CSE423: Embedded System Summer-2020

Introduction to micro-controller and other basic components

□ At the end of this course, students should be able to:

- Interface a microcontroller to a variety of analog and digital inputs and output devices.
- Program a microcontroller to implement a closed-loop automatic control.
- Write and Troubleshoot programming language code for a microcontroller.
- Analyze a problem to determine appropriate microcontroller use.

What is Microcontroller?

- A microcontroller is an integrated chip that is often part of an embedded system.
- □ The microcontroller includes a **CPU**, **RAM**, **ROM**, **I/O ports** and timers like a standard computer, but because they are designed to execute only a single specific task to control a single system, they are much *smaller and simplified* so that they can include all the functions required on a single chip.

ATmega328P is a high performance yet low power consumption 8-bit AVR microcontroller that's able to achieve the most single clock cycle execution of 131 powerful instructions thanks to its advanced **RISC** architecture. It can commonly be found as a processor in Arduino boards such as Arduino Fio and Arduino Uno.

Microcontroller (Atmel ATmega 328P)

Features:

High endurance non-volatile memory segments

- In system self-programmable flash program memory
- Programming Lock for software security

Peripheral features

- Two 8-bit Timer/Counter with separate prescaler, compare mode.
- One 16-bit Timer/Counter with separate prescaler, compare mode, and capture mode
- Temperature measurement
- Programmable serial USART and watchdog timer with separate onchip oscillator.

Unique features compared to other microcontrollers (ARM, 8051, PIC):

- Power-on reset and programmable brown-out detection
- Internal calibrated oscillator
- External and Internal interrupt sources
- Six sleep modes: Idle, ADC noise reduction, power-save, powerdown, standby, and extended standby

Microcontroller (Atmel ATmega 328P)

Advantages and Disadvantages:

Advantages

- Processors are simpler to use, with the usage of 8bit and 16bit instead of 32/64bit which are more complex.
- Readily usable without additional computing components with 32k bytes of onboard self-programmable flash program memory as well as 23 programmable I/O lines
- Code Efficient, all 31 registers are directly connected to the arithmetic logic unit (ALU), making it 10 times faster than conventional CISC microcontrollers
- Optimized for AVR enhanced RISC instruction set.

Disadvantages

 Lacks performance compared to higher bit microcontrollers

Comparison of different micro-controllers

	ATmega328P	STM32	MSP430	
Brand	MicroChip	Cortex	Texas Instruments	
Cost	Low	High	Low	
Architecture	Advanced RISC architecture	Power Architecture technology designed for embedded applciations	Older, von-Neumann architecture	
Power Consumption	Low, more efficient power consumption	Medium, higher clock speed may result in higher consumption power	Low	
Performance	Medium, lower bit but suitable for complex projects	High, fast processing speed, packs more power. Running 32 bit ARM processor core with sufficient RAM	cessing speed, ower. Running rocessor core cient RAM	
Ease of Usage	Easy to use, 8 bit and high compatibility with Arduino boards	Complicated due to its nature of being a 32 bit microcontroller	Complex relative to Arduino boards	

- **Arduino Uno**
- **USB** A to B Cable
- **Arduino IDE**
- **Breadboard**
- □ Jumper Wire
- **Different Circuit Elements**

- **Textbook**
- Arduino Uno
- **USB** A to B Cable
- Arduino IDE
- Breadboard
- □ Jumper Wire
- **Different Circuit Elements**

Price: 590 BDT

For online order: https://www.techshopbd.com/productcategories/boards/1253/arduino-uno-r3-china-techshop-bangladesh

- Textbook
- Arduino Uno
- **USB A to B Cable**
- Arduino IDE
- Breadboard
- □ Jumper Wire
- **Different Circuit Elements**

For online order: https://www.techshopbd.com/productcategories/cable/206/usb-cable-a-to-b-techshop-bangladesh

- Textbook
- Arduino Uno
- **USB** A to B Cable
- Arduino IDE
- **Breadboard**
- Jumper Wire
- **Different Circuit Elements**

For download: https://www.arduino.cc/en/Main/Software

CSE423@DIU, Summer 2020

Required Acquisition

- **Textbook**
- **Arduino Uno**
- **USB** A to B Cable
- Arduino IDE
- **Breadboard**
- Jumper Wire
- **Different Circuit**

For online order: https://www.techshopbd.com/product-categories/projectboard/231/breadboard-techshop-bangladesh

Price: 120 BDT

- **Textbook**
- **Arduino Uno**
- **USB** A to B Cable
- Arduino IDE
- **Breadboard**
- **Jumper Wire**
- **Different Circuit Elements**

Price: 2.20 BDT pre piece

For online order: https://www.techshopbd.com/productcategories/cable/1083/male-to-male-jumper-wire-single-techshop-bangladesh

- **Textbook**
- **Arduino Uno**
- **USB** A to B Cable
- Arduino IDE
- □ Breadboard
- □ Jumper Wire
- **Different** Circuit Elements

For online order: https://www.techshopbd.com/

Example

Example

Appropriate Microcontroller Use

- A microcontroller is a correct tools to use when:
 - Intelligence is required in a system
 - The complexity of a system is reduced when using one.
 - The cost of the microcontroller is "less" then using discrete components to do the same job.
 - A variety of sensors and actuators must be integrated in the system
 - Communication with the other device is necessary

Appropriate Microcontroller Use

- A microcontroller is **NOT** the correct tool to use when:
 - System requires little or no intelligence.
 - The system can be made easier and/or cheaper using discrete components.
 - Microcontroller is undersized for the problem
 - > Too slow
 - Too much number crunching required
 - Too many things going on

Sensor + Signal Conditioner

Required for "Closed Loop Control".

- (What is the system called if it uses no sensors?)
- Measures important system variable(s)
- This measurements may need to be conditioned for use by the "Brain"
- The conditioning involves scaling, offsetting, filtering etc. required for the controller to have meaningful data.

Actuator

- Energy conversion device
- Converts power to the kind needed by the controlled device.
- Motor, brake, pump, solenoid, linear actuator, flaps etc.
- It is just opposite to sensor

Controller Software

- C/C++/Arduino IDE for many functions
- Assembly language for high speed functions
- FPGA for highest speed (VHDL)

	ø	
sketch_sep14a		
<pre>void setup() { // put your setup code here, to run once: } void loop() { // put your main code here, to run repeatedly:</pre>	^	Programming for Embedded Systems
}		