CHAPTER

6

- POWER FLOW ANALYSIS

6.1 INTRODUCTION

In the previous chapters, modeling of the major components of an electric power
system was discussed. This chapter deals with the steady-state analysis of an in-
terconnected power system during normal operation. The system is assumed to be
operating under balanced condition and is represented by a single-phase network.
The network contains hundreds of nodes and branches with impedances specified
in per unit on a common MVA base.

Network equations can be formulated systematically in a variety of forms.
However, the node-voltage method, which is the most suitable form for many
power system analyses, is commonly used. The formulation of the network equa-
tions in the nodal admittance form results in complex linear simultaneous algebraic
equations in terms of node currents. When node currents are specified, the set of
linear equations can be solved for the node voltages. However, in a power system,
powers are known rather than currents. Thus, the resulting equations in terms of
power, known as the power flow equation, become nonlinear and must be solved
by iterative techniques. Power flow studies, commonly referred to as load flow, are
the backbone of power system analysis and design. They are necessary for plan-
ning, operation, economic scheduling and exchange of power between utilities. In
addition, power flow analysis is required for many other analyses such as transient
stability and contingency studies.
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In this chapter, the bus admittance matrix of the node-voltage equation is
formulated, and a MATLAB function named ybus is developed for the system-
atic formation of the bus admittance matrix. Next, two commonly used iterative
techniques, namely Gauss-Seidel and Newton-Raphson methods for the solution
of nonlinear algebraic equations, are discussed. These techniques are employed in
the solution of power flow problems. Three programs lfgauss, ifnewton, and de-
couple are developed for the solution of power flow problems by Gauss-Seidel,
Newton-Raphson, and the fast decoupled power flow, respectively.

6.2 BUS ADMITTANCE MATRIX

In order to obtain the node-voltage equations, consider the simple power system
shown in Figure 6.1 where impedances are expressed in per unit on a common
MVA base and for simplicity resistances are neglected. Since the nodal solution is
based upon Kirchhoff’s current law, impedances are converted to admittance, i.e.,

i = 1 1
Y my T+ g

FIGURE 6.1
The impedance diagram of a simple system.
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FIGURE 6.2

The admittance diagram for system of Figure 6.1.

The circuit has been redrawn in Figure 6.2 in terms of admittances and trans-
formation to current sources. Node 0 (which is normally ground) is taken as refer-
ence. Applying KCL to the independent nodes 1 through 4 results in

I =110V +y12(Vi — Vo) + y13(V1 — V)

Iy = yooVa + y12(Va — V1) + y23(Vo — V3)
0 =ya3(V3 — Va) + y13(Vz — V1) + y34(Vz — V)
0 = y34(Va — V3)

Rearranging these equations yields

I = (y10 + y12 + y13)V1 — y12Vo — y13V3

Iy = —y12V1 + (y20 + Y12 + y23) Vo — y23 V3
0= —y13V1 — ya3Va + (y13 + vo3 + y34) V3 — y34 Vs
0= —~y3V3 + y34Vs

We introduce the following admittances
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Y33 = y13 + y23 + Y34
Yi4 = yaa

Yi2 = Yo1 = —y12
Yis = Y51 = —y13
Yas = Y32 = —yo3
Y34 =Yi3 = —y34

The node equation reduces to

I =YuWVi + Y12 Vo + Y13V + Y14V

I =YWV + Yo Vo + Yas Vs + You Vj

I3 = Y31V} + Yo Vo + Va3 Vs + Y,V

I4 =YV + Yo Vo + Y3 Va + Yo Vy
In the above network, since there is no connection between bus 1 and 4, Yi4 =
Y41 = 0; similarly Y34 = Y39 = 0.

Extending the above relation to an n bus system, the node-voltage equation
in matrix form is

I Yin Yig o0 Yy oo Y [ W]
I Yo Yoo o0 Yy -0 Yo, Va
P : : : : : 6.1
I; Yo Yo - Yy - Y, Vi ©.1)
L 7] | inl In2 < inn | L Va i
or
Ibus = Ybus Vlms (6-2)

where I, is the vector of the injected bus currents (i.e., external current sources).
The current is positive when flowing towards the bus, and it is negative if flowing
away from the bus. Vy, is the vector of bus voltages measured from the reference
node (i.e., node voltages). Yy, is known as the bus admittance matrix. The diag-
onal element of each node is the sum of admittances connected to it. It is known as
the self-admittance or driving point admittance, i.e.,

n
Yi=> uj j#i (6.3)
3=0

The off-diagonal element is equal to the negative of the admittance between the
nodes. It is known as the mutual admittance or transfer admittance, i.e.,

Yi; =Y = —yij (6.4)
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‘When the bus currents are known, (6.2) can be solved for the n bus voltages.
Vius = Yok Tous (6.5)

The inverse of the bus admittance matrix is known as the bus impedance matrix
Zpus- The admittance matrix obtained with one of the buses as reference is nonsin-
gular. Otherwise the nodal matrix is singular.

Inspection of the bus admittance matrix reveals that the matrix is symmetric
along the leading diagonal, and we need to store the upper triangular nodal ad-
mittance matrix only. In a typical power system network, each bus is connected to
only a few nearby buses. Consequently, many off-diagonal elements are zero. Such
a matrix is called sparse, and efficient numerical techniques can be applied to com-
pute its inverse. By means of an appropriately ordered triangular decomposition,
the inverse of a sparse matrix can be expressed as a product of sparse matrix fac-
tors, thereby giving an advantage in computational speed, storage and reduction of
round-off errors. However, Z;, s, which is required for short-circuit analysis, can be
obtained directly by the method of building algorithm without the need for matrix
inversion. This technique is discussed in Chapter 9.

Based on (6.3) and (6.4), the bus admittance matrix for the network in Figure
6.2 obtained by inspection is :

~j850  j2.50  55.00 0
v - | 4250 —j875 5500 0
bus = | j500 45.00 —j22.50  j12.50

0 0 41250 —j12.50

A function called Y = ybus(zdata) is written for the formation of the bus
admittance matrix. zdata is the line data input and contains four columns. The
first two columns are the line bus numbers and the remaining columns contain the
line resistance and reactance in per unit. The function returns the bus admittance
matrix. The algorithm for the bus admittance program is very simple and basic to
power system programming. Therefore, it is presented here for the reader to study
and understand the method of solution. In the program, the line impedances are
first converted to admittances. Y is then initialized to zero. In the first loop, the
line data is searched, and the off-diagonal elements are entered. Finally, in a nested
loop, line data is searched to find the elements connected to a bus, and the diagonal
elements are thus formed.

The following is a program for building the bus admittance matrix:

function[Y] = ybus(zdata)

nl=zdata(:,1); nr=zdata(:,2); R=zdata(:,3); X=zdata(:,4);
nbr=length(zdata(:,1)); nbus = max{max{(nl), max{nr));

Z =R + j*X; %#branch impedance
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27 1.026 -15.912 0.000 0.000 0.000 0.000 0.00
28 1.011 -12.067 0.000 0.000 0.000 0.000 0.00
29 1.006 -17.136 2.400 0.900 0.000 0.000 0.00
30 0.995 -18.014 10.600 1.900 0.000 0.000 0.00

Total 283.400 126.200 300.998 125.145 23.30

The output of the lineflow is the same as the line flow output of Example 6.9 with
the power mismatch as dictated by the fast decoupled method.

PROBLEMS

6.1. A power system network is shown in Figure 6.17. The generators at buses
1 and 2 are represented by their equivalent current sources with their reac-
tances in per unit on a 100-MVA base. The lines are represented by m model
where series reactances and shunt reactances are also expressed in per unit
on a 100 MVA base. The loads at buses 3 and 4 are expressed in MW and
Myvar.

(a) Assuming a voltage magnitude of 1.0 per unit at buses 3 and 4, convert
the loads to per unit impedances. Convert network impedances to admit-
tances and obtain the bus admittance matrix by inspection.

(b) Use the function Y = ybus(zdata) to obtain the bus admittance matrix.
The function argument zdata is a matrix containing the line bus numbers,
resistance and reactance. (See Example 6.1.)
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FIGURE 6.17
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6.2. A power system network is shown in Figure 6.18. The values marked are
impedances in per unit on a base of 100 MVA. The currents entering buses 1
and 2 are

Iy =1.38 —j2.72 pu
I; = 0.69 — j1.36 pu

(a) Determine the bus admittance matrix by inspection.

(b) Use the function Y = ybus(zdata) to obtain the bus admittance matrix.
The function argument zdata is a matrix containing the line bus numbers,
resistance and reactance. (See Example 6.1.) Write the necessary MATLAB
commands to obtain the bus voltages.

9
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FIGURE 6.18
One-line diagram for Problem 6.2,

6.3. Use Gauss-Seidel method to find the solution of the following equations

1+ 122 = 10
Ty +z2=6

with the following initial estimates

@z =1and2¥ = 1

® 2z =1and 2 =2

Continue the iterations until |Aa:§k)| and legk)l are less than 0.001.




