Differential \& Integral Calculus Chapter Wise Problems List

Chapter 1: Limit, Continuity \mathcal{E} Differentiability

Write down the short note about the Limit, Continuity, and Differentiability.

1. A function $f(x)$ is defined as follows: $f(x)=\left\{\begin{array}{lll}x^{2}+1 & \text { when } & x>0 \\ 1 & \text { when } & x=0 \\ x+1 & \text { when } & x<0\end{array}\right.$, Find the value of $\lim _{x \rightarrow 0} f(x)$
2. A function $f(x)$ is defined as follows: $f(x)=\left\{\begin{array}{lll}x^{2} & \text { when } x<1 \\ 2.4 & \text { when } & x=1, \\ x^{2}+1 & \text { when } & x>1\end{array}\right.$ Does $\lim _{x \rightarrow 1} f(x)$ exist?
3. If $f(x)=\frac{1}{1-e^{1 / x}}$ then find limits from the left and the right of $x=0$. Does the limit of $f(x)$ at $x=0$ exist?
4. A function $f(x)$ is defined as follows: $f(x)=\left\{\begin{array}{ll}e^{-\frac{|x|}{2}} & \text { when }-1<x<0 \\ x^{2} & \text { when } 0 \leq x<2\end{array}\right.$,

Discuss the existence of $\lim _{x \rightarrow 0} f(x)$.

1. A function $f(x)$ is defined as
Discus the continuity at $x=1$.
2. If $f(x)=\left\{\begin{array}{ll}x^{2} \sin (1 / x) & \text { when } x \neq 0 \\ 0 & \text { when } x=0\end{array}\right.$ then test the continuity at $x=0$.
3. A function $f(x)$ is defined as follows: $f(x)=\left\{\begin{array}{cc}1 & \text { when }-\infty<x<0 \\ 1+\sin x & \text { when } 0 \leq x<\pi / 2 \\ 2+(x-\pi / 2)^{2} & \text { when } \pi / 2 \leq x<\infty\end{array}, \quad\right.$ Test the continuity at
$x=0$ and $\pi / 2$
4. A function $f(x)$ is defined as follows: $f(x)=\left\{\begin{array}{ll}x^{2}+1 & \text { when } x \leq 0 \\ x & \text { when } 0<x<1 \\ \frac{1}{x} & \text { when } x \geq 1\end{array}\right.$, Discuss the differentiability at $x=0$ and $x=1$.
5. A function $f(x)$ is defined as follows: $f(x)= \begin{cases}1 & \text { when } x<0 \\ 1+\sin x & \text { when } 0 \leq x<\frac{\pi}{2} \\ 2+(x-\pi / 2)^{2} & \text { when } x \geq \frac{\pi}{2}\end{cases}$ Discuss the differentiability at $x=0$ and $x=\frac{\pi}{2}$.

Chapter 2: Differentiation

Write down the short note about the Differential coefficient, Implicit equation and Parametric equation; Statement of Leibnitz Theorem.

Find differential coefficient or $\frac{d y}{d x}$ for the following functions (By using different types of differential formula)
(1) $y=3 x^{8}-2 x^{\frac{5}{4}}-\frac{5}{x}+8$
(2) $y=\left[\frac{\sqrt{x}-2 x}{\sqrt{x}}\right]$
(3) $y=\left(x^{3}-5\right)(2 x+3)$
(4) $y=e^{a x^{2}+b x+c}$
(5) $y=\sqrt{x^{3}-2 x+5}$
$y=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)$

$$
\begin{aligned}
& \quad \text { (7) } y=4 \sin x-\cos x \\
& \quad \text { (10) } y=\ln (\sec x+\tan x) \\
& y=\cos ^{-1}\left(e^{\cot ^{-1} x}\right)
\end{aligned} \begin{aligned}
& \text { (11) } y=e^{\sin ^{-1} x}+\tan ^{-1} x
\end{aligned}
$$

Find differential coefficient or $\frac{d y}{d x}$ for the following functions (By using $u v$ and u / v formula)
(1) $y=x^{3} \ln x$
(2) $y=x e^{x} \sin x$
(3) $y=\frac{2 x^{2}+5}{3 x-4}$
(4) $y=\frac{\cos x}{1+\sin x}$

Find differential coefficient or $\frac{d y}{d x}$ for the following functions (By using Logarithmic formula)
(1) $y=x^{1+x+x^{2}}$
(2) $y=(\sin x)^{\ln x}$
(3) $y=x^{\sin x}+(\sin x)^{\cos x}$

Find differential coefficient or $\frac{d y}{d x}$ for the following functions (For Implicit

Function)

(1) $x y^{3}-3 x^{2}=x y+5$
(2) $e^{x y}+y \ln x=\cos 2 x$
(3) $(\cos x)^{y}=(\sin y)^{x}$

Find differential coefficient or $\frac{d y}{d x}$ for the following functions (By using Parametric formula)

1. $x=a(t+\sin t), y=a(1-\cos t)$
2. $x=a(\cos t+t \sin t), y=a(\sin t-t \cos t)$
3. $x=t-\sqrt{1-t^{2}}, y=e^{\sin ^{-1} t}$

Find the differential coefficient $\frac{d y}{d x}, d^{2} y / d x^{2}, d^{3} y / d x^{3}$ of the following functions. Also, find the value of $\frac{d y}{d x}, d^{2} y / d x^{2}, d^{3} y / d x^{3}$ at $x=2$ this point.
$\begin{array}{ll}\text { (1) } y=\frac{1+x+x^{2}+x^{3}+x^{4}}{x^{3}} & \text { (2) } y=(1-x)(1+x)\left(1+x^{2}\right)\end{array}$
(3) If $y=3 e^{2 x}+2 e^{3 x}$, prove that $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0$
(4) If $y=3 e^{2 x}+2 e^{3 x}$, show that $\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$
 Successive Differentiation)

1. $y=x^{n}$
2. $y=e^{a x}$
3. $y=\cos (a x+b)$
4. $y=\sin (a x+b)$

Find differential coefficient or $\left(\frac{d y}{d x}\right)_{n}$ or y_{n} for the following functions (By using Leibnitz Theorem)
(1) If $y=\tan ^{-1} x$ then show that $\left(1+x^{2}\right) y_{n+2}+2(n+1) x y_{n+1}+\left(n^{2}+n\right) y_{n}=0$
(2) If $y=\left(\sin ^{-1} x\right)^{2}$ then show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$.

Chapter 3: Partial Differentiation

Partial differential coefficient and related notations, symmetric function, homogeneous function, and Euler theorem for homogeneous function.

Math: Type 1

Math: Type 2

Math: Type 3
Find the values of $u_{x}, u_{y}, u_{z}, u_{x x}, u_{y y}, u_{z z}, u_{x y}, u_{y z}, u_{z x}, u_{x y z}, u_{y y z}, u_{x z z}$ etc. for the following functions
a) $u(x, y, z)=3 x^{4} y z-5 y^{4} z+17 z-99 x y^{6}-3 \cos z+125$
b) $u(x, y, z)=e^{x}(\sin x y+\cos z)$
c) If $u=e^{x y z}$ then show that $\frac{\partial^{3} u}{\partial x \partial y \partial z}=\left(1+3 x y z+x^{2} y^{2} z^{2}\right) e^{x y z}$
a) Show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=2 u$ for $u(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)$.
b) If $u=\sin ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y}{x}\right)$ then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0$
c) If $u=\log \left(x^{2}+y^{2}\right)$ then show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$. Also verify $\frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial^{2} u}{\partial x \partial y}$.

Apply the Euler's theorem, solve the problems

a) If $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x+y}\right)$ then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$.
b) If $u=\operatorname{Sin}^{-1} \frac{x^{2}+y^{2}}{x+y}$ then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$
c) If $u=\operatorname{Sin}^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$ then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{4} \operatorname{Sin} 2 u$

Chapter 4: Application of Differentiation

Write down the short note about the Tangents and Normals; Stationary point, Inflation point, Sadel point, Critical Point, maximum and minimum value of a function.

Department of GED, Daffodil International University, Semester: Fall'2020

Find the Maximum and Minimum values of the following functions,
Q1. $f(x)=2 x^{3}-3 x^{2}-12 x$
Q2. $f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12$

Q3. Show that the maximum value of $x^{2} \ln \left(\frac{1}{x}\right)$ is $\frac{1}{2 e}$.
Q4. A liquid form of antibiotic manufactured by a pharmaceutical firm is sold in bulk at a price 200 tk. Per unit. If the total production cost (in taka) for x units is

$$
C(x)=500000+80 x+0.003 x^{2}
$$

and if the production capacity of the firm is at most 30,000 units in a specified time, how many units of antibiotic must be manufactured and sold in that time to maximize the profit?

Q5. A factory manufactures ball-pens and all products are sold at Tk . 10 per piece. If for manufacturing x pieces of ball-pens total cost, $c(x)=30+2 x+0.02 x^{2}$.
(a) How many pieces to be produced for maximum income?
(b) What will be the maximum income?

Chapter 5: Various Theorem © its Application

Department of GED, Daffodil International University, Semester: Fall'2020
Statement of Rolle's Theorem, Mean value Theorem \& Taylor series Theorem.

Solve the problems by using the property of the Gamma function.
(a) $\Gamma(7)$
(b) $\Gamma\left(\frac{7}{2}\right)$
(c) $\Gamma\left(\frac{10}{3}\right)$ if $\Gamma\left(\frac{1}{3}\right)=\frac{27}{10}$
(d) $\Gamma\left(-\frac{7}{2}\right)$

Q1. Evaluate $\int_{0}^{\infty} e^{-x} x^{6} d x$, using the property of Gamma function
Q2. Evaluate $\int_{0}^{\infty} \frac{25}{7} e^{-x} x^{\frac{7}{3}} d x$ if $\Gamma\left(\frac{1}{3}\right)=\frac{27}{10}$, using the property of Gamma function
Apply the properties of Beta function solve the following problems,
(a) $\int_{0}^{\frac{\pi}{2}} \sin ^{5} \theta \cos ^{4} \theta d \theta$
(b) $\int_{0}^{\frac{\pi}{2}} \sin ^{9} \theta d \theta$
(c) $\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{3}{2}} \theta \cos ^{3} \theta d \theta$
(d) $\int_{0}^{1} x^{4}(1-x)^{7} d x$
(e) $\int_{0}^{1} x^{\frac{3}{2}}(1-x)^{4} d x$

Chapter 9: Application of Integration

Real life problem:

1. A car starts from rest at $s=3 m$ from the origin and has acceleration at time t given by $a=2 t-5 m s^{-2}$. Find the velocity and displacement of the car at $t=4 s$.
2. The electric current (in mA) in a computer circuit as a function of time is $i=0.3-0.2 t$. What total charge passes a point in the circuit in 0.050 s .

Area Related Problem:

1. Find the area of the circle $x^{2}+y^{2}=a^{2}$ is πa^{2} square units.
2. Find the area of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$ sq. units.
3. Find the area of the region enclosed by the parabola $y^{2}=4 a x$ and $x^{2}=4 a y$.
4. Find the area of the region enclosed by the straight line $y=2 x$ and parabola $y^{2}=4 x$

Volume Related Problem:

1. Find the volume of the solid that is obtained when the region under the curve $y=\sin x$ over the interval $x=0$ and $x=\pi$ is revolved about the x -axis.
2. Find the volume of the solid that is obtained when the region under the curve $y^{2}=4 a x$ over the interval $[1,2]$ is revolved about the x -axis.
