING modes, which we used in the previous example, are the most
handy modes. There are, however, some other interrupt modes. Table 3-2 lists these modes,
along with a description.

Table 3-2 Interrupt Modes
Enabling Internal Pull-Up
The hardware setup in the previous example uses a pull-up resistor. Often, the signal that
causes the interrupt is from a sensor’s digital output, in which case, you do not need a pull-
up resistor.

If, however, the sensor is a switch, wired in the same way as the test board shown in
Figure 3-1, you can reduce the component count by a resistor if you enable the internal
pull-up resistor (about 40 kΩ). To do this, you need to define the interrupt pin explicitly as
being an INPUT_PULLUP type by adding the bold line, shown here, to the setup func-
tion:

Interrupt Service Routines
Sometimes the idea of being able to interrupt what is going on in the loop function can
seem like an easy way to catch keypresses and so on. But actually there are some fairly
strict conditions regarding what you can reliably do within an ISR.

The first thing is that you normally need to keep an ISR as short and fast as possible. If
another interrupt occurs while an ISR is running, then the ISR will not itself be interrupted;
instead, the interrupt signal is ignored until the ISR has finished. This means that if, for
example, you are using the ISR to measure a frequency, you could end up with an incorrect
value.

Also, while the ISR is running, nothing happens with the code in the loop function until
the ISR has finished.

While inside an ISR, interrupts are automatically turned off. This prevents the potential
confusion caused by ISRs interrupting each other, but it has some side effects. The delay
function uses timers and interrupts, so that won’t work. The same is true of millis. And

although delay uses millis and it will tell you the milliseconds elapsed since reset at the
point that the ISR started executing, but it will not change as the ISR runs. However, you
can use delayMicroseconds because this does not use interrupts.

Serial communication also uses interrupts, so do not use Serial.print or try to read
from Serial. Well, you can try, and it may work, but do not expect it to work reliably all
the time.
Volatile Variables
Because the ISR function is not allowed to take parameters and cannot return a value, you
need a way to pass data between the ISR and the rest of the program. You typically do this
using global variables, as the next example illustrates:

This sketch uses a global variable flashFast in the loop function to determine the delay
period. The ISR then toggles this same variable between true and false.

Notice that the declaration of the variable flashFast includes the word “volatile.” You
may get away with the sketch working if you do not use volatile, but you should use it be-
cause if a variable is not declared as being volatile, the C compiler may generate machine
code that caches its value in a register to improve performance. If, as is the case here, this
caching process could be interrupted, then the variable might not be updated correctly.
ISR Summary
Keep these points in mind when writing an ISR:

• Keep it fast.
• Pass data between the ISR and the rest of the program using volatile variables.

• Don’t use delay, but you can use delayMicroseconds.
• Don’t expect serial communications, reading, or writing to be reliable.
• Don’t expect the value returned by millis to change.

Enabling and Disabling Interrupts
By default, interrupts are enabled in a sketch and, as I mentioned previously, are automat-
ically disabled when you are inside an ISR. However, you can explicitly turn interrupts on
and off from your program code using the functions interrupts and noInterrupts. Neither
function takes any parameters and they turn all interrupts on or off, respectively.

You might want to explicitly turn interrupts on and off if you have an area of code that
you do not wish to be disturbed, for example, if you are writing serial data or generating
pulses with accurate timing using delay-Microseconds.

Timer Interrupts
As well as interrupts being triggered by external events, you can also trigger ISRs to be
called as a result of timed events. This capability can be really useful if you need to do
something time-critical.

TimerOne makes it easy to set timed interrupts. You can download the TimerOne lib-
rary from http://playground.arduino.cc/Code/Timer1.

The following example shows how you can use TimerOne to generate a 1-kHz square
wave signal. If you have an oscilloscope or multimeter with a frequency setting, connect it
to pin 12 to see the signal (Figure 3-2).

Figure 3-2 A timer-generated square wave

http://playground.arduino.cc/Code/Timer1

Although you could have written this using delay, by using a timer interrupt, you can
do other things inside the loop. Also, if you used delay, then the frequency would not be
as accurate because the actual time to set the output high would not be accounted for in the
delay.
NOTE All the constraints on what you can do in the ISR for external interrupts also ap-

ply to timed interrupts.
You can set the timer interrupt period using this method to anything from 1 micro-

second to 8,388,480 microseconds, or about 8.4 seconds. You do this by specifying a peri-
od in microseconds in the timer’s initialize function.

The TimerOne library also allows you to use the timer to generate PWM (Pulse Width
Modulation) signals on Arduino pins 9 and 10. This may seem redundant, as you can do
that with analogWrite anyway, but this method gives you better control of the PWM sig-
nal. In particular, it allows you to set the duty cycle between 0 and 1023 rather than the 0
to 255 of analogWrite. Also, the frequency of the PWM signal when using analogWrite
is fixed at 500 Hz, whereas using TimerOne, you can specify the period for the timer.

To use the TimerOne library to generate PWM signals, use Timer1’s pwm function, as
shown in the following code example:

In this case, I have set the overall period to 1000 microseconds, resulting in a PWM
frequency of 1kHz. Figure 3-3 shows the waveforms generated on pin 10 (top) and pin 9
(bottom).

Figure 3-3 Using TimerOne to generate PWM at 1 kHz
As an experiment, let’s see how far you can push the PWM frequency. Changing the

period to 10 results in a PWM frequency of 100 kHz. The waveforms for this are shown in
Figure 3-4.

Figure 3-4 Using TimerOne to generate a 100-kHz PWM
Although there is, as you would expect, a fair amount of transient noise on the signals,

you can see that the duty cycles still look pretty close to 25 percent and 50 percent, respect-
ively.

Summary
Interrupts, although they sometimes seem like the ideal solution to a difficult project, can
make the code difficult to debug and are by no means always the best way to handle tasks.
Think carefully before you jump into using them. In Chapter 14, we’ll explore a different
technique for getting around the Arduino’s apparent inability to do more than one thing at
a time.

We will also return to interrupts in Chapter 5, where we’ll look at using them to save
power by waking a sleeping Arduino periodically, and in Chapter 13, where we’ll use them
for accurate timing during digital signal processing.

In the next chapter, we will be looking at squeezing maximum performance out of an
Arduino.

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch14.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch05.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch13.html

4
Making Arduino Faster

This chapter is all about finding out how fast your Arduino is and squeezing it for that extra bit of horse-
power when you need it.

How Fast Is an Arduino?
Before you start worrying about improving the speed of your sketches, let’s take a moment to benchmark your
Arduino to see just how it compares with other computers, starting with the oft-quoted MHz and GHz.

An Arduino Uno is clocked at 16 MHz. As most instructions (adding or storing a value in a variable) are
executed in a single clock cycle, that means the Uno can do 16 million things in one second. Sounds pretty
good, doesn’t it? The story is not that simple, however, as the C that you write in a sketch expands into quite a
few instructions.

Now contrast that with the author’s aging Mac laptop that has two processors that are each clocked at 2.5
GHz. My laptop has a clock frequency of over 150 times the frequency of the Arduino. Albeit, the processor
takes a few more clock cycles to do each instruction, but as you would expect, it is a lot faster.

Let’s try running the following test program on both an Arduino and a slightly modified version on my
Mac:

NOTE You can find the C counterpart to this code in the download area for code on the book’s website.
Here are the results: on a 2.5-GHz MacBook Pro, the test program took 0.068 seconds to run, whereas on an

Arduino Uno, the code took 28 seconds to execute. The Arduino is roughly 400 times slower for this particular
task.

Comparing Arduino Boards

Table 4-1 shows the result of running this test on a few different Arduino boards.

Table 4-1 Arduino Performance Test Results
As you can see, the results for most of the boards are consistent, however, the Due res-

ults are impressive—more than ten times faster than the other boards.

Speeding Up Arithmetic
As an exercise let’s change the benchmark code that we just used and do the arithmetic
with floats rather than longs. Both are 32-bit numbers, so you might expect the time to
complete the task to be similar. An Arduino Uno is used in the following test.

Unfortunately, the task takes a lot longer using floats. This example takes the Arduino
some 467 seconds instead of 28. So, by changing to floats, my code became about 16 times

slower than when I used doubles. To be fair, some of that performance cost was probably
also due to converting between float and integer types, which is also quite costly in terms
of time.
Do You Really Need to Use a Float?
A common misconception is that if you are measuring something like temperature, then
you need to store it in a float because it will often be a number like 23.5. In fact, you may
sometimes wish to display the temperature as a float, but you do not need to store it as a
float in your sketch.

An analog input results in an int being read, in fact, only 12 bits of an int, which is a
number between 0 and 1023. You can put those 12 bits into a 32-bit float if you like, but
you will not be making the data any more accurate or precise.

This sensor reading could, for example, correspond to a temperature in degrees Celsius
(C). One commonly used sensor (the TMP36) has an output voltage proportional to the
temperature. The flowing calculation can often be found in sketches to convert an analog
reading between 0 and 1023 into a temperature in degrees C.

But you actually only need to represent that number in floating point form when you
display it. Other things you need to do with the temperature, for example, comparing it or
averaging several temperature readings, will be much faster if the arithmetic is done in the
temperature’s raw int state.

Lookup vs. Calculate
As you have seen, it’s best to avoid floats. But if you want to make a sine wave using an
analog output, then, as the word sine suggests, you need to use the math sin function to
“draw” the waveform on the analog output. To plot a sine wave on the analog output, you
step an angle through 2π radians, and the value that you send to the analog output is the
sin of that angle. Well, actually it’s a bit more complicated because you need to center the
waveform about an analog output of half the maximum.

The following code generates a sine wave in 64 steps per cycle on an Arduino Due’s
DAC0 output. Note that only an Arduino with true analog output like the Due works for
this experiment.

Measuring the signal on the output does, indeed, produce a nice sine wave at a fre-
quency of just 310 Hz. The Arduino Due’s processor is clocked at 80 MHz, so you might
have expected to generate a faster signal. The problem here is that you are repeating the
same calculations again and again. Since they are the same every time, why don’t we just
generate the values once and store them in an array?

The following code also generates a sine wave with 64 steps, but uses a lookup table of
values that are ready to be written straight to the DAC.

The waveform generated by this code looks just like the one from the previous example,
except that it has a frequency of 4.38 kHz, which is about 14 times faster.

You can calculate the table of sin values in several ways. You can generate the numbers
using nothing more complex than a spreadsheet formula, or you can write a sketch that
writes the numbers to the Serial Monitor, where they can be pasted into the replacement
sketch. Here is an example that modifies sketch_04_03_sin to print the values once to the
Serial Monitor.

Opening the Serial Monitor reveals the code that has been generated (Figure 4-1).

Figure 4-1 Using a sketch to generate code

Fast I/O
In this section, we’ll look at how you can improve the speed when turning digital output
pins on and off. We’ll improve a basic maximum frequency from 73 kHz up to nearly 4
MHz.
Basic Code Optimization
Let’s start with the basic code to turn a digital I/O pin on and off using digitalWrite:

If you run this code with an oscilloscope or frequency counter attached to digital pin 10,
you’ll get a frequency read of about 73 kHz (73.26 kHz on my oscilloscope).

Before taking the big step of using direct port manipulation, you can do a few things
to optimize your C code. First, neither of the variables needs to be 16-bit ints; both can
be changed to bytes. Making this change increases the frequency to 77.17 kHz. Next, let’s
make the variable containing the pin name a constant by adding the const keyword before
the variable. Making this change increases the frequency to 77.92 kHz.

In Chapter 2, you learned that the loop function is more than just a while loop as it also
checks for serial communication. Therefore, the next step in improving the performance is
to abandon the main loop function and move the code into setup. The code containing all
these modifications is shown here:

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html

This further improves performance, giving us a new maximum frequency of 86.39 kHz.
Table 4-2 summarizes the improvements that you can make to the basic Arduino code,

before taking the final step of abandoning digitalWrite for something faster.

Table 4-2 Speeding Up the Arduino Code
Bytes and Bits
Before you can manipulate the I/O ports directly, you need to understand a little about bin-
ary, bits, bytes, and ints.

Figure 4-2 shows the relationship between bits and bytes.

Figure 4-2 Bits and bytes
A bit (which is short for binary digit) can have one of just two values. It can either be 0

or 1. A byte is a collection of 8 bits. Because each of those bits can be either a 1 or a 0, you
can actually make 256 different combinations. A byte can be used to represent any number
between 0 and 255.

Each of those bits can also be used to indicate if something is on or off. So if you want
to turn a particular pin on and off, you need to set a bit to 1 to make a particular output
HIGH.
ATmega328 Ports
Figure 4-3 shows the ports on an ATmega328 and how they relate to the digital pins on an
Arduino Uno.

Figure 4-3 ATmega328 ports
It is no accident that each port has 8 bits (a byte), although ports B and C only use 6 of

the bits. Each port is controlled by three registers. A register can be thought of as a special
variable that you can assign a value to or read the value of. The registers for port D are
shown in Figure 4-4.

Figure 4-4 The registers for port D
The data direction register D (DDRD) has 8 bits, each of which determines whether

the corresponding pin on the microcontroller is to be an input or an output. If that bit is set
to a 1, the pin is an output; otherwise, it is an input. The Arduino pinMode function uses
this.

The PORTD register is used to set outputs, so a digitalWrite sets the appropriate bit
for a pin to be a 1 or a 0 (HIGH or LOW).

The final register is called port input D (PIND). By reading this register, you can de-
termine which bits of the port are set HIGH and which are set LOW.

Each of the three ports has its own three ports, so for port B, they are called DDRB,
PORTB, and PINB, and for Port C, they are DDRC, PORTC, and PINC.
Very Fast Digital Output
The following code uses the ports directly, rather than pinMode and digitalWrite:

Here, we’re switching pin D10, which belongs to port B, so first we set the third bit from
the left (D10) to be a 1. Note the use of a binary constant B00000100. In the main loop, all
you have to do is first set the same bit to 1 and then set it to 0 again. You do this simply by
assigning a value to PORTB, as if it was a variable.

When this code is run, it generates a frequency of 3.97 MHz (Figure 4-5)—nearly 4
million pulses per second, which is some 46 times faster than using digitalWrite.

Figure 4-5 Generating a 4-MHz signal with an Arduino
The waveform is not very square, showing the kind of transients that you would expect

at that frequency.
Another advantage of using port registers directly is that you can write to up to eight

output pins simultaneously, which is very useful if you are writing to a parallel data bus.
Fast Digital Input
You can also use the same method of accessing the port registers directly to speed up digital
reads. Although, if you are thinking of doing this because you want to catch a very short
pulse, then using interrupts is probably best (see Chapter 3).

One situation in which using the ports directly is helpful is when you want to read a
number of bits simultaneously. The following sketch reads all the inputs of port B (D8 to
D13) and writes the result as a binary number in the Serial Monitor (Figure 4-6).

Figure 4-6 Reading eight inputs at once

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html

The DDRB register sets all bits to 0, designating all the pins to be inputs. In the loop,
you use Serial.println to send the number back to the Serial Monitor, where it is displayed
in binary. To force it to display in binary rather than the default of decimal, use the extra 2
argument.

Speeding Up Analog Inputs
Let’s start by adapting the benchmark sketch to see just how long an analogRead takes
before trying to speed it up:

This sketch takes 112 seconds to run on an Arduino Uno. That means the Uno can take
nearly 9000 analog readings per second.

The analogRead function uses an analog-to-digital converter (ADC) in the Arduino’s
microcontroller. Arduino uses a type of ADC called a successive approximation ADC.
It works by effectively closing in on the analog value by comparing it with a reference
voltage that it adjusts. The ADC is controlled by a timer, and you can increase the fre-
quency to make the conversion quicker.

The following code increases the frequency of the ADC from 128 kHz to 1 MHz,
which should make things about eight times faster:

The code now takes only 17 seconds to run, which is roughly 6.5 times faster, increas-
ing our samples per second to about 58,000. That is plenty fast enough to sample audio,
although you won’t be able to store much of it in 2kB of RAM!

If the original sketch_04_11_analog is run on an Arduino Due, the test completes in
39 seconds. You cannot use the register trick we just tried on the Due, however, as it has a
different architecture.

Summary
In this chapter, we tried to squeeze the last possible drop of juice out of our meager 16 MHz
of processor power. In the next chapter, we’ll switch our attention to minimizing the Ardu-
ino’s power consumption, something that is quite important for battery- and solar-powered
Arduino projects.

5
Low Power Arduino

It is fair to say that, without taking any special measures, an Arduino really does not use a lot of power. Typ-
ically, an Arduino Uno draws about 40 mA, which when powered from USB at 5V amounts to just 200 mW.
That means it can happily run on a small 9V battery (150 mAh) for perhaps four hours.

Current consumption becomes important when the Arduino is being run for long periods of time using bat-
teries, such as in remote monitoring or control situations in which batteries or solar are the only option. For
instance, I recently made an Arduino-based automatic hen-house door, using a small solar panel to charge the
battery so it had enough juice to open and close the door twice a day.

Power Consumption of Arduino Boards
Let’s establish some initial figures for the power consumption of a few of the more popular Arduino boards.
Table 5-1 shows the results of directly measuring the current consumption of the boards with an ammeter. Note
that measuring this is a little tricky as the current varies as timers and other parts of the microcontroller and
Arduino board perform periodic tasks.

Table 5-1 Power Consumption for Arduino Boards
One interesting thing is that if you look at the difference between an Arduino operating at 5V with and

without the processor chip, the difference is just 15 mA, implying that the board itself is using the other 32 mA.
The Arduino board does, of course, have the USB interface chip, an “On” LED, and 3.3V voltage regulators,
all of which use some power even without the microcontroller. Note also how much less current the microcon-
troller draws at 3.3V.

The techniques described here can reduce the power required by the processor but not that required by the
board itself. In the examples that follow, I use the Arduino Mini Pro board supplied directly with 3.3V through
its VCC and GND connections (Figure 5-1), bypassing the voltage regulator, so that apart from the “On” LED,
I am only powering the microcontroller chip.

Figure 5-1 An Arduino Mini Pro, powered directly from 3V
This setup is one you would be likely to use in a battery-operated system, as a single

lithium polymer (LiPo) battery cell provides 2.7V when almost empty and 4.2V when full,
a range that is just fine for a naked ATmega328 microcontroller.

Current and Batteries
This book is about software, so I will not dwell on batteries any longer than is necessary.
Figure 5-2 shows a selection of batteries that you might consider for powering an Arduino.

Figure 5-2 Batteries for powering Arduino boards

At the top-left is a 2400mAh LiPo cylindrical LiPo battery. Below is a small, flat
850mAh LiPo battery. LiPo batteries are lightweight and can be recharged many times and
hold a lot of energy for their size and weight. At the top-right is a 9V NiMh battery, with
a capacity of 200 mAh. This battery is also rechargeable but uses an older technology. Be-
cause it is a 9V battery, it would be suitable for powering an Arduino only when using the
Arduino’s voltage regulator. You can buy battery clip adapters that allow you to connect
the battery to the barrel jack on an Arduino. Finally, at the bottom-right is a 3V nonre-
chargeable Lithium battery (CR2025) that has a capacity of about 160 mAH.

As a rule of thumb, you can calculate the number of hours that a battery will last before
it is discharged by dividing the capacity in milliamp hour (mAh) by the number of milli-
amps (mA) being drawn:

Battery life in hours = Battery capacity in mAh / Current in mA
For example, if we were to use the CR2025 to power a Mini Pro at 3V, we could expect
it to last 160mAh/8mA = 20 hours. If we powered the same hardware from the 2400 mA
LiPo cell, we could expect it to last 2400/8 = 300 hours.

Reducing the Clock Speed
Most of the Arduino family has a clock frequency of 16 MHz. The microcontroller only
really uses significant amounts of current when its binary logic is switching from a HIGH
to a LOW, so the frequency at which the chip operates has a big effect on the current con-
sumed. Lowering the frequency will, of course, make the microcontroller perform more
slowly, which may or may not be a problem.

You can lower the frequency at which an ATmega328 chip operates from within
your sketch. A convenient way to do this is to use the Arduino Prescaler library (ht-
tp://playground.arduino.cc/Code/Prescaler).

As well as allowing you to set the microcontroller’s frequency of operation, the Pres-
caler library also provides replacement functions for millis and delay called trueMillis and
trueDelay. These replacements are necessary because reducing the clock frequency will
increase the length of a delay by the same proportion.

The following example sketch turns the “L” LED on for 1 second and then off for 5
seconds, during which the current is measured for each of the possible Prescaler values that
set the frequency.

http://playground.arduino.cc/Code/Prescaler
http://playground.arduino.cc/Code/Prescaler

The library provides a number of constants so you can set the amount by which
the clock frequency is divided. Therefore, the value CLOCK_PRESCALER_1 leaves
the clock frequency unchanged at 16 MHz and, at the other extreme, using the constant
CLOCK_PRESCALER_256 will divide the clock frequency by 256, giving a clock fre-
quency of just 62.5 kHz.

Table 5-2 show the current consumption at each of the possible clock frequencies, and
Figure 5-3 shows these data on a chart. The chart shows that the curve starts to level off
fairly steeply, so 1 MHz looks like a good compromise of clock frequency verses power
consumption.

Table 5-2 Current Consumption vs. Clock Speed

Figure 5-3 A chart of current consumption vs. clock speed
As well as having to use new versions of millis and delay, there are other consequences

of stopping the clock speed. In fact, any task in which timing is critical, such as PWM out-
put and Servo control, is not going to work as expected.

Most of that 2.1 mA, used at the slowest clock speed, is likely to be consumed by the
“On” LED, so if you really want to be economical, you could carefully de-solder it.

Turning Things Off
The ATmega chips have very sophisticated power management, to the extent that you can
actually turn off features that you are not using to save a small amount of current.

What is more, you can turn things on and off in your sketch. So you could, for example,
just turn on the analog-to-digital converter (ADC) when you need to do an analogRead
and then turn it off again afterward.

The power is controlled using a library avr/power.h that includes functions in disable/
enable pairs. So the function power_adc_disable turns the ADC off and
power_adc_enable turns it back on again.

The power savings to be had are not great, however. In my testing, turning everything
off on a Mini Pro at 5V and 16 MHz saved a total of just 1.5 mA, reducing the current from
16.4 mA with everything on, to 14.9 with everything off. I used the following test sketch:

The functions available are listed in Table 5-3. Each function also has a counterpart,
ending in enable rather than disable.

Table 5-3 Power Management Functions for ATmega Arduinos

Sleeping
The ultimate way to save power on your Arduino is to put it to sleep when it doesn’t have
anything useful to do.
Narcoleptic
Peter Knight has produced an easy-to-use library called Narcoleptic, which you can down-
load from here: https://code.google.com/p/narcoleptic/.

Obviously, putting an Arduino to sleep is of no use if you can’t wake it up again! There
are two methods to wake up an Arduino. One is to use an external interrupt and the other is

https://code.google.com/p/narcoleptic/

to set a timer to wake the Arduino after a period of time. The Narcoleptic library just uses
the timer method.

The Narcoleptic library takes the approach of providing you with an alternative delay
function that puts the Arduino to sleep for the time specified in the delay. Because nothing
happens when the Arduino is doing a delay anyway, this method works brilliantly.

For example, let’s look at our old favorite sketch, Blink. The following sketch turns an
LED on for 1 second and then turns it off for 10 seconds and repeats indefinitely:

The Narcoleptic version of this sketch is shown here:

The only difference is that you import the Narcoleptic library and use its delay rather
than the regular delay.

Running both sketches on a Mini Pro at 5V and 16 MHz, the first sketch uses around
17.2 mA when the LED is in the off part of the cycle. On the other hand, the Narcoleptic
version of the sketch reduces this to a tiny 3.2 mA. The “On” LED uses most of that (about
3 mA), so if you remove it, then your average power consumption could be reduced to well
under 1 mA.

The microcontroller can go to sleep pretty quickly, so if your project relies on a button
being pressed to trigger some action, you do not necessarily need to use an external inter-

rupt to wake it from sleep. But you could (probably more easily) write your code so the
Arduino wakes 10 times a second, checks to see if an input is HIGH, and then, if it is, does
something rather than go back to sleep. The following sketch illustrates this process:

When running this sketch, a Mini Pro at 5V and 16 MHz uses a miserly 3.25 mA while
the Arduino waits for something to happen. When pin2 is connected to ground, the LED is
flashed 20 times, but because you are using the Narcoleptic delay in the LED flashing too,
the current only rises to an average of 4 or 5 mA.

If you change the delay inside the loop, to try and make the Arduino wake, say, 100
times per second, the power will rise again because it does take a little while for the Ardu-
ino to go to sleep. A delay of 50 (20 times a second), however, would work just fine.
Waking on External Interrupts
The approach just described works for most situations; however, if you need to respond
more quickly to an external event, then you need to arrange for the microcontroller to wake
up when an external interrupt occurs.

To rework the previous example to use pin D2 as an external interrupt pin is a lot more
work, but it achieves slightly better results, as it does not require polling the interrupt pin.
The code for this is quite complex, so first I’ll show you the code and then describe how it
all works. If you skipped Chapter 3 on interrupts, then you should probably read it before
tackling this example.

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html

The first thing to note is that the example uses some functions that are defined in the
library avr/sleep.h. Just like avr/power.h that I used earlier, this library is not part of the
Arduino core, but rather a library for the AVR family of microcontrollers. This means it
will not work on the Arduino Due, but then again, if you are making a low-power Arduino
project, the Due should be just about your last choice of board.

After defining the pins I am going to use, I then define a volatile variable to allow the
ISR to communicate with the rest of the sketch.

The setup function sets up the pins and then calls the function goToSleep. This func-
tion sets the type of sleep mode, which, in this case, is SLEEP_MODE_PWR_DOWN.
This mode saves the most power, so it makes sense to use it.

It is then necessary to call sleep_enable. Calling this does not actually put the micro-
controller to sleep. Before I do that, I need to attach an interrupt to interrupt 0 (pin D2) so
the Arduino can be woken when the time comes.
NOTE Notice that the interrupt type is set to LOW. This is the only interrupt type that

you can use with this sleep example. RISING, FALLING, and CHANGE will not work.
Having attached the interrupt, calling sleep_mode() actually puts the process to sleep.

When the microcontroller eventually wakes, the ISR is run and then the sketch continues
from the next line in goToSleep. This first calls disable_sleep and then detaches the inter-
rupt, so the ISR cannot be invoked again until the sketch has put itself back to sleep.

When an interrupt occurs on D2, the ISR (setFlag) simply sets a flag that the loop
function checks. Remember that using delays and so on, in an ISR are a no-no. The loop
function must, therefore, monitor the flag until it becomes set and then call the same doSo-
mething function that was used in the Narcoleptic example. Having performed the action,
the flag is reset and the Arduino put back to sleep.

The power consumption level was pretty much the same as in the Narcoleptic example,
except that while flashing the LEDs, the current consumption was higher as the normal
delay function was used.

Use Digital Outputs to Control Power
Although this chapter is really about using software to minimize power consumption, it
would not be out of place to mention a useful hardware tip to keep the power consumption
low.

Figure 5-4 shows a light sensor using a photoresistor (resistance changes with light)
and a fixed resistor connected to an Arduino analog input that is measuring the light in-
tensity.

Figure 5-4 Measuring light with an LDR (Photoresistor)
The problem with this approach is that there is a constant current flowing from 5V

through the photoresistor and then through the fixed resistor. If the photoresistor has a
“bright” resistance of 500Ω, then, using Ohm’s Law, the current flowing is I = V/R = 5V /
(1000Ω + 500Ω) = 3.3 mA.

Instead of using the fixed 5V supply of the Arduino, you could use a digital output (see
Figure 5-5) to turn the pin HIGH, take a reading, and then turn it LOW again. In this way,
the 3.3 mA only flows for a tiny amount of time every time a reading is taken, reducing the
average current consumption enormously.

Figure 5-5 Measuring light economically
The following sketch illustrates this approach:

You can use this technique for a lot more than just light sensing. You could, for ex-
ample, use the digital output to use a MOSFET transistor to turn high-power parts of your
project on and off as required.

Summary
The best ways to minimize current consumption are to:

• Put the microcontroller to sleep when it’s not doing anything
• Run the Arduino at a lower voltage
• Run the Arduino at a lower clock frequency

6
Memory

Whereas most computers have memory capacities measured in gigabytes, the Arduino Uno has just 2kB.
That is more than a million times less memory than a conventional computer. Having only a little memory to
work with focuses the mind wonderfully when writing code, however. There is no room for the “bloatware”
that plagues most computers.

Although writing memory-efficient code is important, you shouldn’t do so at the expense of writing code
that is easy to read and maintain. Even with an Arduino’s limited resources, most sketches will not get close
to using all the RAM. You really only need to worry about memory capacity when you have a very complex
sketch or a sketch that uses a lot of data.

Arduino Memory
Comparing an Arduino’s memory with that of conventional computers is a little unfair, as they actually use
their RAM memory in different ways. Figure 6-1 shows how a PC uses its memory when running a program.

Figure 6-1 How a PC uses memory
When a PC runs a program, it first copies the entire program from the hard disk into RAM and then executes

that copy of the program. Variables in the program then use more of the RAM. By contrast, Figure 6-2 shows
how an Arduino uses memory when a program is run. The program itself actually runs directly from flash
memory. It is not copied into RAM.

Figure 6-2 How an Arduino uses memory
The RAM in an Arduino is only used to hold the contents of variables and other data relating to the running

of the program. RAM is not persistent; that is, when the power is disconnected, the RAM is cleared. If the pro-

gram needs to store persistent data, then it must write that data to EEPROM. The data can
then be read back when the sketch restarts.

When pushing the limits of an Arduino, you have to worry about both RAM usage and,
to a lesser extent, the size of the program in flash memory. Because an Arduino Uno has
32kB of flash, this limit is not often reached.

Minimizing RAM Usage
As you have seen, the way to reduce RAM usage is to reduce the amount of RAM used by
variables.
Use the Right Data Structures
By far, the most common data type in Arduino C is the int. Each int uses 2 bytes, but most
of the time, you don’t represent a number between –32,768 and +32,767, and the much
smaller range of 0 to 255 offered by a “byte” does just fine. Most built-in methods that
work with an int, will work just the same with a byte.

A common example of how this works is variables used for pin numbers. It is common
to use ints for this, as shown in the following example:

You could easily change the int array to be an array of bytes instead. If you do this, the
program functions just the same time, but the array will occupy half the memory.

A really good way to reduce memory usage is to make sure that any constant variables
are declared as such. To do this, just put the word const in front of the variable declaration.
Knowing that the value will never change allows the compiler to substitute in the value in
place of the variable, which saves space. For example, the array declaration in the previous
example becomes

Be Careful with Recursion
Recursion is a technique where a function calls itself. Recursion can be a powerful way of
expressing and solving a problem. In functional programming languages such as LISP and
Scheme, recursion is used a great deal.

When a function is called, an area of memory called the stack is used. Imagine a spring-
loaded sweet dispenser, like a Pez™ dispenser, except you are only going to push sweets in
from the top or pop sweets off from the top (Figure 6-3). The term push is used to indicate
something being added to the stack and pop indicates taking something off the stack.

Figure 6-3 The stack
Every time you call a function, a stack frame is created. A stack frame is a small

memory record that includes storage space for parameters and local variables used by the
function, as well as a return address that specifies the point in the program from which ex-
ecution should continue when the function has finished running and returned.

Initially, the stack is empty, but when you call a function (let’s call it “function A”),
memory is allocated for it and a stack frame is pushed onto the stack. If function A calls
another function (function B), then a second record is added to the top of the stack, so the
stack now has two records. When function B finishes, its stack frame is popped off the
stack, then when function A completes, its stack frame is also popped off the stack. Be-
cause local variables for a function are stored on the stack frame, they are not remembered
between successive function calls.

The stack uses some of our valuable memory, and most of the time, the stack never has
more than three or four records on it. The exception is if you allow functions to call them-
selves, or to be in a loop of functions calling each other. Then there is the real possibility
that the program will run out of stack memory.

For example, the mathematical “factorial” function is calculated by multiplying all the
integers that come before a number up to that number. The factorial of 6 is 6 × 5 × 4 × 3 ×
2 × 1 = 720.

A recursive definition of the factorial of n is
If n = 0, the factorial of n is 1.

Otherwise the factorial of n is n times the factorial of (n – 1).
You can write this in Arduino C as:

You can find this code and a full sketch that prints the result in
sketch_06_02_factorial. Generally, people with a mathematical mind think this is pretty
neat. You’ll notice, however, that the depth of the stack equals the number of the factorial
you are calculating. It is also pretty easy to see how to write a nonrecursive version of the
factorial function:

In terms of ease of reading, this code is probably easier to understand; it also uses
less memory and is faster. In general, it makes sense to avoid recursion, or restrict it to
highly efficient recursive algorithms like Quicksort (http://en.wikipedia.org/wiki/Quick-
sort), which can put an array of numbers into order very efficiently.
Store String Constants in Flash Memory
By default, if you declare string constants as shown in the following example, those char-
acter arrays will be stored in RAM and in flash memory—once for the program code and
once when their values are copied into RAM when the sketch is run:

If, however, you use the following code, the string constant will be stored in flash memory
only:

In the “Using Flash” section in this chapter, you’ll see how you can use flash in other
ways.
Common Misconceptions
A common misconception is that using short variable names uses less memory. This is not
the case. The compiler takes care of such things, so the final variable names do not find
their way into the binary sketch. Another misconception is that comments in a program
have an effect on the size of the program when it is installed or on the RAM that it uses.
This is not true.

http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Quicksort

You may also assume that dividing your code into lots of small functions will increase
the size of the compiled code. This is not usually the case as the compiler is smart enough
to actually replace function calls with inline copies of the body of the function as part of
its code optimization process. This benefit allows you to write more readable code.
Measure Free Memory
You can find out how much RAM a running sketch is using at any point in time with the
MemoryFree library, which you can download from here: http://playground.arduino.cc/
Code/AvailableMemory.

This library is easy to use; it provides a function called freeMemory, which returns the
number of bytes available. The following sketch illustrates its use:

This library can be handy if you start to experience unexplained problems with a sketch
that you think might be caused by a memory shortage. The library does, of course, increase
your memory usage a little.

Minimizing Flash Usage
When you successfully compile a sketch, you’ll see a status line at the end of the process
that says something like this:

This line tells you exactly how much of the Arduino’s flash memory the sketch will use, so
you know if you’re getting close to the 32kB limit. If you are not near the limit, then you
don’t really need to try to optimize the flash memory. If you are getting close, then there
are a few things that you can do.
Use Constants
When variables are defined, especially pin names, it is quite common to see them defined
like this:

Unless you plan to change which pin is to be used as the LED pin while the sketch is ac-
tually running, then you can use a constant. Just add the word const to the front of the
declaration:

This change saves you 2 bytes, plus 2 bytes for every place that the constant is used. For a
much used variable, your savings can amount to a few tens of bytes.
Remove Unwanted Trace
When debugging Arduino sketches, sprinkling the code with Serial.println commands
helps you see the value of variables and work out any bugs in the program. These com-

http://playground.arduino.cc/Code/AvailableMemory
http://playground.arduino.cc/Code/AvailableMemory

mands actually use a fair bit of flash memory. Any use of Serial.println pulls about 500
bytes of library code into the sketch. So, once you are convinced that the sketch is working,
remove or comment out these lines.
Bypass the Bootloader
Back in Chapter 2, you discovered how to program the microcontroller directly on the Ar-
duino using the ISP connector and programming hardware. This approach can save you a
valuable couple of kBs, as it means the bootloader does not need to be installed.

Static vs. Dynamic Memory Allocation
If, like the author, you come from a background of writing large-scale systems in languages
such as Java or C#, you’re used to creating objects at runtime and allowing a garbage col-
lector to tidy up behind you. This approach to programming is simply inappropriate on a
microprocessor with just 2kB of memory. For a start, there is simply no garbage collector,
and what is more, allocating and deallocating memory at runtime is rarely necessary in the
type of programs written for an Arduino.

The following example defines an array statically, as you would normally in a sketch:

The memory that the array uses is known while the sketch is being compiled; therefore,
the compiler can reserve the necessary amount of memory for the array. This second ex-
ample also creates an array of the same size, but it allocates the memory for it at runtime,
from a pool of available memory. Note that versions of the Arduino software prior to 1.0.4
do not support malloc.

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html

You start by defining a variable int *array. The * indicates that this is a pointer to an
integer value (or, in this case, array of ints) rather than a simple value. The memory to be
used by the array itself is not claimed for use by the array until the following line is ex-
ecuted in setup:

The malloc (memory allocate) command allocates memory from an area of RAM
called the heap. Its argument is the number of bytes to be allocated. Because the array con-
tains 100 ints, you need to do a little calculation to work out how many bytes to reserve.
Actually, you could just write 200 as the parameter to malloc because you know that each
int occupies 2 bytes of memory, but by using the sizeof function, you can make sure to get
the right number.

After the memory has been allocated, you can use the array just as if you had allocated
it statically. The only advantage to allocating it dynamically is that you can delay the de-
cision about how large to make it until the sketch is actually running (runtime).

The danger with dynamic memory allocation is that you can easily get in a situation
where memory is allocated but not released, so then the sketch unexpectedly runs out of
memory. Running out of memory can cause the Arduino to hang. If all the memory is al-
located statically, however, this cannot happen.

Note that I have developed hundreds of Arduino projects and have yet to find a com-
pelling reason to use dynamic memory allocation on an Arduino.

Strings
Strings (text) are used less commonly in Arduino programming than in more conventional
software development. In most software development, strings are the most used data type
because most programming is about user interfaces or databases, which naturally involve
text of some sort.

Many Arduino programs have no need to represent strings of text at all, or, if they do,
it’s in Serial.println commands used to debug a buggy sketch.

There are essentially two methods for using strings in Arduino: the old way (C char
arrays) and the new way, the String Object library.
C char Arrays

When you define a string constant by typing something like

you are statically defining a char array that is 12 characters long. It is 12 characters rather
than the 11 letters of “Hello World” because there is a final terminating character of 0 to
mark the end of the string. This is the convention for C character strings, and it allows you
to use larger arrays of characters than the string that you are interested in at the start (Fig-
ure 6-4). Each character letter, number, or other symbol has a code called its ASCII value.

Figure 6-4 A null-terminated C char array
Note that another commonly used convention for string constants is to write:

This syntax works similarly but declares message to be a pointer to a character (the first
character of the array).
Formatting Strings with Multiple Prints
Much of the time, this is the only way you need to use a string, for instance, to display a
message on an LCD screen or as a parameter to Serial.println. You may think that being
able to join strings and convert numbers to strings is essential. For example, let’s look at
a specific problem—how to display a message on an LCD screen such as “Temp: 32 C.”
You might believe you need to join the number 32 to a string "Temp: " and then add the
string " C" onto the end. Indeed, if you are a Java programmer, you will probably expect
to write the following in C:

Sorry, that’s not the way it works in C. In this case, you can print this message simply
by using multiple print statements, as shown in this example:

This method removes the need for any behind-the-scenes copying of data that would go on
during string concatenation in other newer languages.

The same multiple outputs approach works with the Serial Monitor and Serial.print
statements. In this case, you generally make the last print on the line a println to add a
newline to the output.
Formatting Strings with sprintf
The standard C string library (not to be confused with the Arduino String Object library
discussed in the next section) includes a very useful function called sprintf to format char-
acter arrays. This fits variables into a pattern string, as shown in the following example:

The character array line1 is a string buffer that is used to contain the formatted text.
The size is specified as 17 to allow an extra null character on the end. I chose the name
line1 to illustrate how this could be the contents of the top line of a 16-character by two-
line LCD display.

The sprintf command’s first parameter is the character array into which the result is to
be written. The next argument is the formatting string that contains a mixture of literal text
like Temp: and formatting commands like %d. In this case, %d means signed decimal.

The remainder of the parameters will be substituted in order into the formatting string in
place of the formatting commands.

If your LCD display were to show the time on the second line, then you could format
the time from separate hours, minutes, and seconds using the following line:

If you were to print line2 to the Serial Monitor or an LCD screen, it would look like
this:

Not only have the numbers been substituted in the correct place, but also a leading zero is
in front of the 5 digit. In the sketch, between each : you have the formatting commands
for the three parts of the time. For the hour, it is %2d, which means display the value with
a length of two digits as a decimal. The formatting command for minutes and seconds is
slightly different (%02d). This command still means format as two characters, but include
a leading zero.

Be wary, though, this approach works for ints, but the Arduino developers have not
implemented the standard C library formatting for other types such as floats.
Finding the Length of a String
Because the string within a character array is often smaller than the actual character array
containing it, a useful function, called strlen, is available. strlen counts the number of
characters in the array before the null that marks the end of the string.

The function returns the size of the string (excluding the null) and takes the character
array as its only argument, for instance,

returns the number 3.
The Arduino String Object Library
Versions of the Arduino IDE since version 019, several years ago, have included a String
library that is far more familiar and friendly to developers used to Java, Ruby, Python, and
so on, where the norm is to construct strings by concatenation, often using “+”. This library
also offers a whole host of useful string searching and manipulation features.

This library, of course, comes at the cost of adding several kBs to your sketch size
should you use it. It also uses dynamic memory allocation, with all its associated problems
of running out of memory. So think carefully before you decide to use it. Many Arduino
users stick to C character arrays instead.

This library is beautifully easy to use, and if you have used strings in Java, you will be
very at home with the Arduino String Object library.
Creating Strings
You can create the string using a char array, int, or float, as shown in the following ex-
ample:

Concatenating Strings
Strings can then be concatenated with each other and other data types using +. Try placing
the following code in the setup function of an otherwise empty sketch:

Notice how the final value being concatenated to the String is actually a character ar-
ray. As long as the first item in the sequence of values in between the + signs is a string,
the items will automatically be converted into strings before being concatenated.
Other String Functions
Table 6-1 summarizes some of the more useful things that you can do with String functions.
For chapter and verse on the functions available, see this reference: http://arduino.cc/en/
Reference/StringObject.

Table 6-1 Some Useful String Functions

Using EEPROM
The contents of any variable used in an Arduino sketch will be cleared and lost whenever
the Arduino loses power or is reset. If you need to store values persistently, you need to
write them a byte at a time into EEPROM memory. The Arduino Uno has 1kB of EEPROM
memory.
NOTE This is not an option for the Arduino Due, which does not have any EEPROM.

Instead you must write data to a microSD card.
Reading and writing to EEPROM memory requires a library that is preinstalled in the

Arduino IDE. The following example shows how to write a single byte of EEPROM, in
this case, from the setup function:

The first argument of the write function is the address in the EEPROM to which the byte
should be written, and the second argument is the value to be written to that address.

http://arduino.cc/en/Reference/StringObject
http://arduino.cc/en/Reference/StringObject

The read command is used to read the data back from EEPROM. To read back a single
byte, you just use the line

where 0 is the EEPROM address.
EEPROM Example
The following example shows a typical scenario where a value is written during the normal
running of a program and then read back during startup. The application is a door lock pro-
ject using the Serial Monitor to enter codes and change the secret code. The EEPROM is
used so the secret code can be changed. If the code had to be reset every time the Arduino
started, then there would be no point in allowing the user to change the code.

During the discussion that follows, certain areas of the sketch will be highlighted.
If you wish to see the entire sketch in your Arduino IDE, it is called
sketch_06_06_EEPROM_example and can be found with the rest of the code for this
book at www.simonmonk.org. You may find it useful to run the sketch to get a feel for how
it works. It does not require that you connect any extra hardware to the Arduino.

The setup function contains a call to the function initializeCode.

This function’s job is to set the variable code (the secret code) to its value. This value
is generally a value read from EEPROM, but there are a few difficulties with this setup.

EEPROM contents are not cleared by uploading a new sketch; once written, EEPROM
values can only be changed by writing a new value on top of the old value. So if this is the
first time that the sketch has been run, then there is no way to know what value might be
left in EEPROM by a previous sketch. You could be left with a lock, that is, a code whose
value you do not know.

One way around this is to create a separate sketch specifically to set the default code.
This sketch would need to be installed on the Arduino before the main sketch.

A second, less reliable, but more convenient approach is to use a marker value that you
write to the EEPROM to indicate that the EEPROM has had a code written to it. The down-
side of this approach is there is a slim chance that the EEPROM location used to store this
flag already contains it. If so, this solution would be unacceptable if you were defining a
commercial product, but here you can elect to take that risk.

The initializeCode function reads the first byte of EEPROM and if it equals
codeMarkerValue, which is set elsewhere to 123, it is assumed that the EEPROM con-
tains the code and the function readSecretCodeFromEEPROM is called:

http://www.simonmonk.org

This function reads the 2-byte int code in bytes 1 and 2 of the EEPROM (Figure 6-5).

Figure 6-5 Storing an int in EEPROM
To convert the two separate bytes into a single int, you have to shift the high bytes to

the right 8 binary digits (high << 8) and then add the low bytes.
The stored code is only read when the Arduino resets. You should, however, write the

secret code to EEPROM every time it is changed, so if the Arduino is powered down or
reset, it still has the code available in EEPROM to be read back.

The function saveSecretCodeToEEPROM is responsible for this:

This sets the code marker in EEPROM position 0 to indicate that there is a valid code in
EEPROM and then writes the two bytes of the code to EEPROM. The Arduino utility func-
tions highByte and lowByte are used to separate the parts of the int code.
Using the avr/eeprom.h Library
The Arduino EEPROM library only allows you to read and write one byte at a time. In
the example shown in the previous section, you got around this restriction by splitting the
int into two bytes in order to save and retrieve it in EEPROM. An alternative is to use the

underlying EEPROM library provided by AVR. This gives you more options, including
reading and writing a Word (16 bits) and blocks of memory of arbitrary size.

The following sketch uses this library to save and read an int directly, incrementing it
every time the Arduino restarts:

The argument to eeprom_read_word (10) and the first argument to eeprom_write_word
are the starting position of the word. Note that this occupies two bytes, so if you want to
save another int, you specify an address of 12, not 11. The text (uint16_t*) before 10 is
needed to make the index position the type expected by the library function.

The other useful pair of functions in this library are eeprom_read_block and eep-
rom_write_block. These functions allow data structures of any length (space permitting)
to be stored and retrieved.

For example, let’s make a sketch to write a character array string, starting at position
100 in EEPROM:

The first argument to eeprom_write_block is the pointer to the char array to be written,
the second is the starting location in EEPROM (100). The final argument is the number of

bytes to write. This is calculated here as the length of the string plus one to include the null
character at the end of the string.

The following sketch reads the string back in again and displays it on the Serial Mon-
itor along with the string length:

To read the string, a character array of size 50 is created. The function eep-
rom_read_block is then used to read the next 50 characters into message. The & sign be-
fore message provides the function with the message’s address in RAM.

Because the message has a null on the end, when it is printed by the Serial Monitor,
only the text expected (not the full 50 characters) is displayed.
EEPROM Limitations
EEPROM is slow to read and write (about 3ms). It is also only guaranteed to be reliable
for 100,000 write cycles before it starts suffering from amnesia. For this reason, you need
to be careful not to write to it every time around a loop, for example.

Using Flash
An Arduino has a lot more flash memory than it does any other type of memory. For an
Arduino Uno, that is 32kB compared with 2kB of RAM. This makes it a tempting place to
store data, especially as flash memory does not forget when it loses power.

There are, however, a few snags with storing data in flash memory:
• The flash memory in an Arduino can only be written to about 10,000 times before it

becomes useless.
• The flash contains your program, so, if you miscalculate and write over the pro-

gram, very strange things could happen.
• The flash also contains the bootloader and overwriting that will “brick” your Ardu-

ino unless you have an ISP programmer to rescue it (see Chapter 2).
• Flash can only be written a block (64 bytes) at a time.
Having said all that, it is quite easy and safe to use flash to hold constant data that are

not going to change during the running of a sketch.
A third-party library is being developed that allows the Arduino Due’s flash memory

to be read and written to, to make up for its lack of EEPROM. You can find out more about

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch02.html

this project here: http://pansenti.wordpress.com/2013/04/19/simple-flash-library-for-
arduino-due/.

The easiest way to create flash-stored string constants is to use the F function that I
described in an earlier section. The syntax is repeated here as a reminder:

This form only works when you are using the string constant directly in a message like
this. You cannot, for example, assign the result to a char pointer.

A more flexible, and therefore more complex, way of doing this is to use the Program
Memory (PROGMEM) directive, which can be used to store any data structure. The data,
however, must be constant data that will not change during the running of the sketch.

The following example illustrates how you can create an array of ints that will be
stored in flash memory:

By putting the PROGMEM directive in front of the array declaration, you ensure that
it is only stored in flash memory. To read value out of it, however, you now have to use the
function pgm_read_word from the avr/pgmspace library:

The parameter to this function uses the & symbol in front of the array name to indicate
that it is the address of this array element in flash memory that is required rather than the
value itself.

The pgm_read_word function reads a word (2 bytes) from flash; you can also use the
pgm_read_byte and pgm_read_dword to read 1 byte and 4 bytes, respectively.

Using SD Card Storage
Although Arduino boards do not have SD card slots, several different types of shield, in-
cluding the Ethernet shield and the MP3 shield shown in Figure 6-6, do have an SD or
microSD card slot.

http://pansenti.wordpress.com/2013/04/19/simple-flash-library-for-arduino-due/
http://pansenti.wordpress.com/2013/04/19/simple-flash-library-for-arduino-due/

Figure 6-6 MP3 shield with microSD card slot
SD cards use the SPI bus interface (the topic of Chapter 9). Fortunately, to use SD cards

with Arduino, you do not need to do any low-level SPI programming as there is a library
included with the Arduino IDE called simply “SD.”

This library includes a set of example sketches for using the SD card in various ways,
including finding out information about the SD card as displayed in the Serial Monitor, as
shown in Figure 6-7.

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch09.html

Figure 6-7 Results of the Cardinfo example sketch
Writing to the SD card is made easy, as the code snippet here shows:

Summary
In this chapter, you have learned about all aspects of memory and data storage within Ar-
duino. In the next chapters, you will explore Arduino programming for various types of
serial interface, starting with the I2C bus.

7
Using I2C

The I2C (pronounced “I squared C”) interface bus is a standard for connecting microcontrollers and peripher-
als together. I2C is sometimes referred to as Two Wire Interface (TWI). All the Arduino boards have at least
one I2C interface to which you can attach a wide range of peripherals. Some examples are shown in Figure 7-1.

Figure 7-1 A collection of I2C devices
The three devices on the top row of Figure 7-1 are all display modules from Adafruit. On the bottom row,

starting on the left, is a TEA5767 FM receiver module. You can find these modules on eBay and elsewhere
for a few dollars. The TEA5767 provides you with a full FM receiver module that you can tune to a certain
frequency by sending it I2C commands. In the center is a real-time clock (RTC) module, including an I2C chip
and crystal oscillator that maintains a fairly accurate time and date. Once you have set the date and time over
I2C, you can read the time and date back over I2C whenever you need it. This module also includes a long-life
lithium button cell that allows it to keep time, even when the module has no external power. Finally, on the
right, is a 16-channel servo/PWM driver that can give you 16 extra analog outputs from your Arduino.

The I2C standard is defined as a “bus” standard because its use is not limited to connecting one component
directly to another. Say you have a display connected to a microcontroller; using the same two bus pins, you
can connect a whole set of “slave” devices to a “master” device. The Arduino acts as the “master,” and each of
the “slaves” has a unique address that identifies the device on the bus.

Figure 7-2 shows a possible arrangement of two I2C components attached to an Arduino, a real-time clock
(RTC), and a display module.

Figure 7-2 An Arduino controlling two I2C devices
You can also use I2C to connect two Arduinos together so they can exchange data. In

this case, one of the Arduinos will be configured to act as a “master” and one as a “slave.”

I2C Hardware
Electrically, I2C interfaces connection lines from a microcontroller or peripheral can act as
both a digital output or digital input (also called tri-state). In tri-state mode, the connection
lines are neither HIGH nor LOW, but are, instead, a floating value. The outputs are also
open-collector, which means that they require a pull-up resistor. These resistors should be
4.7 kΩ in value, and there should be just one pair for the whole I2C bus, pulling up to
either 3.3V or 5V, depending on the voltage at which you want the bus to operate. If some
devices on the bus use different voltages, you need to use a level converter. Bidirectional
level converter modules suitable for I2C are available, such as the BSS138 device from
Adafruit: www.adafruit.com/products/757.

The various Arduino boards allocate different pins to I2C. For example, the Uno uses
pins A4 and A5 as SDA and SCL, respectively, whereas the Leonardo uses pins D2 and
D3. (More on SDA and SCL in the next section.) On both boards, the SDA and SCL pins
are available on the socket header next to the AREF connection (Figure 7-3).

http://www.adafruit.com/products/757

Figure 7-3 I2C connections on an Arduino Uno
Table 7-1 indicates the location of I2C pins on the common Arduino boards.

Table 7-1 I2C Connections on Arduino Boards

The I2C Protocol
I2C uses two wires to transmit and receive data (hence, the alternative name of Two Wire
Interface). These two lines are called the Serial Clock Line (SCL) and the Serial Data Line
(SDA). Figure 7-4 shows the timing diagram for this signal.

Figure 7-4 Timing diagram for I2C

The master supplies the SCL clock, and when there is data to be transmitted, the sender
(master or slave) takes the SDA line out of tri-state (digital input mode) and sends data as
logic highs or lows in time with the clock signal. When transmission is complete, the clock
can stop and the SDA pin is returned to tri-state.

The Wire Library
You could, of course, generate these pulses yourself by bit banging—that is, turning digital
outputs on and off in your code. To make life easier for us, however, the Arduino software
includes a library called Wire that handles all the timing complexity, so we can just send
and receive bytes of data.

To use the Wire library, you first need to include it using the following command:

Initializing I2C
In most situations, an Arduino is the “master” in any I2C bus. To initialize an Arduino as
the master, use the begin command in your setup function, as shown here:

Note that because the Arduino is the master in this arrangement, you don’t need to spe-
cify an address. If the Arduino were being initialized as a slave, then you would need to
specify an address, 0 to 127, as its parameter to uniquely identify it on the I2C bus.
Master Sending Data
To send data to an I2C device, start by using the beginTransmission function and specify-
ing the address of the I2C device on the bus that you wish to send data to:

You can either send data to an I2C device one byte at a time, or you can send a char
array, as shown in these two examples:

Finally, at the end of the transmission, use the endTransmission function:

Master Receiving Data
For a master to receive data from a slave, it must first request the number of bytes it re-
quires using the requestFrom function:

The first argument to this function is the address of the slave from which the master
wants to receive data, and the second argument is the number of bytes that the master is
expecting to receive back. The slave can return less than this, so the available function is
used to determine both if data has arrived and the number of bytes received. The following
example (taken from the Wire example sketches) shows the master reading all available
data from the slave and echoing it to the Serial Monitor:

The Wire library will buffer incoming I2C data.

I2C Examples
Any I2C device should have an accompanying datasheet that specifies the messages that it
expects to use. Sometimes you will need to use that datasheet to build your own messages
to send from the Arduino and to interpret the messages that come back. You’ll often find,
however, that when an I2C device is commonly used with an Arduino, then someone has
written a library that wraps the I2C messages in nice easy-to-use functions. In fact, if there
isn’t a library and you work out how to use the device, then the socially minded thing to do
is to release your library to the world and earn yourself some open source karma.

Even if no fully fledged library is available, you can often find useful code snippets for
the device on the Internet.
TEA5767 FM Radio
The first I2C example does not use a library. It deals with raw messages to interface an
Arduino with a TEA5767 module. These modules are available at a very low cost on the
Internet and are easy to connect to an Arduino to use as an Arduino-controlled FM receiv-
er.

The tricky part is that the connections on these devices are set at an extremely fine
pitch, so you generally need to make or buy some kind of adapter that allows you to use
them with breadboard or jumper wires.

Figure 7-5 shows how this module can be wired to an Arduino.

Figure 7-5 Wiring a TEA5767 module to an Arduino Uno using I2C
You can find the full datasheet for the TEA5767 here: www.sparkfun.com/datasheets/

Wireless/General/TEA5767.pdf. The datasheet contains a lot of technical information
about the chip, but if you scroll through the document, you’ll find a section detailing the
messages that it expects to receive. The datasheet specifies that the TEA5767 expects to
receive messages of five bytes. The example code shown next is a fully working example
that will tune the frequency once at startup. In practice, you need some other mechanism,
such as push buttons and an LCD display, to set the frequency.

The code we’re interested in is all in the setFrequency function. This function takes a
float as a parameter. This value is the frequency in MHz. So if you’re going to build this
for real, you might want to look up the frequency of a good local radio station with a strong
signal and put the value in the call to setFrequency in the setup function.

To convert a float frequency in MHz into a two-byte value that can be sent as part of
the five-byte message, you need to do some math. The math is contained in the code:

http://www.sparkfun.com/datasheets/Wireless/General/TEA5767.pdf
http://www.sparkfun.com/datasheets/Wireless/General/TEA5767.pdf

The >> command shifts bits to the right, so using >> 8 shifts the most significant 8 bits
into the least significant 8 bit positions. The & operator provides a bitwise and operation,
which has the effect of masking off the top 8 bits so only the bottom 8 bits remain. For
more information on this kind of bit manipulation, see Chapter 9.

The remainder of the setFrequency function begins transmission of the I2C message
to the slave with address 0x60, which is fixed for the TEA5767 chip. It then sends each of
the 5 bytes, starting with the 2 frequency bytes.

If you read through the datasheet, you’ll discover many other things you can accom-
plish with different messages, such as scanning, muting one or more channels, and setting
the mode to mono or stereo.

In the Appendix, we’ll revisit this example, creating an Arduino library so using the
TEA5767 can be even simpler.
Arduino-to-Arduino Communication
This second example uses two Arduinos, one acting as the I2C master and one as the slave.
The master will send messages to the slave, which will, in turn, echo them to the Serial
Monitor, so we can see that the communication is working.

The connections for this setup are shown in Figure 7-6. Note that the TEA5767 module
has built-in I2C pull-up resistors, but this is not the case when connecting two Arduinos,
so you’ll need to provide your own 4.7 kΩ resistors, as shown in Figure 7-6.

Figure 7-6 Connecting two Arduinos using I2C
We need to program each of the two Arduinos with a different sketch. Both sketches are

provided as examples in the Wire library. Program the master Arduino with File | Example
| Wire | master_writer, and the slave Arduino with File | Example | Wire | slave_receiver.

Once you’ve programmed both Arduinos, leave the slave Arduino connected to your
computer; you need to see the output from this Arduino in the Serial Monitor, and it will
also supply power to the master Arduino.

Start with the sketch on the master Arduino:

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch09.html

This code generates messages of the form “x is 1” where 1 is a number that is incre-
mented every half second. This message is then sent to the I2C slave device with the ID of
4, as specified in beginTransmission.

The slave sketch’s job is to receive the messages coming from the master and echo
them on the Serial Monitor:

The first thing to notice is that this time the Wire.begin function has a parameter of 4.
This parameter specifies the I2C address of the slave, which is 4. It must match the address
that the master sends the message to.

TIP You could connect many slave Arduinos to the same two-wire bus as long as each
has a different I2C address.
The sketch for the slave differs from that of the master because it uses interrupts to re-

spond to the master when a message comes in. This is accomplished using the onReceive
function, which is invoked like an interrupt service routine (see Chapter 3). Place this in
setup so the user-written function receiveEvent is invoked whenever a message comes in.

The receiveEvent function is expected to have a single parameter, which indicates the
number of bytes ready to be read. In this case, this number is ignored. The while loop first
reads all the available characters and echoes each character in turn. It then reads the single
byte number on the end of the message and prints that to the Serial Monitor. Using println
rather than write ensures that the value of the byte is displayed rather than its character
value (Figure 7-7).

Figure 7-7 Serial Monitor output for Arduino to Arduino over I2C
LED Backpack Boards
Another common range of I2C devices are those used for displays. Of these, the range of
backpack boards for matrix and seven-segment LED displays from Adafruit are typical.
They contain an LED display mounted on a circuit board that also has an I2C LED control-
ler chip on it. This setup reduces the normally large number of Arduino I/O pins required
for controlling an LED display with just the two I2C SDA and SCL pins.

These devices (top row of Figure 7-1) are used with a pair of libraries that provide
a comprehensive set of functions for displaying graphics and text on Adafruit’s range of
LED backpacks. You can find out more about these colorful and interesting devices here:
www.adafruit.com/products/902.

Once you’ve installed the libraries, all the I2C communication is hidden away, and you
can just use high-level commands as illustrated by the following code taken from the lib-
raries’ example sketches:

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch03.html
http://www.adafruit.com/products/902

DS1307 Real-Time Clock
Another common I2C device is the DS1307 RTC chip. This chip also has a well-used and
reliable Arduino library to simplify it and hide the actual I2C messages. The library is
called RTClib and can be downloaded from here: https://github.com/adafruit/RTClib.

The fragments of code are, again, taken from the examples supplied with the library.

https://github.com/adafruit/RTClib

If you want to see the actual I2C code, then you can open the library files and look
at how they work. For example, you’ll find the RTClib library in the files RTClib.h and
RTClib.cpp. These files are in the folder libraries/RTClib.

For example, you can find the function definition for now in RTClib.cpp:

The values that are read over I2C are in binary-coded decimal (BCD), which must be
converted into bytes using the bcd2bin function in the library.

BCD splits a byte into two 4-bit nibbles (yes, really). Each nibble represents one digit
of a two-digit decimal number. So the number 37 is represented in a BCD byte as 0011
0111. The first four bits being decimal 3 and the second four bits 7.

Summary
In this chapter, you have learned about I2C and how to use it with an Arduino to commu-
nicate with peripherals and other Arduinos.

In the next chapter, we examine another type of serial bus interface that is used to com-
municate with peripherals. This interface, called 1-wire, is not as widely used as I2C, but
is used in the popular DS18B20 temperature sensor.

8
Interfacing with 1-Wire Devices

1-Wire is a bus standard designed to serve a similar purpose to the I2C bus (see Chapter 7)—that is, to allow
microcontrollers to communicate with peripheral ICs with a minimal number of data lines. The 1-Wire stand-
ard created by Dallas Semiconductor has taken this to its logical extreme by reducing the data lines used to
just one. The bus is slower than I2C, and it has the interesting feature of parasitic power, which allows remote
devices to be connected to a microcontroller with just two wires, GND (ground), and combined power and data
wire.

The 1-Wire bus standard has a much smaller range of potential devices than I2C, most manufactured by
Dallas Semiconductor or Maxim. They include printer cartridge identity devices, EEPROM flash memory, and
analog-to-digital converters (ADCs). However, the most commonly used 1-Wire device for hobbyists is the
Dallas Semiconductor DS18B20 temperature sensor.

1-Wire Hardware
Figure 8-1 shows how you can connect a DS18B20 to an Arduino using just two connections and the
DS18B20’s parasitic power mode.

Figure 8-1 Connecting a 1-Wire device to an Arduino
1-Wire is a bus, rather than a point-to-point connection, and you can chain together up to 255 devices using

the arrangement shown in Figure 8-1. If you wish to use the device in “normal” power mode, then you can omit
the 4.7 kΩ resistor and connect Vdd on the DS18B20 directly to 5V from the Arduino instead of to GND.

The 1-Wire Protocol
Just as with I2C, 1-Wire uses the master and slave concept for devices. The microcontroller is the master and
the peripherals are the slaves. Each slave device is given a unique ID known as its “address” during manu-
facturing, so it can be identified on the bus when there are multiple slaves. This address is 64 bits in length,
allowing for roughly 1.8×1019 different IDs.

The protocol is similar to I2C in that the bus line is switched from being an input to being an output by the
master to allow two-way communication. However, rather than have separate clock and data signals, 1-Wire
has just a single data line and uses long and short pulses to signify 1s and 0s. A pulse of 60 μS signifies a 0 and
15 μS indicates a 1.

The data line is normally HIGH, but when the microcontroller (master) needs to send a command to the
device, it sends a special “reset” LOW pulse of at least 480 microseconds. The stream of 1 and 0 pulses then
follow this.

The OneWire Library
The use of 1-Wire is greatly simplified by the OneWire library, which you can download from ht-
tp://playground.arduino.cc/Learning/OneWire.
Initializing 1-Wire
The first step in using an Arduino as the master on a 1-Wire bus is to import the OneWire library using this
command:

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html
http://playground.arduino.cc/Learning/OneWire
http://playground.arduino.cc/Learning/OneWire

The next step is to create an instance of OneWire and specify the Arduino pin to be
used for the 1-Wire data bus. You can combine these into a single command, and you can
use any Arduino pin for the bus; simply supply the pin number as the parameter:

In the example, the bus will be initialized on pin D10 of the Arduino.
Scanning the Bus
Because each slave device on the bus is allocated a unique ID during manufacturing, you
need a way to find the devices on the network. It would be unwise to hard-code device
addresses into the Arduino sketch because if you were to replace one of the slave devices,
the new device would have a different address than the old one and you wouldn’t be able
to use it. So the master (Arduino) can essentially produce a list of the devices on the bus.
What is more, the first 8 bits of the address indicate the “family” of device, so you can tell
if the device is, say, a DS18B20 or some other type of device.

Table 8-1 lists some of the most common family codes for 1-Wire. You can find a more
complete list here: http://owfs.sourceforge.net/family.html.

Table 8-1 Family Codes for 1-Wire Addresses
The OneWire library has a search function that you can use to find all the slave devices

on the bus. The following example code lists the addresses of all the devices on the bus to
the Serial Monitor:

http://owfs.sourceforge.net/family.html

Figure 8-2 shows the result of running this sketch with two DS18B20 temperature
sensors attached to an Arduino. Note that for both devices, the “family” code is contained
in the first byte and is 28 (hexadecimal) in both cases.

Figure 8-2 Listing 1-Wire slave devices
The search function requires an array of 8 bytes in which to put the next address that

it finds. If no more devices are to be found, it will return 0. This allows the while loop in
the previous example to keep iterating until all the addresses have been displayed. The last
byte of the address is actually a cyclic redundancy check (CRC) that ensures the integrity
of the address. The OneWire library includes a CRC checking function.

Using the DS18B20
The following example illustrates the use of OneWire with the DS18B20 temperature
sensor. Figure 8-3 shows a DS18B20 chip connected to an Arduino. Note how the chip it-
self is just a three pin transistor-like chip.

Figure 8-3 A DS18B20s connected to an Arduino
The Dallas Semiconductor temperature sensor has its own library that makes request-

ing the temperature and decoding the result easier. The DallasTemperature library can
be downloaded from here: https://github.com/milesburton/Arduino-Temperature-Control-
Library.

https://github.com/milesburton/Arduino-Temperature-Control-Library
https://github.com/milesburton/Arduino-Temperature-Control-Library

This example displays the temperature in Celsius from a single temperature sensor in the
Serial Monitor window (Figure 8-4).

Figure 8-4 Displaying the temperature using a DS18B20
This example uses just one temperature sensor, but you can easily extend it to use mul-

tiple sensors. The DallasTemperature library wraps the OneWire address discovery process
in the getAddress function, the second parameter of which is the index position of the
sensor. To add a second sensor, you need to add a new variable for its address and then set
that address using getAddress. You can download an example of using two sensors from
the book’s website as sketch_08_03_OneWire_DS18B20_2.

Summary
In this chapter, you learned a little about the 1-Wire bus and how to use it with the popular
DS18B20 temperature sensor.

In the next chapter, we look at yet another kind of serial data interface called SPI.

9
Interfacing with SPI Devices

The Serial Peripheral Interface (SPI) bus is yet another serial bus standard that you can use to connect peri-
pherals to your Arduino. It is fast but uses four pins compared with the two that I2C uses. SPI is not actually a
true bus, as the fourth pin is a Save Select (SS) pin. One Arduino pin must be used for SS for each peripheral
on the bus. This setup effectively addresses the right peripheral on the bus by turning all the other peripherals
off.

A wide range of SPI devices are available, including many of the same type of devices available for I2C. It
is not uncommon for peripherals to have both I2C and SPI interfaces.

Bit Manipulation
SPI interfacing tends to involve a lot of bit manipulation to get data on and off the bus. The first example
project (using an MCP3008 ADC IC), in particular, requires a good understanding of how to shuffle bits along
and mask the ones you don’t want in order to extract an integer value for the analog reading. For this reason,
before I go any further into the workings of SPI, I’ll make a diversion to explain, in more detail, bit manipula-
tion.
Binary and Hex
You first met the concept of bits and bytes back in Chapter 4 (see Figure 4-2). When you are manipulating bits
in a byte or word (two bytes), you can use their decimal values, but converting between binary and decimal is
not that easy to do in your head. For this reason, values are often expressed as binary constants in Arduino C,
which you can do using the special syntax shown in this example:

In the first line, a byte with the decimal value of 3 (2 + 1) is defined. The leading zeros are optional, but
providing them serves as a handy reminder that 8 bits are available.

The second example uses an int to hold 16 bits. The qualifier unsigned is placed in front of int to indicate
that the variable should only be used to represent positive numbers. This qualifier only really matters if you are
using +, –, *, and so on, with the variable, which you should not do if you are using it for bit manipulation. But
including the word unsigned is good practice.

When you get to 16 bits, the binary representation starts to look a bit long and unwieldy. For this reason,
people often use a notation called hexadecimal, or more commonly just hex, to represent longer binary num-
bers.

Hex is number base 16, which means you have the usual digits 0 to 9 but also the letters A to F that represent
the decimal values 10 to 15. That way, each four bits of a number can be represented in a single digit. Table 9-1
shows the decimal, binary, and hexadecimal representations of the numbers 0 to 15 (decimal).

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html
C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html#fig4-2

Table 9-1 Binary and Hexadecimal Numbers
Hex constants have a special notation similar to that of binary:

You’ll see this notation used outside of C, in documentation, to make it clear that the num-
ber is hex and not decimal.
Masking Bits
A common problem when you receive data from a peripheral using any kind of connection
is that the data arrives packed into bytes and not all of the bytes are needed. Peripheral de-
signers often fit as much information as they can into as few bits as possible, speeding up
communication, but often at the expense of making the devices more difficult to program.

The process of “masking” bits allows you to disregard some of the data in a byte or
larger data structure. Figure 9-1 shows how a byte containing multiple data can be masked
to produce a number from the least significant three bits of the byte.

Figure 9-1 Masking bits
You’ll come across the phrases “least significant” and “most significant” to describe

binary numbers. In binary written in the normal mathematical way, the most significant bit
is the leftmost bit and the least significant bit is the rightmost. After all, the rightmost is
only worth 1 or 0. You’ll also see the terms most significant bit (MSB) and least significant
bit (LSB). The least significant bit is also sometimes referred to as bit 0, bit 1 being the
next most significant bit and so on.

In the example shown in Figure 9-1, the data byte has some values at the most signific-
ant end that we are not interested in and only three bits at the least significant end that we
want to extract as a number. You do this by “anding” the data with a mask value that has
the three bits you’re interested in set to 1. Then you “and” together two bytes; each of the
bits is, in turn, “anded” with each other to build a result. The result of “anding” two bits is
only 1, if both the bits are 1.

Here’s how the example looks in Arduino C using the & operator. Note that bitwise
and uses the single & character rather than the && used in logical and.

At the end, the variable “result” contains the value 5 (decimal).
Shifting Bits
Another thing you will find with received data is that having masked the bits you want,
those bits are not all at the least significant end of the byte.

For example, if the value of interest in the data used in Figure 9-1 was between bits 5
and 3 (see Figure 9-2), you need to first mask the bits of interest, as you did in the previous
example, and then sift the bits three places to the right.

Figure 9-2 Masking and shifting bits
You use the C operator >> to shift bits to the right and the number following the >> is

the number of bit positions to shift the bits. This may result in some bits being shifted off
the end of the byte. Here’s this example written in C:

What if you need to take two 8-bit bytes and assemble them into a single 16-bit int?
You can accomplish this by first shifting the bits of one byte (the most significant byte) to
one end of the int and then adding in the second byte. Figure 9-3 illustrates this process.

Figure 9-3 Combining two bytes into an int

In Arduino C, you first place the highByte into the int result variable and then shift it
left eight spaces before adding the lowByte:

SPI Hardware
Figure 9-4 shows a typical configuration for an Arduino with two slave devices.

Figure 9-4 Arduino and two slave SPI devices
On the Arduino, the System Clock (SCLK), Master Out Slave In (MOSI), and Master

In Slave Out (MISO) are linked to the Arduino pins of the same name, which map to pins
D13, D11, and D12 on an Arduino Uno. Table 9-2 lists the pin assignments on the most
common Arduino boards.

Table 9-2 SPI Connections on Arduino Boards
The Slave select pins can be any pins on the Arduino. They are used to enable a par-

ticular slave just before data transmission and then disable it after communication is com-
plete.

No pull-up resistors are required on any of the lines.
Because some Arduino boards, including the Leonardo, only have SPI connectors that

are accessible from the ICSP header pins, shields that use SPI often have a socket header
that meets the ICSP male header. Figure 9-5 shows the ICSP header with the ICSP headers
labeled.

Figure 9-5 Arduino Uno and ICSP connections
Note that the Arduino Uno has a second ICSP header near the reset button. This is for

programming the USB interface.

The SPI Protocol
The SPI protocol is, at first sight, confusing because data is transmitted and received at
the same time by both the master and the currently selected slave. At the same time that
the master (Arduino) sends a bit from its MOSI pin to the corresponding MOSI pin on the
slave another bit is being sent back from the Slave’s MISO pin to the Arduino’s MISO pin.

Typically, the Arduino sends a byte’s worth of bits and then sends eight zeros while, at
the same time, reading the results coming back from the slave. Because the master sets the
transmission frequency, make sure the rate is not too fast for the slave device.

The SPI Library
The SPI library is included with Arduino IDE, so you do not need to install anything to
use it. It only supports Arduino-as-master scenarios. The library also only directly supports
transmission of whole bytes. For most peripherals, this setup is just fine; however, some
devices expect 12-bit messages, which can result in some complicated bit manipulation as
you’ll see in the example in the next section of this chapter.

The first step is, as usual, to include the SPI library:

Next, you need to start SPI by issuing the SPI.begin command in your “startup” function.

Unless you are using a Due, you also need to set up digital outputs for each of the SS
pins to the slave devices. These outputs can be any Arduino pins. Having set them to be
outputs, you need to set them to HIGH immediately because the slave select logic is inver-
ted, so a LOW means the slave is selected.

The Due has extended the SPI library so you can specify one pin to be used for slave
selecting, and then the library automatically sets this LOW before transmission and then
HIGH after transmission is complete. You can use this feature simply by specifying the pin
to use as the only argument to SPI.begin. The disadvantage of doing it this way, however,
is that it breaks compatibility with other Arduino boards. In the examples in this chapter,
all the slave select pins are controlled manually and are, therefore, suitable for all Arduino
boards.

A number of utility functions allow you to configure the SPI connection. However, the
defaults will normally work, so you only need to change these settings if the datasheet for
the slave device leads you to believe they might need changing. These functions are sum-
marized in Table 9-3.

Table 9-3 Configuration Functions
The combined data send and receive happens in the transfer function. This function

transfers a byte of data and returns the byte of data that it received during the send opera-
tion.

Because a conversation with a peripheral usually takes the form of the master request-
ing something from the slave and the slave responding, you’ll often have two transfers in
order: one to request the data and the other (a send, probably of 0s) to pull back the data
from the peripheral. You’ll see this in the next example.

SPI Example
This example interfaces a MCP3008 eight-channel ADC IC to an Arduino, adding another
eight 10-bit analog inputs to your Arduino. The chip is low cost and easy to wire.

Figure 9-6 shows the chip wired to the Arduino using breadboard and jumper wires.
The variable resistor (pot) is used to vary the voltage to analog input 0 between 0 and 5V.

Figure 9-6 Wiring diagram for SPI example
Following is the sketch for this example:

The function printByte was just used during development to display the binary data.
Although Serial.print can display binary values, it does not include leading zeros, which
makes interpreting the data difficult, whereas the printByte function always prints all 8
bits.

To see the data coming from the MCP3008, you can remove the // before the two calls
to printByte and the binary data you are interested in will be displayed.

All the interesting code happens in the readADC function, which takes the ADC chan-
nel (0 to 7) as its parameter. The first thing you need to do is to use some bit manipulation

to create the configuration byte that specifies the kind of analog conversion you want to
perform and also the channel you want to use.

The chip is capable of two ADC operation modes. One mode is to compare two
analog channels, and the second mode (which this example uses) returns the single-ended
reading from the channel specified, just like an Arduino analog input. The datasheet
for the MCP3008 (http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf) spe-
cifies that the configuration command needs to set four bits: the first bit needs to be 1 for
single-ended mode; the next three bits determine the channel (0 to 7) to use.

The MCP3008 is not designed for the byte-at-a-time way in which the SPI library
works. In order for the MCP3008 to recognize these 4 bits, we have to split them across 2
bytes. Here’s the code for doing this:

The first byte of the configuration message contains two 1s, the first of which may not
be needed and the second 1 corresponding to the mode bit (single-ended). The other 2 bits
in this byte are the most significant 2 bits of the analog channel number. The remaining bit
of this number is in the second configuration byte as its most significant bit.

The next line sets the SS line for the chip LOW to enable it.

After that, the first configuration byte is sent:

The analog data will not start arriving until the second configuration byte is sent. The
10 bits of data from the ADC are split across 2 bytes, so to flush out the remaining data, a
call is made to “transfer” sending a byte load of zeros.

The SS output is now set HIGH as the communication is now complete.
Finally, the actual 10-bit analog reading value is calculated using the following line:

Each of the 2 bytes has 5 of the 10 bytes of data in it. The first byte contains these bits in
its least significant 5 bits. All the bits apart from those 5 are masked out and shifted five
positions up in the 16-bit int. The lower byte contains the remainder of the reading in its
most significant five digits. These must be masked and shifted right by three bit positions
before they can also be added into the 16-bit int.

To test this, open the Serial Monitor. You should see some data appear. If you sweep
the slider of the pot clockwise from 0 to 5V, you should see something similar to what’s
shown in Figure 9-7. The first two binary numbers are the 2 bytes from the MCP3008 and
the final decimal number is the analog reading between 0 and 1023.

http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf

Figure 9-7 Viewing the messages in binary

Summary
Interfacing with SPI when no library is available is by no means easy. You will sometimes
need to perform a little trial and error to get things going. As with any type of debugging,
always start by gathering evidence and examining the data that you are receiving. You will
slowly get a picture of what is happening and then be able to tailor your code to produce
the desired results.

Text chapter examines the final interface standard supported by the Arduino, that of
TTL Serial. This standard is a point-to-point interface rather than a bus, but nonetheless a
much-used and handy mechanism for sending and receiving data.

10
Serial UART Programming

You should already be fairly familiar with the serial interface. You use it when you program your Arduino
board, and you also use it to communicate with the Serial Monitor to send data back and forth to the Arduino
from your computer. You do this through the Arduino’s USB-to-serial adapter or directly with the serial adapter.
Interfacing directly is often referred to as TTL Serial, or just Serial. TTL is a reference to Transistor Transistor
Logic, a now redundant technology that used 5V logic levels.

Serial communication, of this kind, is not a bus. It is point-to-point communication. Only two devices are
involved—generally an Arduino and a peripheral.

Peripherals that use TTL Serial rather than I2C or SPI tend to be larger devices or devices that have been
around for a long time and traditionally always had a TTL Serial interface. This also includes devices origin-
ally intended to be connected to the serial port of a PC. Examples include GPS modules, multimeters with data
logging features, and barcode and RFID readers.

Serial Hardware
Figure 10-1 shows the serial hardware for the Arduino Uno.

Figure 10-1 Arduino Uno serial hardware
The ATmega328 on the Arduino Uno has two pins Rx and Tx (Receive and Transmit, respectively). These

also double as pins D0 and D1, but if you use them as general I/O pins, you will probably find that you cannot
program your Arduino while they are attached to external electronics.

These Rx and Tx pins are the serial interface of the hardware Universal Asynchronous Receiver Transmitter
(UART) on the ATmega328. This part of the microcontroller is responsible for sending and receiving bytes of
data from and to the microcontroller.

The Uno has a separate processor that acts as a USB-to-serial interface. As well as electrical differences in
the serial signal, the USB bus also has a much more complicated protocol than serial and so it does a fair bit
of work behind the scenes so it appears the serial port of the ATmega328 is communicating directly with your
computer.

The Arduino Leonardo does not have a separate chip to act as an USB interface; rather it uses an ATmega
chip that includes two UARTs and a built-in USB interface (Figure 10-2).

Figure 10-2 Arduino Leonardo serial hardware
One of the UARTs is dedicated to the USB interface and the other is connected to the

Rx and Tx pins (D0 and D1). This gives you the advantage of connecting the Tx and Rx
to other electronics and still being able to program the Arduino and send data to the Serial
Monitor.

Other Arduino boards have differing quantities and arrangements of serial ports. These
are summarized in Table 10-1. Note that the Due is alone among Arduino boards in oper-
ating its serial ports at 3.3V rather than 5V.

Table 10-1 UART Serial Interfaces by Arduino Board
TTL Serial has a relatively short range (a few feet or perhaps tens of feet), especially

if you use it at a high baud rate. For communicating over longer distances, an electrical
standard called RS232 has been defined. Until perhaps the last decade, you could com-
monly find PCs with RS232 serial ports. The RS232 standard changes the signal levels,
making them more suitable for traveling a greater distance than with TTL Serial.

Serial Protocol
The Serial protocol and much of the terminology around it dates back to the early days of
computer networking. Both the sender and receiver have to agree on a speed at which to
exchange data. This speed, called the baud rate, is set at both ends before communication
begins. The baud rate is the number of signal transitions per second, which would be the
same as the number of bits per second, were it not for the fact that a byte of data may have
start, end, and parity bits. So, as a rough approximation, if you divide the baud rate by 10,
you’ll know about how many bytes per second you can transfer.

Baud rates are selected from a number of standard baud rates. You may have seen these
on the Serial Monitor drop-down list on the Arduino IDE. The baud rates used by the Ardu-

ino software are: 300, 1200, 4800, 9600, 14400, 19200, 28800, 38400, 57600, and 115200
baud.

The most commonly used baud rate for the Arduino is probably 9600, which tends to
be the default baud rate. There is no particularly good reason for this as the Arduino com-
municates reliably at 115200 baud. For projects that require really fast data transfer, this
rate will be used. Another common rate is 2400 baud. Some peripherals such as Bluetooth
serial adaptors and GPS hardware use this rate.

Another rather confusing Serial connection parameter that you might encounter is a
string of characters like this: 8N1. This string means 8 bits per packet, No parity checking,
and 1 stop bit. Although other combinations are possible, any device that you are likely to
encounter will be 8N1.

The Serial Commands
The Serial commands are not contained in a library, so you do not need an include com-
mand in your sketch.

Start serial communication using the command Serial.begin, which takes the baud rate
parameter:

This is typically called just once in the setup function.
If you are using a board that has more than one serial port, and if you are using the de-

fault port (port 0), you just use the Serial.begin command. If you are using one of the other
ports, however, then put the number after the word Serial. For example, to start commu-
nication on serial port 3 on an Arduino Due, you would write the following in your sketch:

Once Serial.begin has been called, the UART will listen for incoming bytes and auto-
matically store them in a buffer, so even if the processor is busy doing other things, the
bytes will not be lost as long as the buffer does not overflow.

Your loop function can check for incoming bytes of data using the Serial.available
function. This function returns the number of bytes available for reading. If no bytes are
available, then it returns 0. This equates to “false” in C, so you will often see code like this
that tests for available data:

The read command takes no arguments and simply reads the next available byte from
the buffer.

The readBytes function reads available bytes into a buffer within the sketch, as op-
posed to the buffer used by the UART. It takes two arguments: the buffer to fill (this should
be a reference to an array of bytes) and the maximum number of bytes to read. This argu-
ment can be useful if you have a project that needs to send variable length strings to the
Arduino. In general, it is better to avoid this, however, and try to make any communication
to an Arduino of a fixed length and as simple as possible.

The parseInt and parseFloat functions can be convenient, as they allow strings sent
to the Arduino to be read as numbers into int and float variables, respectively.

Both functions read characters until they run out or reach a space or other nonnumeric
character and then turn the string into a numeric value.

Before using functions like parseInt and parseFloat, make sure you understand why
you are doing this. I have seen code that people have written converting an int into an array
of characters, that sends the array of characters to a second Arduino, which then turns the
array back into an int. There are a number of reasons why this is not a good idea:

• It is unnecessary. Serial communication sends binary just fine. All that is required is
to send the upper and lower bytes of the int, putting them into the upper and lower
bytes of a new int on receipt.

• Converting numbers into strings and vice versa is slow.
• The serial link may be passing six characters of data (including the null terminator)

rather than the 2 bytes of an int.
If the device you are interfacing with is outside of your control and the designer’s pro-

tocol uses strings to hold numbers, or has variable length fields of data, then these func-
tions can be useful. Otherwise, if the protocol is completely under your control, make life
easy for yourself and avoid the unnecessary complexity of converting types and variable-
length messages of different formats.

The examples in the “Serial Examples” section, later in this chapter, also serve as tem-
plates for designing your own communication code.

Serial has a lot of functions, many of which you’ll never need to use. The most handy
have been covered here. For the rest, please refer to the Arduino Serial documentation here:
http://arduino.cc/en/Reference/Serial.

The SoftwareSerial Library
Sometimes, especially when using an Arduino Uno, having just one serial port is not
enough. The SoftwareSerial library allows you to use almost any pair of pins for serial
communication, but with a few limitations:

• You can only receive data from one SoftwareSerial port at a time.
• You may have trouble using it if your sketch uses timer or external interrupts.
The functions available mirror those of Serial and, in some respects, are better thought

out. SoftwareSerial includes support for serial communication for devices that use inverted
signals, such as the MaxSonar rangefinders. You also create a SoftwareSerial object for
each connection, which is cleaner than the standard Arduino approach of putting a number
after the word Serial.

Table 10-2 shows the pin allocations you can use with SoftwareSerial for the Uno and
Leonardo boards. If you are using a bigger board with four hard serial ports, you are un-
likely to need SoftwareSerial. Unless prefixed with an A, the pin numbers refer to digital
pins.

http://arduino.cc/en/Reference/Serial

Table 10-2 Pin Usage for SoftwareSerial by Arduino Board
When starting a SoftwareSerial connection, specify the Rx and Tx pins as the two para-

meters when creating a SoftwareSerial object. Then use begin with a baud rate as a para-
meter to start communication:

You can find full documentation for the SoftwareSerial library here: http://arduino.cc/
en/Reference/SoftwareSerial.

Serial Examples
This section includes a mix of UART and SoftwareSerial usage examples.
Computer to Arduino over USB
This first example uses the Serial Monitor to send commands to an Arduino. The Arduino
will also send analog readings from A0 once per second, while, at the same time, looking
for single-character incoming messages of g for “go” or s for “stop” to control the flow of
readings. Figure 10-3 shows the Serial Monitor while this sketch is running.

Figure 10-3 The Serial Monitor communicating with Arduino

http://arduino.cc/en/Reference/SoftwareSerial
http://arduino.cc/en/Reference/SoftwareSerial

In this situation, because the readings from the Arduino are going to be displayed dir-
ectly in the Serial Monitor window, the readings may as well be sent as text rather than
binary.

Here is the sketch for this example:

The loop tests for incoming serial data, and if there is any, it reads one byte as a
character. This byte is then compared to the ‘s’ and ‘g’ commands and a status variable,
‘sendReadings’, is set accordingly.

The sendReadings variable is then used to determine if the reading should be made
and then printed. If the ‘sendReadings’ flag is true, then there is a second delay before the
next reading is sent.

Using delay means that sendReadings can only be changed the next time around the
loop. This is not a problem for this sketch, but in other circumstances you might need a

better solution that does not block the loop. See Chapter 14 for more discussion on this
kind of thing.
Arduino to Arduino
This second example illustrates the sending of data from one Arduino Uno to another over
a serial connection. In this case, readings from A1 of one Arduino are transmitted to the
second Arduino, which then uses them to control the flashing rate of the built-in “L” LED.

The Arduinos are wired together as shown in Figure 10-4.

Figure 10-4 Two Arduino Unos communicating over serial
One Arduino’s Tx should be connected to the Rx of the other and vice-versa. In this

example, both the Arduinos are using the SoftwareSerial library with pin 8 used as Rx and
pin 9 as Tx.

The GND connections of the two Arduinos need to be connected, as do the 5V pins as
you want to use the sending Arduino to power the receiving Arduino. The sending Ardu-
ino has a trimpot (small variable resistor) pushed into pins A0 to A2. By setting A0 and
A2 to be outputs and then setting A2 HIGH, you can vary the voltage at A1 between 0 and
5V by rotating the knob on the trimpot to control the flashing rate of the LED on the other
Arduino.

The sending Arduino’s sketch is shown here:

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch14.html

To send the 16 bit (int) reading, the reading is split into high and low bytes and each
byte is then sent over the serial link using write. Whereas print and println convert their
argument into a string of characters, write sends the byte as binary.

Here is the receiving code:

The receiving code must wait until at least 2 bytes are available and then reconstruct
the int reading by pushing the high byte up to the top 8 bits of the int and then adding the
low byte.

If you are considering sending more complex data from one Arduino to another,
then you might like to look at the EasyTransfer library: www.billporter.info/2011/05/30/
easytransfer-arduino-library/.

Although this example uses wires to connect the Tx for one Arduino to the Rx of an-
other, you could almost accomplish this as easily with wireless connections. Many wire-
less modules operate transparently, in other words, as if the serial ports were connected by
wires.
GPS Module

http://www.billporter.info/2011/05/30/easytransfer-arduino-library/
http://www.billporter.info/2011/05/30/easytransfer-arduino-library/

The final serial communication example reads positional information (latitude and lon-
gitude) from a Global Positioning System (GPS) module using TTL Serial, which then
formats the data and sends it to the Serial Monitor (Figure 10-5).

Figure 10-5 GPS readings on an Arduino
The communication with the GPS module is one way, so only the Tx output of the

module needs to be connected to an Rx pin on an Arduino. The module used is a Sparkfun
Venus GPS module (www.sparkfun.com/products/11058). Like most GPS modules, it has
TTL Serial output and will send out a burst of messages once a second at 9600 baud.

The messages conform to a standard called National Marine Electronics Association
(NMEA). Each message is a string of text, ending with the newline character. The fields of
the message are separated by commas. A typical message is shown here:

The fields in the example are as follows:
• $GPRMC The sentence type
• 081019.548 The time (very accurate) and in 24-hour format. 8:10:19.548
• 5342.6316, N Latitude × 100, that is, 53.426316 degrees North
• 00239.8728,W Longitude × 100, that is, 0.2398728 degrees West
• 000.0 Speed
• 079.7 Course 79.7 degrees
• 110613 Date 11 June 2013

The remaining fields are not relevant to this example.
NOTE You can find a complete list of the NMEA GPS sentences listed here: ht-

tp://aprs.gids.nl/nmea/.
Here is the code for this example:

http://www.sparkfun.com/products/11058
http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/

The sentences coming from the GPS module are of differing lengths, but are all less
than 80 characters, so the code uses a buffer variable sentence that is filled with the data
until an end-of-line marker is read or the buffer is full.

A C null character is placed on the end of the buffer when the whole sentence has been
read. This is only so that if you wish, you can “print” the sentence to see the raw data.

The rest of the sketch is concerned with extracting individual fields and formatting the
output to be written to the Serial Monitor. The getField function helpfully extracts the text
from a field at a particular index.

The displayGPS function first ignores any sentences that are not of the type
“$GPRMC” and then extracts the latitude and longitude and hemisphere fields to be dis-
played.

Summary
In this chapter, we investigated a few ways to program serial communications between Ar-
duinos, peripherals, and computers.

In the next chapter, we’ll turn our attention to an interesting property of the Arduino
Leonardo that allows it to emulate USB peripherals such as a keyboard and mouse. We will
also look at other aspects of USB Programming.

11
USB Programming

This chapter looks at various aspects of using the Arduino with USB. This includes the keyboard and mouse
emulation features provided by the Arduino Leonardo and also the reverse process of allowing a USB keyboard
or mouse to be connected to a suitably equipped Arduino.

Keyboard and Mouse Emulation
Three Arduino boards—the Due, the Leonardo, and the Micro, which is based on the Leonardo—can use their
USB port to emulate a keyboard or mouse. There are also Arduino-compatible boards like the LeoStick from
Freetronics (Figure 11-1) that can perform this trick.

Figure 11-1 The LeoStick
This feature is practically used largely for things like music controllers, giving the Arduino a way to inter-

face with music synthesis and control programs like Ableton Live. You could, for example, build novel musical
instruments with Arduino that use accelerometer readings, interrupted beams of light, or pedal boards to con-
trol music software.

Some of the sillier applications of these features include pranks where the computer mouse appears to take
on a life of its own or the keyboard itself types random letters.

The Arduino Due has two USB ports. Keyboard and mouse emulation takes place on the native USB port,
and you normally program the Arduino Due using the programming USB port (Figure 1-2).

Figure 11-2 The Arduino Due’s two USB ports
Keyboard Emulation
The keyboard functions are quite easy to use. They are part of the core language, so there is no library to in-
clude. To begin keyboard emulation, simply put the following command in your startup function:

To have the Arduino “type” something, you can use print and println commands and the text will appear
wherever the cursor is positioned:

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch01.html#fig1-2

If you need to use modifier keys, such as typing CTRL-C, then you can use the press
command:

The press command takes a single char as its parameter, and in addition to all the normal
characters, a number of constants such as KEY_LEFT_CTRL are defined for you to use.
Once you issue the press command, it is as if the key is held down until the releaseAll
command is given. You can find a full list of the special keys here: http://arduino.cc/en/
Reference/KeyboardModifiers.
NOTE When using the keyboard and mouse emulation features, you may encounter diffi-

culty programming the board as it might be trying to type text while you are trying to
program it. The trick is to keep the Reset button depressed and only release it when
the “uploading” message appears in the status line of the Arduino IDE.

Keyboard Emulation Example
The following example automatically types text of your choice (for instance, a password)
every time the Arduino is reset:

This example would be better if an external button triggered the typing; if you are using
a Mac, the operating system thinks a new keyboard has been attached when you reset the
device, which opens a system dialog that you must dismiss before the text is typed.
Mouse Emulation
Emulating a mouse follows much the same pattern as emulating a keyboard. Indeed there
is no reason why you cannot use both in the same sketch.

The first step is to begin emulation:

You can then move the mouse using Mouse.move. The three parameters are the amount to
move the x, y, and scroll button in pixels. These numbers can be positive (right or down)
or negative (left and up). They are relative to the current mouse position, and as there is no
way to get the absolute position of the cursor, this emulation just emulates the mouse that
moves the cursor, not the cursor itself.

http://arduino.cc/en/Reference/KeyboardModifiers
http://arduino.cc/en/Reference/KeyboardModifiers

You can also click the mouse using the click command. With no parameters, this
command is a simple left button click. You can also optionally supply an argument of
MOUSE_RIGHT or MOUSE_MIDDLE.

If you want to control the duration of a mouse click, then you can use the Mouse.press
and Mouse.release commands. Mouse.press takes the same optional arguments as
Mouse.click. This can be useful if you are, say, making your own mouse from an Arduino
and want the button click to be controlled by a switch connected to a digital input on the
Arduino. Doing this would allow you to double- or triple-click.
Mouse Emulation Example
The following example moves the mouse randomly around your screen. To stop the pro-
gram so you can regain control of your computer, either press and hold down the Reset
button or just unplug the board.

USB Host Programming
Whereas the Leonardo, Due, and Micro have the ability to act like a keyboard or mouse,
only the Due and the lesser known Arduino Mega ADK have a feature that allows you to
connect a USB keyboard or mouse to it so you can use it as an input device. This feature is
called USB Host, and although only the Due supports it directly, there are third-party USB
host shields that you can plug into an Arduino Uno or Leonardo that give you USB Host.

What is more, if you have a wireless keyboard and mouse (not the Bluetooth variety),
it should also work if you plug the USB adaptor into the host shield’s USB socket. This
way you can add wireless remote control to an Arduino.

The USB Host facility is not only restricted to a keyboard and mouse; you can use it
for many other USB peripherals, such as video game controllers, cameras, and Bluetooth,
and to interface with your Android phone.
USB Host Shield and Library
The USB Host shield and accompanying libraries have been around for a few years and
now support a good range of peripherals. The original shield was developed by Cir-
cuits@home (www.circuitsathome.com/). Other compatible USB Host shields are now
available from Sparkfun, SainSmart, and probably others. Figure 11-3 shows a Sparkfun
USB Host shield attached to an Arduino Uno. Note that at the time of writing, these boards

http://www.circuitsathome.com/

are not compatible with the Arduino Leonardo, or, in fact, anything much more exotic than
a Uno. So check before buying.

Figure 11-3 Sparkfun USB Host shield
This particular board has a handy prototyping area to which you can solder your own

extra components. An alternative to a shield is to use a board such as the Freetronics
USBDroid (Figure 11-4). This board has both a micro USB port for programming the board
and a full-size USB socket that you can plug a keyboard or similar into.

Figure 11-4 The Freetronics USBDroid
If you are using the USBDroid or an unofficial USB Host shield, then you need to use

the original USB_Host_Shield library from Circuits@ Home. If you are using the official
board, then the USB_Host_Shield_2 library is available with support for more types of
devices.

USB programming using the Host Shield Libraries is not easy. The library provides
a fairly low-level interface to the USB bus. The sample sketch
sketch_11_03_host_keyboard, available from the author’s web site
(www.simonmonk.org), is an example of connecting a keyboard using a USB Host con-
nection.

This sketch is adapted from one of the example sketches in the examples folder of the
USB_Host_Shield library. The code is changed to output keypresses to the Serial Monitor
rather than to an LCD screen as in the original example, however.

The sketch (and the original on which it is based) make a useful template for your own
code, as they both handle all the keys on the keyboard properly. If you were only interested
in the digit or cursor keys, then you could greatly simplify the sketch.

The sketch is too long to list here in full, so instead I will just highlight key areas. You
might find it useful to have the sketch loaded while reading the descriptions of the code.

There are three libraries to import:

http://www.simonmonk.org

The Spi.h library is required because that is the interface used by the USB Host controller
chip. The chip itself is a Max3421e, hence, that library, and finally there is another library
(Usb.h) layered on top of that, which hides some of the complexity of using the chip dir-
ectly.

After importing the libraries, you’ll see a series of constant definitions like this:

These are just a different way to define constants in C. It could have also been written like
this:

MAX3421E and USB objects are then created, and in setup, the powerOn function of
Max is invoked.

In the loop function, both Max and Usb have their respective Task functions called.
This triggers the interface to check for USB activity.

The USB interface will on first startup be in the USB_STATE_CONFIGURING state
until the keyboard connection is established when kbd_init is called. This function uses
an endpoint record structure (ep_record) into which the parts of the message are placed to
establish a message to begin the link with the keyboard:

After initialization is complete, the most likely state encountered in the main loop is
that the keyboard is up and running (USB_STATE_RUNNING), in which case kbd_poll
is called to check for a keypress on the keyboard.

The key line in kbd_poll is

This line reads a USB key scancode to see if a key has been pressed. This code is not
the same as an ASCII value. The mapping to ASCII takes place in the HIDtoA func-
tion. This function is the most complex in the sketch, but one that you can easily reuse
in your own sketches. You can find a list of scancodes and how they map to ASCII here:
www.win.tue.nl/~aeb/linux/kbd/scancodes-1.html.

One interesting feature of the USB Human Interface Device (HID) protocol used with
keyboards is that the SCROLL LOCK and NUM LOCK indicator LEDs can be controlled. This
takes place in the kbd_poll function in response to the SCROLL LOCK, CAPS LOCK, and
NUM LOCK keys being pressed, however, you could write a little sketch like the one in
sketch_11_04_host_scroll_lock that simply flashes the LEDs.

The key function in this sketch is

The three least significant bits of the character are flags for the three “lock” LEDs on
the keyboard.
USB Host on the Arduino Due
The Arduino Due hast the ability to act as a built-in USB Host. This feature is, at the time
of writing, considered to be “experimental” by the Arduino team. Check the official Ardu-
ino documentation (http://arduino.cc/en/Reference/USBHost) for changes to the status of
this work or any changes to the way it is used.

The Due does not have a full-size USB socket into which you can directly plug a USB
keyboard or mouse. To use such devices, you must get a Micro USB OTG Host Cable like
the one attached to the Due pictured in Figure 11-5. In the figure, the USB adapter for a
wireless keyboard is attached to the Arduino Due, but a regular USB keyboard would work
just fine.

Figure 11-5 Arduino Due with a Micro USB OTG Host Cable and keyboard
The USB libraries on the Arduino Due are actually a great deal easier to use than the

USB Host library and will return the ASCII value of a key that is pressed and not just the

http://www.win.tue.nl/~aeb/linux/kbd/scancodes-1.html
http://arduino.cc/en/Reference/USBHost

USB key scancode. The following example illustrates interfacing to a keyboard. It simply
echoes each keypress in the Serial Monitor.

The KeyboardController library invokes the keyPressed function in the sketch every
time a key is pressed. You can also intercept key release using the keyReleased function.
To find out which key was pressed, you must call one of the following functions on the
keyboard object:

• getModifiers Returns a bit mask for any modifier key that is depressed (SHIFT,
CTRL, and so on). See http://arduino.cc/en/Reference/GetModifiers for the codes.

• getKey Gets the current key as an ASCII value.
• getOemKey Returns the key scancode.
Using a mouse is equally easy and follows a similar pattern to the keyboard controller.

The following example writes a letter—L, R, U, or D—depending on whether the mouse is
moved left, right, up, or down:

http://arduino.cc/en/Reference/GetModifiers

As well as the mouseMoved function, you can also add the following functions to in-
tercept other mouse events:

• mouseDragged This event is triggered when moving the mouse while holding
down the left button.

• mousePressed This event is triggered when a mouse button is pressed and should
be followed by a call to mouse.getButton, which takes a button name of
LEFT_BUTTON, RIGHT_BUTTON, or MIDDLE_BUTTON as an argument and
returns true if it has been pressed.

• mouseReleased This function is the counterpart to mousePressed and is used to
detect when the mouse has been released.

Summary
In this chapter, you looked at a few ways to use an Arduino with USB devices.

In the next chapter, we will look at using wired and wireless network connections with
an Arduino and learn how to do some network programming as well as make use of the
Ethernet and WiFi Arduino shields.

12
Network Programming

The Internet, in what has been called the Internet of Things, is starting to go beyond browsers and web serv-
ers to include Internet-enabled hardware. Printers, home automation devices, and even refrigerators are not
only becoming smart, but also being connected to the Internet. And Arduino is at the forefront of DIY Internet
devices using either a wired connection to an Ethernet Shield or a WiFi connection. In this chapter, we look at
how to program the Arduino to make use of a network connection.

Networking Hardware
You have a number of choices for connecting your Arduino to the network. You can use an Ethernet Shield
with an Arduino Uno or an Arduino with built-in Ethernet hardware, or go for the more expensive, but wire-
less, WiFi Shield.
Ethernet Shield
As well as providing an Ethernet connection, the Ethernet Shield (Figure 12-1) also provides a microSD card
slot, which you can use to store data (see “Using SD Card Storage” in Chapter 6).

Figure 12-1 Ethernet Shield
The W5100 chip is used in the official boards; you can also find much lower-cost Ethernet Shields that use

the ENC28J60 chipset. These less expensive boards are not compatible with the Ethernet library, however, and
are frankly best avoided unless you have more time than budget.
Arduino Ethernet/EtherTen
An alternative to using a separate shield is to buy an Arduino with built-in Ethernet capability. The official ver-
sion is the Arduino Ethernet, but a worthy and Uno-compatible third-party board is the EtherTen produced by
Freetronics (www.freetronics.com). This board is shown in Figure 12-2.

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html
http://www.freetronics.com

Figure 12-2 An EtherTen board
Combining everything onto one board makes a lot of sense when building a networked

Arduino project. The Arduino Ethernet can also be fitted with a Power over Ethernet (PoE)
adapter that, with a separate PoE injector, allows the board to be powered from an Ether-
net lead, reducing the wires needed for the Arduino to be just a single Ethernet lead. The
EtherTen board comes already configured to use PoE. For more information on using PoE
with an EtherTen, see www.doctormonk.com/2012/01/power-over-ethernet-poe.html.
Arduino and WiFi
The problem with an Ethernet Internet connection is, of course, that it requires a wire. If
you want your Arduino to connect to the Internet or to a network and operate wirelessly,
then you need a WiFi Shield (Figure 12-3). These are somewhat expensive, but third-party
alternatives are available such as the Sparkfun WiFly shield (https://www.sparkfun.com/
products/9954).

http://www.doctormonk.com/2012/01/power-over-ethernet-poe.html
https://www.sparkfun.com/products/9954
https://www.sparkfun.com/products/9954

Figure 12-3 An Arduino WiFi Shield

The Ethernet Library
The Ethernet library has undergone a major revision since the release of Arduino 1.0 in
2011. In addition to allowing an Ethernet-equipped Arduino to act as either a web server
or a web client (sending requests like a browser), the library also handles things like Dy-
namic Host Configuration Protocol (DHCP), which automatically assigns an IP address to
the Arduino.
NOTE The official Arduino documentation on the Ethernet library is actually very good:

http://arduino.cc/en/reference/ethernet.
Making a Connection
The first step, before any communication can take place, is to establish a connection from
the Arduino to your network. The library function is called Ethernet.begin(). You can
manually specify the connection settings for the board using the following syntax:

Let’s look at each of these parameters in turn:
• mac The mac address of the network card (I’ll explain this in a moment.)
• ip The IP address of the board (You have to select one acceptable to your net-

work.)
• dns The IP address for a Domain Name Server (DNS)
• gateway The IP address for the Internet gateway (your home hub)
• subnet The subnet mask
This syntax looks a little daunting unless you are used to manual network administra-

tion. Fortunately, all the parameters except mac are optional, and 90 percent of the time,
you will either specify mac and ip or, most likely, just the mac on its own. All the other
settings are taken care of automatically.

http://arduino.cc/en/reference/ethernet

The MAC, or Media Access Control, address is a unique identifier for the network in-
terface; in other words, it’s the address for the Ethernet Shield or for whatever is providing
the network interface for the Arduino. This strange-looking code only has to be unique for
your network. You’ll usually find this number printed on the back of your Arduino Ether-
net Shield or WiFi Shield (Figure 12-4) or on the box packaging. If you are using an older
board that does not have a MAC address, then you can simply make one up. However, do
not use the same made-up number more than once on your network.

Figure 12-4 Mac address sticker on a WiFi Shield
You can also create a network connection using DHCP so the IP address is allocated

dynamically; use this code:

If you want to fix the IP address, which would be desirable if you wanted to run a web
server on the Arduino, then you would use code like this:

You need to ensure that the IP address you use is acceptable to your network. If you do
not specify an IP address and use DHCP, then Ethernet.begin will return 1 if a connection
is made and an IP address allocated; otherwise, it returns a 0. You can incorporate a test
in which you make the connection and use the localIP function to retrieve the IP address
allocated to the Arduino. The following example performs this test and reports the status
to the Serial Monitor. This is a full sketch that you can try for yourself. But before you do,
remember to change the MAC address in the code to match that of your interface board.

Setting Up a Web Server
The project “Physical Web Server,” described later in this chapter, illustrates the code
structure of a web server sketch. In this section, we’ll look at the available web server func-
tions.

The EthernetServer class contains most of the functions that you need for web
serving. Having established a connection to the network, starting a web server requires two
further steps. First, you need to create a new server object, specifying the port that the serv-
er should be listening on. This declaration appears in the sketch before the setup function.

Web pages are usually served on port 80. So if you start the web server on port 80, you will
not need to add a port number to any URL that connects to the server.

Second, to actually start the server, you use the following command in your setup func-
tion:

This function starts the server, and it will now be waiting for someone with a browser to
load the web page that it is serving. This action is detected in the loop function of your
sketch using the available function. This function returns either null (if there are no re-
quests to service) or an EthernetClient object. This object is rather confusingly also used
when making outgoing requests from the Arduino to web servers. In either case, Ether-
netClient represents the connection between a web server and a browser.

Having retrieved this object, you can then read the incoming request using read and
you can write HTML to it using the write, print, and println functions. Once you’ve fin-
ished writing the HTML to the client, you need to call stop on the client object to end the
session. I explain how to do this in “Physical Web Server” later in this chapter.
Making Requests
In addition to having the Arduino act as a web server, you can also have it act like a web
browser, issuing HTTP requests to a remote web server, which may be on your own net-
work or on the Internet.

When making web requests from the Arduino, you first establish a network connection
in just the same way that you did in the previous section for the web server, but instead of
creating an EthernetServer object, you create an EthernetClient object:

You do not need to do anything more with the client object until you want to send a web
request. Then you write something like this:

The connect function returns true if the connection is successful. The two cli-
ent.println commands are responsible for requesting the desired page from the web server.
The two nested while loops then read data as long as the client is connected and data is
available.

It may look tempting to combine the two while loops, with a condition of cli-
ent.available() && client.connected(), but combining them is not quite the same as treat-
ing them separately, as the data may not be available continuously from the web server be-

cause of connection speed and so on. The outer while loop keeps the request alive, fetching
the data.

This approach is “blocking” (the Arduino will not do anything else until the request is
complete). If this is not acceptable for your project, you can include code to check for other
conditions inside the inner while loop.

Ethernet Examples
The following two examples serve to illustrate the use of the Ethernet library in practical
settings. Between the two of them, the examples cover most things that you are likely to
want to do with a networked Arduino.
Physical Web Server
This first example illustrates perhaps the most likely web-related use of an Arduino. In it,
the Arduino acts as a web server. Browsers connecting to the Arduino web server not only
see readings from the analog inputs, but visitors can also press buttons on the web page to
change the digital outputs (Figure 12-5).

Figure 12-5 Physical web server interface
This example is actually a great way to interface an Arduino with a smartphone or tab-

let computer, as a device only has to have the most basic of browsers on it to be able to
send requests to the Arduino. The sketch for this example (sketch_12_02_server) is some
172 lines long, so rather than list it in full here, I encourage you to load it in the Arduino
IDE for reference as I walk you through it.

The first part of the sketch is pretty standard for a network sketch. The libraries are im-
ported, and both EthernetServer and EthernetClient objects are defined.

The variables in the next section perform various roles:

The constant numPins defines the size of the arrays pins and pinState. The pinState array
is used to remember whether the particular output pin is HIGH or LOW. The setup func-
tion declares all the pins in the pins array to be outputs. It also establishes the network con-
nection in the same way as in the earlier examples. Finally, the line1 and buffer character
arrays hold the first line of the HTTP request and subsequent lines, respectively.

Here is the loop function:

The loop function checks to see if there are any requests from browsers waiting to be
processed. If there is a request and there is a connection, then the readHeader function is
called. You’ll find the code for this toward the end of the sketch. The readHeader func-
tion reads the contents of the request header into a buffer (line1) and then skips over the
remaining lines of the header. This is required so you have access to the page name (re-
quested by the browser) as well as any request parameters.

Note that because the sketch has a fair amount of text to send to the Serial Monitor and
network, I use the F function to store the character arrays in flash memory (see Chapter 6).

Having read the header, the pageNameIs function (again near the end of the file) is
called to ensure the page being requested is the root page (/). If it is not the root page, then

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch06.html

the request is ignored. This is important because many browsers automatically send a re-
quest to a server to find an icon for the website. You don’t want this request being confused
with other requests to the server.

Now you need to generate a response in the form of a header and some HTML to be
returned to the browser for display. The sendHeader function generates an “OK” response
to indicate to the browser that the request is valid. The sendBody function, shown here, is
a lot more complicated:

This function prints the basic template of the HTML page, relying on a number of help-
er functions to break the code down into more manageable chunks. The first of these is
sendAnalogReadings:

This loops over each of the analog inputs, reading the value and writing out an HTML table
containing all the readings as voltages.

You may have noticed that the sendBody function also calls setValuesFromParams
and setPinStates. The first of these uses the function valueOfParam to set the pinStates
variable containing the states of the output pins HIGH or LOW depending on the value of
the request parameters that were contained in the request header:

The valueOfParam function expects the request parameter to be a single digit. You
can see what these parameters look like if you run the example and browse to the page
and press Update. The URL string will then change to include the parameters and look
something like this:

The parameters start after the ? and take the form X=Y, separated by &. The part before the
= is the parameter name (in this case, a digit from 0 to 4) and the part after the = is its value,
which is 1 for on and 0 for off. To make life easy for yourself, these request parameters
must be only a single character or, in this case, a single digit. The setPinStates function
then transfers the state of the output pins held in the pinStates array to the actual output
pins themselves.

Let’s return to the sendBody function for a moment. The next thing that you need to
send is the HTML for the collection of drop-down lists for each output. You need the val-
ues of True or False in the list to be set to agree with the current state of the output. You
accomplish this by adding the text “selected” to the value that agrees with the value for that
pin in the pinStates array.

All the HTML generated for the output pins is contained within a form, so when a
visitor presses the Update button, a new request to this page with the appropriate request
parameters to set the outputs is generated. At this point, let’s look at the HTML code that
is generated for the page:

You can see this using your browser’s View Source feature.
Using a JSON Web Service
To illustrate sending a web request from an Arduino to a website, I’ll use a web service
that returns data about the weather in a particular location. It reports a short description of
the weather to the Serial Monitor (Figure 12-6). The sketch sends the request once during
startup, but the example could easily be changed to check every hour and display the result
on a 16×2 LCD display.

Figure 12-6 Retrieving weather information from a web service

The sketch for this example is quite short, just 45 lines of code
(sketch_12_03_web_request). Most of the interesting code is in the function hitWe-
bPage:

The first step is to get the client to connect to the server on port 80. If this is successful,
then the page request header is written to the server:

The extra println is needed to mark the end of the request header and trigger a response
from the server.

To wait for the connection, the if statement inside the while loop detects when data is
available to be read. Reading the data stream directly avoids the need to capture all of the
data into memory. The data is in JSON format:

Returning to the hitWebPage function, we are going to extract the section of the text
from “description” followed by a colon and then double quotation marks until the next
double quotation mark using the findUntil and readStringUntil functions.

The findUntil function just ignores everything from the server until the matching string
is found. The readStringUntil function then reads all the subsequent text until the double
quote character.

The WiFi Library
As you might expect, the WiFi library is quite similar to the Ethernet library. If you sub-
stitute WiFi for Ethernet, WiFiServer for EthernetServer, and WiFiClient for Ether-
netClient, then everything else in your sketch can pretty much stay the same.
Making a Connection
The main differences between the WiFi and Ethernet libraries are in how a connection is
established.

First, you need to import the WiFi library:

To establish a connection, use the WiFi.begin command, supplying it with the name of
your wireless network and your password.

The WiFi example that follows in “WiFi Example” illustrates the other differences that
you need to be aware of.
WiFi Specific Functions
The WiFi library has some extra WiFi-specific functions that you can use. These functions
are summarized in Table 12-1.

Table 12-1 WiFi Specific Features
You can find full documentation for the WiFi library here: http://arduino.cc/en/Refer-

ence/WiFi.

WiFi Example
For the example, I modified sketch_12_02_server to work with a WiFi Shield. You can
find the code in sketch_12_04_server_wifi. Rather than repeat the whole example, I will
just highlight the changes from the original version.

First, to make the connection to a wireless access point, you need to specify the name
of the wireless network and its password:

You also need to change the names of the classes for the server and client from Ether-
netServer and EthernetClient to WiFiServer and WiFiClient:

You still need to specify port 80 when defining the server.
The next difference between the two shields is at the point where the connection starts.

In this case, you must use

The remainder of the code is almost exactly the same as the Ethernet code. You will
find a delay(1) command in loop before the client is stopped, which gives the client time

http://arduino.cc/en/Reference/WiFi
http://arduino.cc/en/Reference/WiFi

to finish reading before the communication is closed. You don’t need this in the Ethernet
version. You’ll also notice that I combined some of the client.print calls into fewer calls
of bigger strings. This speeds up the communication as the WiFi Shield deals with sending
small strings quite inefficiently. However, be aware that the strings in an individual cli-
ent.print or client.println cannot be longer than 90 bytes or they will not be sent.

The WiFi version of this program is considerably slower than the Ethernet version, tak-
ing up to 45 seconds to load. The firmware on the WiFi Shield can be updated, and if in
the future the Arduino team improves the efficiency of the WiFi Shield, then it may be
worth updating the firmware. Look for instructions for this on the WiFi Shield web page:
http://arduino.cc/en/Main/ArduinoWiFiShield.

Summary
In this chapter, you looked at a variety of ways to connect your Arduino to a network and
then make it do something, using both Ethernet and Wi-Fi Shields. You have also learned
how to use an Arduino as both a web server and a web client.

In the next chapter, you’ll learn about Digital Signal Processing (DSP) with the Ardu-
ino.

http://arduino.cc/en/Main/ArduinoWiFiShield

13
Digital Signal Processing

The Arduino is capable of fairly rudimentary signal processing. This chapter discusses a variety of tech-
niques, from conditioning a signal from an analog input using software rather than external electronics to cal-
culating the relative magnitude of various frequencies in a signal using a Fourier Transform.

Introducing Digital Signal Processing
When you take readings from a sensor, you are measuring a signal. It is common to visualize that signal as a
line (usually wavy) moving from the left of the page to the right over time. This is how electrical signals are
viewed on an oscilloscope. The y-axis is the amplitude of the signal (its strength) and the x-axis is time. Figure
13-1 shows a signal in the form of music, captured over a period of just 1/4 of a second using an oscilloscope.

Figure 13-1 A signal from a musical source
You can see some repeating patterns in the signal. The frequency at which these patterns recur is called the

frequency. This is measured in Hertz (abbreviated to Hz). A signal of 1 Hz repeats itself once every second.
A signal of 10 Hz, 10 times per second. Looking at the left of Figure 13-1, you see a signal that repeats itself
roughly every 0.6 of a square. As each square represents 25 milliseconds, with the settings used on the oscillo-
scope, the frequency of that part of the signal is 1/(0.6×0.025) = 67 Hz. If you were to zoom in using a shorter
time span, you would see that many other sound component frequencies mixed in there as well. Unless a signal
is pure sine wave (like the one shown later in Figure 13-5), then it will always comprise a whole load of fre-
quencies.

You could try to capture the signal shown in Figure 13-1 using one of the Arduino’s analog inputs. This
is called digitization because you are making the analog signal digital. To do this, you have to be able to take
samples fast enough to get a good reproduction of the original signal.

The essence of Digital Signal Processing (DSP) is to digitize a signal using an analog-to-digital converter
(ADC), manipulate it in some way, and then generate an analog output signal using a digital-to-analog convert-
er (DAC). Most modern audio equipment, MP3 players, and cell phones use DSP, which provides equalization
settings that allow you to control the relative power of the high or low frequencies in a piece of music. Some-
times, however, you don’t need the output to be a version of the input; you simply need to use DSP techniques
to remove unwanted noise from a signal to get more accurate readings from a sensor.

In general, Arduinos are not the ideal devices for DSP. They cannot capture analog signals particularly fast,
and their digital output is limited to PWM. The exception to this is the Arduino Due, which, as well as having
lots of ADCs also has a fast processor and two true DACs. Therefore, the Due’s hardware is sufficiently good
enough to stand a fighting chance of digitizing a stereo audio signal and doing something with it.

Averaging Readings
When reading from sensors, you often find that you can get better results by taking a num-
ber of readings and then averaging them. One way to do this is to use a circular buffer
(Figure 13-2).

Figure 13-2 A circular buffer
Using a circular buffer arrangement, as each new reading is taken, it is added to the

buffer at the current index position. When the last index position is filled, the index posi-
tion is set back to zero and the old readings start being overwritten. In this way, you always
keep the last N readings, where N is the size of the buffer.

The following example code implements a circular buffer:

This approach produces invalid averages until the buffer has been filled. In practice,
this need not be a problem as you can just ensure that you take a buffer full of readings
before you start requesting the average.

Notice that the average function uses a long to contain the sum of the readings. Using
a long is essential if the buffer is long enough to exceed the maximum int value of about
32,000. Note that the return value can still be an int as the average will be within the range
of the individual readings.

An Introduction to Filtering
As I discussed in the section “Introducing Digital Signal Processing,” any signal is usually
comprised of a wide range of different component frequencies. At times, you may want to
ignore some of these frequencies, in which case you need to use filtering.

The most common type of filtering with an Arduino is probably low-pass filtering.
Say you have a light sensor and you are trying to detect the overall light level and how
it changes from minute to minute, for instance, to detect when it is dark enough to turn
on a light. But you want to eliminate higher frequency events such as a hand momentarily
passing near the sensor or the sensor being illuminated by artificial light that actually flick-
ers considerably at the line frequency (60 Hz if you live in the United States). If you are
only interested in the very slow-moving part of the signal, then you need a low-pass filter.

For the opposite effect, if you want to respond to fast-moving events but ignore the
longer trend, you need a high-pass filter.

Returning to the line frequency interference problem, if, for example, you are interested
in frequencies above and below the 60 Hz noise, then simply cutting off the low frequen-
cies may not be an option. For that, you may want to use a band stop filter that just removes
the component of the signal at 60 Hz or, more likely, all frequencies from 59 to 61 Hz.

Creating a Simple Low-Pass Filter
Maintaining a buffer of readings is often unnecessary if all you really want to do is smooth
out the signal. Such filtering can be thought of as low-pass filtering because you are re-
jecting high-frequency rapid signal changing and are interested in the overall trend. You
use filters like this in sensors such as accelerometers that are sensitive to high-frequency
changes in the signal that you may not be interested in if you simply want to know the
angle something is tilted to.

A simple-to-code and useful technique for accomplishing this relies on retaining a kind
of running average between readings. This running average comprises a proportion of the
current running average and a proportion of the new reading:
smoothedValuen = (alpha × smoothedValuen–1) + ((1 – alpha) × readingn)
Alpha is a constant between 0 and 1. The higher the value of alpha, the greater the smooth-
ing effect.

This makes it sound more complicated than it is, however. The following code shows
how easy it is to implement:

By copying and pasting the output of the Serial Monitor into a spreadsheet and then
charting the result, you can see how well the smoothing is performing. Figure 13-3 shows
the result of the previous code, with a short wire stuck into the top of A1 to pick up some
electrical interference.

Figure 13-3 Plotting smoothed values
You can see how it takes a while for the smoothed value to catch up. If you were to

increase alpha to, say, 0.95, then the smoothing would be even more pronounced. Plotting
the data written to the Serial Monitor is a great way to make sure the smoothing that you
are applying to your signal is what you need.

Arduino Uno DSP

Figure 13-4 shows how you can wire up an Arduino so an audio signal is fed into A0 and
a PWM (10 kHz) output signal is generated. I used a smartphone app as the signal generat-
or, and I connected the headphone output of the phone to the Arduino, as shown in Figure
13-4.

Figure 13-4 Using an Arduino Uno for DSP
CAUTION Be warned: connecting your phone in this way probably voids its warranty

and could destroy your phone.
The input from the signal generator is biased using C1, R1, and R2; therefore, the os-

cillation is about the midpoint of 2.5V, so the ADC can read the whole signal. If these com-
ponents were not there, the signal would swing below 0V for half its cycle.

I used a crude filter comprising R3 and C2 to remove most of the PWM carrier. The
PWM frequency of 10 KHz is unfortunately a bit too close to the signal frequency to re-
move all the PWM carrier frequency easily.

As well as looking at the signal with an oscilloscope, you could also listen to it by
attaching an audio amplifier, but if you connect an amplifier, make sure the input is AC
coupled.

The following sketch uses the TimerOne library to both generate the PWM signal and
sample the audio at 10 kHz:

Figure 13-5 shows the input to the Arduino (top trace) and the output from the Arduino
(bottom trace) of a 1 kHz signal. The signal is actually not bad up until you get to 2 to
3 kHz and then it becomes rather triangular, as you would expect with the small number
of samples per waveform. You can see some of the carrier is still there as jaggedness, but
overall the shape is not bad. It is certainly good enough for speech frequencies.

Figure 13-5 Arduino Uno signal reproduction with a signal of 1 kHz

Arduino Due DSP
Now we can carry out the same experiment using an Arduino Due at a much higher sample
rate. The code used for the Uno in the previous section is of no use with the Due, which
cannot use the TimerOne library and has a different architecture.

The Due analog inputs operate at 3.3V, so be sure to connect the top of R1 to 3.3V
and not 5V. Because the Due has an analog output, you can dispense with the low-pass R3
and C2 filter and connect the oscilloscope directly to the DAC0 pin. Figure 13-6 shows the
connections for the Due.

Figure 13-6 Using an Arduino Due for DSP
The following sketch uses a sample rate of 100 kHz!

Unlike the other Arduino boards, the Arduino Due allows the resolution of both the
ADC and DAC to be set. To keep things simple and fast, these are both set to 8 bits.

The following line speeds up ADC on the Due by manipulating register values. Follow
the link in the code for more information on this trick.

The sketch uses the micros function to control the sample frequency, only running the
sampling code when enough microseconds have elapsed.

Figure 13-7 shows how the setup reproduces a 5 kHz input signal. You can see the steps
in the generated signal corresponding to the 20 samples per waveform you would expect
from a 100 kHz sample rate.

Figure 13-7 Arduino Due signal reproduction with a signal of 5 kHz

Filter Code Generation
If you are looking at more advanced filtering, there is a useful online code generator that
allows you to design a filter and then cut and paste lines of code that it generates into your
Arduino sketch. You will find this code here: http://www.schwietering.com/jayduino/fil-
tuino/.

Frankly, the alternative is whole lot of painful math!
Figure 13-8 shows the interface to the filter generator. The bottom half of the screen

shows the generated code, and shortly I will show you how you can incorporate this into
an Arduino sketch.

http://www.schwietering.com/jayduino/filtuino/
http://www.schwietering.com/jayduino/filtuino/

Figure 13-8 Filter code generator for Arduino
You have a bewildering array of options for the type of filter to be generated. The

example shown in Figure 13-4 is a band stop filter designed to reduce the amplitude of
the signal at frequencies between 1 kHz and 1.5 kHz. Starting at the top row, the settings
for this are “Butterworth,” “band stop,” and “1st order.” Butterworth refers to the fil-
ter design, from its original analog electronics design (http://en.wikipedia.org/wiki/Butter-
worth_filter). The Butterworth is a good all round design and a good default.

I also selected the option “1st order.” Changing this to a higher number will increase
both the number of previous samples that need to be stored and also the steepness of the

http://en.wikipedia.org/wiki/Butterworth_filter
http://en.wikipedia.org/wiki/Butterworth_filter

cutoff of the unwanted frequencies. For this example, “1st order” is fine. The higher the or-
der, the more calculations to perform and you may find that you need to reduce the sample
rate for the Arduino to keep up.

Then you see some disabled fields that relate to other types of filter, until you come to
“samplerate.” Samplerate is the frequency at which the data will be sampled and also the
frequency at which the generated code will be called to apply the filtering to the signal.

Next, I specified the upper and lower frequencies. You can enter these as either a fre-
quency in Hz or a MIDI note.

The “more” section provides a couple more options and even tells you how to set them
for best results. The “output” section allows you to specify the type to use for the array of
values that are used to do the filtering. I set this to “float.” Finally, I clicked Send to gener-
ate the code.

To test this, you can modify the “null filter” example that you ran on the Due. The full
sketch can be found in sketch_13_05_band_stop_due.

The first step is to copy and paste the generated code into the basic “null filter” example
just after the constant definitions. It is also a good idea to paste the URL from the generator
as a comment line, so if you want to go back and modify the filter code, you’ll have the
parameters you used last time preset in the user interface. The generated code encapsulates
all the filter code into a class. You’ll meet classes again in Chapter 15. But, for now, you
can treat it as a black box that will do filtering.

After the pasted code, you need to add the following line:

Now you need to modify the loop function, so that instead of simply outputting the in-
put, the Arduino outputs the filtered value:

Making the filtered signal is as easy as supplying the raw reading from the analog input
as argument to the function f.step. The value returned is the filtered value, which can be
converted to an int before being written by the DAC.

Looking at the step function, you can see that the filter code keeps a history of three
previous values along with the new value. There is some shuffling up of values and then
scaling of values by factors to produce a return value. Isn’t math wonderful?

Figure 13-9 shows the result of this filtering. A signal generator was used to inject dif-
ferent frequency signals and the output amplitude (measured using the oscilloscope) recor-
ded in a spreadsheet and then plotted in a chart.

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch15.html

Figure 13-9 Frequency response of an Arduino band stop filter

The Fourier Transform
The Fourier Transform is a useful tool for analyzing the frequencies in a signal. As you
recall from the introduction to this chapter, signals can be thought of as being made up of
varying amounts of sine waves at different frequencies. You have probably seen frequency
analyzer displays on musical equipment or on the visualization utilities in your favorite
MP3 playing software. These analyzers display as bar charts. The vertical bars represent
the relative strengths of different bands of frequencies, with the low-frequency bass notes
over on the left and the high-frequency bands on the right.

Figure 13-10 shows how the same signal can be viewed both as a single wavy line
(called the time domain) and a set of strengths of the signal in a set of frequency bands
(called the frequency domain).

Figure 13-10 A signal in time and frequency domains
The algorithm for calculating the frequency domain from time domain signal data is

called the Fast Fourier Transform or FFT. The calculations involved in FFTs use complex
numbers and, unless you are really into math, are not for the faint of heart.

Fortunately for us, clever people are often happy to share their code. You can download
a function that will perform the FFT algorithm for you. The sample code I used is not or-
ganized into a library; it is supplied as a C header and C++ implementation file (.h and .cpp,
respectively). To use it, you can just place the two files into your sketch folder. These are in
the sketches that accompany the book, so you do not need to download them. The code ori-
ginally appeared in a post on the Arduino Forum (http://forum.arduino.cc/index.php/top-
ic,38153.0.html). You can also find the two files, with other examples of the algorithm, at
these websites:
https://code.google.com/p/arduino-integer-fft/
https://github.com/slytown/arduino-spectrum-analyzer/

http://forum.arduino.cc/index.php/topic,38153.0.html
http://forum.arduino.cc/index.php/topic,38153.0.html
https://code.google.com/p/arduino-integer-fft/
https://github.com/slytown/arduino-spectrum-analyzer/

The following two examples illustrate how to use code running on an Arduino Uno to
sample an audio signal.
Spectrum Analyzer Example
This example uses an Arduino Uno to make a text-based frequency spectrum display. You
can find the example in sketch_13_06_FFT_Spectrum. The sketch is a little long to re-
peat here in full, so I’ve only included snippets. Load the sketch into your Arduino IDE to
follow the discussion.

The FFT algorithm uses two arrays of char. This type is used rather than byte, because
in Arduino C, byte is unsigned, and the signal to be converted is expected to oscillate about
a value of 0. Once the FFT algorithm has been applied, the data array will contain the
strengths of each component frequency band from lower to higher. The frequency range
depends on the sample speed. This sketch lets the Uno run as fast as possible without any
consideration for accuracy and gives a top frequency of about 15 kHz, since there are 63
slots giving evenly spaced frequency bands about 240 Hz apart.

To make the analog conversion as fast as possible and get a decent sample rate, use the
trick discussed in Chapter 4 to increase the speed of the ADC. This accounts for these two
lines in setup.

The main loop doesn’t contain much code:

The function sampleWindowFull samples a time window of 128 samples worth of
data. I’ll discuss this in a moment. The FFT algorithm is then applied. The parameter of 7
is the base 2 logarithm of the number of samples. This value will always be 7. The para-
meter of 0 is an inverse flag, which will also always be set to 0 for false. After the FFT
algorithm has been applied, there is a further step to update the values in the arrays. Finally
showSpectrum is called to display the frequency data.

The function sampleWindowFull reads 128 analog values and assumes that the signal
is biased to 2.5V, so that by subtracting 512 from the reading, the signal will swing both
positive and negative. This is then scaled by the constant GAIN to add a little amplifica-
tion for weak signals. The 10-bit reading is then converted into an 8-bit value to fit into the
char array by dividing it by 4. The im array containing the imaginary component of the
signal is set to 0. This is part of the inner workings of the algorithm; if you want to find out
more about this, see http://en.wikipedia.org/wiki/Fast_Fourier_transform.

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch04.html
http://en.wikipedia.org/wiki/Fast_Fourier_transform

The updateData function calculates the amplitude of each frequency slot. The strength
of the signal is the hypotenuse of the right-angle triangle whose other sides are the real and
imaginary parts of the signal (Pythagoras’s Theorem in action!).

To display the data, it is written to the Serial Monitor, which places the whole data set
on one line, with commas between the values. The first value is ignored, as this contains
the DC component of the signal and is not usually of interest.

You could, for example, use the data array to control the height of graphical bars on an
LCD display. To connect a signal (say, the audio output of an MP3 player), you would need
the same type of arrangement as shown previously in Figure 13-4 so the signal is biased
around 2.5V.
Frequency Measurement Example
This second example uses an Arduino Uno to display the approximate frequency of a signal
in the Serial Monitor (sketch_13_07_FFT_Freq). Most of the code is the same as for the
previous example. The main difference is that once the data array has been calculated, the
index position of its highest value is used to calculate an estimate of the frequency. The
loop then displays this value in the Serial Monitor.

Summary

DSP is a complex subject, and there are many books devoted just to this topic alone. This
complexity means that, by necessity, I’ve only touched on what are hopefully the more
useful and possible techniques that you might try with an Arduino.

In the next chapter, we turn our attention to dealing with the problem of wanting to do
more than one thing at a time with the Arduino. This is a particular problem for those of us
used to programming larger machines, where multiple simultaneous threads of execution
are the norm.

14
Managing with One Process

Programmers coming to Arduino from a background in programming large systems often cite the lack of
multithreading and concurrency in Arduino as a deficiency. In this chapter, I’ll try to set the record straight and
show you how to embrace the single-thread model of embedded systems.

Making the Transition from Big Programming
Arduino has attracted many enthusiasts, including me, who have spent years in the software industry and are
used to teams of dozens of people contributing to a huge software effort, with all the related problems of man-
aging the ensuing complexity. For us, the ability to write a few lines of code and have something interesting
and physical happen almost immediately, without large amounts of engineering, is the perfect antidote to big
software.

It does, however, mean that we often look for things in Arduino that we are used to seeing in our day jobs.
When moving from the big development world to the miniature world of Arduino, one of the first adjustments
we need to make is to the very simplicity of writing for Arduino. To develop a large system without the bene-
fit of Test Driven Development, version control, and some kind of Agile process to follow is reckless. On the
other hand, a large Arduino project may be only 200 lines of code written by one person. If that person is an
experienced software developer, he or she can simply keep the details in mind without needing any of the usual
accoutrements of development.

So stop fretting about version control, design patterns, writing unit tests, and having a refactoring IDE and
just embrace the joyous simplicity of Arduino.

Why You Don’t Need Threads
If you are old enough to have programmed home computers in BASIC, then you remember that “doing one
thing at a time” is simply how computers operate. In BASIC, if a game required a number of sprites to be
moved apparently simultaneously, then you had to be smart and include a main loop that moved each sprite a
little bit.

This mindset is a good one to have for Arduino programming. Rather than multiple threads each being re-
sponsible for one of the sprites, a single execution thread does a little bit of everything in turn, without “block-
ing” on any one thing.

Aside from multicore computers, essentially a computer only genuinely does one thing at once. The rest of
the time, the operating system switches the processor’s attention among the numerous processes running on the
computer. On the Arduino, with a limited need to do more than one thing at a time, you can code it yourself, as
there is no operating system.

Setup and Loop
It is no accident that the two functions you must write for any sketch are setup and loop. The fact that loop
repeats over and over again, indicates why you should not really allow loop to block. Your code should wiz
through loop and around again before you know it.
Sense Then Act
Most Arduino projects contain an element of needing to control something. Therefore, the contents of a loop
often:

• Check if buttons are pressed or a sensor threshold has been exceeded.
• Perform a relevant action.

A simple example of this would be a push switch that, when pressed, toggles LED flashing on and off.
The following example illustrates this. As you shall see later, however, the limitations imposed by having

to wait while the LED flashes are sometimes not acceptable.

The problem with this code is that you can only check that the button has been pressed
once the blinking has finished. If a button is pressed while the blinking is in progress, it
won’t register. This may not be important to the operation of the sketch, but if it is im-
portant to register every button press, then you need to make sure the loop does not have
any delays in it. In fact, once the flashing is triggered, the Arduino spends most of its time
blinking and there is only a tiny window in which the button press can be registered.

The example in the next section solves this problem.
Pause Without Blocking
You can rewrite the previous sketch to avoid using delay:

In this sketch, I have added two new variables: lastChangeTime and ledState. The
lastChangeTime variable records the last time the LED was toggled between on and off,
and the ledState variable contains that on/off state, so when it needs to be toggled, you
know what the LED’s current state is.

The loop now contains no delays. The first part of the loop checks for a button press,
and if a button is pressed, it toggles the flashing state. The extra if statement, shown next,
is simply a nice refinement that turns the LED off if the button press has caused flashing
to be turned off. Otherwise, the LED might be left on, even though flashing has been can-
celed.

The second part of the loop finds the current millis() count and then compares this with
the value in lastChangeTime with period added to it. This means that the code inside the
if will only be run if more than period milliseconds has elapsed.

The ledState variable is then toggled and the digital output set accordingly. The value
in now is then copied to lastChangeTime so the code can wait for the next period to
elapse before being activated again.

The Timer Library
The “Pause Without Blocking” approach of the previous section has been generalized into
a library that allows you to schedule repeating events using millis. Despite its name, the
library has nothing to do with the hardware timers on the device and will, therefore, work
just fine on most Arduino boards.

You can download the library from http://playground.arduino.cc//Code/Timer.
Using this library simplifies the code, as you can see here:

http://playground.arduino.cc//Code/Timer

To use this library, you define a timer, in this case called t, and then within your setup
function you specify a function that calls periodically using:

You then place the following line in your loop function:

Every time the update function is called, millis checks when any of the timed events need
to be actioned, and if they do, it calls the linked function (in this case flashIfRequired).

The Timer library also has a number of other utility functions; for more information on
the library, see the link at the beginning of this section.

Summary
In this chapter, you learned how to allow multiple things to appear to happen at the same
time on an Arduino, without using multiple threads. This is simply a matter of adjusting
your mindset to the constraints imposed by your favorite little microcontroller board.

In the final chapter of this book, you will learn how to share your code creations with
the Arduino community by creating and publishing Arduino libraries.

15
Writing Libraries

Sooner or later you will create something really good that you think other people could make use of. This is
the time to wrap up the code in a library and release it to the world. This chapter shows you how.

When to Make a Library
Creating an Arduino library is not an activity restricted to Arduino developers; any Arduino user can create a
library. If it’s useful, then much praise will flow in the developer’s direction. No one sells libraries—that would
be counter to the values of the Arduino community. Libraries should be released as open source as a way to
help your fellow Arduino enthusiasts.

Perhaps the most useful Arduino libraries are those that are developed to provide an interface to a specific
piece of hardware. They often greatly simplify the process of using the hardware and, in particular, unraveling
some complex protocol. There is no reason why more than one person should have to go through the pain of
working out how some obscure bit of hardware works, and thanks to the Internet, if you publish a helpful lib-
rary, people will generally find it.
TIP The application programmer interface (API) is the set of functions that the library user will include in

his or her sketch. When designing the API, always ask yourself this question: “What does the user actu-
ally care about?” The low-level implementation details should be hidden as much as possible. In the ex-
ample developed in “Library Example (TEA5767 Radio),” I’ll discuss this issue further.

Using Classes and Methods
Although the sketch writer generally has the impression that he or she is writing in C and using a fairly conser-
vative set of C features, in actual fact, the sketch writer is using C++. Arduino sketches are based on C++, the
object-oriented extension to the C language. This language uses the concepts of classes of objects that group
together information about the object (its data) and also functions that apply to the data. These functions look
like regular functions but when associated with a particular class are referred to as methods. What is more,
methods can be declared to be public, in which case anyone can use them, or private, in which case they are
only accessible to other methods inside the class.

The reason I am telling you all this is that extension writing is one of the few Arduino activities in which
using classes is the norm. The class is a great way to wrap up everything into a kind of module. The “private”/
“public” distinction is also a good way to ensure that when you are designing the API, you are always thinking
of how the sketch writer will want to interact with the library (the public) rather than how it works (the private).

As you work through the example that follows, you’ll see how to use a class.

Library Example (TEA5767 Radio)
To illustrate how to write an Arduino Library, I’ll wrap up some code that you first met back in Chapter 7 for
the TEA5767 FM radio receiver. The sketch is simple and barely justifies a library, but nonetheless, it serves
as a good example.

The following are the stages in the process:
1. Define the API.
2. Write the header file.
3. Write the implementation file.
4. Write the keywords file.
5. Make some examples.
In terms of files and folders, a library comprises a folder, whose name should match the name of the library

class. In this case, I’ll call the library and class TEA5767Radio. Within that folder, there should be two files:
TEA5767Radio.h and TEA5767Radio.cpp.

Optionally, you may also have a file named keywords.txt and a folder called examples, containing example
sketches that use the library. The folder structure for this example library is shown in Figure 15-1.

C:\Users\sherif\AppData\Local\Temp\don4C22\OPS\ch07.html

Figure 15-1 Folder structure of the example project
Probably the easiest way to work on the library is directly in your Arduino libraries

folder, where you have been installing other third-party libraries. You can edit the files
directly in this folder. The Arduino IDE will only register that the library exists once you
restart it, but after that any changes to the contents of the files will be picked up automat-
ically when you compile the project.

You can see the original sketch on which this library is based in
sketch_07_01_I2C_TEA5767, and you can download the finished library from ht-
tp://playground.arduino.cc//Main/TEA5767Radio.
Define the API
The first step is to define the interface that people will use.

If you have used a few libraries, you’ve probably noticed that they generally follow one
of two patterns. The simplest is exemplified by the Narcoleptic library. To use this library,
you simply include the library and then access its methods by prefixing the method name
with Narcoleptic, as shown here:

This pattern is also used in the Serial library. If there will only ever be one of the things
that the library represents, then this pattern is the right one to use. However, if it is possible
that there will be more than one, then you want to use a different approach. Because you
might want to have more than one radio receiver attached to an Arduino at a time, this par-
ticular example falls into this second category.

For these situations, the pattern is similar to that used in the Software-Serial library.
Because you might have lots of soft-serial ports at the same time, you create named in-
stances of the SoftwareSerial library using a syntax like this:

When you want to use that particular serial port (the one using pins 10 and 11), you
create a name for it—in this instance, “mySerial”—and then you can then write things like
the following:

Without worrying about how you will write the code, let’s define how you would like
to be able to use the code in a sketch.

After importing the library, you want to be able to create a new “radio,” name it, and
specify which I2C address it runs on. To make life really easy, you have two options: one
where it defaults to the normal port of 0x60 and a second where you specify the port:

http://playground.arduino.cc//Main/TEA5767Radio
http://playground.arduino.cc//Main/TEA5767Radio

Because this is an FM radio, what you really need to do is set the frequency, so you
need to write something like this in your code.

The number here is the frequency in MHz. It is in the form that the sketch writer would
like it in, not in the strange unsigned int format that is sent to the module. You want to hide
the hard work and wrap it up in the library.

That’s all there is to the design in this case. Now we’ll write some code.
Write the Header File
The code for a library is split across more than one file—generally just two files. One file is
called the “header” file and has the extension “.h.” This file is the one you reference from
your sketch using #include. The header file does not contain any actual program code; it
simply defines the names of the classes and methods in the library. Here is the header file
for the example library:

The #ifndef command prevents the library from being imported more than once and is
standard practice for header files.

You then include the class definition, which has a private section just containing a vari-
able called _address. This variable contains the I2C address for the device.

The public section contains the two functions for creating a radio object—one that al-
lows an address to be specified and one that does not and will, therefore, use the default.
The setFrequncy function is also listed as public.
Write the Implementation File
The code that actually implements the functions defined in the header file is contained in
the file TEA5767Radio.cpp:

The two methods responsible for creating a new radio both simply set the value of
_address to either the default I2C address of 0x60 or the “address” parameter supplied.
The setFrequency method is almost identical to the original sketch
(sketch_07_01_I2C_TEA5767), except that the following line uses the value of the _ad-
dress variable to make the I2C connection:

Write the Keywords File
The folder containing the library should also contain a file called keywords.txt. This file
is not essential; the library will still work if you do not create this file. The file allows
the Arduino IDE to color-code any keywords for the library. Our example library only has
two keywords: the name of the library itself (TEA5767Radio) and setFrequency. The
keyword file for the library can contain comments on lines that start with a #. The keyword
file for this library is shown here:

The keywords should be specified as KEYWORD1 or KEYWORD2, although version
1.4 of the Arduino IDE colors both levels of keyword as orange.
Make the Examples Folder
If you create a folder named examples within the folder for the library, then any sketches
in the folder will automatically be registered by the Arduino IDE when it starts, so you can
access them from the Examples menu under the name of the library. The examples sketch
can just be a regular sketch, but one that is saved in the folder for the library. The example
using this library is listed here:

Testing the Library
To test the library, you can just run the example sketch that uses the library. Unless you are
very lucky (or careful), the library will not work the first time you compile it, so read the
error messages that appear in the information area at the bottom of the Arduino IDE.

Releasing the Library
Having created a library, you need to release it to the community. Perhaps the best way
to make sure that people find it is to create an entry on the publicly editable wiki at ht-
tp://playground.arduino.cc//Main/LibraryList. You can also host the zip file here, although
some people prefer to host the library on GitHub, Google Code, or some other hosting plat-
form, and then they just place a link to the code on the wiki.

If you want to upload your library to the Arduino Playground, follow these steps:
1. Test the library to make sure it works as expected.
2. Create a zip file of the library folder and give it the same name as the library class

with an extension of .zip.

http://playground.arduino.cc//Main/LibraryList
http://playground.arduino.cc//Main/LibraryList

3. Register yourself as a user on www.arduino.cc.
4. Add an entry on the Arduino Playground wiki—ht-

tp://playground.arduino.cc//Main/LibraryList—that describes the library and ex-
plains how to use it. The easiest way to do this is look at an entry for another lib-
rary and copy the appropriate bit of wiki markup. Create a link using, for example,
[[TEA5767Radio]] to set a placeholder for a new page that will appear on the lib-
rary list with a “?” next to it. Clicking the link will create the new page and open
the wiki editor. Copy and adapt the wiki code from another library (perhaps from
“TEA5767Radio”).

5. To upload the zip file of the library, you need to include a tab like this in the wiki
markup: Attach:TEA5767Radio.zip. After the page has been saved, clicking the
download link allows you to specify a zip file to upload onto the wiki server.

Summary
Creating a library can be very rewarding. Before creating one, however, always search in
case someone else has already created the library for you.

The nature of a book like this is that, inevitably, it cannot cover everything that the
reader wants to know. But I do hope it has helped you with some of the more common ad-
vanced Arduino programming topics.

You can follow me on Twitter as @simonmonk2, and you will find more information
about this book and my other books on my website at www.simonmonk.org.

http://www.arduino.cc
http://playground.arduino.cc//Main/LibraryList
http://playground.arduino.cc//Main/LibraryList
http://www.simonmonk.org

A
Parts

As this is a book essentially about programming, not many parts are referenced in this book. This appendix
lists the parts that were used, however, and some possible suppliers.

Arduino Boards
Such is the popularity of Arduino that the common boards like the Uno and Leonardo are readily available.
For the less common boards, take a look at Adafruit and SparkFun in the United States as well as CPC in the
United Kingdom. Their websites are listed in the “Suppliers” section at the end of this appendix.

Shields
Adafruit and SparkFun both stock a wide range of the official Arduino shields as well as their own takes on
some of the shields. You will also find interesting and low-cost shields and Arduino clones at Seeed Studio.

Shields referenced in the book are listed here. Product codes are in parentheses after the supplier names.

Components and Modules
Specific components and modules used as examples in the book are listed here. Product codes are in paren-
theses after the supplier names.

Suppliers
There are many suppliers of electronics and Arduino-related parts. A few are listed here:

Index
& operator
* (asterisk)
; (semicolon)
>> command
[] string function
/* and */ (block comment indicators)
// (line comment indicator)
1-Wire bus

device example
family codes
hardware connections
initializing
master/slave concept
OneWire library
scanning

8N1 connection parameter
16-channel servo/PWM driver

A

Adafruit parts
ADC. See analog-to-digital
converter alpha values
amplitude of signals
analog inputs

speeding up
voltage readings

analog outputs
analogRead command
analog-to-digital converter (ADC)
analogWrite command
application programmer interface (API)
Arduino

anatomy of
AVR Studio software
brief history of
commands
data types
devices connected to
explanatory overview of
IDE installation
libraries
official documentation
power management functions
programming language
project examples
Serial Monitor
String Object library
tutorials
website

Arduino boards
analog connections on
batteries for powering
bootloaders
clock speed reduction
connections between

digital connections on
Digital Signal Processing by
EEPROM memory on
hardware interrupts
illustrated anatomy of
keyboard and mouse emulation
memory usage by
microcontrollers
pin definitions for
power connections for
power consumption of
power sources for
serial interfaces
sleep mode for
SoftwareSerial pin usage
speed tests for
suppliers of
types of
unofficial
uploading to
USB Host feature

Arduino Due
analog outputs
DSP
flash memory project
hardware interrupts
I2C connections
keyboard and mouse emulation
microcontroller
power consumption
serial interfaces
speed test results
SPI library
USB Host feature
USB ports

Arduino Ethernet
Arduino.h file
Arduino Leonardo

hardware interrupts
I2C connections
keyboard and mouse emulation
microcontroller
power consumption
serial hardware
SoftwareSerial pin usage
speed test results

Arduino LilyPad
Arduino Mega 2560

hardware interrupts
I2C connections

microcontroller
serial interfaces
speed test results

Arduino Mega ADK
microcontroller
USB Host feature

Arduino Micro
Arduino Mini
Arduino Mini Pro

power consumption
speed test results

Arduino Nano
Arduino Playground
Arduino Uno

anatomy of
bootloader installation
DSP example
hardware interrupts
I2C connections
ICSP connections
memory
microcontroller
power consumption
PWM output
serial hardware
SoftwareSerial pin usage
speed tests
USB Host shield

ArduinoISP sketch
arrays
ASCII mapping
AT91SAM3X8E microcontroller
ATmega32u4 microcontroller
ATmega328 microcontroller

EEPROM memory used in
ports on
Rx and Tx pins on

ATmega2560 microcontroller
attachInterrupt command
Audio library
available function
average function
AVR Dragon programmer
AVR processors
AVR Studio software

burning bootloaders using
screenshot illustrating

avr/eeprom.h library
avr/power.h library
avr/sleep.h library

avrdude software
B

backpack boards
band stop filter
BASIC programming
batteries
baud rate
bcd2bin function
beginTransmission function
bidirectional level converters
binary numbers
binary-coded decimal (BCD)
bit banging
bit manipulation

binary and hex
masking bits
shifting bits

bits (binary digits)
masking and shifting
splitting across bytes

Blink sketch
modifying
selecting
uploading

boards. See Arduino boards
boolean data type
bootloaders

bypassing
installation of
sketch uploads and

buffer
circular
variable sentence

bumpy case
burning bootloaders
Butterworth filter
bytes

combining into ints
splitting bits across
using vs. int data type

C

C character arrays
C programming language
C++ programming language
camel case
Capacitive Sensing library
central processing unit (CPU)
CHANGE interrupt mode

char data type
character arrays
Circuits@home shield
circular buffer
classes
click command
clock speed

Arduino vs. MacBook Pro
reducing
See also speed of Arduino boards

code
generating
optimizing

COM4 port
commands

Arduino
Serial

comments
computers

Arduino connected to
memory usage by

concatenating strings
connect function
connections

analog
digital
network

const keyword
constant definitions
constant variables
cyclic redundancy check (CRC)

D

data array
data direction register D (DDRD)
data types
delay command
delayMicroseconds command
delayPeriod variable
detachInterrupt command
digital connections

commands for
speeding up

digital inputs
digital outputs

controlling power with
very fast

Digital Signal Processing (DSP)
Arduino Due and
Arduino Uno and

averaging readings for
filtering frequencies for
Fourier Transform used for
frequency measurement example of
introductory overview of
spectrum analyzer example of

digitalRead command
digital-to-analog converter (DAC)
digitalWrite command

code optimization using
PORTD register and

digitization
display modules
displayGPS function
doctormonk.com website
doSomething function
double data type
DS18B20 temperature sensor
DS1307 real-time clock
DSP. See Digital Signal Processing
Dynamic Host Configuration

Protocol (DHCP)
dynamic memory allocation

E

EasyTransfer library
EEPROM library
EEPROM memory

example of using
library functions
limitations of

emulation features
keyboard emulation
mouse emulation

endTransmission function
Ethernet library
Ethernet Shield
EthernetClient
EthernetServer
EtherTen board
examples folder
external interrupts

F

f.step function
factorial function
FALLING interrupt mode
fast digital output
Fast Fourier Transform (FFT)
FFT library

http://doctormonk.com

filtering process
filter code generation
low-pass filter creation

findUntil function
Firmata library
fixed resistor
flash function
flash memory

minimizing usage of
storing data in
See also memory

float data type
misconception about
speed comparison using
voltage measurements using

for command
Fourier Transform
freeMemory function
Freetronics parts
frequencies

explained
filtering
measuring

frequency domain
functions

EEPROM library
loop
power management
setup
SPI configuration
String
See also specific functions

fuses
G

GCC compiler
getAddress function
getField function
getKey function
getModifiers function
getOemKey function
GFX library
global variables
GND connections
goToSleep function
GPS module

H

hardware
networking

serial
SPI bus

hardware interrupts
ISRs and
modes for
pins for
pull-up resistors for
test circuit for

header file
heap
Hertz (Hz)
hexadecimal values
HIDtoA function
HIGH interrupt mode
highByte function
high-pass filter
hitWebPage function
Host Shield Libraries
HTTP requests
Human Interface Device (HID)

I

I2C interface bus
device examples
hardware connections
initializing
master/slave arrangement
sample arrangement
sending/receiving data
timing diagram
Wire library

ICSP connections
IDE (Integrated Development Environment)

burning bootloaders using
installation of
preprocessor for

if statement
implementation file
include statement
initialize function
initializeCode function
initializing

1-Wire bus
I2C interface bus

.ino file extension
INPUT_PULLUP interrupt
inputs

analog
commands for
digital

speeding up
installation

bootloader
IDE

int data type
bytes used vs.
combining bytes into
storing in EEPROM

Integrated Development Environment. See IDE
Internet of Things
Interrupt Service Routines (ISRs)

summary points about
volatile variables and

interrupts
enabling/disabling
hardware
ISRs and
modes for
pins for
pull-up resistors for
purpose of
timer
waking on external

interrupts function
IOREF connection
IP addresses
ISP header pins
ISRs. See Interrupt Service Routines

J

JSON web service
K

kbd_poll function
keyboard

connecting
emulating

Keyboard library
KeyboardController library
keyPressed function
keyReleased function
keywords file
Knight, Peter

L

lastChangeTime variable
least significant bit (LSB)
LED backpack boards
ledState variable
Leostick board

level converters
libraries

creating and sharing
overview of Arduino
See also specific libraries

light sensors
LiPo batteries
LiquidCrystal library
Lithium batteries
localIP function
long data type
loop function

global variables used in
hardware interrupts and
performance improvements and
Serial commands and
USB activity check and
web servers and

LOW interrupt mode
lowByte function
low-pass filter

M

MAC addresses
main.cpp file
main function
malloc command
masking bits
Master In Slave Out (MISO)
Master Out Slave In (MOSI)
master/slave arrangement
Max3421e.h library
MCP3008 eight-channel ADC
memory

EEPROM
Flash
measuring free
minimizing RAM
misconceptions about
PC vs. Arduino use of
recursion related to
SD card storage and
static vs. dynamic allocation of
string constants stored in

MemoryFree library
messageIndex variable
methods
Micro USB OTG Host Cable
microcontrollers

bootloader program on

power management functions of
software for programming

micros command
microSD card slot
millis command
most significant bit (MSB)
mouse

connecting
emulating

Mouse library
mouseMoved function
mousePressed function
mouseReleased function

N

Narcoleptic library
native USB port
network connections

establishing
Ethernet examples of
Ethernet library for
hardware used for
making web requests
web server setup
WiFi example of
WiFi library for

networking hardware
Arduino Ethernet/EtherTen
Ethernet Shield
WiFi Shield

nibbles
NiMh batteries
NMEA standards
noInterrupts function
nonvolatile flash memory
noTone command
null character

O

OneWire library
onReceive function
open-collector outputs
outputs

analog
commands for
digital
open-collector
speeding up

P

pageNameIs function
parasitic power
parseFloat function
parseInt function
parts, suppliers of
performance

improving
testing

pgm_read_word function
photoresistors
pin definitions
pinMode command
pins

interrupt
ISP header
Rx and Tx
Save Select
SoftwareSerial

pins_arduino.h file
port input D (PIND) register
PORTD register
ports

ATmega328
directly using
registers for controlling
specifying in IDE
USB

power
clock speed and
connections for
consumption of
digital outputs to control
functions for managing
LED indicating
parasitic
sources of

Power over Ethernet (PoE) adapter
Power Supervision unit
precompiler directives
Prescaler library
press command
print statements
printByte function
Processing framework
processors

See also microcontrollers
Program Memory (PROGMEM) directive
programmers

burning bootloaders using
programming Arduino using

Programming Arduino: Getting Started with Sketches (Monk)
programming language
programming USB port
programs. See sketches
pull-up resistors
pulseIn command
pulse-width modulation (PWM) signals

produced by Arduino Uno
timer generation of

R

RAM
measuring free
minimizing usage of
PC vs. Arduino use of
static
See also memory

read command
readADC function
readBytes function
readHeader function
readSecretCodeFromEEPROM function
readStringUntil function
readUntil function
real-time clock (RTC) module
receiveEvent function
recursion
registers
releaseAll command
replace function
requestFrom function
Reset connector
Reset switch
resistors

fixed
photoresistors
pull-up

RISING interrupt mode
RS232 standard
RTClib library
Rx and Tx pins

S

sampleWindowFull function
Save Select (SS) pin
saveSecretCodeToEEPROM function
Scheduler library
SD cards
SD library
search function

sendAnalogReadings function
sendBody function
sendHeader function
sendReadings variable
Serial.available function
Serial.begin command
Serial Clock Line (SCL)
Serial commands
Serial Data Line (SDL)
Serial interface

commands
examples of using
hardware overview
protocol and baud rate
SoftwareSerial library

Serial Monitor
serial communications
sine wave sketch

Serial Peripheral Interface. See SPI bus
Serial.println commands
Serial protocol
server, web
Servo library
setFrequency function
setPinStates function
setup function
sharing libraries
shields

Ethernet
USB Host
WiFi

shifting bits
signal processing. See Digital Signal Processing
simonmonk.org website
sin function
sine waves
single-thread model
sizeof function
sketches

comments in
functions in
if statements in
loops in
size message for
uploading to Arduino
variables in

slave/master concept
sleep mode

external interrupts and
timer method and

http://simonmonk.org

software
Arduino IDE
AVR Studio

SoftwareSerial library
Sparkfun parts
spectrum analyzer
speed of Arduino boards

improving
reducing
testing

SPI bus
bit manipulation
configuration functions
device example
hardware connections
master/slave arrangement
sample wiring diagram
SPI library

SPI library
Spi.h library
sprintf function
stack
stack frame
static memory allocation
static RAM (SRAM)
step function
Stepper library
string constants
String Object library
strings

Arduino library of
C char arrays as
creating and concatenating
finding the length of
formatting

strlen function
substring function
successive approximation ADC
suppliers of parts
switchPin variable
System Clock (SCLK)

T

TEA5767 FM receiver module
I2C example
library example

temperature readings
temperature sensor
testing

speed of Arduino boards

written libraries
text. See strings
threads
time commands
time domain
timer interrupts
Timer library
TimerOne library
toInt function
tone command
transfer function
trim function
tri-state mode
trueDelay function
trueMillis function
TTL Serial
tutorials on Arduino
Twitter account of author
Two Wire Interface (TWI)
Tx and Rx pins

U

uint8_ data type
Universal Asynchronous Receiver Transmitters (UARTs)
unofficial Arduino boards
unsigned int data type
unsigned long data type
unsigned qualifier
updateData function
Upload button
uploading

libraries
sketches

USB connection
Usb.h library
USB Host feature

built-in on Arduino Due
USB Host shield/libraries

USB programming
keyboard emulation
mouse emulation
USB Host feature

USBDroid board
USBHost library
USB_Host_Shield library
USB-to-serial interface

V

valueOfParam function
variables

constant
global
volatile
See also specific variables Venus GPS module

very fast digital output
void command
volatile variables
voltage, measuring

W

waking from sleep
external interrupts for
timer method for

Watchdog Timer
web requests
web server
websites

author
official Arduino
supplier

while loop
WiFi connections
WiFi library
WiFi shields
WiFiClient
WiFiServer
Wire library
wireless modules
Wiring framework
writing libraries

classes and methods for
TEA5767 Radio example of
testing and releasing after
useful reasons for

X

Xbee library

Also from author Simon Monk

Print edition: 0-07-178422-5
e-book: 0-07-178423-3

Available from mhprofessional.com and booksellers everywhere

http://mhprofessional.com

Thank you for evaluating ePub to PDF Converter.

That is a trial version. Get full version in http://www.epub-to-pdf.com/?pdf_out

https://www.paypal.com/cgi-bin/webscr?cmd=_xclick&business=steven.lv.2005@gmail.com&item_name=ePub%20to%20PDF%20Converter&item_number=8825-26&amount=29.95&no_shipping=0&no_note=1¤cy_code=USD&lc=US&bn=PP-BuyNowBF&charset=UTF-8

